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Entanglement concentration of continuous-variable quantum states

Jaromı´r Fiurášek, Ladislav Mišta, Jr., and Radim Filip
Department of Optics, Palacky´ University, 17. listopadu 50, 77200 Olomouc, Czech Republic

~Received 31 May 2002; published 13 February 2003!

We propose two probabilistic entanglement concentration schemes for a single copy of a two-mode squeezed
vacuum state. The first scheme is based on the off-resonant interaction of a Rydberg atom with the cavity field
while the second setup involves the cross Kerr interaction, an auxiliary mode prepared in a strong coherent
state, and homodyne detection. We show that the continuous-variable entanglement concentration allows us to
improve the fidelity of teleportation of coherent states.

DOI: 10.1103/PhysRevA.67.022304 PACS number~s!: 03.67.2a, 42.50.Dv
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I. INTRODUCTION

Quantum entanglement is an essential ingredient of m
protocols for quantum information processing such as qu
tum teleportation@1,2# or quantum cryptography@3#. In order
to achieve optimum performance of these protocols, the
involved parties, traditionally called Alice and Bob, shou
share a pure maximally entangled state. In practice, howe
we are often able to generate only nonmaximally entang
states. Additionally, the distribution of the entangled st
between the two distant parties via some noisy quan
channel will degrade the entanglement and Alice and B
will share some partially entangled mixed state. One of
most important discoveries in quantum information theo
was the development of the entanglement distillation pro
cols that allow Alice and Bob to extract a small number
highly entangled almost pure states from a large numbe
weakly entangled mixed states@4–6#. These protocols in-
volve only local operations and classical communicat
~LOCC! between the two parties; therefore they can be p
formed after the distribution of the entangled states.

In the simplest scenario Alice and Bob share a pure n
maximally entangled state in ad-dimensional Hilbert space
whose Schmidt decomposition reads

uc&5(
j 51

d

cj uaj&Aubj&B , ~1!

where each set of statesuaj& and ubj& forms a basis. Alice
and Bob would like to prepare fromuc& a state with higher
entanglement by means of LOCC. Remarkably, this is p
sible, albeit only with certain probability, even if they sha
only a single copy of this state. The procedure that acco
plishes this task was fittingly called the procrustean met
@4#, because it cuts off the Schmidt coefficientscj to the size
of the smallest one. In this way, Alice and Bob obtain, w
certain probability, a maximally entangled state in
d-dimensional Hilbert space.

In view of the recent interest in quantum information pr
cessing with continuous variables@2,7–10#, it is highly de-
sirable to establish experimentally feasible entanglement
tillation and concentration protocols for continuo
variables. Of particular importance are the protocols
Gaussian states, because these states can be prepared
laboratory with the use of commonly available resourc
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comprising lasers, passive linear optical elements~beam
splitters and phase shifters!, and optical parametric amplifi
ers. Recall that the Wigner function of a Gaussian state
hibits Gaussian shape. If we employ also auxiliary mod
prepared initially in some Gaussian state and homodyne
tectors, then we can implement an arbitrary Gaussian c
pletely positive map@11–13#, which is a transformation tha
preserves the Gaussian shape of the Wigner function. H
ever, it was proved recently that it is impossible to dis
Gaussian entangled states by means of Gaussian opera
@14#. This means that additional resources beyond pas
linear optics, optical parametric amplifiers, and homody
detectors are required.

The distillation protocols for Gaussian states proposed
far employ photon-number measurements. The scheme
gested by Duanet al. @15# relies on nondemolition measure
ment of the total photon number in two~or more! modes and
represents a direct extension of the Schmidt project
method to infinite-dimensional Hilbert space. The procru
ean scheme considered by Opatrny´ et al. @16# and further
analyzed by Cochraneet al. @17# is based on controlled ad
dition or subtraction of photons. In this scheme, the non
earity required to implement a non-Gaussian transforma
is induced by a measurement that should resolve the num
of photons in the mode. This is in the spirit of the rece
proposal of efficient quantum computation with linear opt
@18# where the measurement-induced nonlinearity play
central role. We also note that several distillation schemes
entangled coherent states have been proposed@19,20#.

