PHYSICAL REVIEW A 67, 022304 (2003
Entanglement concentration of continuous-variable quantum states
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We propose two probabilistic entanglement concentration schemes for a single copy of a two-mode squeezed
vacuum state. The first scheme is based on the off-resonant interaction of a Rydberg atom with the cavity field
while the second setup involves the cross Kerr interaction, an auxiliary mode prepared in a strong coherent
state, and homodyne detection. We show that the continuous-variable entanglement concentration allows us to
improve the fidelity of teleportation of coherent states.
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[. INTRODUCTION comprising lasers, passive linear optical elemefiteam
splitters and phase shiftgrsand optical parametric amplifi-

Quantum entanglement is an essential ingredient of mangrs. Recall that the Wigner function of a Gaussian state ex-
protocols for quantum information processing such as quanhibits Gaussian shape. If we employ also auxiliary modes
tum teleportatiori1,2] or quantum cryptographiy8]. In order  prepared initially in some Gaussian state and homodyne de-
to achieve optimum performance of these protocols, the twdectors, then we can implement an arbitrary Gaussian com-
involved parties, traditionally called Alice and Bob, should pletely positive mag11-13, which is a transformation that
share a pure maximally entangled state. In practice, howevepreserves the Gaussian shape of the Wigner function. How-
we are often able to generate only nonmaximally entangleever, it was proved recently that it is impossible to distill
states. Additionally, the distribution of the entangled stateGaussian entangled states by means of Gaussian operations
between the two distant parties via some noisy quanturfl4]. This means that additional resources beyond passive
channel will degrade the entanglement and Alice and Bollinear optics, optical parametric amplifiers, and homodyne
will share some partially entangled mixed state. One of theletectors are required.
most important discoveries in quantum information theory The distillation protocols for Gaussian states proposed so
was the development of the entanglement distillation protofar employ photon-number measurements. The scheme sug-
cols that allow Alice and Bob to extract a small number ofgested by Duart al.[15] relies on nondemolition measure-
highly entangled almost pure states from a large number ahent of the total photon number in twor more modes and
weakly entangled mixed stat¢d—6]. These protocols in- represents a direct extension of the Schmidt projection
volve only local operations and classical communicationmethod to infinite-dimensional Hilbert space. The procrust-
(LOCC) between the two parties; therefore they can be perean scheme considered by Opatriyal. [16] and further
formed after the distribution of the entangled states. analyzed by Cochranet al.[17] is based on controlled ad-

In the simplest scenario Alice and Bob share a pure nondition or subtraction of photons. In this scheme, the nonlin-
maximally entangled state in égdimensional Hilbert space earity required to implement a non-Gaussian transformation
whose Schmidt decomposition reads is induced by a measurement that should resolve the number

4 of photons in the mode. This is in the spirit of the recent
proposal of efficient quantum computation with linear optics
W):le Ci|ai>A|bJ>B' oy [18] where the measurement-induced nonlinearity plays a
central role. We also note that several distillation schemes for
where each set of statéa;) and|b;) forms a basis. Alice entangled coherent states have been propfE2ag.
and Bob would like to prepare fromy) a state with higher In this paper, we design two entanglement-concentration
entanglement by means of LOCC. Remarkably, this is possetups for a single copy of a pure two-mode squeezed
sible, albeit only with certain probability, even if they share vacuum state
only a single copy of this state. The procedure that accom- "
plishes this task was fittingly called the procrustean method _ e
[4], because it cuts off the Schmidt coefficienfgo the size |l’b>_n§=:0 Calnin),  Ca=VI—A®AT,
of the smallest one. In this way, Alice and Bob obtain, with
certain probability, a maximally entangled state in awherex=tanhr andr is the squeezing constant. This state
d-dimensional Hilbert space. can be generated in the process of a nondegenerate sponta-

