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Quantum and classical noise in practical quantum-cryptography systems based
on polarization-entangled photons
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Quantum-cryptography key distributiofQCKD) experiments have been recently reported using
polarization-entangled photons. However, in any practical realization, quantum systems suffer from either
unwanted or induced interactions with the environment and the quantum measurement system, showing up as
guantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement
in spontaneous parametric down-conversiSRDQ suffers quantum noise in its practical implementation as
a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD
schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we
bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coinci-
dences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between
different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of
performances and advantages of different systems.
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[. INTRODUCTION the security of the distributed secret key on the laws of quan-
tum physicd1-3], gives it an advantage over the public key
Quantum-cryptography key distributig@CKD) is at the  cryptography. In other words, the uncertainty principle pro-
moment the most advanced and challenging application dfibits one from gaining information from a quantum channel
quantum information. QCKD offers the possibility that two without disturbing it. Basically, QCKD is based on the prin-
remote parties, sender and receieonventionally called ciple that when a third partjEve) performs a measurement
Alice and Bob, can exchange a secret random key, called®n @ qubit exchanged, she induces a perturbation, yielding
sifted key(string of qubit3, to implement a secure encryp- €orsin the bit sequence tran_sm_ltted, re\_/eahng her presence.
tion or decryption algorithm based on a shared secret key?Y attempt by Eve to obtain information about the key

without the need that the two parties mgge3). eads to a nonzero error rate in the generated sifted key.
In a practical QCKD, Alice and Bob use a quantum Char]_Nevertheleszs, this last claim must be somewhat softened be-

nel, along which sequences of signals are either sent or mef‘?‘use of prgctlcal r_eallzauon of quantum chanrids Un-
sured at random between different bases of orthogonal qual Qrtunatgly, in practical systems, errors aI;o happen beca_use
tum states. Alice can play the role of either setting randomlyOf exper_|mental Iea!<age, such as losses in optics, detectlo_n,
th lari ' tion basis of phot d dina them to B e!ectrqmcs, and_ noise. Also, even vyhen no ea\{esdropper is
€ polarization basis of photons and sending them 1o OlEilsturblng the bit exchange, there will be errors in the trans-
(faint Iaser pulses as photon soufcer measuring photons mission and strings of Alice and Bob will not coincide per-
randomly in any one of the selected bagestangled-photon oy Thus, in practice, there is no way to distinguish an
source. Bob, randomly and independently from Alice, mea- ¢4yesdropper attack from experimental imperfections, mak-
sures in one of the bases. The sifted key consists of thﬁ]g it necessary to establish an upper bound on tolerable
subset of measurements performed when bases of Alice argperimental imperfections in the realization of the quantum
Bob are in an agreed configuration according to the protocathannels to implement an error-correction procedure.
used, obtaining at this point a deterministic outcome whose Following the first proposal by Bennett and Brassgifl
security relies on the laws of quantum physics, for they preand later the Ekert protocol invoking entangled stdi@ls
viously agreed upon the correspondence between countingvarious systems of QCKD have been implemented and tested
photon in a specific state and the bit values 0 or 1. In conby groups around the world. Recently, some research groups
trast, the security of conventional cryptography relies uporf5-9| performed the first QCKD experiments based on
the unproven difficulty in factorizing large numbers into polarization-entangled photon pairs, and Brassztrdl. [4]
prime numbers by a conventional algorithm. We note thaproved theoretically that QCKD schemes based on spontane-
there is no guarantee that such an algorithm does not exisious parametric down-conversi¢8PDQ offer enhanced per-
The underlying feature of QCKD, namely, the reliance offormance, mostly in terms of security, compared to QCKD
based on weak coherent pulses.
Entangled photons, generated by SPDC in nonlinear crys-
*Electronic address: castelle@ien.it tals, have proved to be largely successful for quantum optical
TElectronic address: degio@ien.it communication[10—13 and quantum radiometry14—23.
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Furthermore, basic experimental tests of the foundation o

guantum mechanics had been performed by exploiting the

entanglement of this sourci24—-26. However, quantum
noise in a SPDC quantum state may significantly limit the

performance of the proposed quantum optical communica-

tion and information technologies.
In this paper, we provide a general model forapriori

evaluation of some crucial parameters of a general QCKD
scheme based on polarization-entangled photons. We bas

cally adopt the formalism of quantum operatid@3] to de-
scribe the dynamics of an open quantum system subject e

ther to the interactions with the environment or to a quantum
device performing a measurement on it. These unwanted o
in quantum-

induced interactions show up as noise
information processing systems degrading their ideal perfor
mance. Exploiting the quantum-operation formalism, we
present a model to quantify precisely both quantum and ul
timately statistical noise in quantum-information experi-
ments performed using an entangled-photon source.
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FIG. 1. QCKD setup: polarization-entangled photons generated
by SPDC are directed to the two partigslice and Bob). The bit
sequence of the key is obtained by means of polarization-sensitive

In Sec. ll, we consider quantum noise in a lossless measynchronized measurements performed by Alice and Bob according
surement system, where noise is due to the coupling betwed# @ specific QCKD protocol.
the polarization mode of the source with the polarizing beam
splitter ports. In Sec. Ill, we discuss the case of a |Ossynatching. These entangled states show perfect correlation
system, where noise is induced by detection deficiencied0r polarization measured along orthogonal but arbitrary

such as losses of correlated photons from the presence

gKes.

optical elements, nonideal detectors, and electronic devices The QCKD performed by pure entangled states relies on

in either channel, and detector dark counts.
The model concludes with the calculation of an overall
probability of total coincidence counts, including an imper-

the realization of two quantum correlated optical channels.
These channels yield single-photon polarization states, such
that whenever Alice performs a polarization measurement on

fect time-correlation measurement, ultimately yielding an es& Photon of the pair, automatically the other photon is pro-

timate of accidental coincidencéSec. V).
This result is used in the calculation of the quantum-bit
error rate (QBER) for QCKD protocols, i.e., Bennett-
Brassard 1984BB84) and the two variants of Ekert’s proto-
col, based on Clauser-Horne-Shimony-H@IEHSH) in-
equalities and Wigner’s inequalities, respectiveBec. V.

jected in a defined polarization state, i.e., Alice plays the role

of triggering Bob’s measurement. In reality, the light field

emerging from the output of the nonlinear crystal is a
polarization-entangled multimode state. However, it can be
described as a polarization entangled two-photon state in
only two effective modegone for channeh and the other for

Previsions are also presented about the sifted and the cothannelb), as signal and idler pairs can be easily emitted
rected key, the QBER before and after a standard errooncollinearly with the pump by proper phase-matching
correction procedure. Finally, we evaluate the performancéules[28]. This scheme eventually is exploited in quantum-

of security criteria for Ekert's protocols based on both the
CHSH inequality and the Wigner inequalit$ec. V).

