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Quantum and classical noise in practical quantum-cryptography systems based
on polarization-entangled photons
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Quantum-cryptography key distribution~QCKD! experiments have been recently reported using
polarization-entangled photons. However, in any practical realization, quantum systems suffer from either
unwanted or induced interactions with the environment and the quantum measurement system, showing up as
quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement
in spontaneous parametric down-conversion~SPDC! suffers quantum noise in its practical implementation as
a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD
schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we
bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coinci-
dences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between
different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of
performances and advantages of different systems.

DOI: 10.1103/PhysRevA.67.022305 PACS number~s!: 42.50.Dv, 03.67.2a, 42.65.Ky
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I. INTRODUCTION

Quantum-cryptography key distribution~QCKD! is at the
moment the most advanced and challenging application
quantum information. QCKD offers the possibility that tw
remote parties, sender and receiver~conventionally called
Alice and Bob!, can exchange a secret random key, cal
sifted key~string of qubits!, to implement a secure encryp
tion or decryption algorithm based on a shared secret
without the need that the two parties meet@1–3#.

In a practical QCKD, Alice and Bob use a quantum cha
nel, along which sequences of signals are either sent or m
sured at random between different bases of orthogonal q
tum states. Alice can play the role of either setting random
the polarization basis of photons and sending them to B
~faint laser pulses as photon source!, or measuring photons
randomly in any one of the selected bases~entangled-photon
source!. Bob, randomly and independently from Alice, me
sures in one of the bases. The sifted key consists of
subset of measurements performed when bases of Alice
Bob are in an agreed configuration according to the proto
used, obtaining at this point a deterministic outcome wh
security relies on the laws of quantum physics, for they p
viously agreed upon the correspondence between counti
photon in a specific state and the bit values 0 or 1. In c
trast, the security of conventional cryptography relies up
the unproven difficulty in factorizing large numbers in
prime numbers by a conventional algorithm. We note t
there is no guarantee that such an algorithm does not ex

The underlying feature of QCKD, namely, the reliance
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the security of the distributed secret key on the laws of qu
tum physics@1–3#, gives it an advantage over the public ke
cryptography. In other words, the uncertainty principle p
hibits one from gaining information from a quantum chann
without disturbing it. Basically, QCKD is based on the pri
ciple that when a third party~Eve! performs a measuremen
on a qubit exchanged, she induces a perturbation, yield
errors in the bit sequence transmitted, revealing her prese
Any attempt by Eve to obtain information about the k
leads to a nonzero error rate in the generated sifted
Nevertheless, this last claim must be somewhat softened
cause of practical realization of quantum channels@4#. Un-
fortunately, in practical systems, errors also happen beca
of experimental leakage, such as losses in optics, detec
electronics, and noise. Also, even when no eavesdroppe
disturbing the bit exchange, there will be errors in the tra
mission and strings of Alice and Bob will not coincide pe
fectly. Thus, in practice, there is no way to distinguish
eavesdropper attack from experimental imperfections, m
ing it necessary to establish an upper bound on tolera
experimental imperfections in the realization of the quant
channels to implement an error-correction procedure.

Following the first proposal by Bennett and Brassard@1#
and later the Ekert protocol invoking entangled states@2#,
various systems of QCKD have been implemented and te
by groups around the world. Recently, some research gro
@5–9# performed the first QCKD experiments based
polarization-entangled photon pairs, and Brassardet al. @4#
proved theoretically that QCKD schemes based on spont
ous parametric down-conversion~SPDC! offer enhanced per-
formance, mostly in terms of security, compared to QCK
based on weak coherent pulses.

Entangled photons, generated by SPDC in nonlinear c
tals, have proved to be largely successful for quantum opt
communication@10–13# and quantum radiometry@14–23#.
©2003 The American Physical Society05-1
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Furthermore, basic experimental tests of the foundation
quantum mechanics had been performed by exploiting
entanglement of this source@24–26#. However, quantum
noise in a SPDC quantum state may significantly limit t
performance of the proposed quantum optical commun
tion and information technologies.

In this paper, we provide a general model for ana priori
evaluation of some crucial parameters of a general QC
scheme based on polarization-entangled photons. We b
cally adopt the formalism of quantum operations@27# to de-
scribe the dynamics of an open quantum system subjec
ther to the interactions with the environment or to a quant
device performing a measurement on it. These unwante
induced interactions show up as noise in quantu
information processing systems degrading their ideal per
mance. Exploiting the quantum-operation formalism,
present a model to quantify precisely both quantum and
timately statistical noise in quantum-information expe
ments performed using an entangled-photon source.

In Sec. II, we consider quantum noise in a lossless m
surement system, where noise is due to the coupling betw
the polarization mode of the source with the polarizing be
splitter ports. In Sec. III, we discuss the case of a lo
system, where noise is induced by detection deficienc
such as losses of correlated photons from the presenc
optical elements, nonideal detectors, and electronic dev
in either channel, and detector dark counts.

The model concludes with the calculation of an over
probability of total coincidence counts, including an impe
fect time-correlation measurement, ultimately yielding an
timate of accidental coincidences~Sec. IV!.

This result is used in the calculation of the quantum-
error rate ~QBER! for QCKD protocols, i.e., Bennett
Brassard 1984~BB84! and the two variants of Ekert’s proto
col, based on Clauser-Horne-Shimony-Holt~CHSH! in-
equalities and Wigner’s inequalities, respectively~Sec. V!.
Previsions are also presented about the sifted and the
rected key, the QBER before and after a standard er
correction procedure. Finally, we evaluate the performa
of security criteria for Ekert’s protocols based on both t
CHSH inequality and the Wigner inequality~Sec. VI!.

II. QUANTUM NOISE IN POLARIZATION SELECTION
OF PHOTON PAIRS

In this section, we consider a real either nonmaxima
entangled or partially mixed state resulting from both imp
fect entangled state generation by SPDC and imperfect
larization state selection by real polarizing beam splitt
~PBSs!.