In this paper, we design two entanglement-concentra
setups for a single copy of a pure two-mode squee
vacuum state

uc&5 (
n50

`

cnun,n&, cn5A12l2ln, ~2!

wherel5tanhr and r is the squeezing constant. This sta
can be generated in the process of a nondegenerate sp
neous parametric down-conversion and represents a com
source of continuous-variable entanglement in the exp
ments. The procrustean procedures that we are propo
preserve the structure of the state~2! while the Schmidt co-
efficientscn are transformed to different ones,cn→dn . The
first scheme is based on a dispersive interaction of a t
level atom with the microwave cavity field and atomic sta
©2003 The American Physical Society04-1
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detection. The second scheme utilizes a cross Kerr inte
tion, coherent states, homodyne measurements, and l
optics. The underlying mechanism of both these scheme
that a certain auxiliary system experiences a phase shift
depends on the number of photons in Alice’s mode of
shared state~2!. We convert this phase modulation into am
plitude modulation via interference, which allows us to co
trol the amplitude of the Schmidt coefficientscn . An essen-
tial part of our probabilistic protocols is the measurement
the auxiliary system which tells us whether the concentra
succeeded or failed.

The paper is organized as follows. The first scheme
analyzed in Sec. II and the second scheme is discusse
Sec. III. Finally, Sec. IV contains the conclusions.

II. ENTANGLEMENT CONCENTRATION IN CAVITY
QUANTUM ELECTRODYNAMICS

Our first entanglement concentration scheme is desig
for the quantum state of an electromagnetic field confined
a high-Q cavity and is schematically sketched in Fig. 1. No
that this setup has been successfully realized experimen
and employed for quantum nondemolition measurement
the cavity-field photon number and the preparation of Sch¨-
dinger cat states@21,22#. The scheme shown in Fig. 1 i
based on an off-resonant interaction of an~effectively! two-
level Rydberg atom with a single mode of a cavity san
wiched in the Ramsey interferometer. Alice’s part of the tw
mode entangled state is transmitted to the cavity throug
superconducting waveguide@23#. The atoms are emitted
from an oven, their velocity is selected by a velocity selec
and they are excited by a laser pulse to the long-living
cular Rydberg stateug&. Subsequently, each atom enters t
first microwave Ramsey zone where a strong coherent
crowave field resonantly drives the atomic transition betw
two Rydberg statesug& andue&. The atom leaves the Ramse

FIG. 1. Schematic of entanglement-concentration setup in ca
QED: O is the atomic oven,V is the atomic velocity selector,L is
the laser excitation mechanism,R1 and R2 are the Ramsey zone
driven by the microwave source, CAVITY contains Alice’s part
the entangled state, andDe , Dg are the field ionization detector
measuring the state of the Rydberg atom.
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zoneR1 in a balanced coherent superposition of the sta
ug& and ue&,

uf&5
1

A2
~ ug&1ue&). ~3!

The atom then traverses the cavity that contains Alic
part of the shared two-mode state~2!. The dispersive atom-
field interaction in the cavity is governed by the followin
effective Hamiltonian@21#:

H5\ka†a^ ue&^eu, ~4!

wherea is the annihilation operator of Alice’s mode andk is
the effective atom-field interaction constant. The coupli
~4! results in a phase shiftDw5a†aw of the stateue& that is
linearly proportional to the number of photons in the mo
A. On the other hand, the stateug& is not changed by the
interaction. The single-photon phase shiftw5kt, wheret is
an effective interaction time, can be adjusted to the requ
value by a proper selection of the atomic velocity in t
selectorV.

After leaving the central cavity, the atom passes throu
the second microwave Ramsey zone, where it undergo
p/2 Rabi rotation. In general, the frequencyv r of the clas-
sical microwave field differs slightly from the atomic trans
tion frequencyv0. This results in a change of the relativ
phase between the atomic coherence and the microw
source by an angle

w05~v r2v0!T, ~5!

whereT is the time of flight of the atom between the zon
R1 andR2 @24#. The transformation undergone by the ato
in zoneR2 can be written as follows:

ug&→
1

A2
~ ug&1e2 iw0ue&),

ue&→
1

A2
~ ue&2eiw0ug&). ~6!

The phase shiftw0 can be controlled by tuning the frequenc
v r of the microwave field@see Eq.~5!#.

The resulting state of the atom and the two-mode fi
reads

uC&5
1

2 (
n50

`

cn~12eiw02 inw!ug& ^ un,n&

1
1

2 (
n50

`

cn~e2 iw01e2 inw!ue& ^ un,n&. ~7!