II. QUANTUM NOISE IN POLARIZATION SELECTION
OF PHOTON PAIRS

In this section, we consider a real either nonmaximally
entangled or partially mixed state resulting from both imper-
fect entangled state generation by SPDC and imperfect p
larization state selection by real polarizing beam splitter
(PBSs.

In Fig. 1, we depict the typical scheme for quantum-

O_

information applications by using one channel as the trigger
or reference(a) and the other channel as the probg).(
According to Fig. 1, we denote Alice’s detector apparatus to
be the trigger and Bob’s to be the probe. Detection apparatus
of Alice and Bob consists of polarization-analyer systems
(PAS9 for proper single-beam polarization rotation, PBSs,
photon detectors (, 2,, 1y, 2,), data storage systems
(computery and synchronization systems.

Let us consider in the following type-lIl SPDC entangled
states[29], where the output two-photon states are a quan-

Jum superposition of orthogonally polarized photons, i.e., the

singlet statd 30

cryptography key distribution as implemented using en-

tangled photons generated by SPDC. Due to nonlinear inte
action in a x® crystal, some pump photongngular
frequency wp) spontaneously split into a lower-frequency
pair of photons, historically called signal and idler, perfectly
correlated in all aspects of their stdt#irection, energy, po-

wf>=%<|Ha>|vb>—|va>|Hb>).

r_

Practically, pure entanglement may not be achieved be-
cause of imperfect source generation and incomplete

larization, under the constraints of conservation of energyentangled-photon collection. According to Ref31,32, an

and wave-vector momentum, otherwise known as phas

gncompensated coherence loss, induced in the state by the
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coupling between polarization and frequency modes becaus 2

of a birefringent environment, may produce a partially mixed |a,, ) 1) a— |H,JO)
or nonmaximally entangled state. Also the collection of the =]

same number of entangled photons on both channels is ur S 11

likely, mostly due to the imperfect positioning of the detec- Vau,)>| 1) Va<b)>|01)

tion systems along the true directions of entangled photon:
on the SPDC cones. Two complex variablég|¢|<1) and

€, characterize the imperfect compensation of dephasing an
decoherence in the crystal and the misalignment in collecting
entangled photons in the optical paths, respectively. The ne
result is a nonmaximally entangled, or partially mixed state,
written as

Vv

H,)|02)

V) >| 02)

,31//: FIG. 2. Real PBS: all photons projected [M,,) polarized
state should be reflected, but some of these are wrongly transmitted.
Moreover, all photons projected ihia(b)) polarized state should be

transmitted, but some of these are erroneously reflected.

1
1+—|6|2[|Ha>|vb><vb|<Ha|+|€|2|Va>|Hb><Hb|<Va|

— e[Va)[Hp)(Vul(Ha| = (€0)* [Ha) [ V) (Hp (V4 ].

We analyze now the quantum noise introduced via an impe
fect polarization state selection by the PBSs depicted in Fig.

the transmittance of photons in th¥,) polarization state,

1. Here, the entangled photons are detected according to th
polarizations by using imperfect PBSs on both arms and pe

fect single-photon detectors. The PBSs project photons ont

a polarization  basis {|H.)|Hp),|Va)|Ve).Ha)| V),
[Va)Hp)}, while the PASs induce the transformations repre

sented by the unitary operatofis in each arm ¢=a,b),
according to

-Arz|Hz>:C1|Hz>+CZ|Vz>v

o

d|ri|?=1— |t2]? is the corresponding reflectance, whose
ase relation ig:/t; =i|r|/|t;]. Analogously,|t,|?> and
L5Z|2 are the transmittance and reflectance of photons in the
|H,) state. So far, we have considered only lossless PBSs.
The effect of photon losses due to all optical devices used in
the channels are treated in Secs. Il and IV.

We define the input density matrix for the PBS ports as

pPBS={1 1)1 1) (12, (11,],

T,V)=ci[H,)—c¥|V,). and the total input density matriX" of the photon system as
In the case of ideal PBSs, chanmzeransmits statéH ,)

(|Hp)) and reflects statf/,) (|Vy)), i-e., there is a perfect

coupling between the output ports of the PBSs and the pro-

jections of the photon polarization state. In the approach s ;jl’he i?gm?r:'smvoﬁ qtriml:cm Ope:ﬁ“?ﬁ IS tthemmost Tuga\l/siﬁ
far adopted in the literature, a perfect coupling is always0 escribe the evolution of a quantum system coupie

assumed because the measurement process is considered %Qe(ggve(;lg#g:tg?asyifnr?ug ‘év'tsht;rrl]e Seungggp?;e;tézssu\?;ﬂsﬁt
projection on polarization statédls), [Va), |Hy), [Vy), thus [27]. In this contgxt we cgnsider aJ set of non-trace-
assuming detectors,1 1,, 2,, 2,, are sensitive to polar- s i ' i defined

ization. Here we consider a further noise effect induced b}})reservmg quantum opera |0{1§Xayb} elined as

the presence of real PBSs, where a small part of the photons

projected ontdV,) (|V,)) are erroneously transmitted, and
some photons projected in the stéte,) (|H,)) are errone-
ously reflected(generally less than 2% and 5%, respec-
tively), as shown in Fig. 2. For this purpose, we extend th
Hilbert space to describe these photon states as

pin=p¥g pPBS

gxayb(;)dl) =Trppq IE)xaybfJ ¢-PBsé¢IAJmASLU TL//— PBSISIayb) )

describing the process of detection of the photon pair by the
e ) . .
detectorsx, andy, (x,y=1,2). In this expression, unitary
operatorAS¢ describes the action of the PASs and the unitary
transformationUl,,,pBS describes the coupling between the
photon pair polarization state and the PBS ports. The explicit
form of 0¢-PBS is deduced by Eqg1), and calculations are
reported in Appendix A. Since the operatdisand T, inde-
pendently act on the corresponding subspacasdb of the
Hilbert space of polarization and induce linear transforma-
@) tion, they are ineffective on the Hilbert space of the PBS

where|Ox,) represents the photon crossing the output porP©'ts- Thu§,3i” is subject to aggb"f“ transformation written
of the PBS towards detectay and|Ix,) represents the pho- @s an unitary operatoS,=1""®S,, where S;p=T,
ton crossing the input port of the PBS, with=1,2. [t2]|2is  &Tp.