In Fig. 1, we depict the typical scheme for quantu
cryptography key distribution as implemented using e
tangled photons generated by SPDC. Due to nonlinear in
action in a x (2) crystal, some pump photons~angular
frequencyvp) spontaneously split into a lower-frequenc
pair of photons, historically called signal and idler, perfec
correlated in all aspects of their state~direction, energy, po-
larization, under the constraints of conservation of ene
and wave-vector momentum, otherwise known as ph
02230
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matching!. These entangled states show perfect correla
for polarization measured along orthogonal but arbitra
axes.

The QCKD performed by pure entangled states relies
the realization of two quantum correlated optical channe
These channels yield single-photon polarization states, s
that whenever Alice performs a polarization measuremen
a photon of the pair, automatically the other photon is p
jected in a defined polarization state, i.e., Alice plays the r
of triggering Bob’s measurement. In reality, the light fie
emerging from the output of the nonlinear crystal is
polarization-entangled multimode state. However, it can
described as a polarization entangled two-photon state
only two effective modes~one for channela and the other for
channelb), as signal and idler pairs can be easily emitt
noncollinearly with the pump by proper phase-matchi
rules @28#. This scheme eventually is exploited in quantum
information applications by using one channel as the trig
or reference~a! and the other channel as the probe (b).
According to Fig. 1, we denote Alice’s detector apparatus
be the trigger and Bob’s to be the probe. Detection appar
of Alice and Bob consists of polarization-analyer syste
~PASs! for proper single-beam polarization rotation, PBS
photon detectors (1a , 2a , 1b , 2b), data storage system
~computers!, and synchronization systems.

Let us consider in the following type-II SPDC entangle
states@29#, where the output two-photon states are a qu
tum superposition of orthogonally polarized photons, i.e.,
singlet state@30#:

uc2&5
1

A2
~ uHa&uVb&2uVa&uHb&).

Practically, pure entanglement may not be achieved
cause of imperfect source generation and incomp
entangled-photon collection. According to Refs.@31,32#, an
uncompensated coherence loss, induced in the state by

FIG. 1. QCKD setup: polarization-entangled photons genera
by SPDC are directed to the two parties~Alice and Bob!. The bit
sequence of the key is obtained by means of polarization-sens
synchronized measurements performed by Alice and Bob accor
to a specific QCKD protocol.
5-2
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QUANTUM AND CLASSICAL NOISE IN PRACTICAL . . . PHYSICAL REVIEW A 67, 022305 ~2003!
coupling between polarization and frequency modes beca
of a birefringent environment, may produce a partially mix
or nonmaximally entangled state. Also the collection of t
same number of entangled photons on both channels is
likely, mostly due to the imperfect positioning of the dete
tion systems along the true directions of entangled phot
on the SPDC cones. Two complex variables,z (uzu<1) and
e, characterize the imperfect compensation of dephasing
decoherence in the crystal and the misalignment in collec
entangled photons in the optical paths, respectively. The
result is a nonmaximally entangled, or partially mixed sta
written as

r̂c5
1

11ueu2
@ uHa&uVb&^Vbu^Hau1ueu2uVa&uHb&^Hbu^Vau

2ezuVa&uHb&^Vbu^Hau2~ez!* uHa&uVb&^Hbu^Vau#.

We analyze now the quantum noise introduced via an imp
fect polarization state selection by the PBSs depicted in
1. Here, the entangled photons are detected according to
polarizations by using imperfect PBSs on both arms and
fect single-photon detectors. The PBSs project photons o
a polarization basis $uHa&uHb&,uVa&uVb&,uHa&uVb&,
uVa&uHb&%, while the PASs induce the transformations rep
sented by the unitary operatorsT̂z in each arm (z5a,b),
according to

T̂zuHz&5c1uHz&1c2uVz&,

T̂zuVz&5c2* uHz&2c1* uVz&.

In the case of ideal PBSs, channelz transmits stateuHa&
(uHb&) and reflects stateuVa& (uVb&), i.e., there is a perfec
coupling between the output ports of the PBSs and the
jections of the photon polarization state. In the approach
far adopted in the literature, a perfect coupling is alwa
assumed because the measurement process is considere
projection on polarization statesuHa&, uVa&, uHb&, uVb&, thus
assuming detectors 1a , 1b , 2a , 2b , are sensitive to polar
ization. Here we consider a further noise effect induced
the presence of real PBSs, where a small part of the pho
projected ontouVa& (uVb&) are erroneously transmitted, an
some photons projected in the stateuHa& (uHb&) are errone-
ously reflected~generally less than 2% and 5%, respe
tively!, as shown in Fig. 2. For this purpose, we extend
Hilbert space to describe these photon states as

uHz&uO1z&5tzuHz&uI1z&1r zuHz&uI2z&,

uHz&uO2z&5tzuHz&uI2z&1r zuHz&uI1z&,

uVz&uO1z&5r z
'uVz&uI2z&1tz

'uVz&uI1z&,

uVz&uO2z&5r z
'uVz&uI1z&1tz

'uVz&uI2z&, ~1!

where uOxz& represents the photon crossing the output p
of the PBS towards detectorxz anduIxz& represents the pho
ton crossing the input port of the PBS, withx51,2. utz

'u2 is
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the transmittance of photons in theuVz& polarization state,
andur z

'u2512 utz
'u2 is the corresponding reflectance, who

phase relation isr z
'/tz

'5 i ur z
'u/utz

'u. Analogously, utzu2 and
ur zu2 are the transmittance and reflectance of photons in
uHz& state. So far, we have considered only lossless PB
The effect of photon losses due to all optical devices use
the channels are treated in Secs. III and IV.

We define the input density matrix for the PBS ports a

r̂PBS5uI1a&uI1b&^I1bu^I1au,

and the total input density matrixr̂ in of the photon system a

r̂ in5 r̂c
^ r̂PBS.

The formalism of quantum operation is the most suita
to describe the evolution of a quantum system coupled w
another quantum system or with the environment, as wel
the evolution of a quantum system subject to measurem
@27#. In this context, we consider a set of non-trac
preserving quantum operations$Exayb

% defined as

Exayb
~ r̂c!5TrPBS~ P̂xayb

Ûc-PBSŜcr̂ inŜc
†Ûc2PBS

† P̂xayb

† !,

describing the process of detection of the photon pair by
detectorsxa and yb (x,y51,2). In this expression, unitary
operatorŜc describes the action of the PASs and the unit
transformationÛc-PBS describes the coupling between th
photon pair polarization state and the PBS ports. The exp
form of Ûc-PBS is deduced by Eqs.~1!, and calculations are
reported in Appendix A. Since the operatorsT̂a andT̂b inde-
pendently act on the corresponding subspacesa andb of the
Hilbert space of polarization and induce linear transform
tion, they are ineffective on the Hilbert space of the PB
ports. Thus,r̂ in is subject to a global transformation writte
as an unitary operatorŜc51PBS

^ Ŝa,b , where Ŝa,b5T̂a

^ T̂b .