In view of the recent interest in quantum information pro- neous parametric down-conversion and represents a common
cessing with continuous variablg®,7—-10, it is highly de- source of continuous-variable entanglement in the experi-
sirable to establish experimentally feasible entanglement disnents. The procrustean procedures that we are proposing
tillation and concentration protocols for continuous preserve the structure of the sta® while the Schmidt co-
variables. Of particular importance are the protocols forefficientsc, are transformed to different ones,—d,. The
Gaussian states, because these states can be prepared infits¢ scheme is based on a dispersive interaction of a two-
laboratory with the use of commonly available resourcedevel atom with the microwave cavity field and atomic state
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l zoneR; in a balanced coherent superposition of the states
lg) andle),
1
Ry Ry |¢>:E(|9>+|e>)- 3
e R , |: | D. D
I atzm A1 The atom then traverses the cavity that contains Alice’s
m || b part of the shared two-mode std®. The dispersive atom-
I field ~~1 T field interaction in the cavity is governed by the following
VL M effective Hamiltoniar{21]:
CAVITY H=%kxa'a®|e)(e|, (4

wherea is the annihilation operator of Alice’s mode ards
source the effective atom-field interaction constant. The coupling
(4) results in a phase shit o=a'ae of the statde) that is

FIG. 1. Schematic of entanglement-concentration setup in cavitjinearly proportional to the number of photons in the mode
QED: O is the atomic oveny is the atomic velocity selectot,is ~ A. On the other hand, the statg) is not changed by the
the laser excitation mechanisiR; and R, are the Ramsey zones interaction. The single-photon phase shift «t, wheret is
driven by the microwave source, CAVITY contains Alice’s part of an effective interaction time, can be adjusted to the required
the entangled state, aridl,, Dy are the field ionization detectors value by a proper selection of the atomic velocity in the
measuring the state of the Rydberg atom. selectorV.

After leaving the central cavity, the atom passes through

detection. The second scheme utilizes a cross Kerr interadl€® sécond microwave Ramsey zone, where it undergoes a
tion, coherent states, homodyne measurements, and line@f2 Rabi rotation. In general, the frequenay of the clas-
optics. The underlying mechanism of both these schemes fical microwave field differs slightly from the atomic transi-
that a certain auxiliary system experiences a phase shift th40n frequencyw,. This results in a change of the relative
depends on the number of photons in Alice’s mode of thePhase between the atomic coherence and the microwave
shared stat€2). We convert this phase modulation into am- Source by an angle
plitude modulation via interference, which allows us to con- B
trol the amplitude of the Schmidt coefficients. An essen- ¢o=(@r—wo)T, ®)

tial part (_)f our probabili;tic protocols is the measurement OMwhereT is the time of flight of the atom between the zones
the auxiliary system which tells us whether the concentrationy andR, [24]. The transformation undergone by the atom

succeeded or falled. . . .in zoneR, can be written as follows:
The paper is organized as follows. The first scheme is

analyzed in Sec. Il and the second scheme is discussed in 1
Sec. Ill. Finally, Sec. IV contains the conclusions. |g>—>7(|g>+e*iwo|e>),
2

Il. ENTANGLEMENT CONCENTRATION IN CAVITY 1 "
QUANTUM ELECTRODYNAMICS |e>—>ﬁ(|e)—e 19)). (6)

Our first entanglement concentration scheme is designe.
for the quantum state of an electromagnetic field confined i
a highQ cavity and is schematically sketched in Fig. 1. Note
that this setup has been successfully realized experimentall
and employed for quantum nondemolition measurements
the cavity-field photon number and the preparation of Schro 1
dinger cat state$21,22. The scheme shown in Fig. 1 is W)= c,(1—€ % ¢)|g)®|n,n)
based on an off-resonant interaction of (@ffectively) two- 2 7=0
level Rydberg atom with a single mode of a cavity sand- w0
wiched in the Ramsey interferometer. Alice’s part of the two- i
mode entangled state is transmitted to the cavity through a 250
superconducting waveguidg23]. The atoms are emitted
from an oven, their velocity is selected by a velocity selector,To complete the procedure, we measure the state of the atom
and they are excited by a laser pulse to the long-living cirby means of state-selective ionization detecidgsand D,
cular Rydberg statég). Subsequently, each atom enters theexhibiting almost unit detection efficiency. The entanglement
first microwave Ramsey zone where a strong coherent mieoncentration succeeds only if the atom is found to be in the
crowave field resonantly drives the atomic transition betweemground statgg). The Schmidt coefficients after this condi-
two Rydberg statelyy) and|e). The atom leaves the Ramsey tional transformation read