[HD[01) =t |H)[11,) +1,|H)[12,),
|Hz>|022>:tz|Hz>||22>+rz|Hz>||1z>1
|Vz>|01z>:rJz_|Vz>||22>+té|Vz>||12)1

|Vz>|022>:ré|vz>||1z>+té|vz>||22>-
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I5Xayb= |OXx)|Oyp){Oy,|(Ox,| is the projector repre-
senting the detection process by the two detectgandyy, .
The probability of detection of the photon pair by the detec-
torsx, andyy, is

PuM=Tro [ER(p")]= 2, prold“(mm?  (6)

where p”,, is the probability of havingn photons on the
P(Xa,Yp) = Trw[&(ayb([#)] channelv.

> " & Tingtyt pt
=Tr( anybU ¢-PB§¢P'”S¢U :,//-PBSanyb)' 2 A. Single counts associated with correlated photons

In the following, we concentrate primarily on the mea-
" rement of correlated photons by a lossy detexjorWe
of distinct outcomes sum to one, i.e., lE, y &y (p")]  define the density matrix of the number of photon papfs,

=3, y,P(Xa,Yp)=1 for all possible inpup". as

EXayngayb([J‘*) is trace preserving because the probabilitiesSu

IIl. QUANTUM AND CLASSICAL NOISE ;)P: z pgm|np><mp|_ (7)
IN PHOTON COUNTS n,m=0

In the following, we consider the noise contribution to the
photon counts because of an imperfect collection of photon
and a noisy and lossy detection system. For the experimentQ
setup in Fig. 1, we calculate the total probabimt,xz(n) of
n counts by any detectax, by separately calculating the ~ o o 1S/ mspz
probabilities of counts associated with correlated photons p°P :n;:() PRmINSPE(MEP. 8
[Pspx ()], with uncorrelated photonig, . (n)], and with '
detector dark count[spdvxz(n)]. _

To describe the counting process, we adopt the formalism 1€ counting of correlated photons on channdly the
of quantum operations, where we consider a general densifjetectorx, is described by mapping®#* on the set of non-
matrix representing photons on a channéh term of num-  trace-preserving quantum operatieﬁﬁif’xz}. The explicit

1 vV SP,Xz ~ , .
ber of photons, i.e{|n")}, as form of £3P*(pSP?) is deduced by analogy to E4), by

énalogous to Eq(7), we write a density matrix of single
potons of the pairgésp) along channet,

©

replacing the interaction unitary operator Wiﬂbspz'Espx

PV:n’;:() PrmN")(M’]. ®  and the measurement operator witff™*, given thatQs,
is the quantum system of single photons of the pair on the
The evolution of the system” is evaluated according to the channelz andEs,, is the lossy and noisy environment in
formalism of quantum operations. _ the initial state|e}”*?). TheUqy_ ¢ action on the state
In this way, we define the set of non-trace-preserving SPz "SPX;

sy i . .
quantum operations d£%} as InsPZ) is completely described by means of coefficients

d®P*z(m,n) in complete analogy with Ed5), while we have
R .. R N R BSPX,_ s SPXg\ 7 \SPX;
£ =Tre (PL0o £ p'®let)(et|0F ¢ P, @) Pm = Zn-ml€nn N emnl-

" o MR, OATOTTQE The probability ofm counts by the detectox, corre-

which describes the detection mfphotons by the systema. ~ SPonding to correlated photons becomes

In this expression, the unitary operatbby_EM represents the
interaction between the quantum syst@mof photons in the

channelv in the initial statep” and the lossy and noisy
environmentE, in the initial state|ef). The action of

LAJQV_EM on the state “number of photons” is

o

Pepix,(M)= 2, phold*P*(m,m) 2. C)

The probability of n pairs is given bypp,=(\pt)"exp

n (=Apb)/nt, t being the time of measurement akg the mean
§ Y\ @hy = u NP2 rate of photon pairs in the Alice and Bob channg4,33—
UQ»'Eu|n )les) mZ‘o d“(m,n)[m”)|ef, ). ®) 35]. The terms

where|d*(m,n)|? is the probability of measurinm photons
out of n present in the channet because of losse$? |dSPXa(m,n)|?=
=3 _nlek ek | are the measurement operators.
Thus, the probability of measuring counts by the detec-
tion systemu is X

n m
m”syE p(xa,ybﬁ

1-6.> p(xa,yb)} ,
Yb
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|d5vab(m,n)|2:

n m
" [gybxza p(xa,ybﬁ

n—m

X1 gyb; p(xa vyb)

are the probabilities that onlyn out of n photons in the
channeh (b) are counted by the detectoy (y,,). Losses due
to electronics {r,), detection efficienciesdxz), as well as

optical losses (XZ) are summed up in the terng,
=Ty, T, [22,36); while we refer to Appendix B for the
analy5|s of dead time in this context. The term incorpo-

PHYSICAL REVIEW A 67, 022305 (2003

Pux,(M)= 2 ppld**(m,m)?, (11)

wherep % is the probability ofn uncorrelated photons in the
channelxZ According to Refs[21,33—35, we assume that

we havep,?=(\yt)"exp(- Ay t)n!, where ), is the
mean rate of uncorrelated photons. The term

u,Xy 2__ n meq_ n—m
|d (m!n)| _<m)(§xz) (1 gxz)

is the probability ofm out of n uncorrelated photons counted

rates all losses in the Alice and Bob optical path, such a8 the detectox, .
from crystals, filters, lenses, PBSs, PASs, and fibers. The Thepyx(n) derived accordingly from Eq11) is

termsEXa(yb)p(xa ,Yp) are the probabilities that each photon
of the pair may be counted randomly by any arbitrary detec-

tor [EqQ. (2)]. Probability pspyxz(m) is derived according to
Eq. (9), giving

exp(— )\sp,xzt)

n! ’ (10

psp,xz(n) = (Asp,xzt)n

with mean count rates given by

é:x z p(Xa vyb))\pu

spx

)‘Sp,ybzgbeE P(Xa:Yn)Ap -

B. Single counts associated with uncorrelated photons
and dark counts

Here, we consider counts from any detectpfrom stray

light, uncorrelated photons, and dark counts eventually con-
tributing to noise in the distributed key. The density matrix

associated with stray light and uncorrelated photons is

u Xg— 2 pU Xz|nu Xy ><mu xz|

By pursuing the same formalism as before, the detection of

uncorrelated photons by the detectoy is described by

eXF( - gxz)\u,xzt)

n! (12)

pu,xz(n) = (fxzhu,xzt)n

The main source of noise in detectors is due to dark
counts, whose distribution is regarded merely from a statis-
tical point of view as the probability afi dark counts

exr( - )\d,xzt)

pd,xz(n): nl

()\d,xzt)n

with the mean dark-count rate beimgyxz.