FIG. 2. Real PBS: all photons projected inuVa(b)& polarized
state should be reflected, but some of these are wrongly transm
Moreover, all photons projected inuHa(b)& polarized state should be
transmitted, but some of these are erroneously reflected.
5-3
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P̂xayb
5uOxa&uOyb&^Oybu^Oxau is the projector repre-

senting the detection process by the two detectorsxa andyb .
The probability of detection of the photon pair by the dete
tors xa andyb is

p~xa ,yb!5Trc@Exayb
~ r̂c!#

5Tr~ P̂xayb
Ûc-PBSŜcr̂ inŜc

†Ûc-PBS
† P̂xayb

† !. ~2!

(xayb
Exayb

( r̂c) is trace preserving because the probabilit

of distinct outcomes sum to one, i.e., Trc@(xayb
Exayb

( r̂c)#

5(xayb
p(xa ,yb)51 for all possible inputr̂c.

III. QUANTUM AND CLASSICAL NOISE
IN PHOTON COUNTS

In the following, we consider the noise contribution to t
photon counts because of an imperfect collection of phot
and a noisy and lossy detection system. For the experime
setup in Fig. 1, we calculate the total probabilityptot,xz

(n) of

n counts by any detectorxz by separately calculating th
probabilities of counts associated with correlated phot
@psp,xz

(n)#, with uncorrelated photons@pu,xz
(n)#, and with

detector dark counts@pd,xz
(n)#.

To describe the counting process, we adopt the formal
of quantum operations, where we consider a general den
matrix representing photons on a channeln in term of num-
ber of photons, i.e.,$unn&%, as

r̂n5 (
n,m50

`

rnm
n unn&^mnu. ~3!

The evolution of the systemr̂n is evaluated according to th
formalism of quantum operations.

In this way, we define the set of non-trace-preserv
quantum operations as$E m

m% as

E m
m~ r̂n!5TrEm

~ P̂m
mÛQn-Em

r̂n
^ ue0

m&^e0
muÛQn-Em

† P̂m
m†!, ~4!

which describes the detection ofm photons by the systemm.
In this expression, the unitary operatorÛQn-Em

represents the

interaction between the quantum systemQn of photons in the
channeln in the initial stater̂n and the lossy and nois
environmentEm in the initial state ue0

m&. The action of

ÛQn-Em
on the state ‘‘number of photons’’ is

ÛQn-Em
unn&ue0

m&5 (
m50

n

dm~m,n!umn&uem,n
m &, ~5!

whereudm(m,n)u2 is the probability of measuringm photons
out of n present in the channeln because of losses.P̂m

m

5(n5m
` uem,n

m &^em,n
m u are the measurement operators.

Thus, the probability of measuringm counts by the detec
tion systemm is
02230
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pm~m!5TrQn
@E m

m~ r̂n!#5 (
n5m

`

rnn
n udm~m,n!u2, ~6!

where r nn
n is the probability of havingn photons on the

channeln.

A. Single counts associated with correlated photons

In the following, we concentrate primarily on the me
surement of correlated photons by a lossy detectorxz . We
define the density matrix of the number of photon pairs,r̂p,
as

r̂p5 (
n,m50

`

rnm
p unp&^mpu. ~7!

Analogous to Eq.~7!, we write a density matrix of single
photons of the pairs~sp! along channelz,

r̂sp,z5 (
n,m50

`

rnm
p unsp,z&^msp,zu. ~8!

The counting of correlated photons on channelz by the
detectorxz is described by mappingr̂sp,z on the set of non-
trace-preserving quantum operation$E m

sp,xz%. The explicit

form of E m
sp,xz( r̂sp,z) is deduced by analogy to Eq.~4!, by

replacing the interaction unitary operator withÛQsp,z-Esp,xz

and the measurement operator withP̂m
sp,xz , given thatQsp,z

is the quantum system of single photons of the pair on
channelz and Esp,xz

is the lossy and noisy environment i

the initial stateue0
sp,xz&. The ÛQsp,z-Esp,xz

action on the state

unsp,z& is completely described by means of coefficien
dsp,xz(m,n) in complete analogy with Eq.~5!, while we have
P̂m

sp,xz5(n5m
` uem,n

sp,xz&^em,n
sp,xzu.

The probability of m counts by the detectorxz corre-
sponding to correlated photons becomes

psp,xz
~m!5 (

n5m

`

rnn
p udsp,xz~m,n!u2. ~9!

The probability of n pairs is given byrnn
p 5(lpt)n exp

(2lpt)/n!, t being the time of measurement andlp the mean
rate of photon pairs in the Alice and Bob channels@21,33–
35#. The terms

udsp,xa~m,n!u25S n

mD Fjxa(yb

p~xa ,yb!Gm

3F12jxa( p~xa ,yb!Gn2m

,

yb

5-4
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udsp,yb~m,n!u25S n

mD Fjyb(xa

p~xa ,yb!Gm

3F12jyb(xa

p~xa ,yb!Gn2m

are the probabilities that onlym out of n photons in the
channela ~b! are counted by the detectorxa (yb). Losses due
to electronics (pz), detection efficiencies (hxz

), as well as

optical losses (txz
) are summed up in the termjxz

5pzhxz
txz

@22,36#; while we refer to Appendix B for the

analysis of dead time in this context. The termtxz
incorpo-

rates all losses in the Alice and Bob optical path, such
from crystals, filters, lenses, PBSs, PASs, and fibers.
terms(xa(yb)p(xa ,yb) are the probabilities that each photo
of the pair may be counted randomly by any arbitrary det
tor @Eq. ~2!#. Probability psp,xz

(m) is derived according to
Eq. ~9!, giving

psp,xz
~n!5~lsp,xz

t !n
exp~2lsp,xz

t !

n!
, ~10!

with mean count rates given by

lsp,xa
5jxa(yb

p~xa ,yb!lp ,

lsp,yb
5jyb(xa

p~xa ,yb!lp .

