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Multipartite entangled states in coupled quantum dots and cavity QED
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We investigate the generation of multipartite entangled state in a systéhgyaéntum dots embedded in a
microcavity and examine the emergence of genuine multipartite entanglement by three different characteriza-
tions of entanglement. At certain times of dynamical evolution one can generate multipartite entangled coher-
ent exciton states or multiqubit/ states by initially preparing the cavity field in a superposition of coherent
states or the Fock state with one photon, respectively. Finally, we study environmental effects on multipartite
entanglement generation and find that the decay rate for the entanglement is proportional to the number of
excitons.
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[. INTRODUCTION Although no experimental observation of entanglement of
many-exciton systems has yet occurred, the theoretical stud-
Quantum-information processing offers important capadies are necessary if we desire to have a large-scale quantum
bilities for quantum communications and quantum computacomputing device. In a recent investigation by kiual.[13]
tion in a variety of physical systems, and the solid-statdfor generating bipartite entangled coherent exciton states in a
implementation is one of the most promising candidatesSystem of two coupled quantum dots and CQED with dilute

Semiconductor quantum dotDs) are appealing for the excitons, they found that the bipartite maximally entangled
realization of quantum computer and quantum-informationCOherem exciton states can be generated when the initial cav-

processing. Spatial confinement of excitons in three dimenlY fi€ld is in an odd coherent state. The relation between

sions leads to discrete energy levels, and the main causes %@tangleme_znt of exciton and photon numbers in the cavity
as also discussed.

phase decoherence, namely, scattering events, are highly SLYQS o ) N .
. - It is interesting to extend to multipartite entanglement in
pressed1]. In this respect, QDs are very promising com such systems. Multipartite entanglement is not only of intrin-

Eﬂii)rfedoégr O;hZL;ﬁtrgoggrﬁ;ﬁrersggﬁte%? bvglstz dbg:dqj;?]ttigic intere_,-st itself but also of practical importance in quantum-
s : [Nformation proposals such as quantum teleportation and
dot arrays is scalable up 100 qubits. guantum cryptography. One motivation to consider multipar-
~ Entanglement is a essential source for quantum COMpUije entanglement in many QDs is that around ten QDs can be
ing and quantum-information processing. It is well known gmpedded in a microdisk structure and coupled to a single
that a controlledvoT gate can generate a maximally cavity mode in the quantum information process scheme pro-
entangled state. Various schemes for the realizatiorbosed by Imamdg et al. We will first extend the model of
of controlledNoT gates in QDs[2-4] are proposed with Ref.[11] to the case of many QDs, and then study how to
either the electron spii3-5] or the discrete electronic generate multipartite entangled states and examine multipar-
charge degree of freedom as qubji&-8|. For example, tite entanglement in such systems.
Imamodu etal. [4] proposed a scheme that realized The paper is organized as follows. In Sec. II, we present a
a controllednoT gate C)lor between two distant quantum model for coupled QDs in CQED and determine the exact
dotsi andj via the cavity quantum electromagnetic dynamicsstate vector at any timg which will be shown to be a mul-
(CQED) techniques. Here, the first superscriptn Cli,;  tipartite entangled state in some time ranges. In Sec. Ill, we
denotes the control and the second denotes the target. Thesse three different methods to examine the multipartite en-
controlledNoT gates in turn can be used to generate aanglement in the state. Then in Sec. IV, we show that mul-
tripartite maximally entangled Greenberger-Horne-Zeilingertipartite entangled coherent exciton states can be generated at
(GHz) [9] state as |0)®|0)®|0)+|1)®|1)®|1)  certain times during the dynamical evolution. In Sec. V, we
= C%‘%TC%T(|0>+|1>)®|0>® |0). Quiroga et al. showed analyze the effects of environment on the generation of mul-
[10] that an optically controlled exciton transfer process carfipartite entanglement. The conclusions are given in Sec. VI.
generate maximally entangled Bell statgkl] and GHZ