C. Total counts

As real counters cannot distinguish among counts due to
correlated photons, counts due to uncorrelated photons, and
dark counts, the total probability of measurikgcounts by
detectorx, is calculated according to Refi21,33,35,

o0

P (K= 2 Sicremin Pop(1) Pus (M) Pa (),

giving

exp(— Aotx t)
n!

Ptot,x,(N) = (Aot t) :
here the mean rate of total counts measured by the detector

Xz is )\totx )\spx +gx u,X, +7\dx

means of the set of non-trace-preserving quantum operation

U, Xz U, Xz0 " U,X, . .
{€77. The mapé& (pA”") follows in analogy with Eq.
(4). The unitary operatodq, | . describes the interaction

between the quantum systemX of uncorrelated photons

on the channek, and the Iossy environmeri,, ux, in the

u,X, u,X,

initial state |e;"?). The measurement operator B
=30 e i (ey . The action ofUq g on the state
[n"*z) follows from Eq.(5) with the decomposition coeffi-
cients,d"*z(m,n).

Thus, the probability of measuring counts of uncorre-
lated photons by the detectry is

IV. COINCIDENCE COUNTS

We build up a model for the probabilitp, b (n) of

measuring coincidences by a pair of detectocgandyy, in
order to estimate crucial quantities of a typical QCKD ex-
periment, such as the sifted key and the QBER before and
after the error-correction procedure, whenever different pro-
tocols are applied. We distinguish between the probability
distribution of true coincidenceﬁpp,xayb(n) due to corre-

lated photonkand the probability distribution of accidental
coincidences[pAccyxayb(n) because of imperfections in the

detection electronids
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We consider the density matrix in terms of counted pairtion of accidental coincidences and finally the probability
stateg Eq. (7)], and we describe its evolution exploiting the distribution of total coincidences, accounting for true and
formalism of quantum operations as described in Sec. IV byccidental coincidences, assuming<D,, whereD, is the
defining another set of non-trace-preserving quantum operatead time in thez channel according to Appendix B.
tions{gr";'xayb}, We regardpy « (n) as the probability distribution of pho-

gﬁ;xayb(;,p) describes the measurementrotoincidences tons counted by the detectry that may contribute to acci-

originated by the detection of the two photons of a pair bydental Coincide.n_ces.in .the. time intervak. By observing
the detectorsc,, . Its explicit expression is found from ~that the probability distributionpyo,(n) andpy,,y,(n) are
Eq. (4), except for the interaction between the quantum sysPoisson, it is simple to demonstrate that we have

tem Q, of photon pairs in the initial statg? and the lossy A
. . . e P.XaYp eXq_)\N,XZ t)
and noisy environmenk,, , in the initial state|e; ") Pr (M) =\ AD)"
_ *a¥b R N,x, N,x, n! '
represented by the unitary operat(bép_pr y and the mea-
alb
surement operatdA?f;Xayb:Eﬁ:m|es;;ayb)(egq’;ayb . wherehy x =Notx, ~Apxy, .and 7\N,yb.: )\t_ot,yb_)‘P,Xa.yb are
The action ofUQ . on the state number of photon f[he. mean count rates possibly contributing to 'aCC|dentaI co-
o PP XaYp incidences from the detectoxg andy,, respectively.
pairs is Let us denote bqub the probability that at least one pho-
n ton inyy is counted in the coincidence windait =w,

" P.XaYp\ Xa! P;Xay

UQp’Ep,Xayb|np>|eO b> - mE=0 dp X yb(man)|mp>|em’n b>' %
- _ . Oy,= 2 P (M=1—exp(—Ay, W), (14

Thus, the probability of measuringy true coincidences n=1

corresponding to photon pairs by the pair of deteckyrsyy,

is because detectors, are here considered as triggers.
The term in Eq.(14) is intended to account for the con-
* tribution of single detectory,. Since detectory, are sta-
pp,xayb(m):an phal dPXa¥o(m,n) |, (13)  tistically independent, the probability that both detectors

count a photon producing an accidental coincidencqlg)s

Rea”zing that a true coincidence may occur on|y if botthb' The final probablllty of accidental counts from detector
photons of the pair are not lost, we emphasize that the termg, is obtained by subtracting half the probability that both
|dP*a¥b(m,n)|? are the probabilities that onlyn pairs are  detectors in Bob’s channel count an accidental photon, in
detected as coincidences by the pair of detectgrs/, when  formula
n photons are present in the channels of Alice and Bob. It is

straightforward to deduce the explicit form of . 1
|dp:xayb(m,n)|2 as QZLb:qlb 1- qub y (15)
BRY 2 n m 1
a¥b =
jaPoaro(m,m) 2= 1€, &,P(%a.yb)] q;b:qzb(l_ qub)_ 16

X[1— n—m,
(17 66y PXa V)] According to Refs[21,33—-35, we calculate the probabil-

ity distribution of accidental coincidences in the time mea-

. surement by applying the discrete convolution between the

taining Poisson distribution of “triggering” counts and the binomial
oo X ;

expl — Rp,xaybt) distribution with parameteqy

n!

Probability p, x y, (n) is derived according to Eq13), ob-

pp,xayb(n) = ()\p,xaybt)n

. Pacax,y, (M= 2 Prx,(MBy,(M,N),
where )‘pyxaybzgxagybp(xa'yb))‘p is the mean rate of true c&%a¥b Aom A Yo

coincidences seen by the pair of detectoyandyy, . ) _ .
with By (m,n)= () (ay,)"(1—ay,)"" ™, giving

A. Accidental coincidences
qu - AAcc,xaybt)

The presence of the temporal coincidence winelgvdur- Pacex,y, (M= ()\ACC'Xaybt)n v

ing which coincidences are measured, modifies the mean to-

tal coincidence counts, thus forcing one to distinguish be- .
tween true and accidental coincidence statistics. We assunféth )‘Acc,xayb:qyb)‘N,xa-
that true coincidences occur in the middle of the coincidence Lastly, the probability distribution of total coincidence
temporal window. Then we deduce the probability distribu-countspc,xayb(n) is obtained by
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0

pc,xayb( k)= m;:O 5k,m+ n pp,xayb( m) pAcc,xayb( n)

expl— )\C'Xaybt) QBER (%) 6

t) o :

=(\

C,X53Yp

where the mean rate of total coincidence measured by ai
arbitrary pair ofx, andy, detectors is