B. Single counts associated with uncorrelated photons
and dark counts

Here, we consider counts from any detectorxz from stray
light, uncorrelated photons, and dark counts eventually c
tributing to noise in the distributed key. The density mat
associated with stray light and uncorrelated photons is

r̂u,xz5 (
n,m50

`

rnm
u,xzunu,xz&^mu,xzu.

By pursuing the same formalism as before, the detection
uncorrelated photons by the detectorxz is described by
means of the set of non-trace-preserving quantum opera

$E m
u,xz%. The mapE m

u,xz( r̂u,xz) follows in analogy with Eq.

~4!. The unitary operatorÛQu,xz
-Eu,xz

describes the interactio

between the quantum systemQu,xz
of uncorrelated photons

on the channelxz and the lossy environmentEu,xz
in the

initial state ue0
u,xz&. The measurement operator isP̂m

u,xz

5(n5m
` uem,n

u,xz&^em,n
u,xzu. The action ofÛQu,xz

-Eu,xz
on the state

unu,xz& follows from Eq. ~5! with the decomposition coeffi
cients,du,xz(m,n).

Thus, the probability of measuringm counts of uncorre-
lated photons by the detectorxz is
02230
s
e
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n-
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pu,xz
~m!5 (

n5m

`

rnn
u,xzudu,xz~m,n!u2, ~11!

wherernn
u,xz is the probability ofn uncorrelated photons in th

channelxz . According to Refs.@21,33–35#, we assume tha
we havernn

u,xz5(lu,xz
t)nexp(2lu,xz

t)/n!, where lu,xz
is the

mean rate of uncorrelated photons. The term

udu,xz~m,n!u25S n

mD ~jxz
!m~12jxz

!n2m

is the probability ofm out of n uncorrelated photons counte
by the detectorxz .

The pu,xz
(n) derived accordingly from Eq.~11! is

pu,xz
~n!5~jxz

lu,xz
t !n

exp~2jxz
lu,xz

t !

n!
. ~12!

The main source of noise in detectors is due to d
counts, whose distribution is regarded merely from a sta
tical point of view as the probability ofn dark counts

pd,xz
~n!5~ld,xz

t !n
exp~2ld,xz

t !

n!
,

with the mean dark-count rate beingld,xz
.

C. Total counts

As real counters cannot distinguish among counts du
correlated photons, counts due to uncorrelated photons,
dark counts, the total probability of measuringk counts by
detectorxz is calculated according to Refs.@21,33,35#,

ptot,xz
~k!5 (

l ,m,n50

`

dk,l 1m1n psp,xz
~ l ! pu,xz

~m! pd,xz
~n!,

giving

ptot,xz
~n!5~l tot,xz

t !n
exp~2l tot,xz

t !

n!
,

where the mean rate of total counts measured by the dete
xz is l tot,xz

5lsp,xz
1jxz

lu,xz
1ld,xz

.

IV. COINCIDENCE COUNTS

We build up a model for the probabilitypc,xayb
(n) of

measuringn coincidences by a pair of detectorsxa andyb in
order to estimate crucial quantities of a typical QCKD e
periment, such as the sifted key and the QBER before
after the error-correction procedure, whenever different p
tocols are applied. We distinguish between the probabi
distribution of true coincidences@pp,xayb

(n) due to corre-
lated photons# and the probability distribution of accidenta
coincidences@pAcc,xayb

(n) because of imperfections in th
detection electronics#.
5-5



ai
e
b

er

b

ys

n

th
rm

It
f

be
u
nc
u

ity
nd

-

-

co-

-

-

rs

or

th
, in

-
a-

he
al

e

CASTELLETTO, DEGIOVANNI, AND RASTELLO PHYSICAL REVIEW A67, 022305 ~2003!
We consider the density matrix in terms of counted p
states@Eq. ~7!#, and we describe its evolution exploiting th
formalism of quantum operations as described in Sec. IV
defining another set of non-trace-preserving quantum op
tions $E m

p,xayb%.

E m
p,xayb( r̂p) describes the measurement ofm coincidences

originated by the detection of the two photons of a pair
the detectorsxa , yb . Its explicit expression is found from
Eq. ~4!, except for the interaction between the quantum s
tem Qp of photon pairs in the initial stater̂p and the lossy
and noisy environmentEp,xayb

in the initial stateue0
p,xayb&

represented by the unitary operatorÛQp-Ep,xayb
and the mea-

surement operatorP̂m
p,xayb5(n5m

` uem,n
p,xayb&^em,n

p,xaybu.
The action ofÛQp-Ep,xayb

on the state number of photo

pairs is

ÛQp-Ep,xayb
unp&ue0

p,xayb&5 (
m50

n

dp,xayb~m,n!ump&uem,n
p,xayb&.

Thus, the probability of measuringm true coincidences
corresponding to photon pairs by the pair of detectorsxa , yb
is

pp,xayb
~m!5 (

n5m

`

rnn
p udp,xayb~m,n!u2. ~13!

Realizing that a true coincidence may occur only if bo
photons of the pair are not lost, we emphasize that the te
udp,xayb(m,n)u2 are the probabilities that onlym pairs are
detected as coincidences by the pair of detectorsxa , yb when
n photons are present in the channels of Alice and Bob.
straightforward to deduce the explicit form o
udp,xayb(m,n)u2 as

udp,xayb~m,n!u25S n

mD @jxa
jyb

p~xa ,yb!#m

3@12jxa
jyb

p~xa ,yb!#n2m.

Probability pp,xayb
(n) is derived according to Eq.~13!, ob-

taining

pp,xayb
~n!5~lp,xayb

t !n
exp~2lp,xayb

t !

n!
,

where lp,xayb
5jxa

jyb
p(xa ,yb)lp is the mean rate of true

coincidences seen by the pair of detectorsxa andyb .

