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Normal and lateral Casimir forces between deformed plates
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The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study
this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the
electromagnetic field which properly treats the many-body nature of the interaction, going beyond the com-
monly used pairwise summation~PWS! of van der Waals forces. For arbitrary deformations we provide an
analytical result for the deformation induced change in the Casimir energy, which is exact to second order in
the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal
and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a
corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distanceH to the
corrugation lengthl: For l!H we find aslowerdecay;H24, compared to theH25 behavior predicted by
PWS which we show to be valid only forl@H. The amplitude of the lateral force between two corrugated
plates which are out of registry is shown to have a maximum at an optimal wavelength ofl'2.5 H. With
increasingH/l*0.3 the PWS approach becomes a progressively worse description of the lateral force due to
many-body effects. These results may be of relevance for the design and operation of novel microelectrome-
chanical systems~MEMS! and other nanoscale devices.

DOI: 10.1103/PhysRevA.67.022114 PACS number~s!: 12.20.Ds, 03.70.1k, 11.10.2z, 42.50.Ct
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I. INTRODUCTION

More than five decades ago, Casimir predicted that
ground-state energy of photons is alternated in the pres
of two parallel perfectly conducting metal plates in such
way as to lead to an observable macroscopic force betw
them @1#. The attractive force~per plate areaA) has an uni-
versal amplitude, an energy scale set by the fundame
constant\c, and decays with the distanceH between the
plates as

F

A
52

p2

240

\c

H4
. ~1!

This remarkable prediction of quantum electrodynamics
implications in many contexts ranging from surface phys
@2#, particle physics@3#, to cosmology@4#. Because of its
fundamental nature, the Casimir effect has motivated ex
sive theoretical work, especially during the last decade.
pioneering result in Eq.~1! has been generalized to includ
important effects such as the finite conductivity and surf
roughness of the plates, finite temperature, and even mo
plates in the dynamic counterpart to the Casimir effect~see
Refs.@5–11# for reviews!.

On the experimental front, the early attempts at observ
the Casimir force, initiated by Sparnaay in 1958@12# and
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later by Van Blokland and Overbeek in 1978@13#, were not
conclusive due to large experimental uncertainty. In rec
years, however, there have been a number of precision m
surements which set the modern stage in this field; startin
1997 by Lamoreaux@14# who used a torsion pendulum wit
an electromechanical feedback system to measure the
simir force between a spherical surface~lens! and a flat plate.
Mohideenet al. @15# measured the Casimir force between
sphere mounted on the tip of a flexible cantilever and a
plate by an atomic force microscope. Chanet al. @16# mea-
sured the Casimir force between a sphere and a flat plate
microelectromechanical system~MEMS! using a microma-
chined torsional device. All these experiments confirm
Casimir force formula in the range from 100 nm to seve
micrometer to a few percent accuracy. In order to achie
this high precision, a careful analysis of the corrections d
to the finite conductivity of the metal surfaces, roughne
and nonzero temperature is indispensable@11,17–21#. The
above cited experiments in fact deviate from the flat-pl
geometry corresponding to Eq.~1! by using a plane-spher
configuration~thus avoiding the experimental difficulty o
keeping two flat surfaces sufficiently parallel!. The force for
a spherical surface with~large! radiusR at a distanceH of
closest surface-to-surface approach from a flat plate can
be calculated from the Casimir potentialE(H) for two flat
plates by using theproximity force rule@22#, see Eq.~28!
©2003 The American Physical Society14-1
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below. Recently, however, Bressiet al. @23# measured the
Casimir force between two parallel flat surfaces direc
confirming Eq.~1! to 15% accuracy.