states. To demqnstrate that excitons in coupled guantum dots Il. MULTIPARTITE ENTANGLED STATES
are ideal candidates for reliable preparation of entangled
states in solid-state systems, Clegral. [12] experimentally We consider quantum dots embedded in a single-mode

investigated how to optically induce entanglement of exci-cavity. We assume that the QDs are sufficiently large and
tons in a single-gallium arsenide QD; the entanglement ishere are only a few electrons excited from valence band to
identified by the spectrum of the phase-sensitive homodynesonduction band13]. In the assumption of low exciton ex-

detected coherent nonlinear optical response. citation density, exciton operators can be approximated by
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boson operators, and all nonlinear dynamics such as exciton- | (1)) =|ag(t), a1 (1), .. ..an()o . N, (4)
exciton interaction can be neglected. As the distance between o
any two excitons is also assumed to be large, the interactiowhere |aq(t), ... an(t))o .. n=|ao(t))o®|ay(t))® - -

between any two excitons can be safely neglected. Ther@|ay(t))y and
exists a resonant interaction between the excitons and the ot
cavity field. The Hamiltonian under the rotating-wave ap- ap(t)=acogGt)e ',
proximation is given by £=1) [13,14] L ot .
ap(t)=—iasin(Gt)g,/Ge™ ', n=1,2,...N. (5
N N
H=wb5bo+w2 bgbn+ 2 gn(b§b0+b8bn), (1) 'I_'hus, if the initial state of the cavity field is in a superposi-
n=1 n=1 tion of coherent states, the resulting state will be an en-
tangled coherent state. Let us assume the initial state of the
whereb{ (bo) is the creationannihilation operator of the cauvity field to be in a superposition of two coherent states
cavity field with frequencyw, b;(bn) (n=1,2,...N) de- |*a) and the excitons to be in vacuum states, i.e.,
note the creatiorfannihilation) operator of thenth exciton S "
with the same frequency, g, is the coupling constant be- [W(0))=[2+2 cost exp( — 2| e|*) ] "(|ar)o+€""| = a)o)

tween the cavity field andth exciton, and\ is the number ®]0),® - ®|0)y. 6)
of excitons.
It is convenient to write the coupling constagsin gen-  Specifically, for#=0, , and /2, the cavity superposition
eralized spherical coordinatg$5,16 as state reduces to even, ofiti7], and Yurke-Stolef18] coher-
ent states, respectively. Then the state vector at tinge
9:=G cosgy, given by
gz:GSin¢1COS¢2’ |\Il(t)>:~/\/'(|a0(t)1al(t)i s iaN(t)>O ..... N+ei0|_a0(t)y
3= G sin ¢;Sin ,c0S¢h3, —ay(t), ..., —an(t)o,... N, @
where
N -1/2
On-1=G singysing;- - -Cospy-1, N= 2+2C059H pk(t)} (8
k=0

ON=Gsingsing,---siNdy-1, is the normalization constant, amg(t)=exp(-2|a(t)P) is

the overlap of the two coherent statesa,(t)). The result-

whereG=/=N_.g.2. The evolution operator corresponding ) X X
k=19k P P g ing state|¥(t)) is a multipartite entangled coherent state

to the Hamiltonian is then obtained as

[19,20.
U=V 1n(dn-1) - Vid $2)V] L b2) We now choose the orthogonal baf2g]
X VoV A p1)Vad h2) - -V 1n(dn-1)Uog(1), [0k=]ax(1)),  [Dk=(— )= P(D]0))/ M(t), (9)
(20 where M,(t)=J1—p,(t)2. It then follows that:

where | — ax(t)) = M ()] 1)+ p(1)[0). (10)

Vi () =exd ¢i(b/bj—blb)] (i#]), Using this basis the state vector at titnean be rewritten as
Voi(t)=exd —iGt(blb;+blby)], W (t))=M|[0)® - - - @[0)n+ e[ Mo(t)|1)o+ Po(t)[O)o]