he phase shifipy can be controlled by tuning the frequency
w, of the microwave fieldsee Eq(5)].

The resulting state of the atom and the two-mode field
pads

ch(e 9o+ e M%) |e)®|n,n). 7)
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: Po—Ne) . [Ne—gg 207
dn=|cnex;{| 5 sin 5 ) (8)
1.5 ]
The irrelevant overall phase factorexp(ey/2) can be ]
dropped. Moreover, the phase factor exp(¢/2) can easily 7] ]
be compensated by an appropriate phase shift or simply by . 107
properly redefining the quadratures of Alice’s mode. After - ]
these transformations, the Schmidt coefficients become real 0.5 1
and after renormalization we get ]
J— 2 — 0.0 ] T T T T T T T T T T T T T T T T
d,= ! P)\ )\“sin<n¢2 9"0), ©) ~10  -05 00 0.5 1.0
Po/ T
where 0.9 7
32 32 0.8 -
1 1-—\“cosgy—A“cog et ¢p) 10 ]
2 2 1—2\%cosp+\* 0.7
is the probability of success of the conditional transforma- = 06 '
tion. Clearly, two trends are competing in E§). The expo- 0.5 3
nential decay\" (recall that|]\|<1) is for certainn partially 3
compensated by the second term[&ip—¢p)/2] which 0.4 (b)
grows with n up to Nya= (7+ ¢g)/ . This allows us to 3
increase the entanglement of the shared state. 0'3_1_0' " 05 0o 05 10
Formally, the conditional transformation can be described /m
as a diagonal filter applied to the input two-mode density $o
matrix p;,. We define an operator FIG. 2. The performance of the entanglement-concentration

- scheme shown in Fig. 1 for=1/2 ande= 7/10. (a) Probability of
_ succes® (solid line) and von Neumann entrof&after the concen-
A_nZ:O an|n>(n|, (1D) tration (dashed ling and (b) fidelity F of teleportation of coherent
states are plotted as functions @f. For the input state$,=0.75

wherea,=sin(ng—¢p)/2]. The output(unnormalizelden- ~ andF;y=0.75.
sity matrix is given by
Let us now demonstrate that the entanglement concen-
pou=A1gpi AT, (120  trated in this way is useful in practical tasks. To be specific,
we consider the teleportation of coherent states in the
wherelg stands for an identity operator in the Hilbert spaceBraunstein-Kimble scheni®] where our state is used as the
of Bob’s mode. quantum channel. Making use of the transfer operator for-
Since the conditional transformatidid2) preserves the malism[25,26], we can express the fidelity of teleportation
purity of the two-mode state, we can conveniently quantifyas follows:
the entanglement by the von Neumann entropy of the re-
duced density matrix of Alice’s mode,

(15

m+n) dndy
n

1 o oo
FZEE >
m=0 n=0

" 2m+n'
2 2

S ngo |dolindy]. (13 On inserting the Schmidt coefficient®) into Eq. (15) and

carrying out the summations we obtain an analytical formula

The entropySis plotted in Fig. 2a) as a function ofpg for  for the fidelity of teleportation of coherent states,

fixed ¢ and\. Before concentration, Alice and Bob share the

two-mode squeezed vacuui®), and the entropy13) reads 1-\? 1 COS@y— \ COS @/2+ @g)