N 17

CXa¥p

To characterize a particular QCKD procedure, we embody

the effect of transformation§, and T, on photon polariza- FIG. 3. The QBER for the BB84 protocol versus the PBS coef-
tion by the rotation matrices ficients|t,| and|t;].
. cosf, sing,
2= sin 02 — COSGZ ' (18) KBBBA( 03) = fbasisfsetting)gb [)\c,xayb( 03 ) aa)
a
We rewrite Eq.(17) in terms of the rotation angleg, and Fhexy,(Oat 740+ mlH]t, (19

6,, induced by transformations, and T, on the polariza- _ - . .
tion state of photons, by replacingd(x,,y,) Wwith whe_refbasisz 1/2 is the probability to measure in the right
Po, .6,(Xa Yb), Whose complete expression is in Appendix A. basis[ (64, 60a) and (0, + m/4,0,+ m/4)], while fserting=1/2

More specifically, the calculated mean coincident counts arl® the probability to measure in a particular analyzer setting

made explicit in terms of angular settings, and 6, as L(%a:0a) OF (at /4, 05+ m/4)].
N (6,,0,)t All detectors contribute to the sifted ké¢, but only co-
C.Xayp\ Yas .

incidences between,2, and 2,1, correspond to the ex-
pected anticorrelation when measurements are performed in
V. EVALUATION OF THE QBER the same basis#;= 6,), while QBER contributions come
from the coincidences between detectogdland 2,2, [as
To characterize a particular QCKD procedure and to asit is clear from Egs.(Al) in Appendix A]l. Therefore, the
sess its advantages, we evaluate particular quantities such BB84 QBERRggg4 explicit formula is
the QBER and the sifted key for different types of QCKD
protocols so far experimentally implemented, i.e., the BB84Rggga( 6,)
protocol and Ekert’s protocols based on the CHSH and

Wigner inequalities, respectively.
The QBER is a parameter for describing the signal quality x;,z eyl Oarba) + Nexgry(Gat /4,60t mlA) It
in the transmission of the sifted key, defined as the relative ~ 4K gga 02)
frequency of errors induced by accidental coincidences, i.e.,
the number of errors divided by the total size of the crypto- (20)

graphic sifted keyK) [35]. . . -
In other words, the QBER is given by total coincidence To_test the_ behavior of QBER, we simulate a real_lstlc
provided by those detectors “wrongly” firing in coincidence €XPeriment with parameters, =7, =0.5 (quantum effi-
according to the chosen protocol. In fact, the protocol estabeiency of the four detectoysr, = 7, =0.1 (transmittance of
lishes which pair of detectors should fire to contribute to thethe four channels Ndx,=Nd,y, =50 s ! (dark-count rate of

key. the four detectons D,=D,=100 ns(total dead time of the
detection systems of Alice and Bph,=0 andw=4 ns.
A. BB84 protocol The entanglement parameters are0.95 and=1, the cor-

Here, we examine the BB84 protocol variant proposed forelation level in- the Alice channel isa;=0.25 [a,
entangled states in Rdf3]. Recall that Alice and Bob mea- = Mp/(Mp+2x Mux,)], and the correlated photon rateng
sure photons randomly and independently between two bases700 KHz.
of orthogonal quantum states. One basis corresponds to hori- In Fig. 3, we show the dependence of QBER versus the
zontal and vertical linear polarizatiors(), while the other to  optical properties of real PBS, i.e., the transmittafigeand
linear polarizations rotated by 45°(). Only half of the |t;| (z=a,b) for the stategH,) and|V,), respectively. Re-
photon pairs can contribute to the sifted key, as only thesults show how strongly the QBER can be affected by the
subset of measurements performed with the two analyzers ioptical properties of PBSs, whose influence has been ne-
the same basis contributes. glected so far.

The sifted key is given by In Fig. 4, the behavior of the QBER is presented versus
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Ay 4 where  [(0,,0,+ 7/2), (0;+ 7/8,0,+ wI8), (0,+ 74,0,
Ap (MHZ) L +ml4),(0,+ 37/8,0,+37/8)] are angular settings generat-
ing the key and ¢ tjng=1/16.

In a maximally entangled state configuration, the detec-
tors contributing to the key should bg1, and 2,2, for the
orthogonal analyzer settings ang2}, and 2,1, for the par-
allel settings. Thus, the QBER is calculated according to

R 0)=-—F7< A 0,,0,+ wI2)t
CHSH( a) 4KCHSH( ea) Xa VKA Y) C,Xayb( a»Va )
02 %o + 2 [hoxy,(fat 78,05+ /8)
A Xa Yp(X=Y)
FIG. 4. The QBER for the BB84 protocol versus the correlation ey, (Oat 74,05+ 7/4)

level in the Alice channeb,=N,/(\p+ Exa)\U,Xa) and the corre-
lated photon rate\, for two noise levels in the channeld/\, +\ (0,+37/8,0,+ 37/8) ]t
=1.2 and 3, whera ;=\ + 3, Nyy andp=Xp+2y Ny ). ©Xa¥pt 78 e '

the level of correlationg,, in the Alice channel and the rate where the intuitive NotatiorEy, y, x+y) |nd|c§te§ the sum

A, of the correlated photon pairs for two different noise lev-0Ver 1.2, and 21, detectors and,_ y, -y indicates the

els, i.e., the ratio between the mean rate of photons in theum over 11, and 2,2;,.

two channels. Far from ideal conditions, the presence of un-

correlated events in the two channels induces a nonlinear 2. Ekert's protocol based on Wigner’s inequality

increase of the QBER. The other parameters are set as in Fig. as in Ref. [7], we consider the case of the Ekert's variant

3 for realistic PBSs parameterst,|?=0.99 and [t;|>  \here the security of the quantum channels follows from

=0.025. Wigner’s inequality. In this case, Alice and Bob measure
randomly among four analyzers settings, whose choices are

B. Ekert's protocol 0,= (05— 7/6,Qa) for A_Iice and 6,=(0,,0,+ 77/6_3) for Bob._

The key distribution is performed when settings for Alice

Ekert's protocol has the peculiarity of relying on the com- 544 Bob are the same so that the sifted key is
pleteness of quantum mechanics for security. Therefore, the

possible combined choices between Alice and Bob for ana-

lyzer settings split into three groups: the first for key distri- Kwi(a) = fsetting)% Ac,xayb( 0a,0a)t,
bution, the second containing the security proof, and the a7
third garnering the discarded measurements. With fseqing= 1/4.