N ® - - - @[ Mn()|Dn+ Pa()[O)n] }- (11

Uo(t)=ex;{ —iwt( b$b0+21 bfrbi”. (3)  After the “encoding” this state is a multiqubit state. Then,

we can fully exploit the sophisticated tools available for ex-
amining multipartite entanglement of qubits to study our

BothV; j(#i) andV (1) are operators for the beam splitters. state and determine if it is genuinely multipartite entangled.
We see that the evolution operator can be written as a free

evolutionUy(t) followed by a series of beam splitter opera-
tors.

Let us assume that the initial state g(0))=|a),
®|0)1® - -®|0)y, i.e., the cavity field is in a coherent state ~ We study the multipartite entanglement by examiniig
|a@)g with a#0 and all the excitons are in vacuum states.Mermin-Klyshko inequalityf21,22, (ii) state preparation fi-
After the action of the unitary operatdd(t), the state delity [23,24], and(iii) the square of the multiqubit concur-
evolves into rence[25,26. The first two, namely, the Mermin-Klyshko

IIl. EXAMINATION OF MULTIPARTITE
ENTANGLEMENT
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inequality and the state preparation fidelity, are related to twavhere By=m/4(N—1), o, =|0)(1], and o_=|1)(0|. For
sufficient conditions that distinguish between genuinelyour state| W (t)) (11), we have
N-partite entangled states and those in which dilparticle
are entangledNl <N). The last one, the square of the mul- 2(N+1)12
tiqubit concurrence, is not by itself a measureNsparticle B(|W () (¥ (t)])= T apleos o= By
entanglement, but it appears to be related to some kind of 1+cosoe
multipartite entanglement. That is, we can gain some infor- N
mation about the degree of multipartite entanglement by cal- +COS(BN)972|“|2]H Ji— pﬁ.
culating the square of the multiqubit concurrence. k=0

(19

A. Mermin-Klyshko inequality

Let us first use the Mermin-Klyshko inequalitgl,22 to e choosef=pgy. Then the above equation reduces to

examine theN-partite entanglement. This inequality general- N

izes the Bell inequality{11] and Clauser-Horne-Shimony- _o(NF1)2 e

Holt (CHSH) inequality [27], which not only tests the pre- B=2 IL[O 1= Pic (20
dictions of quantum mechanics against those of local hidden

variable theory but also distinguishes entangled from nonentherefore, this sufficient condition becomes

tangled state$28,24. The Mermin-Klyshko inequality is

(21,22 N e
1-pi>1/2. (21
(By)|=<2, (12) kHo Pic
where By, is the Bell operator defined recursively as Numerical results are provided later. Next we discuss another

1 1 method based on state preparation fidelity to examine multi-
BN:E(AN+Al/\l)®BN—1+§(AN_Ar/\|)®B|,\j—1, (13) partite entanglement.

By, is obtained fromBy by exchanging primed and unprimed B. State preparation fidelity

terms, The so-called state preparation fidelify of an N-qubit
statep is defined as
1 1
BFI\IZE(AN+AN)®BII\171_ E(AN_A(\I)@BN*P (14 Fp)=Yerzlpl¥erz), (22

Bi=2A,, and B}=2A]. All A, and A/ are dichotomous Where
observables. Le®, denote the set of aN-particle states and

S\ ' denote the subset of those states which are at most _ 1
(N—1)-partite entangled. Then, from the results of Refs. |Yorz) = V2
[28,24)], for a statep, we have

(|0y®---2|0)+e?he---2|1) (23

N/2 N—1 is the GHZ state. A sufficient condition fdX-partite en-
[(Br)[=2% ¥V peSy, (15 tanglement is given bj23,24

[(By)|<2M*D2 v pesy, (16) Fp)>1/2. (24)

which implies that a sufficient condition fdx-partite en-
tanglement is the violation of the inequality given by Eg.
(15). Now we define a quantiti3,