T 1—)\cos(<p/2)_ 1—2\ coq ¢/2) +\?
In\2. (14 1o

The fidelity F is plotted in Fig. 2b). For fixed\ and ¢ we
For the data in Fig. 2, we obtai§,=0.75. Figure 2a)  can optimize the phasg, so that the teleportation fidelity
clearly shows that for certain interval of phase shiftsour  will be maximized. For the data used in Fig. 2, we find that
procedure allows us to conditionally increase the amount oit is optimum to setpy~ — 7/10, which yields the fidelity
entanglement in the pure two-mode state shared by Alice anfl=0.837 and the probability of success Fs=0.05. This
Bob. should be compared with the fidelitf;,=0.75 that is

2

— N2\
S=—In(1—\?) =
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IN p OouT real and positive and defing=|3|expl¢y). After projecting
KERR PSZI onto B, the Schmidt coefficients can be expressed as
1 y ein<p
1> 7 s0.50 dn=—<B|a ) Cn- (18)
50:50 NTQ(B)
PS, ED The normalization facto®(8) represents the total probabil-

ity density thatg will be measured in the EHD,

FIG. 3. Optical implementation of the entanglement- 1.2
concentration scheme shown in Fig. 1. _ ine\I2|~ |2
= e Cnl®-
Q)= 2, [(Blae™)Plc|

achieved when the original two-mode squeezed vacuum with
\=1/2 serves as the quantum channel. This improvement iYlaking use of the formula for the scalar product of two
fidelity is quite significant and clearly illustrates the practical coherent state28]
utility of our procedure. 1 1
(Blo)=ex] - 3lal~ 518l +8a| (19
IIl. ENTANGLEMENT CONCENTRATION FOR

TRAVELING LIGHT FIELDS and assuming that Alice and Bob initially share the two-

To implement the scheme discussed in the preceding sef20ode squeezed vacuum stéd we obtain
tion directly for traveling light fields, we could replace the \2
atomic Ramsey interferometer with a Mach-Zehnder interfer- _ 2n 1 ine_ pl2
ometer for a single photon and couple this auxiliary photon QIA) ™ n§=:0 Nrexp | ae A. @0
to Alice’s mode via a nonlinear medium using the cross Kerr
effect(see Fig. 3 A similar setup was proposed by Gerry for It is convenient to express the Schmidt coefficiesisin
the generation of Schdinger cat statef27]. However, this terms of two real parametecg, and ¢,
scheme has several drawbacks. First, the currently achiev-
able Kerr nonlinearities are rather low. Secondly, we have to __Cn exp( Fig— 1|a|2_ 1|,8|2 (21)
prepare a single photon. Therefore we propose an alternative n 7Q(8) An n2 2 ’
scheme(see Fig. 4. In that setup, an auxiliary modeg is
prepared in &strong coherent stat¢a) and then interacts where
with Alice’s modeA in the Kerr medium described by the
Hamiltonian dn=|aBlcogne— o), (22

Hyer=Tfikatac’c, 17 ¢n=|aBlsin(ne—¢q). (23

wherea and ¢ denote the annihilation operators of Alice’s We can see from Eq(21) that the amplitude of the old
and the auxiliary modes, respectively. After the interaction Schmidt coefficients, is modulated by the factors expj.
we project the output state onto coherent siatg in the  The highest relative enhancement occursifere, /¢, when
eight-port homodyne detect¢EHD). gn,=|apB|. Since the nonlinear phase shifp will typically

The princip|e of the Operation of this scheme may be exbe very small for alh for which Ch substantially differs from
plained as follows. If there amephotons in the mod#, then  zero, |a[ne<1, we can expand the expressiof&2) and
the coherent statfr) evolves to|ae?), wherep=—«t  (23) in Taylor series and keep only terms up to lineanip,
andt is the effective interaction time. The probability density

of projecting ontd ) is given by|( 8| a«e™#)|?/ 7 which may dn=|aB|coseotne|aplsingo,

grow with n if B8 belongs to a certain region of the phase _ .