A. Accidental coincidences

The presence of the temporal coincidence windoww, dur-
ing which coincidences are measured, modifies the mean
tal coincidence counts, thus forcing one to distinguish
tween true and accidental coincidence statistics. We ass
that true coincidences occur in the middle of the coincide
temporal window. Then we deduce the probability distrib
02230
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tion of accidental coincidences and finally the probabil
distribution of total coincidences, accounting for true a
accidental coincidences, assumingw,Dz , whereDz is the
dead time in thez channel according to Appendix B.

We regardpN,xz
(n) as the probability distribution of pho

tons counted by the detectorxz that may contribute to acci
dental coincidences in the time intervalDt. By observing
that the probability distributionsptot,xz

(n) andpp,xayb
(n) are

Poisson, it is simple to demonstrate that we have

pN,xz
~n!5~lN,xz

Dt !n
exp~2lN,xz

Dt !

n!
,

wherelN,xa
5l tot,xa

2lp,xayb
and lN,yb

5l tot,yb
2lp,xayb

are
the mean count rates possibly contributing to accidental
incidences from the detectorsxa andyb , respectively.

Let us denote byqyb
the probability that at least one pho

ton in yb is counted in the coincidence windowDt5w,

qyb
5 (

n51

`

pN,xz

Dt5w~n!512exp~2lN,xz
w!, ~14!

because detectorsxa are here considered as triggers.
The term in Eq.~14! is intended to account for the con

tribution of single detectorsyb . Since detectorsyb are sta-
tistically independent, the probability that both detecto
count a photon producing an accidental coincidence isq1b

q2b
. The final probability of accidental counts from detect

yb is obtained by subtracting half the probability that bo
detectors in Bob’s channel count an accidental photon
formula

q1b
* 5q1bS 12

1

2
q2bD , ~15!

q2b
* 5q2bS 12

1

2
q1bD . ~16!

According to Refs.@21,33–35#, we calculate the probabil
ity distribution of accidental coincidences in the time me
surementt by applying the discrete convolution between t
Poisson distribution of ‘‘triggering’’ counts and the binomi
distribution with parameterqyb

* ,

pAcc,xayb
~m!5 (

n5m

`

pN,xa
~n!Byb

~m,n!,

with Byb
(m,n)5(m

n )(qyb
* )m(12qyb

* )n2m, giving

pAcc,xayb
~n!5~lAcc,xayb

t !n
exp~2lAcc,xayb

t !

n!

with lAcc,xayb
5qyb

* lN,xa
.

Lastly, the probability distribution of total coincidenc
countspc,xayb

(n) is obtained by
5-6
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pc,xayb
~k!5 (

m,n50

`

dk,m1n pp,xayb
~m!pAcc,xayb

~n!

5~lc,xayb
t !k

exp~2lc,xayb
t !

k!
,

where the mean rate of total coincidence measured by
arbitrary pair ofxa andyb detectors is

lc,xayb
5lp,xayb

1lAcc,xayb
. ~17!

To characterize a particular QCKD procedure, we embo
the effect of transformationsT̂a and T̂b on photon polariza-
tion by the rotation matrices

T̂z5S cosuz sinuz

sinuz 2cosuz
D . ~18!

We rewrite Eq.~17! in terms of the rotation anglesua and
ub , induced by transformationsT̂a and T̂b on the polariza-
tion state of photons, by replacingp(xa ,yb) with
pua ,ub

(xa ,yb), whose complete expression is in Appendix
More specifically, the calculated mean coincident counts
made explicit in terms of angular settingsua and ub as
lc,xayb

(ua ,ub)t.

V. EVALUATION OF THE QBER

To characterize a particular QCKD procedure and to
sess its advantages, we evaluate particular quantities su
the QBER and the sifted key for different types of QCK
protocols so far experimentally implemented, i.e., the BB
protocol and Ekert’s protocols based on the CHSH a
Wigner inequalities, respectively.

The QBER is a parameter for describing the signal qua
in the transmission of the sifted key, defined as the rela
frequency of errors induced by accidental coincidences,
the number of errors divided by the total size of the cryp
graphic sifted key~K! @35#.

In other words, the QBER is given by total coinciden
provided by those detectors ‘‘wrongly’’ firing in coincidenc
according to the chosen protocol. In fact, the protocol es
lishes which pair of detectors should fire to contribute to
key.

A. BB84 protocol

Here, we examine the BB84 protocol variant proposed
entangled states in Ref.@3#. Recall that Alice and Bob mea
sure photons randomly and independently between two b
of orthogonal quantum states. One basis corresponds to
zontal and vertical linear polarization (% ), while the other to
linear polarizations rotated by 45° (^ ). Only half of the
photon pairs can contribute to the sifted key, as only
subset of measurements performed with the two analyze
the same basis contributes.

The sifted key is given by
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KBB84~ua!5 f basisf setting(
xayb

@lc,xayb
~ua ,ua!

1lc,xayb
~ua1p/4,ua1p/4!#t, ~19!

where f basis51/2 is the probability to measure in the righ
basis@(ua ,ua) and (ua1p/4,ua1p/4)], while f setting51/2
is the probability to measure in a particular analyzer sett
@(ua ,ua) or (ua1p/4,ua1p/4)].

All detectors contribute to the sifted keyK, but only co-
incidences between 1a2b and 2a1b correspond to the ex
pected anticorrelation when measurements are performe
the same basis (ua5ub), while QBER contributions come
from the coincidences between detectors 1a1b and 2a2b @as
it is clear from Eqs.~A1! in Appendix A#. Therefore, the
BB84 QBERRBB84 explicit formula is

RBB84~ua!

5

(
x51,2

@lc,xaxb
~ua ,ua!1lc,xaxb

~ua1p/4,ua1p/4!#t

4KBB84~ua!
.

~20!

To test the behavior of QBER, we simulate a realis
experiment with parametershxa

5hyb
50.5 ~quantum effi-

ciency of the four detectors!, txa
5tyb

50.1 ~transmittance of

the four channels!, ld,xa
5ld,yb

550 s21 ~dark-count rate of

the four detectors!, Da5Db5100 ns~total dead time of the
detection systems of Alice and Bob!, ua50 and w54 ns.
The entanglement parameters aree50.95 andz51, the cor-
relation level in the Alice channel isaa50.25 @aa
5lp /(lp1(xa

lu,xa
)#, and the correlated photon rate islp

5700 KHz.
In Fig. 3, we show the dependence of QBER versus

optical properties of real PBS, i.e., the transmittanceutzu and
utz

'u (z5a,b) for the statesuHz& and uVz&, respectively. Re-
sults show how strongly the QBER can be affected by
optical properties of PBSs, whose influence has been
glected so far.