From Egs.(22) and (11) the state preparation fidelity for
the multipartite stat¢W(t)) is obtained as

(B -2 an  ATONE®)=

N
_\Bwime 1+]] (a-pf
B(p)= 2(N+1)2_ oN/i2° ka (1=pi)

4+ 4 cospe2lal’
—4]al? —2|al?
Then the state is N-partite entangled wheB(p)>0 and +e "+ 2 cospe !
maximally entangled wheB(p)=1. N
Let Aj= o, andA/ = o, for anyi. Then the Bell operator +2cog6—-y) [ Vi-p?
By and B, become[29] k=0

N
— 9(N+21)/2( o—i N i N
By=2MN"1Ae g N+ el g 2N), +2 cosye <] J1-p?
k=0

k|- (29

Bi=2MN" D —je g iNtie!Pug ),
(18 Let #=y=m/2. The above equation then reduces to
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FIG. 1. The quantitie8 (solid line) andF (dashed lingagainst
time. ForB, we choosed= By . ForF, we choos&d= y=7/2. The
parameteiG=1, |«|>=3, andN=3.

F=

N 2
1+]] Jl—pﬁ) /4+e4“2/4, (26)
k=0

and the sufficient conditiof24) becomes

N 2
1+ ] Vi—pZ| +e 4a*>2. 27
k=0
For convenience, we define
F=2F-1. (28

WhenF >0 the state isN+ 1)-partite entangled.

In Fig. 1, we plot the quantityd and F against timet.
Henceforth, we assumg,=g,=---=gy and G=1. The
period of B andF with respect to time is 2. We can clearly

PHYSICAL REVIEW A67, 022302 (2003

By the standard method for calculating the concurrence
[30,31], we find

~ p2V(1-py)(1-p))

01" 1+ cosépypyP2

 pV(1-pp)(1-p3)

027 1+ cosépyp1P2

(31)

The concurrenc€,, is obtained by a transformation-12 in
the expression o€y;. From Egs.(29), (30), and (31), we
obtain

2
n[lo (1-p?)

(1+ cosge2lal*)2’

(32)

70,12~

Now consider the case of odd excitons (N>2). Wong
and Christensefi26] proposed the square of the multiqubit
concurrence as potential measuref the multipartite en-
tanglement for an even-number pure qubit state. TRe (
+ 1)-qubit concurrence for a pure statg is defined a$26|

C0,1,...NE|<¢|‘T§?N+1|¢*>|,

whereo,= —i(|0)(1| —|1)(0]) is a Pauli matrix.
Then applying Eq.(33) to the state(11) leads to the
square of the multiqubit concurrence

(33

N
nljo (1-p?)

 (1+cosge2e*)2’

T01,...N=C01, .. N (34)

From the expression of the square of multiqubit concurrence
we can see that the multiqubit concurrence is unchanged by

see the two sufficient conditions can be satisfied in Somgermutation. of qubits, which implies that it really represents
time ranges which means that the state is a genuine multtN+1)-partite. entanglement. We note that although the
partite entangled state. Moreover, we find the time range iPoVve formulais obtained for odd, by comparing Eqs34)
which the sufficient condition is satisfied based on the stat@nd(32), it is also applicable tdi=2. We also note that Egs.
preparation fidelity, which is larger than that based on thd34 and(32) are applicable to the more general statof

Mermin-Klyshko inequality.

C. Square of the multiqubit concurrence

Recently Coffmanet al. [25] used concurrencg30] to

®y)@ - @) +edo)@[p1)® - @|¢n)) with real
overlap (| ¢;)(i=0,1, ... N) up to a normalization con-
stant.