space. Without loss of generality, we may assume thit ¢n=—laplsineo+ne|ap|cose. (24)

‘ Within this approximation the exponerqgg are linearly pro-
KERR PS portional ton and the conditional transformation preserves
IN A OUuUT the structure of the two-mode squeezed state:
|dol X", X=X expl@|aBlsing). (25
IHD

For small nonlinear phase shifis<# the distribution
FIG. 4. Schematic of the entanglement-concentration setup foR(8) is almost identical to the input Gaussian distribution
traveling light fields that is based on auxiliary coherent states, th&in(/3) = exp(—|a—p[*)/m [see Fig. %a)]. For all 8 that can
cross Kerr interaction, eight-port homodyne detectiBiD), and a  be detected with some significantly large probability the
linear phase shiftPS depending on the outcome of the measure-imaginary part of3 will thus be of the order of unity or
ment. lower, —1=<|B|singy=1. It follows from Eqs.(24) and(25)
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One undesirable effect of the projection onto the coherent
state| B) is the phase modulatios, of the Schmidt coeffi-
cients(23). However, if the approximatioiti24) holds then
the conditional phase shitp,, is linearly proportional ton
and can be removed by a suitable phase shifter PS. The ac-
tual phase shift is proportional to the real part®fand we
must use a feedforward scheme, where the operation of the
PS (e.g., a Pockels cellis controlled by the measurement
outcome, as is schematically indicated in Fig. 4.

.‘Mllll/i \ i i i
;;;,,//,,,,'I,'I,‘ RN After the compensation of the linear phase shift
i X ®|apB|cose, the normalized Schmidt coefficients corre-

255%{;
sponding to the measurement outcomeead

N, W\

7 [N AN

N
::'0:'o:0/0:0:0.‘}:0:6“‘:“:‘s‘

_ J1-M\"\"exd aB* € —in¢|ap|cose,]

d
" VmQ(B)expl|al?12+ | I?12)
(26)
(b) We need to establish a criterion according to which we will

accept or reject the state depending on the measurement out-

come B. The most natural approach is to choose some rea-
Ogg sonable figure of meriE(B) that has to be evaluated for
eachp and then specify a regidf} in the phase space where
089 5 this figure of merit is sufficiently large. The entanglement
R, 0. ot concentration succeeds onlyffe () and fails otherwise. It
0 : ;;::; follows that the concentration will yield a mixture of the
0 s states
Og5 ” ;SE ®
0 %
N ; L [9(B)=2 dn(B)n,n) (27)
s W n=0
e e
™S P ol <® and the density matrix of the output state shared by Alice and
+ e 2 =TS Bob can be expressed as follows:
o <
B 1
— 2

FIG. 5. (@) The Q function Q(B) of the output state of the pQ_PTlde B Q(ﬂ)|l/j(’8)><l’/j(’8)|' (28)
auxiliary mode andb) the fidelity F(8) are shown fol=1/2, «
=10, ¢=m/100. The coordinateg andy are defined ax+iy Here
=B—a.

— 2

that the productp|«| effectively determines the modulation Pa J’Qd A QA) @9

of the Schmidt coefficients. An important advantage of our - o
scheme is that a weak Kerr nonlinearigmall phase shifi) denotes the probability of success of the concentration, i.e.,
can be compensated by using a sufficiently strong auxiliaryn€ probability that the measurement outcofeill belong
coherent state withroc1/p. Thus the mean number of pho- to (2. Different functionsF(B) may be suitable depending
tons in the auxiliary mode should be proportional to the in-On the intended usage of the shared quantum state. In this
verse square of the nonlinear phase shift?=1/p2. In or-  Paper, we choose the_ fidelityt5) of_the teleportation of co-
der to keep the intensity of the auxiliary mode at aherent states as the figure of merit.