The Casimir force in Eq.~1! has analogies to the effectiv
force between particles or plates immersed in a system c
to its critical point, which arises due to the modification o
thermal fluctuations of the bulk order parameter. This eff
was originally predicted in 1978 by Fisher and de Gen
@24# for colloidal particles immersed in a binary liquid mix
ture near its critical demixing point, and observed expe
mentally for silica spheres immersed in a mixture of wa
and oil ~2,6 lutidine! @25#. Related phenomena occur in liq
uid crystals@26#, microemulsions@27#, and for inclusions in
fluctuating membranes@28# ~see Ref.@10# for a review!. In
recent years, the critical-point Casimir effect has attrac
increasing theoretical@10,29–33# and experimental interes
@34,35#. For He4 wetting films close to the superfluid phas
transition, the theoretical predictions@29# for critical-point
Casimir forces between parallel surfaces exhibiting the
richlet boundary conditions have been confirmed quant
tively @35#.

Equation ~1! for the electromagnetic Casimir force
valid in the ideal limit of perfectly conducting plates. In th
more general context of the Lifshitz theory for dielectr
bodies@36#, this corresponds to an infinite dielectric consta
« for all frequenciesv. For finite «5«(v), this power law
for the force is recovered for large distancesH@c/v0,
wherev0 is the smallest resonance~absorption! frequency of
the dielectric~usually c/v0'10–100 nm). In this, the so
called retarded, limit, the force isuniversalin the sense tha
it only depends on the electrostatic dielectric constant«0
5«(0). Theopposite limit ofH!c/v0 gives the unretarded
van der Waals forceF/A;H23. The interpretation of the
Casimir force in terms of changes in zero-point vacuum e
tromagnetic energy suggests it to be a strong function
geometry; probing the global shape of the boundary that c
fines the vacuum fluctuations@37#. Indeed, whereas the va
der Waals force between electrically polarizable particles
always attractive, even thesign of the Casimir force is ge-
ometry dependent, and can berepulsive, e.g., for a thin
spherical or cubic conducting shell@38–41#. The repulsive
Casimir forces are expected also whenmagneticproperties
of the boundaries are exploited, e.g., by using a perfe
conducting and an infinitely permeable plate@42#.

Apart from the importance of these phenomena to ba
science, the ongoing refinement of nanofabrication tech
ogy in electronics and mechanics also provides new imp
for the understanding of such systems in view of applicati
in nanotechnology. On length scales of about 100 nm
below, the Casimir force becomes comparable or even do
nant to other forces@43#, and thus must be taken into accou
in the design and operation of nanoscale devices@44,45#.
Indeed, the experiment of Chanet al. @16# demonstrates the
possibility for novel actuation schemes in microelectrom
chanical systems based on the Casimir force. They also s
that the Casimir force can be used to controldynamicprop-
erties of such systems, e.g., in a nonlinear micromechan
Casimir oscillator@46#. The above-mentioned dependence
strength and sign of the Casimir force on geometry and
02211
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terial properties offers the opportunity to manipulate this
teraction in a controlled way, e.g., by tailoring the shape
the interacting surfaces. On the other hand, movable
ments of nanoscale devices may unwantedly stick toge
due to the strong attractive Casimir force, impeding th
operation@44,45#. This so-called stiction could possibly b
prevented by using shapes~e.g., suitable modulations! and
materials of movable elements such that the Casimir fo
between them is repulsive~or at least reduced!.

Due to the importance of the Casimir force to basic a
applied science, it is highly desirable to demonstrate
strong shape dependence in a setup that clearly show
distinction from the usual pairwise additive interactions@47#.
In a previous Letter@48# we pointed out that a promising
route to this end is via modifications of the parallel pla
geometry, since measurement of the putative repulsive
simir interaction for a conducting sphere is experimenta
difficult. The corrections due to deformations, such as si
soidal corrugations, of the metal plates can be significa
and have been studied@49,21#. In Ref. @47# it was proposed
that an artificially corrugated geometry can be used to pr
novel features of the Casimir force. In searching for no
trivial boundary dependences, Roy and Mohideen@50# ex-
amined the force between a sphere and a sinusoidally co
gated plate with amplitudea'60 nm and wavelengthl
'1.1mm. Over the range of separationsH'0.120.9mm,
the observed force showed clear deviations from the dep
dence expected on the basis of decomposing the Cas
force to a sum of pairwise contributions~in effect, an aver-
age over the variations in separations!. This experimental
result motivated our calculation of the exact Casimir force
the geometry depicted in Fig. 1, without the assumption
pairwise additivity. Our analytic results@see Eq.~32! and
Fig. 2# hold to second order ina, and show that for fixedH
the corrections due to corrugation strongly depend onl. In
fact, for H/l@1 the correction is by a factor ofH/l larger
than in the opposite limit ofH/l!1, where the assumption
of pairwise additivity is asymptotically correct. However, th
experiments of Ref.@50# are performed in the range o
H/l'0.120.8 where the corrections to pairwise additivi
may not be significant enough to account for the obser
deviations. In Ref.@51# it has been suggested that these d
viations are due to alateral force that tends to preferentiall
position the spherical AFM tip on top of local maxima of th
modulated surface~leading to a smaller separation and stro
ger force!. Based on our results, we thus propose that
shape dependence of the Casimir force can be probed m
clearly by going to modulations of shorter wavelength;
hard but achievable goal.