In Fig. 2, we plot the square of the multiqubit concurrence
against time foN=2, N=3, andN=5. We observe that the

examine three-qubit systems, and quantified the amount afntanglement periodically reaches its maximum twice per
tripartite entanglement in three-qubit systems by the quantitperiod, and the multipartite entanglement is suppressed with

70.1,2 [25],

70,1,2= CS(lZ)_ C8—Cha (29

the increase of the number of excitons. One way to overcome
this suppression is to increase the paramgtét. From Eq.
(34), we know that the larger the parametet?, the larger

the multipartite entanglement.

where Cy ;5 denotes the concurrence between qubit 1 and £, Eq. (34, we know that the square of the
qubits 2 and 3. Applying the general result for CONCUITENCE N 1 1).qubit concurrence reaches a maximum value at

of bipartite nonorthogonal pure statgxl] to the statg(11)
for N=2 vyields

V(1-p3)(1—pip3)
1+ pop1poCcOSsé

0(12)~= (30)

=1 when other parameters are fixed. This implies that the
best input state is the odd coherent state in order to generate
multipartite entanglement. On the other hand, we know that

the average photon number of the cavity field in the initial

state| ¥ (0)) is

022302-4
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FIG. 3. The quantityB (solid line), F (dashed ling and square
FIG. 2. The square of the multiqubit concurrence against timeof the multiqubit concurrencédotted ling against «|. The param-
The parameteg=1, |«|?=0.9, 6=, and allg; are equal. The eterN=5.
solid, dashed, and dotted lines correspondNte2, 3, and 5, re-

spectively. last section. From Eqg20), (26), and (34), we obtain the
guantitiesB, F, and the square of the multiqubit concurrence
1—cosge2lal® for our state] W) ¢ycitons @S
<b$bo>:—,2”z|a|2- (35 )

1+ cosfe <@ B=2N/2(1_e74\a\ /N)N/2, (37)
We see Fhat thg mean photon numper_ of the cavity field ]_-:[1+(l_e74|a\2/N)Nl2]2/4+e74|a\2/4, (38)
reaches its maximum when the field is in the odd coherent
state =) when other parameters are fixed. The mean (1_6,4‘Q‘Z,N)N
photon number represents the energy of the system. There- T N= —. (39
fore, it turns out that the more energy contained in the inital 77 (1+ cosge2l%)2

cavity field, the larger the multipartite entanglement. . _ _
By three different methods, we have examined multipar- 1N Fig. 3, we plot the quantit, F, and againsfa|. We
tite entanglement and found that the stél#) is a genuine Observe that the state is multipartite entangled whelnis

multipartite entangled state over a large range of parametef8rge enough. Quantitively, the corresponding Bell inequality
by each of the indicators. is violated wherl«|>1.601, and the state preparation fidel-

ity F is larger than 1/2 wheha|>1.228. We also observe
that the square of theN(+1)-qubit concurrence is signifi-
cantly larger than zero only {fz| is large enough. For fixed
N and very largéa| the square of theN+ 1)-qubit concur-

It is clear that the cavity field and excitons are decoupledencer;  n~1, which implies that the entangled coherent
whent=n/(2g) for integern. Without loss of generality, exciton states becomes a GHZ-like state. On the other hand
we examine the state vectp¥(t)) at timesz and7/2 in 71 n~0 for fixedN and small enoughe|?. As discussed
one period. From the discussion of the last section, at thesa Ref. [20] the state|V)e,citons With 6= 7 reduces to the
times there is no global multipartite entanglement. At timemultiqubit W state[32] in the limit of ||?>— 0. It means that
t=, the state vector returns to the initial st#é with « = we can also prepare thé/ state in our system at time
——ae "7 and the excitons are in the vacuum state. It is= 7/2 with the initial cavity field in a Fock state with one
interesting to see that at tinte= 77/2 the cavity field is de- photon and all excitons initially in the vacuum states. For the
coupled from the excitons; however, the excitons are left in a&ase of only two excitons the/ state is just the maximally
multipartite entangled coherent exciton states given by entangled statéone Bell statg as discussed by Liet al.