reasonable level, we still need a quite strong nonlinear phase N the rest of this section we present the results of the
shift (e.g.,¢=7/100). Note that, although such a phase shiftnumerical calculations forr=10, ¢= /100, and\=1/2.

may seem to be modest, it is in fact very large and commod he functionF(3) is plotted in Fig. %b). We can see that
nonresonant media typically exhibit a third-order nonlinear-there are regions in the phase space wh&ig) is higher

ity that is weaker by several orders of magnitude. Recentlythan the fidelity corresponding to the input two-mode
however, it was shown that the strength of the cross Kerpdueezed vacuunfk,,=0.75. As described above, we define
interaction can be enhanced by many orders of magnitude ift as the region of the phase space whe(@)=F,. The

a coherently prepared resonant atomic medium. A mediurdverage fidelity associated with the threshBld can be cal-
with electromagnetically induced transparency can exhibiulated as follows:

very large Kerr nonlinearity29—-33 that would suffice for

the practical implementation of the present entanglement- FQ:iJ' 428 Q(B)F(B). (30)
concentration scheme. Pala
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0.8 setups is not easy because they both involve several free
] parameters that can be varied and, possibly, optimized. How-
i ever, the two schemes are qualitatively similar in the formal
0.6 - sense. The transformation of the entangled state has in both
] cases the structure given by Eq$1) and(12) although the
n, ] specific dependence of the coefficiemts on n differs for
. 0.4 - these two schemes. An explicit comparison for the particular
Df ] choice of parameters considered in this paper reveals that
. both schemes exhibit quite similar performance even on the
0.2 guantitative level(see Fig. 6 and compare the solid and
8 dashed lines The main distinction of these two schemes lies
] in the different physical implementations.
0.0
0.75

IV. CONCLUSIONS

N In this paper, we have designed two schemes for the
FIG. 6. The probabilityP, of success of the entanglement con- probabilistic concentration of continuous-variable entangle-
centration Is p|0t'[ed n dependence on the f|ddﬁ§y of teleporta- ment. The procrustean protocols that we are propos|ng have
tion of coherent states that can be achieved with the entangled stafge important property that they can be applied several times
after the concentration. Solid line represents results for the schemg 5 single copy of the shared two-mode entangled state.
based on the cross Kerr interaction and depicted in Fig. 4; ther, g \ye could, in principle, extract a state with very high
parameters are the same as in Fig. 5. For comparison, the dashgfi,,qjement, at the expense of a low probability of success.
I'ne.d'SplayS the d?pendence Bfon F for the scheme based N \When repeating the concentration procedure, one could op-
cavity QED (see Fig. 1 and all parameters are the same as Nimize the relevant parameters such as the iohase shifts
Fig. 2. . - :
g and ¢ in order to achieve the optimum performance of the
. . schemes. In view of the recent advances in cavity-QED ex-
Figure 6 shows the dependence of the probability of succes|§eriments and the preparation of media with extremely high

Pq on the average fidelitF o . Recall that with the help of o nonlinearity, we may hope that the schemes proposed in

the 9r|g|nal two-mode squeezed vacuum we can achieve tr}'ﬁe present paper will become experimentally feasible in the
fidelity F;,=0.75. As can be seen from Fig. 6, the presentnear future

entanglement-concentration method leads to higher fidelities
while keeping the probability of successful concentration
reasonably high. For instance, the probability of entangle-
ment concentration yielding,=0.8 readsP,~0.2. This
example confirms that our procedure indeed extracts more This work was supported by an EU grant under the QIPC
useful entanglement from the input two-mode squeezedProject No. IST-1999-13071QUICOV) and by Grant No.
vacuum. LNOOAO15 and Research Project No. CEZ: J14/98:

Finally, let us compare the two schemes proposed in Sec453100009 “Wave and Particle Optics” of the Czech Minis-
[l and Il of this paper. A general comparison of these twotry of Education.
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