To complete the procedure, we measure the state of the a
by means of state-selective ionization detectorsDg and De
exhibiting almost unit detection efficiency. The entanglem
concentration succeeds only if the atom is found to be in
ground stateug&. The Schmidt coefficients after this cond
tional transformation read

ty
4-2
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dn5 icnexpS i
w02nw

2 D sinS nw2w0

2 D . ~8!

The irrelevant overall phase factori exp(iw0/2) can be
dropped. Moreover, the phase factor exp(2inw/2) can easily
be compensated by an appropriate phase shift or simply
properly redefining the quadratures of Alice’s mode. Af
these transformations, the Schmidt coefficients become
and after renormalization we get

dn5A12l2

P
ln sinS nw2w0

2 D , ~9!

where

P5
1

2
2

12l2

2

cosw02l2cos~w1w0!

122l2cosw1l4
~10!

is the probability of success of the conditional transform
tion. Clearly, two trends are competing in Eq.~9!. The expo-
nential decayln ~recall thatulu,1) is for certainn partially
compensated by the second term sin@(nw2w0)/2# which
grows with n up to nmax5(p1w0)/w. This allows us to
increase the entanglement of the shared state.

Formally, the conditional transformation can be describ
as a diagonal filter applied to the input two-mode dens
matrix r in . We define an operator

A5 (
n50

`

anun&^nu, ~11!

wherean5sin@(nw2w0)/2#. The output~unnormalized! den-
sity matrix is given by

rout5A^ 1Br inA
†

^ 1B , ~12!

where1B stands for an identity operator in the Hilbert spa
of Bob’s mode.

Since the conditional transformation~12! preserves the
purity of the two-mode state, we can conveniently quan
the entanglement by the von Neumann entropy of the
duced density matrix of Alice’s mode,

S52 (
n50

`

udn
2u lnudn

2u. ~13!

The entropyS is plotted in Fig. 2~a! as a function ofw0 for
fixed w andl. Before concentration, Alice and Bob share t
two-mode squeezed vacuum~2!, and the entropy~13! reads

S52 ln~12l2!2
l2

12l2
ln l2. ~14!

For the data in Fig. 2, we obtainSin50.75. Figure 2~a!
clearly shows that for certain interval of phase shiftsw0 our
procedure allows us to conditionally increase the amoun
entanglement in the pure two-mode state shared by Alice
Bob.
02230
by
r
al

-

d
y

y
-

f
nd

Let us now demonstrate that the entanglement conc
trated in this way is useful in practical tasks. To be speci
we consider the teleportation of coherent states in
Braunstein-Kimble scheme@2# where our state is used as th
quantum channel. Making use of the transfer operator
malism @25,26#, we can express the fidelity of teleportatio
as follows:

F5
1

2 (
m50

`

(
n50

` S m1n
n D dmdn*

2m1n
. ~15!

On inserting the Schmidt coefficients~9! into Eq. ~15! and
carrying out the summations we obtain an analytical form
for the fidelity of teleportation of coherent states,

F5
12l2

4P F 1

12l cos~w/2!
2

cosw02l cos~w/21w0!

122l cos~w/2!1l2 G .

~16!

The fidelity F is plotted in Fig. 2~b!. For fixedl andw we
can optimize the phasew0 so that the teleportation fidelityF
will be maximized. For the data used in Fig. 2, we find th
it is optimum to setw0'2p/10, which yields the fidelity
F50.837 and the probability of success isP50.05. This
should be compared with the fidelityF in50.75 that is

FIG. 2. The performance of the entanglement-concentra
scheme shown in Fig. 1 forl51/2 andw5p/10. ~a! Probability of
successP ~solid line! and von Neumann entropySafter the concen-
tration ~dashed line! and ~b! fidelity F of teleportation of coheren
states are plotted as functions ofw0. For the input state,Sin50.75
andF in50.75.
4-3
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achieved when the original two-mode squeezed vacuum
l51/2 serves as the quantum channel. This improvemen
fidelity is quite significant and clearly illustrates the practic
utility of our procedure.

III. ENTANGLEMENT CONCENTRATION FOR
TRAVELING LIGHT FIELDS

To implement the scheme discussed in the preceding
tion directly for traveling light fields, we could replace th
atomic Ramsey interferometer with a Mach-Zehnder inter
ometer for a single photon and couple this auxiliary pho
to Alice’s mode via a nonlinear medium using the cross K
effect~see Fig. 3!. A similar setup was proposed by Gerry fo
the generation of Schro¨dinger cat states@27#. However, this
scheme has several drawbacks. First, the currently ach
able Kerr nonlinearities are rather low. Secondly, we have
prepare a single photon. Therefore we propose an alterna
scheme~see Fig. 4!. In that setup, an auxiliary modeC is
prepared in a~strong! coherent stateua& and then interacts
with Alice’s modeA in the Kerr medium described by th
Hamiltonian

HKerr5\ka†ac†c, ~17!

wherea and c denote the annihilation operators of Alice
and the auxiliary modes, respectively. After the interacti
we project the output state onto coherent stateub& in the
eight-port homodyne detector~EHD!.