IV. MULTIPARTITE ENTANGLED
COHERENT EXCITON STATES

[13].
|\I,>excitons:N,(|ﬂa,81 B ,,8)1 ..... N+elﬁ|
V. EFFECTS OF ENVIRONMENT ON MULTIPARTITE
Bi=Bi.. .. =B . N (36) ENTANGLEMENT
where B=—i(a/\N)e '®™2 and the normalization con- Environmental losses and decoherence are important ef-

stant\' =[ 2+ 2 cosfexp(—2|8?)] Y2 Now the cavity field fects in quantum-information processifig3]. The lifetime

is in a vacuum state, and all its energy has been transferred td both cavity photon and exciton is generally considered to

the excitons. be of the order of picoseconds. Whereas, if we asstige
Multipartite entanglement for the entangled coherent ex=0.5 meV[13], the time we need to get maximal entangle-

citon statg V) e4citonscan be studied using the methods of thement in our model is also of the order of picoseconds. How-
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ever, dynamical evolution suffers from decay of photons andqg. (42) reduces to
excitons. Recent experiments show that the lifetime of pho- )
tons and excitons can be prolongg8#—36. In particular, dBo/dt=ignBc,
for cavity decay, recent experiments display an elongated
decay time of photons in the microwave domg36]. Thus,
we only consider the decay of excitons in the following dis-
cussions.

We follow the method of Ref{13], and assume that the A t=i(w— w)At+ikyBe. (44)
environment is at zero temperature and the system dissipates .
by interaction between excitons and a multimode electroJ© Solve the above equation, we make the Laplace transform
magnetic field. Under the rotating-wave approximation, we

9B/ t=ignBo+i >, Ay Ak
k

write the Hamitonian as f_(s): fxe—stf(t)dt. (45)
0
N
H=wblby+ >, bib,+>, walag We obtain after minor algebra
n=1 k
N N $Bo=Bo(0) +ignBe, (46)
+ blbo+bib,) + M(bla+ba)),
gngl( n-0 0 n) r‘IZl ; k( nk n k) i — )\N,kAk(o)
BC(O)+|gNBO+|E —_—
(40) — kK sti(wg—w)
B.= = . @)
Whereal (ay) denotes the creatia@nnihilation operator of S+ NE S S
the multimode magnetic field with frequenay, . We assume K sti(o— o)
0:=0,=---=g implying that the excitons are equally

coupled to the cavity mode, andindependence of thi, :;]Ze \E/i\zoxgr?\(/qvi?st?knocifngm ?gx?rgg/t?g[g;(fc,ﬂ)flt.esroﬂ\:v: ;es_ort to
implying that the excitons are also equally coupled to the vigr pIT app S ap
environment. proximation, from the above two equations, we obtain

Now we use the Heisenberg picture to study the problem. NI I AL(O)
The Heisenberg equations for related operators are obtained s+ 7) Bo(0)+igyN BC(O)—E m
K K™

as follows: B.
O_ 1

NI
N s?+ — st Ng?
dboldt=iwby+ig Y, by,
n=1

(48)

wherel’=2me(w)\?(w) ande(w) is a distribution function

abn/ﬁt=iwbn+igb0+i2 M@y, of the multimode electromagnetic field. We assumed that
K Aw=—[doe(w )N (0! (ox— »)=0 in the derivation of
N the above equation.
_ . From Eg. (48), we obtain the operatoby(t) in the
92l ot """ak“’"‘gl bn- 1) Heisenberg representation