FIG. 1. The setup used for calculating the Casimir energy
tween a flat and a corrugated plate at mean separationH.
4-2
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NORMAL AND LATERAL CASIMIR FORCES BETWEEN . . . PHYSICAL REVIEW A67, 022114 ~2003!
The originally predicted Casimir force between two fl
metal plates~or between a flat and a deformed plate! is, for
symmetry reasons, oriented normal to the surfaces of
plates. However, if both plates are deformed there is als
lateral Casimir force, as predicted in Refs.@47# and con-
firmed experimentally@52#. To date, the lateral force betwee
two corrugated plates has been calculated explicitly o
within the approximative approach of a pairwise summat
of the van der Waals forces, see, e.g., Ref.@11#. Here we
calculate the lateral force exactly to second order in the c
rugation amplitude for the geometry shown in Fig. 4, witho
referring to a pairwise summation scheme. As for the norm
force, our results@cf. Eq. ~46! and Fig. 5# show that the
lateral force strongly depends on the ratio of the corruga
lengthl and mean plate separationH. We find the pairwise
summation to be a valid approximation only for sufficien
small values ofH/l&0.3. However, the experiment of Re
@52# is performed at a ratioH/l'0.18 where we do no
expect significant deviations from the pairwise summat
approximation.

The outline of the paper is as follows: In the followin
section we set up the general path-integral formulation
the Casimir energy of the electromagnetic gauge field.
separating into transversal electric and magnetic modes
reduce the problem to two decoupled problems for sc
fields which differ only in their boundary conditions. In eac
case, we calculate the Casimir energy for general plate
formations perturbatively. In Sec. III, we give a brief sum
mary of the pairwise summation approach, and the resul
Casimir interaction. Section IV gives detailed results on b
the normal and the lateral force between sinusoidally co
gated plates. We conclude by discussing the relevance o
results to experiments. Details of the calculations are lef
the Appendices.

II. PATH-INTEGRAL FORMULATION
OF THE CASIMIR ENERGY

We consider two perfectly conducting deformed platesSa
(a51,2) of mean separationH, which are infinitely ex-
tended along the plane spanned byyi5(y1 ,y2). Assuming
static and uniaxial deformations without overhangs, th
profiles are described by height functionsha(y1), with
*dy1ha(y1)50. The Casimir energy at zero temperatu
corresponds to the difference of the ground-state energie
the quantized electromagnetic~EM! field for plates at dis-
tanceH and atH→`, respectively. To obtain this energy, w
employ the path-integral quantization method. For gene
deformations, it is necessary to consider the action

Sem$Am%52
1

4E d4XFmnFmn, ~2!

where X denotes a point of 4D spacetime,Fmn5]mAn

2]nAm , and the four potentialAm is subject to the boundar
condition that the tangential components of the electric fi
vanish on the surfaces. The redundant degrees of free
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due to the gauge invariance of the electromagnetic field
be eliminated by the Faddeev-Popov gauge fixing proced
@47,53#.