The principle of the operation of this scheme may be
plained as follows. If there aren photons in the modeA, then
the coherent stateua& evolves touaeinw&, wherew52kt
andt is the effective interaction time. The probability dens
of projecting ontoub& is given byz^buaeinw& z2/p which may
grow with n if b belongs to a certain region of the pha
space. Without loss of generality, we may assume thata is

FIG. 3. Optical implementation of the entanglemen
concentration scheme shown in Fig. 1.

FIG. 4. Schematic of the entanglement-concentration setup
traveling light fields that is based on auxiliary coherent states,
cross Kerr interaction, eight-port homodyne detection~EHD!, and a
linear phase shift~PS! depending on the outcome of the measu
ment.
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real and positive and defineb5ubuexp(iw0). After projecting
onto b, the Schmidt coefficients can be expressed as

dn5
^buaeinw&

ApQ~b!
cn . ~18!

The normalization factorQ(b) represents the total probabi
ity density thatb will be measured in the EHD,

Q~b!5
1

p (
n50

`

z^buaeinw& z2ucnu2.

Making use of the formula for the scalar product of tw
coherent states@28#

^bua&5expS 2
1

2
uau22

1

2
ubu21b* a D ~19!

and assuming that Alice and Bob initially share the tw
mode squeezed vacuum state~2! we obtain

Q~b!5
12l2

p (
n50

`

l2nexp~2uaeinw2bu2!. ~20!

It is convenient to express the Schmidt coefficientsdn in
terms of two real parametersqn andfn ,

dn5
cn

ApQ~b!
expS qn1 ifn2

1

2
uau22

1

2
ubu2D , ~21!

where

qn5uabucos~nw2w0!, ~22!

fn5uabusin~nw2w0!. ~23!

We can see from Eq.~21! that the amplitude of the old
Schmidt coefficientscn is modulated by the factors exp(qn).
The highest relative enhancement occurs forn5w0 /w, when
qn5uabu. Since the nonlinear phase shiftnw will typically
be very small for alln for which cn substantially differs from
zero, uaunw!1, we can expand the expressions~22! and
~23! in Taylor series and keep only terms up to linear innw,

qn5uabucosw01nwuabusinw0 ,

fn52uabusinw01nwuabucosw0 . ~24!

Within this approximation the exponentsqn are linearly pro-
portional ton and the conditional transformation preserv
the structure of the two-mode squeezed state:

udnu}l̃n, l̃5l exp~wuabusinw0!. ~25!

For small nonlinear phase shiftsw!p the distribution
Q(b) is almost identical to the input Gaussian distributi
Qin(b)5exp(2ua2bu2)/p @see Fig. 5~a!#. For all b that can
be detected with some significantly large probability t
imaginary part ofb will thus be of the order of unity or
lower, 21&ubusinw0&1. It follows from Eqs.~24! and~25!

or
e

-

4-4
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that the productwuau effectively determines the modulatio
of the Schmidt coefficients. An important advantage of o
scheme is that a weak Kerr nonlinearity~small phase shiftw)
can be compensated by using a sufficiently strong auxil
coherent state witha}1/w. Thus the mean number of pho
tons in the auxiliary mode should be proportional to the
verse square of the nonlinear phase shift,uau2}1/w2. In or-
der to keep the intensity of the auxiliary mode at
reasonable level, we still need a quite strong nonlinear ph
shift ~e.g.,w5p/100). Note that, although such a phase sh
may seem to be modest, it is in fact very large and comm
nonresonant media typically exhibit a third-order nonline
ity that is weaker by several orders of magnitude. Recen
however, it was shown that the strength of the cross K
interaction can be enhanced by many orders of magnitud
a coherently prepared resonant atomic medium. A med
with electromagnetically induced transparency can exh
very large Kerr nonlinearity@29–33# that would suffice for
the practical implementation of the present entanglem
concentration scheme.

FIG. 5. ~a! The Q function Q(b) of the output state of the
auxiliary mode and~b! the fidelity F(b) are shown forl51/2, a
510, w5p/100. The coordinatesx and y are defined asx1 iy
5b2a.
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One undesirable effect of the projection onto the coher
stateub& is the phase modulationfn of the Schmidt coeffi-
cients ~23!. However, if the approximation~24! holds then
the conditional phase shiftfn is linearly proportional ton
and can be removed by a suitable phase shifter PS. The
tual phase shift is proportional to the real part ofb and we
must use a feedforward scheme, where the operation of
PS ~e.g., a Pockels cell! is controlled by the measuremen
outcome, as is schematically indicated in Fig. 4.