Here, we consider two possible variants of Ekert's proto- The QBER is calculated according to
col: the variant based on the Clauser-Horne-Shimony-Holt
inequality (CHSH), similar to the one proposed in Ré8], [Nea,1,(0arba) T hc 22 (0a,60)]t
and the variant based on Wigner's inequalify. Rwi(0a) =fsetting Kun(02) ,

1. Ekert's protocol based on CHSH inequalities by taking the detectors contributing to the wrong bits g&,1

To increase the number of measurements devoted to th@d 2,2;,.
key distribution, we consider the case where Alice and Bob In Fig. 5, we present a comparison of QBER levels for the
measure randomly among four analyzer settings and use tH#B84 protocol and the Ekert protocols considering both the
CHSH inequality to test eavesdropping. In this scheme, Alinequalities of CHSH and Wigner versus the analyzers angu-
ice’s choices for the analyzer settings agg=(6,,6, lar settingd, and the entanglement parame¢eExperimen-
+ 7/8,0,+ wl4,0,+3w/8) and Bob’s ared,=(6,+ 7/8,0, tal conditions are the san{ow noisg as for Figs. 3 and 4.
+7l4,0,+ 3 78,0, + 7wl2). Results highlight that the QBER is sensitive to the anfje
The key distribution is performed when settings for Alice when the ideal entanglement is not achieved for both the
and Bob are the same or orthogonal, so that the sifted key igariants of Ekert’s protocols. In the Wigner’s case, the sen-
sitivity is so remarkable that this protocol has to be consid-
ered less robust than the BB84- and the CHSH-inequality-

K chsi ea)=fsemngx2y [Noxy,(0a.0a% T/2)+ ey (6, ~ based Ekerts protocols.
a¥b

18,0t TI8) + Ny (Ot /4,05t 7I4) VI. SECURITY AND ERROR CORRECTION

C,XaYp
The security of the BB84 variant protocol is based on a
+ ey, (Oat 37/8,0,+ 37/B)]t, public comparison between measurements of Alice and Bob
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CHSH/Ekert’s protocol

FIG. 5. The QBER in case of the CHSH- and Wigner-
inequality-based Ekert’s protocols, together with the BB84 protocol
versus the angular analyzers settirtys and the entanglement pa- FIG. 6. The CHSH and Wigner inequalities paramet8ts
rameter e. The parameters settings arg,=2.8x10°s™!, @,  and W, versus the coincidence window and the correlation
=0.25, A\p/Na=1.2, 7 =7y, =0.5, 7 =7, =0.1, Nqx =gy, level in the Alice channelr, . In the case of maximally entangled
=50s?!, D,=D,=100 ns,w=4 ns, and,=1, taken from typi-  states we hav&V,,m=S,om=1, While the lower cut is defined by
cal and experimental realistic values so far implemented. PBSs atthe eavesdropping limitV,,,,w<0 and S,,,=0 . The choice of
considered real witlt,|2=0.99 and|t;|>=0.025 ¢=a,b). parameter values are the same of Fig. 4 exceptfferO and e

=0.95. The lower two surfaces represented correspond/ g,
on a sufficiently large random subset of the sifted key, e.g.andS.om in the case of real PBSs, with parametgs’=0.98 and
more than half is recommended in RE3]. |t;|?=0.05. The higher surface represe8fg;y=Whnom in the case

The security proof for the CHSH-inequality-based Ekert'sof ideal PBSs.

protocol is evaluated with the specific choices of settings by ) ) )
the CHSH inequality, In the case of Wigner’s-inequality-based Ekert's protocol,

the Wigner inequality result has

Real PBSs

S(0,)=E(6,,0,+ m/8) —E(6,,0,+3m/8)+E( 0+ /4,0,

W(0a) =My 1 (62— 7/6,0,)+ M 1 (0,,6,+ m/6)
+7/8) + E( 0,4+ wl4,0,+37/8),
-M lalb( Ba— ’7T/6,0a+ ’77/6),
S'(0,)=E(0,+ 7/8,0,+ 7l4)—E(0,+ 7/8,0,+ 7/2)
giving for the maximally entangled stateg/;=—1/8 and
+TE(0a+37/8,05+ m/4) + E(0,+37/8,0,+7/2),  W=0 for any local realistic theory. As for the CHSH in-
equality, it can be proved that the limit becom®@é:,,
=1/16 for Eve detecting only one photon of the pair, while
in the case of total eavesdropping, there is no boundary con-
E(6a,0p)=My 1, (6a,6) =M1 2 (02,605)+ Mz 5 (0a,0h) dition [37] .
—M, 1 (0..0,) In Fig. 6, we compare the behaviors of the CHSH- and
251p\ 72 7b/ Wigner-inequality ~ parameters, Syom= (1S — [ Seve )/ (|Sy
| = [Sevd) @and Wigom= (W_WEve)/(WqI_WEve)a versus the

where we have

Here, coincidence windoww and the correlation level in Alice’s
channela,. The lower surfaces represent the case of real

_ )\C'Xayb( 0a Op) PBSs, wheréV, o< Shorm, While the upper surface corre-

anyb( Oa:0b)= sponds to ideal PBSs, whevé, .= S,orm- We observe that,
XaZYb Nex,y,(0a:6b) given the same noise level in the system and real PBSs,

Wigner's parameter reaches the eavesdropping limit faster

is the normalized coincidence rate as a function of the ana{{\]/i;nnteﬁ?s?eHs?gg%ri]r?s(tjc;isp,errier\rﬁ?]:gIgptgrealr?wterlgic weakness of

lyzer settings and detector choices. The tem!éyb(aa’ab) Furthermore, Wigner’s security test guarantees against

are commonly stored when experiments are performgd. eavesdropping strategies only for the detection of one photon
For maximally entangled states, we hal®|=|Syl  of the pair, while the CHSH security is independent on the
=242, while for any realistic local theory, we hay8,S'| adopted strateggsee Refs[2,37)).
<2. Itis expected that the presence of an eavesdropper will A satisfactory protocol must be able to recover from noise
reduce the observed value ¢8,S'|, giving |Sgve,Std  as well as from partial leakage, allowing Alice and Bob to
<./2, when the eavesdropper measures photons over eithezconcile the two strings of bits measured and distill from the
one or both(total eavesdroppinghe channels of Alice and sifted key to a corrected key. A strong need for the applica-
Bob[2]. tion of any error-correction method is anpriori knowledge
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VII. CONCLUSIONS

This paper is concerned with aa priori evaluation of
QCKD crucial parameters when entangled photons produced
by SPDC are exploited. The basic experimental feature con-
sists of the detection of coincident photons. Toward this aim,
we developed a statistical model to calculate the probability
of accidental coincidences contributing to errors in the sifted
key, not completely accounted for by simple experimental
QBER after error correction 1/2 QABR after error correction means: ) . o .