Note that we use a slightly different Heisenberg picture for N
our purpose to obtain the final-state vector at timeve let bo(t):U(t)bo(O)JFU(t)nZl bn(0)+§k: wi(t)ak(0),
an operator evolve a8(t)=exp(—iHt)A(0)exp{Ht) and it -
satisfiesi JA(t)/at=[H,A(t)]. NI _
Now we introduce the collective exciton operatbg u(t)y=e NI'4 cog At) + 7 x—sin(Aqt) e'et,
=(1/\/N)E§=lbn which can be considered as a boson since N
[bc,b;‘]zl. In terms of the collective boson operator, we ig _
rewrite the above equation as v(t)= A—e*'\‘r““sin(ANt)e'“’t, (49
N

dbgldt=iwby+ig\be, o
0 @D 1Gn% whereA=+Ng?—N?T?/16. Let the cavity field be an odd

coherent state and other systems in the vacuum states. Then,

abclatziwbc+ingo+i§k: AN k@ from Eq. (49 we obtain the state vector at times

dayl t=iwai+ i\ e, 42)  |W()=[2-2exg—2|a|?)]

|%>®|%>®N®rk[ | et i0)
wheregy=gN and\y ;=\ /N. If we let

. . . —|—a)®|—a,) N |] |- , 50
bOZBoelwt, bC:Bcelwt, ak:Akelwt, (43) | au> | aU> ];[' aW,k>) ( )
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which results from the normalization of the stéfe(t)) and
0.4 implies the energy conservation.

Figure 4 shows the fidelity against tintefor different
numbers of excitons. From the figure, we see that the fidelity
is not a periodic function of due to the dissipation of energy
. to the environment. When there is no dissipatibi=0), the
§ fidelity attains the ideal case of being a periodic function of
t. We observe that multipartite entanglement occurs only in
the beginning of the evolution. When the number of excitons
becomes larger, the generation of the multipartite entangle-
ment becomes more difficult. In the limit 6f->c0 the fidelity
becomes 0.5 as we expected. In this case, there is no multi-
partite entanglement and all the energy of the cavity-excitons
WA system dissipate to the environment. The environment dimin-
0 2 4 6 ,8 10 12 14 ishes the generation of multipartite entanglement when the

4 number of excitons increases. From E4P), we can see that

FIG. 4. The quantityF =2F—1 for different numbers of exci- the decay rate is proportional to the number of excitons when

tons;N=2 (solid line), N=3 (dashed ling andN=4 (dotted ling.  the intensity of the cavity field is fixed. In addition, we find

The parameterkx|2=3, g=1, and'=0.5. a similar result as that of Ref13], if we fix I' and vary|«/,
i.e., the multipartite entanglement decays rapidly with in-
wherea,= au*(t), a,=av*(t), anda,, = aw; (t). creasing the cavity field density.
We use the state preparation fidelifyto examine multi-
partite entanglement in the above state and choose the fol- VI. CONCLUSIONS

lowing GHZ state for consideration: In conclusion, we have investigated the dynamical evolu-

tion of multipartite entanglement in a system of quantum

| Yonz) = i(|au>®|av>®N—|aﬁ>®|ai>®N), (51) d_ots embedqle_d ina miqr_ocavity. The gntar_wglement is studied
\/5 via two sufficient conditions for multipartite entanglement
and the square of the multiqubit concurrence. We observed
where the global multipartite entanglement and at certain times the
N entanglement becomes maximal. We can also produce the
|5) = (1= @) = Puf ) M, multipartite entangled coherent exciton states and multiqubit

_ P W state by preparing different initial states. Finally, we study
Px=expl %), the effects of environment on the generation of multipartite
o _ entangled states, and find that the decay rate is proportional
Mx=V1=p, x=uuv (52) to the number of excitons. We also find that the entanglement
decays rapidly with increasing the cavity field density.
Although multipartite entanglement studied here has not
yet been observed experimentally, the potential application
1 , of excitons in quantum computing as well as rapid develop-
F=(V(t)| bou){tenz ¥ (1)) = W[u— 2 2ldl ment of CQED technique suggest that our analysis will find
4—4e applications in this field.

From Egs.(50) and (51), we obtain the state preparation
fidelity as

X (MMylpgtp, M= 1)+ (MM =pup)?]. (83 ACKNOWLEDGMENTS
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