However, for the uniaxial deformations under consid
ation here, we can develop a simpler quantization scheme
a similar reasoning as used in the context of waveguides w
constant cross-sectional shape@48#. In this case, the trans
verse magnetic~TM! waves and transverse electric~TE!
waves~with respect to the translational invarianty2 direc-
tion! constitute a complete set of modes to describe an a
trary electromagnetic field between the plates@54#. For TM
waves all field components are then uniquely given by
scalar function corresponding to the electric field along
invariant direction,

FTM~ t,y1 ,y2 ,z!5E2~ t,y1 ,y2 ,z!, ~3!

with the Dirichlet boundary conditionFTMuSa
50 on each

surfaceSa . The TE waves are analogously described by
scalar function

FTE~ t,y1 ,y2 ,z!5B2~ t,y1 ,y2 ,z!, ~4!

with the Neumann boundary condition]nFTEuSa
50, where

]n is the normal derivative of the surfaceSa pointing into the
space between the two plates. After a Wick rotation to
imaginary time variableX05 ict, both fieldsFTM and FTE
can be quantized using the Euclidean action

SE$F%5
1

2E d4X~“F!2. ~5!

In the 4D Euclidean space, the plates are parametrized
X1(y)5@y,h1(y1)# and X2(y)5@y,H1h2(y1)#, where y
5(y0 ,y1 ,y2)5(y0 ,yi), andy05 ict.

In order to obtain the ground-state energy from this qu
tization scheme, we now consider the partition functionsZD
andZN for the scalar field Euclidean actionSE both with the
Dirichlet ~D! and Neumann~N! boundary conditions at the
surfaces. Following Refs.@55,47# ~cf. also Ref.@56#!, we
implement the boundary conditions onSa usingd functions,
leading to the partition functions

ZD5
1

Z0
E DF )

a51

2

)
Xa

d@F~Xa!#exp~2SE$F%/\!,

~6a!

ZN5
1

Z0
E DF )

a51

2

)
Xa

d@]nF~Xa!#exp~2SE$F%/\!,

~6b!

whereZ0 is the partition function of the space without plate
Note that in Eqs.~6a! and~6b! no gauge fixing procedure i
needed, since the relevant degrees of freedom are expre
in terms of the fieldsE2 andB2 itself rather than the vecto
potentialAm in Eq. ~2!. The details of the calculation of th
partition functions are left to Appendix A, and yield
4-3
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ln ZD52
1

2
tr lnGD , lnZN52

1

2
tr ln GN . ~7!

The kernelsGD andGN are given by

@GD#ab~y,y8!5@ga~y1!#1/4G@Xa~y!2Xb~y8!#@gb~y18!#1/4,
~8a!

@GN#ab~y,y8!5@ga~y1!#1/4]na(y1)]nb(y
18)G@Xa~y!2Xb~y8!#

3@gb~y18!#1/4, ~8b!

where ga(y1)511@ha8 (y1)#2 is the determinant of the in
duced metric, andna(y1)5(21)aga

21/2(y1)@ha8 (y1),0,21#
is the normal vector to the surfaceSa , while

G~r !5
1

4p2

1

r 2
~9!

is the free correlation function~Gaussian propagator! corre-
sponding to the Euclidean actionSE in Eq. ~5!. In the follow-
ing, we denote position vectors in the 4D Euclidean space
r 5(y,z). We can then extract the Casimir energyE per unit
area as

E~H !5E~H !2 lim
H→`

E~H ! ~10!

with

E~H !52
\c

AL
@ lnZD1 ln ZN#, ~11!

whereA is the surface area of the plates, andL denotes the
overall Euclidean length in time direction.

The above equations provide anexactresult which yields
the Casimir energy for arbitrary static uniaxial deformatio
These equations can be used to evaluate the Casimir forc
a recently developed numerical approach@57#. However, in
order to obtain a closed analytical expression for the parti
functions in terms of the kernels in Eqs.~8!, here we resort to
a perturbative expansion with respect to the height profi
ha(y1). In fact, for this expansion to be valid, we have
assume that the amplitude of the deformations sets the sm
est ~geometric! length scale of the system. In what follow
the perturbation theory is carried out to second order
ha(y1), separately for the two types of boundary conditio
However, within second order in the height profile, the res
is exact in the sense that it correctly takes into account
many-body nature of the Casimir interaction.