We investigated the noise contribution due to imperfect

FIG. 7. The QBER in the case of the BB84 protocol versus thesource generation and selection, imperfect polarizing beam
coincidence windoww and the correlation parameter in the Alice splitters performing polarization state analysis, and noisy and
channela,: the sawtooth shape is due to the application of thelossy measurement system for photon-number detection. We
error correction procedure. The parameters are set as in Fig. 6 eemphasized some basic system imperfections such as uncor-
cept that, in this case, ideal PBSs are considered. related photons collection, detection system deficiencies, de-
tection system noise due to detector dark counts, and elec-

of the QBER, which provides information regarding how tronic system imperfections associated with non-ideal-time-
many times the error-correction procedure must be applied tgr"elation measurements.

reduce the QBER to a certain agreed level, commonly 1%, e discussed how this model can be adopted for the
Here, we show an example of error correction oraguriori evaluation of the QBER and the sifted key for different well-

evaluated QBER according to a common approach reporteloWn protocols, i.e., the BB84 and the Ekert protocols
in Ref.[7], to show that our model allows for prediction of Pased on both CHSH and Wigner inequalities, and compared

the corrected key length. them to expected results. _

In general, Alice and Bob cannot distinguish between er- CGiven that this model predicts precisely the QBER and
rors caused either by an eavesdropper or by the environmerifl® Sifted key, it ultimately guarantees a method to compare
Thus, they must assume that all errors are due to an eavediferent security criteria of the hitherto proposed QCKD
dropper and evaluate the leaked information from the QBERProtocols and provides an objective assessment of perfor-

Also, even though by the error-correction procedure one caf*@nces and advantages of different systems. Thus, it yields a
disregard incorrect bits by simply dropping them off in Method for ara priori evaluation of the tolerable experimen-

building the distilled key, the residual knowledge of an @l imperfections in a practically implemented quantum sys-
eavesdropper may still not be faithfully quantified by thet€m tO establish the degree of security and competitiveness
reduced QBER obtained after the correction. The effects off QCKD systems. _ _
Eve’s strategy is, in fact, equivalent to quantum noise yield- Finally, we used the model in a standard error-correction
ing eventually accidental coincidences, these last contriburocedure, observing that this does not completely cancel the
ing to both incorrect and correct bits transmitted, as it is cleaP0SSiPle residual eavesdropping knowledge on the corrected
from Egs.(19) and (20). Hence the error-correction proce- key. We emphasize that this model yields also the degree of
dure is not sufficient to cancel a potential Eve’s knowledgeSecurity of the corrected key, if a precise modeling of system

of part of the key due to accidental coincidence. imperfections is provided.
To prove this last assertion, we introduce the quantum
accidental bit ratdQABR), a quantity related to accidental ACKNOWLEDGMENTS

coincidences and, in this sense, analogous to the QBER. ) ) ) )
However, the error-correction procedure cannot reduce the 1his work was developed in (_:ollabor_atlon“wnh Elsag
QABR at the QBER level. As an example, we give the S-p-A., Genovaltaly), within a project entitled “Quantum

QABR in the case of Ekert's protocol based on Wigner-SCryptographic Key Distribution” co-funded by the Italian
inequality. Ministry of Education, University and ReseardklUR)—

grant No. 67679/ L.488. In addition, S.C. acknowledges the
partial support of the DARPA QuIST program.

A 6,,0,)t .
X;b Acexgyy( Oar Oa) APPENDIX A: INTERACTION MATRIX U ,,_pgs

V
Bwi(02)= 1:setting

Kwi(0a) We explicitly calculate the unitary transformatiﬁm_sz
according to Eqs(1) obtaining a 1& 16 matrix

Figure 7 shows the QBER with and without the applica-

tion of the error-correction procedure together with the3/2 Up U, Us U,

vs the coincidence window and the correlation parameter in . U, U; U, Uj
Alice’s channel. The error-correction procedure is very inef- Uypes= U. U, U. Ul
fective at reducing the QABR and consequently the possible 34 ! 2
effect of Eve’s knowledge on the corrected key. Usg Us Uy Uy
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where we indicate

., O 0 0
-l
U= 8 7;0% TPT s
a-“b
0 0 0 7.7y
[ T.R, O 0 0 7
U, 0 TRy L0 0 ’
0 0 TiR, O
| o 0 0 TiRy |
[ RT, O 0 0 7
-l
o=l o o mm o |
a“‘b
| o 0 0 RiTy |
RRp O 0 0
1
Ue= g Ra;% RPR 3
a’Vb
0 0 0 RiRp

andT,=t,/(t2—r2), andR,=r,/(t?—r?) (z=a,b), analo-
gously for7; andR s .

According to Egs. (2) and (18),
ptgavgb(xa ,Yp) the following:

we obtain for

N y
7 g S oS BT T3

+|TaToel?) +SinP(0,) (| T4 T |2
+|TaTpel?) ]+ SirP(0,)[ co(0,) (| TaT|?
+|T5 Ty €|?) +SirP(0,) (| T4 T

Po,.0,(1a1s) =

+| T T €|®) ]+ sin(26,) cog 2 6,)Re( €¢/2)
X (= | T To|*+ | T Tl *+ | LT, |2
—| T 7519},

1
Po, 0,(1a:2) = 1+—|E|2{cos2< 0)[cOS(0.) (| TaR |2

+|TaR pe|?) +sirf(0,) (| TR |?

+|TaR pel?) 1+ sin?(0,)[ coS'(0) (| TR |2
+|Ta Ry el +sin(02) (| TaR o|?

+|TaR 1 €|?)]+sin(26,)cog 2 6,)Re€£/2)
X (= TR o> +|TaRp|*+| TRy |?
—|TaR51%)}

PHYSICAL REVIEW A 67, 022305 (2003

o L
L7 e oS (oSG (IRaTs

+|R L Tyel?) +sir(0)(|RET5|?
+|RoTyel®) 1+ Sir(8p)[COS(02) (| RaT|?

Po, 0,(2a:10) =

+|R Ty €]?) +sir?(0,) (IR 3 To|?
+|RaTy €|?) ]+ siN(26,)cod 2 6,)Re(€Z12)
X(_ |RaTb|2+|R;Tb|2+ |Ra7é|2

—|R2 1%},

1

7] 6|2{co§( 0)[COS(0,)(|RaR b |2

Po, .0,(22:2p)

+|RER pel?) +siP(0) (IR R |
+|RaR pel?) ]+ sirP(6p)[ cOL( 6,)
X (IRaRp|?+|Ra R €l?) +sirf(6,)
X (IR aRol*+|RaRp €l?)]
+sin(26,)cod20p)Re(€£/2)(— | R R u|?
+RaRp|*+[RaRp|?— IR R}

In the case of maximally entangled states, iee=,1 and

(=1, and ideal PBSs, i.e|R,|=|T3|=0 andR;|=|T
=1, theU,, pgsis simply given by

"1 0 0 O] "0 0 0 O
000 0 0i 00
Y=l9 0 0 o' Y“T|o 0 o of
0 0 0 o0 0 0 0 0
"0 0 0 O] "0 0 0 O]
000 000 0
Us=l g 0 | Y=o 0 0 of
0 0 0 o0 0 0 0 1

and

Po, 0,(1arlo) =Py, 0,(2a:2) =SIF(6a— 6)/2, (A1)

P, 0,(1a:2) =P, 6,(2a,1p) = COS(6— 6p)/2.