After the compensation of the linear phase sh
wuabucosw0, the normalized Schmidt coefficients corr
sponding to the measurement outcomeb read

dn~b!5
A12l2lnexp@ab* einw2 inwuabucosw0#

ApQ~b!exp~ uau2/21ubu2/2!
.

~26!

We need to establish a criterion according to which we w
accept or reject the state depending on the measuremen
comeb. The most natural approach is to choose some r
sonable figure of meritF(b) that has to be evaluated fo
eachb and then specify a regionV in the phase space wher
this figure of merit is sufficiently large. The entangleme
concentration succeeds only ifbPV and fails otherwise. It
follows that the concentration will yield a mixture of th
states

uc~b!&5 (
n50

`

dn~b!un,n& ~27!

and the density matrix of the output state shared by Alice
Bob can be expressed as follows:

rV5
1

PV
E

V
d2b Q~b!uc~b!&^c~b!u. ~28!

Here

PV5E
V

d2b Q~b! ~29!

denotes the probability of success of the concentration,
the probability that the measurement outcomeb will belong
to V. Different functionsF(b) may be suitable dependin
on the intended usage of the shared quantum state. In
paper, we choose the fidelity~15! of the teleportation of co-
herent states as the figure of merit.

In the rest of this section we present the results of
numerical calculations fora510, w5p/100, andl51/2.
The functionF(b) is plotted in Fig. 5~b!. We can see tha
there are regions in the phase space whereF(b) is higher
than the fidelity corresponding to the input two-mo
squeezed vacuum,F in50.75. As described above, we defin
V as the region of the phase space whereF(b)>F th . The
average fidelity associated with the thresholdF th can be cal-
culated as follows:

FV5
1

PV
E

V
d2b Q~b!F~b!. ~30!
4-5
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FIURÁŠEK, MIŠTA, JR., AND FILIP PHYSICAL REVIEW A67, 022304 ~2003!
Figure 6 shows the dependence of the probability of succ
PV on the average fidelityFV . Recall that with the help of
the original two-mode squeezed vacuum we can achieve
fidelity F in50.75. As can be seen from Fig. 6, the pres
entanglement-concentration method leads to higher fidel
while keeping the probability of successful concentrat
reasonably high. For instance, the probability of entang
ment concentration yieldingFV50.8 readsPV'0.2. This
example confirms that our procedure indeed extracts m
useful entanglement from the input two-mode squee
vacuum.

Finally, let us compare the two schemes proposed in S
II and III of this paper. A general comparison of these tw

FIG. 6. The probabilityPV of success of the entanglement co
centration is plotted in dependence on the fidelityFV of teleporta-
tion of coherent states that can be achieved with the entangled
after the concentration. Solid line represents results for the sch
based on the cross Kerr interaction and depicted in Fig. 4;
parameters are the same as in Fig. 5. For comparison, the da
line displays the dependence ofP on F for the scheme based o
cavity QED ~see Fig. 1! and all parameters are the same as
Fig. 2.
, a

bl

ch
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setups is not easy because they both involve several
parameters that can be varied and, possibly, optimized. H
ever, the two schemes are qualitatively similar in the form
sense. The transformation of the entangled state has in
cases the structure given by Eqs.~11! and ~12! although the
specific dependence of the coefficientsan on n differs for
these two schemes. An explicit comparison for the particu
choice of parameters considered in this paper reveals
both schemes exhibit quite similar performance even on
quantitative level~see Fig. 6 and compare the solid an
dashed lines!. The main distinction of these two schemes li
in the different physical implementations.

IV. CONCLUSIONS

In this paper, we have designed two schemes for
probabilistic concentration of continuous-variable entang
ment. The procrustean protocols that we are proposing h
the important property that they can be applied several tim
to a single copy of the shared two-mode entangled st
Thus we could, in principle, extract a state with very hi
entanglement, at the expense of a low probability of succ
When repeating the concentration procedure, one could
timize the relevant parameters such as the phase shiftsw0
and w in order to achieve the optimum performance of t
schemes. In view of the recent advances in cavity-QED
periments and the preparation of media with extremely h
Kerr nonlinearity, we may hope that the schemes propose
the present paper will become experimentally feasible in
near future.
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