In Fig. 4, the behavior of the QBER is presented vers

FIG. 3. The QBER for the BB84 protocol versus the PBS co
ficients utzu and utz

'u.
5-7
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CASTELLETTO, DEGIOVANNI, AND RASTELLO PHYSICAL REVIEW A67, 022305 ~2003!
the level of correlation,aa , in the Alice channel and the rat
lp of the correlated photon pairs for two different noise le
els, i.e., the ratio between the mean rate of photons in
two channels. Far from ideal conditions, the presence of
correlated events in the two channels induces a nonlin
increase of the QBER. The other parameters are set as in
3 for realistic PBSs parameters,utzu250.99 and utz

'u2

50.025.

B. Ekert’s protocol

Ekert’s protocol has the peculiarity of relying on the com
pleteness of quantum mechanics for security. Therefore,
possible combined choices between Alice and Bob for a
lyzer settings split into three groups: the first for key dist
bution, the second containing the security proof, and
third garnering the discarded measurements.

Here, we consider two possible variants of Ekert’s pro
col: the variant based on the Clauser-Horne-Shimony-H
inequality ~CHSH!, similar to the one proposed in Ref.@8#,
and the variant based on Wigner’s inequality@7#.

1. Ekert’s protocol based on CHSH inequalities

To increase the number of measurements devoted to
key distribution, we consider the case where Alice and B
measure randomly among four analyzer settings and use
CHSH inequality to test eavesdropping. In this scheme,
ice’s choices for the analyzer settings areua5(ua ,ua
1p/8,ua1p/4,ua13p/8) and Bob’s areub5(ua1p/8,ua
1p/4,ua13 p/8,ua1p/2).

The key distribution is performed when settings for Ali
and Bob are the same or orthogonal, so that the sifted ke

KCHSH~ua!5 f setting(
xayb

@lc,xayb
~ua ,ua1p/2!1lc,xayb

~ua

1p/8,ua1p/8!1lc,xayb
~ua1p/4,ua1p/4!

1lc,xayb
~ua13p/8,ua13p/8!#t,

FIG. 4. The QBER for the BB84 protocol versus the correlat
level in the Alice channelaa5lp /(lp1(xa

lu,xa
) and the corre-

lated photon ratelp for two noise levels in the channels (lb /la

51.2 and 3, wherela5lp1(xa
lu,xa

andlb5lp1(yb
lu,yb

).
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where @(ua ,ua1p/2), (ua1p/8,ua1p/8), (ua1p/4,ua
1p/4),(ua13p/8,ua13p/8)# are angular settings genera
ing the key andf setting51/16.

In a maximally entangled state configuration, the det
tors contributing to the key should be 1a1b and 2a2b for the
orthogonal analyzer settings and 1a2b and 2a1b for the par-
allel settings. Thus, the QBER is calculated according to

RCHSH~ua!5
1

4KCHSH~ua! H (
xa ,yb(xÞy)

lc,xayb
~ua ,ua1p/2!t

1 (
xa ,yb(x5y)

@lc,xayb
~ua1p/8,ua1p/8!

1lc,xayb
~ua1p/4,ua1p/4!

1lc,xayb
~ua13p/8,ua13p/8!#tJ ,

where the intuitive notation(xa ,yb(xÞy) indicates the sum

over 1a2b and 2a1b detectors and(xa ,yb(x5y) indicates the

sum over 1a1b and 2a2b .

2. Ekert’s protocol based on Wigner’s inequality

As in Ref.@7#, we consider the case of the Ekert’s varia
where the security of the quantum channels follows fro
Wigner’s inequality. In this case, Alice and Bob measu
randomly among four analyzers settings, whose choices
ua5(ua2p/6,ua) for Alice andub5(ua ,ua1p/6) for Bob.
The key distribution is performed when settings for Alic
and Bob are the same so that the sifted key is

KWI~ua!5 f setting(
xayb

lc,xayb
~ua ,ua!t,

with f setting51/4.
The QBER is calculated according to

RWI~ua!5f setting

@lc,1a1b
~ua ,ua!1lc,2a2b

~ua ,ua!#t

KWI~ua!
,

by taking the detectors contributing to the wrong bits as 1a1b
and 2a2b .

In Fig. 5, we present a comparison of QBER levels for t
BB84 protocol and the Ekert protocols considering both
inequalities of CHSH and Wigner versus the analyzers an
lar settingua and the entanglement parametere. Experimen-
tal conditions are the same~low noise! as for Figs. 3 and 4.
Results highlight that the QBER is sensitive to the angleua
when the ideal entanglement is not achieved for both
variants of Ekert’s protocols. In the Wigner’s case, the s
sitivity is so remarkable that this protocol has to be cons
ered less robust than the BB84- and the CHSH-inequa
based Ekert’s protocols.

VI. SECURITY AND ERROR CORRECTION

The security of the BB84 variant protocol is based on
public comparison between measurements of Alice and B
5-8
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on a sufficiently large random subset of the sifted key, e
more than half is recommended in Ref.@3#.

The security proof for the CHSH-inequality-based Eker
protocol is evaluated with the specific choices of settings
the CHSH inequality,

S~ua!5E~ua ,ua1p/8!2E~ua ,ua13p/8!1E~ua1p/4,ua

1p/8!1E~ua1p/4,ua13p/8!,

S8~ua!5E~ua1p/8,ua1p/4!2E~ua1p/8,ua1p/2!

1E~ua13p/8,ua1p/4!1E~ua13p/8,ua1p/2!,

where we have

E~ua ,ub!5M1a1b
~ua ,ub!2M1a2b

~ua ,ub!1M2a2b
~ua ,ub!

2M2a1b
~ua ,ub!.

Here,

Mxayb
~ua ,ub!5

lc,xayb
~ua ,ub!