APPENDIX B: DEAD-TIME CORRECTION
DETERMINATION

According to Refs[36,38, in the case of nonextenging
dead time, the correction is,=1/(1+n,D,/t), wheren,
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are the mean number of photons counted in Ztehannel,

1+y2 [XE P(Xa,Yb) ﬁbeyb)\p_l_ nbeYb)\U’yb
b a

i.e.,Ezixzzlz%Ekkpw,XZ(k) with Pyt (K) calculated in Mo~
the absence of dead timB,, and & =7, 7. We can, —1
therefore, write down the dead-time correction in this case as +Ng yb} Db}
Ta= 1+X2 yzb P(Xa 1 Yb) 7, Tx Mot 7, Tx Nux, by noting that, when several devices are used in series, a
: good approximation considers the whole apparatus to be a
-1 black box, with a nonextending dead time equal to the largest
A, Da of dead times of the single compondB6]. We showed in
Ref. [38] that 7, provides a satisfactory approximation for
and t>D,.

[1] C. Bennett and G. Brassard, froceedings of the IEEE Inter- [22] G. Brida, S. Castelletto, C. Novero, and M.L. Rastello, J. Opt.
national Conference on Computers, Systems and Signal Pro- ~ Soc. Am. B16, 1623(1999.
cessing, BangalorélEEE, New York, 1984, p. 175. [23] G. Brida, S. Castelletto, I.P. Degiovanni, C. Novero, and M.L.

[2] AK. Ekert, Phys. Rev. Lett57, 661 (1991). Rastello, Metrologie87, 625 (2000.

[3] C.H. Bennett, G. Brassard, and N.D. Mermin, Phys. Rev. Lett/24] P-R. Tapster, J.G. Rarity, and P.C.M. Owens, Phys. Rev. Lett.
68, 557 (1992). 73, 1923(1994).

25] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev.
[4] G. Brassard, N. Lutkenhaus, T. Mor, and B.C. Sanders, Phys[. Lett. 81, 3563(1998.

Rev. Lett.85, 1330(2000. [26] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A.
[5] A.K. Ekert, J.G. Rarity, P.R. Tapster, and G.M. Palma, Phys. Zeilinger, Phys. Rev. Let81, 5039(1998.
Rev. Lett.69, 1293(1992. [27] M. Nielsen and I. ChuangQuantum Computation and Quan-
[6] A.V. Sergienko, M. Atature, Z. Walton, G. Jaeger, B.E.A. tum Information (Cambridge University Press, Cambridge,
Saleh, and M.C. Teich, Phys. Rev.68, R2622(1999. NY, 2000.
[7]1 T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A.[28] N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G.
Zeilinger, Phys. Rev. Let84, 4729(2000. Jaeger, A. Muller, and A. Migdall, Opt. En89, 1016(2000.
[8] D.S. Naik, C.G. Peterson, A.G. White, A.J. Berglund, and P.G[29] P-G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Ser-
Kwiat, Phys. Rev. Lett84, 4733(2000. gienko, and Y. Shih, Phys. Rev. Le#t5, 4337(1995.

[30] Entangled states may be successfully generated for this pur-
pose by two type-I nonlinear crystals, according to P.G. Kwiat,
E. Waks, A.G. White, |. Appelbaum, and P.H. Eberhard, Phys.

[9] w. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev.
Lett. 84, 4737(2000.

[10] L. Mandel, J. Opt. Soc. Am. B, 108(1984. Rev. A 60, R773 (1999, so that the general state |#)

[11] E. Jakeman and J.G. Rarity, Opt. Comm&#8, 219(1986. —|H )| Hp) — exdi ¢]IVa)| Vi)

[12] J.G. Rarity, P.R. Tapster, and E. Jakeman, Opt. Com®&n. [31] P.G. Kwiat, A.J. Berglund, J.B. Altepeter, and A.G. White, Sci-
201 (1987. ence290, 498(2000.

[13] J.G. Rarity and P.R. Tapster, Appl. Phys. B: Photophys. Lasef32] A.J. Berglund, e-print quant-ph/0010001.

Chem.55, 298(1992. [33] S. Castelletto, I.P. Degiovanni, and M.L. RastelloPiroceed-
[14] D.C. Burnham and D.L. Weinberg, Phys. Rev. L&t 84 ings of the Fifth International Conference on Quantum Com-
(1970. munication, Measurement and Computing, Capri, Itagited
[15] D.N. Klyshko, Photons and Nonlinear Optic€Gordon and by P. Tombesi and O. Hirot&Kluwer Academic, New York,

Breach Science, New York, 1988 2002, p. 131.
[16] J.G. Rarity, K.D. Ridley, and P.R. Tapster, Appl. Op&, 4616 [34] J. Perina, Jr., O. Haderka, and J. Soubusta, Phys. Ré4, A
(1987. 052305(2001).

[17] AN. Penin and A.V. Sergienko, Appl. O®0, 3582(1991). [35] S. Castelletto, I.P. Degiovanni, and M.L. Rastello, J. Opt. Soc.
[18] P.G. Kwiat, A.M. Steinberg, R.Y. Chiao, P.H. Eberhard, and Am. B 19, 1247(2002.

M.D. Petroff, Appl. Opt.33, 1844(1994. [36] S. Castelletto, I.P. Degiovanni, and M.L. Rastello, Metrologia
[19] A.L. Migdall, R.U. Datla, A.V. Sergienko, J.S. Orszak, and 37, 613(2000.

Y.H. Shih, Metrologia32, 479(1996. [37] S. Castelletto and I.P. Degiovanni private communication.
[20] S. Castelletto, A. Godone, C. Novero, and M.L. Rastello,[38] S. Castelletto, I.P. Degiovanni, and M.L. RastelloAdvanced

Metrologia32, 501(1996. Mathematical and Computational tools in Metrologyedited
[21] M.M. Hayat, A. Joobeur, and B.E.A. Saleh, J. Opt. Soc. Am. A by P. Ciarlini, M. Cox, E. Filipe, F. Pavese, and D. Richter

16, 348(1999. (World Scientific, Singapore, 2001p. 41.

022305-12