(
xayb

lc,xayb
~ua ,ub!

is the normalized coincidence rate as a function of the a
lyzer settings and detector choices. The termsMxayb

(ua ,ub)
are commonly stored when experiments are performed.

For maximally entangled states, we haveuSqlu5uSql8 u
52A2, while for any realistic local theory, we haveuS,S8u
<2. It is expected that the presence of an eavesdropper
reduce the observed value ofuS,S8u, giving uSEve,SEve8 u
<A2, when the eavesdropper measures photons over e
one or both~total eavesdropping! the channels of Alice and
Bob @2#.

FIG. 5. The QBER in case of the CHSH- and Wigne
inequality-based Ekert’s protocols, together with the BB84 proto
versus the angular analyzers settingsua, and the entanglement pa
rameter e. The parameters settings arela52.83106 s21, aa

50.25, lb /la51.2, hxa
5hyb

50.5, txa
5tyb

50.1, ld,xa
5ld,yb

550 s21, Da5Db5100 ns,w54 ns, andz51, taken from typi-
cal and experimental realistic values so far implemented. PBSs
considered real withutzu250.99 andutz

'u250.025 (z5a,b).
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In the case of Wigner’s-inequality-based Ekert’s protoc
the Wigner inequality result has

W~ua!5M1a1b
~ua2p/6,ua!1M1a1b

~ua ,ua1p/6!

2M1a1b
~ua2p/6,ua1p/6!,

giving for the maximally entangled states,Wql521/8 and
W>0 for any local realistic theory. As for the CHSH in
equality, it can be proved that the limit becomesWEve
>1/16 for Eve detecting only one photon of the pair, wh
in the case of total eavesdropping, there is no boundary c
dition @37# .

In Fig. 6, we compare the behaviors of the CHSH- a
Wigner-inequality parameters,Snorm5(uSu2uSEveu)/(uSql
u2uSEveu) and Wnorm5(W2WEve)/(Wql2WEve), versus the
coincidence windoww and the correlation level in Alice’s
channelaa . The lower surfaces represent the case of r
PBSs, whereWnorm, Snorm, while the upper surface corre
sponds to ideal PBSs, whereWnorm5Snorm. We observe that,
given the same noise level in the system and real PB
Wigner’s parameter reaches the eavesdropping limit fa
than the CHSH one does, revealing the intrinsic weaknes
Wigner’s test against experimental parameters.

Furthermore, Wigner’s security test guarantees aga
eavesdropping strategies only for the detection of one pho
of the pair, while the CHSH security is independent on t
adopted strategy~see Refs.@2,37#!.

A satisfactory protocol must be able to recover from no
as well as from partial leakage, allowing Alice and Bob
reconcile the two strings of bits measured and distill from
sifted key to a corrected key. A strong need for the appli
tion of any error-correction method is ana priori knowledge

l

re

FIG. 6. The CHSH and Wigner inequalities parametersSnorm

and Wnorm versus the coincidence windoww and the correlation
level in the Alice channelaa . In the case of maximally entangle
states we haveWnorm5Snorm51, while the lower cut is defined by
the eavesdropping limitWnorm<0 and Snorm<0 . The choice of
parameter values are the same of Fig. 4 except forua50 and e
50.95. The lower two surfaces represented correspond toWnorm

andSnorm in the case of real PBSs, with parametersutzu250.98 and
utz

'u250.05. The higher surface representsSnorm5Wnorm in the case
of ideal PBSs.
5-9
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of the QBER, which provides information regarding ho
many times the error-correction procedure must be applie
reduce the QBER to a certain agreed level, commonly 1
Here, we show an example of error correction on ana priori
evaluated QBER according to a common approach repo
in Ref. @7#, to show that our model allows for prediction o
the corrected key length.

In general, Alice and Bob cannot distinguish between
rors caused either by an eavesdropper or by the environm
Thus, they must assume that all errors are due to an ea
dropper and evaluate the leaked information from the QBE
Also, even though by the error-correction procedure one
disregard incorrect bits by simply dropping them off
building the distilled key, the residual knowledge of a
eavesdropper may still not be faithfully quantified by t
reduced QBER obtained after the correction. The effects
Eve’s strategy is, in fact, equivalent to quantum noise yie
ing eventually accidental coincidences, these last contri
ing to both incorrect and correct bits transmitted, as it is cl
from Eqs.~19! and ~20!. Hence the error-correction proce
dure is not sufficient to cancel a potential Eve’s knowled
of part of the key due to accidental coincidence.

To prove this last assertion, we introduce the quant
accidental bit rate~QABR!, a quantity related to accidenta
coincidences and, in this sense, analogous to the QB
However, the error-correction procedure cannot reduce
QABR at the QBER level. As an example, we give t
QABR in the case of Ekert’s protocol based on Wigne
inequality,

BWI~ua!5 f setting

(
xayb

lAcc,xayb
~ua ,ua!t

KWI~ua!
.

Figure 7 shows the QBER with and without the applic
tion of the error-correction procedure together with the 1/2B
vs the coincidence window and the correlation paramete
Alice’s channel. The error-correction procedure is very in
fective at reducing the QABR and consequently the poss
effect of Eve’s knowledge on the corrected key.

FIG. 7. The QBER in the case of the BB84 protocol versus
coincidence windoww and the correlation parameter in the Alic
channelaa : the sawtooth shape is due to the application of
error correction procedure. The parameters are set as in Fig. 6
cept that, in this case, ideal PBSs are considered.
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VII. CONCLUSIONS

This paper is concerned with ana priori evaluation of
QCKD crucial parameters when entangled photons produ
by SPDC are exploited. The basic experimental feature c
sists of the detection of coincident photons. Toward this a
we developed a statistical model to calculate the probab
of accidental coincidences contributing to errors in the sif
key, not completely accounted for by simple experimen
means.

We investigated the noise contribution due to imperf
source generation and selection, imperfect polarizing be
splitters performing polarization state analysis, and noisy
lossy measurement system for photon-number detection.
emphasized some basic system imperfections such as u
related photons collection, detection system deficiencies,
tection system noise due to detector dark counts, and e
tronic system imperfections associated with non-ideal-tim
correlation measurements.

We discussed how this model can be adopted for
evaluation of the QBER and the sifted key for different we
known protocols, i.e., the BB84 and the Ekert protoc
based on both CHSH and Wigner inequalities, and compa
them to expected results.

Given that this model predicts precisely the QBER a
the sifted key, it ultimately guarantees a method to comp
different security criteria of the hitherto proposed QCK
protocols and provides an objective assessment of pe
mances and advantages of different systems. Thus, it yiel
method for ana priori evaluation of the tolerable experimen
tal imperfections in a practically implemented quantum s
tem to establish the degree of security and competitiven
of QCKD systems.

Finally, we used the model in a standard error-correct
procedure, observing that this does not completely cance
possible residual eavesdropping knowledge on the corre
key. We emphasize that this model yields also the degre
security of the corrected key, if a precise modeling of syst
imperfections is provided.
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APPENDIX A: INTERACTION MATRIX ÛcÀPBS

We explicitly calculate the unitary transformationÛc-PBS
according to Eqs.~1! obtaining a 16316 matrix

Ûc-PBS5S U1 U2 U3 U4

U2 U1 U4 U3

U3 U4 U1 U2

U4 U3 U2 U1

D ,

e

e
x-
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where we indicate

U15F TaTb 0 0 0

0 TaT b
' 0 0

0 0 T a
'Tb 0

0 0 0 T a
'T b

'

G ;

U25F TaRb 0 0 0

0 TaR b
' 0 0

0 0 T a
'Rb 0

0 0 0 T a
'R b

'

G ;

U35F RaTb 0 0 0

0 RaT b
' 0 0

0 0 R a
'Tb 0

0 0 0 R a
'T b

'

G ;

U45F RaRb 0 0 0

0 RaR b
' 0 0

0 0 R a
'Rb 0

0 0 0 R a
'R b

'

G ;

andTz5tz /(tz
22r z

2), andRz5r z /(tz
22r z

2) (z5a,b), analo-
gously forT z

' andR z
' .

According to Eqs. ~2! and ~18!, we obtain for
pua ,ub

(xa ,yb) the following:

pua ,ub
~1a,1b!5

1

11ueu2
$cos2~ub!@cos2~ua!~ uTaT b

'u2

1uT a
'T beu2!1sin2~ua!~ uT a

'T b
'u2

1uTaT beu2!#1sin2~ub!@cos2~ua!~ uTaT bu2

1uT a
'T b

'eu2!1sin2~ua!~ uT a
'T bu2

1uTaT b
'eu2!#1sin~2ua!cos~2ub!Re~ez/2!

3~2uTaT bu21uT a
'T bu21uTaT b

'u2

2uT a
'T b

'u2!%,

pua ,ub
~1a,2b!5

1

11ueu2
$cos2~ub!@cos2~ua!~ uTaR b

'u2

1uT a
'R beu2!1sin2~ua!~ uT a

'R b
'u2

1uTaR beu2!#1sin2~ub!@cos2~ua!~ uTaR bu2

1uT a
'R b

'eu2!1sin2~ua!~ uT a
'R bu2

1uTaR b
'eu2!#1sin~2ua!cos~2ub!Re~ez/2!

3~2uTaR bu21uT a
'R bu21uTaR b

'u2

2uT a
'R b

'u2!%,
02230
pua ,ub
~2a,1b!5

1

11ueu2
$cos2~ub!@cos2~ua!~ uRaT b

'u2

1uR a
'T beu2!1sin2~ua!~ uR a

'Tb
'u2

1uRaT beu2!#1sin2~ub!@cos2~ua!~ uRaT bu2

1uR a
'T b

'eu2!1sin2~ua!~ uR a
'T bu2

1uRaT b
'eu2!#1sin~2ua!cos~2ub!Re~ez/2!

3~2uRaT bu21uR a
'T bu21uRaT b

'u2

2uR a
'T b

'u2!%,

pua ,ub
~2a,2b!5

1

11ueu2
$cos2~ub!@cos2~ua!~ uRaR b

'u2

1uR a
'R beu2!1sin2~ua!~ uR a

'R b
'u2

1uRaR beu2!#1sin2~ub!@cos2~ua!

3~ uRaR bu21uR a
'R b

'eu2!1sin2~ua!

3~ uR a
'Rbu21uRaR b

'eu2!#

1sin~2ua!cos~2ub!Re~ez/2!~2uRaR bu2

1uR a
'R bu21uRaR b

'u22uR a
'R b

'u2!%.

In the case of maximally entangled states, i.e.,e51 and
z51, and ideal PBSs, i.e.,uRzu5uT z

'u50 anduR z
'u5uTzu

51, theÛc-PBS is simply given by

U15F 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

G ; U25F 0 0 0 0

0 i 0 0

0 0 0 0

0 0 0 0

G ;

U35F 0 0 0 0

0 0 0 0

0 0 i 0

0 0 0 0

G ; U45F 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

G ;

and

pua ,ub
~1a,1b!5pua ,ub

~2a,2b!5sin2~ua2ub!/2, ~A1!

pua ,ub
~1a,2b!5pua ,ub

~2a,1b!5cos2~ua2ub!/2.

APPENDIX B: DEAD-TIME CORRECTION
DETERMINATION

According to Refs.@36,38#, in the case of nonextendin
dead time, the correction ispz51/(11n̄zDz /t), where n̄z
5-11
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are the mean number of photons counted in thez channel,
i.e., n̄z5(xz51z,2z

(kkptot,xz
(k) with ptot,xz

(k) calculated in

the absence of dead timeDz , and jxz
5hxz

txz
. We can,

therefore, write down the dead-time correction in this case

pa5H 11(
xa

F(
yb

p~xa ,yb!hxa
txa

lp1hxa
txa

lu,xa

1ld,xaGDaJ 21

and
-
Pr

et

hy

ys

A.

A

.G

v

s

nd

d

llo

. A

02230
s

pb5H 11(
yb

F(
xa

p~xa ,yb!hyb
tyb

lp1hyb
tYb

lu,yb

1ld,ybGDbJ 21

by noting that, when several devices are used in serie
good approximation considers the whole apparatus to b
black box, with a nonextending dead time equal to the larg
of dead times of the single component@36#. We showed in
Ref. @38# that pz provides a satisfactory approximation fo
t@Dz .
pt.
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