A. The Dirichlet boundary conditions

Following Refs. @55,47#, we expand lnZD in a series
ln ZDu01 ln ZDu11 ln ZDu21•••, where the subscript indi
cates the corresponding order inha . The lowest-order resul
is

ln ZDu05
AL

H3

p2

1440
, ~12!
02211
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corresponding to two flat plates. The first-order result lnZDu1
vanishes since we assume, without loss of generality, tha
mean deformations are zero,*dy1ha(y1)50. Thecomplete
second-order contribution is given by

ln ZDu252
1

4E d3y$@h18~y1!#21@h28~y1!#2%E d3p

~2p!3
31

1
p2

240

1

H5E d3y$@h1~y1!#21@h2~y1!#2%

1
1

2E d3yE d3y8KD~ uy2y8u!H 2
1

2
@h1~y1!

2h1~y18!#22
1

2
@h2~y1!2h2~y18!#2J

2
1

2E d3yE d3y8QD~ uy2y8u!@h1~y1!h2~y18!

1h2~y1!h1~y18!#. ~13!

In the first term, which is further discussed below,ha8
5“ha . The kernels appearing above are given by@58#

KD~y!5F1~y!]z
2G~y,0!1F1~y!F5~y!1F3~y!2,

~14a!

QD~y!5F4~y!]z
2G~y,H !1F4~y!F6~y!1F2~y!2,

~14b!

with the set of functions

F1~y!5E d3p

~2p!3
eip•y

G~p,0!

N~p,H !
, ~15a!

F2~y!5E d3p

~2p!3
eip•y

G~p,0!

N~p,H !
]zG~p,H !, ~15b!

F3~y!5E d3p

~2p!3
eip•y

G~p,H !

N~p,H !
]zG~p,H !, ~15c!

F4~y!5E d3p

~2p!3
eip•y

G~p,H !

N~p,H !
, ~15d!

F5~y!5E d3p

~2p!3
eip•y

G~p,0!

N~p,H !
@]zG~p,H !#2, ~15e!

F6~y!5E d3p

~2p!3
eip•y

G~p,H !

N~p,H !
@]zG~p,H !#2, ~15f!

wherey5uyu, p5upu, G(p,z)5(1/2)pe2puzu is the partially
Fourier transformed free propagator of Eq.~9!, and
N(p,H)5@G(p,0)#22@G(p,H)#2. The functions in Eqs.
~15! can be calculated explicitly~see Appendix B1!, leading
to the simple result
4-4
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KD~y!52KD,`~y!1KD,reg~y!, ~16a!

QD~y!5
p2

128

1

H6y2

sinh2~s!

cosh6~s!
, ~16b!

with

KD,`~y!5
1

2p4y8
,

KD,reg~y!52
1

2p4y8
1

p2

128

1

H6y2

cosh2~s!

sinh6~s!
, ~17!

wheres5py/(2H). The kernelKD has two contributions of
different origin. In the limit H→`, corresponding to two
decoupled surfaces, one hasKD→2KD,` , while QD(y) van-
ishes. Thus the partKD,` describes a single-surface. The tw
(H-independent! single surface contributions have to be su
tracted from the total kernelKD in order to obtain the regu
larized kernelKD,reg which has to be used in the calculatio
of the Casimir energy in Eq.~10!. For finite H, the kernel
KD(y) actually has contributions from bothoutsideand in-
side the cavity, whereasKD,` comes from outside and th
second term ofKD,reg from inside. The kernelQD(y) has
only contributions from inside the cavity.

It is instructive to discuss the meaning of the contrib
tions to lnZDu2 in Eq. ~13!. The terms in the first row areH
independent and formally divergent. They do not contrib
to the Casimir force between the surfaces, but yield a qu
tum electrodynamical increase of the surface tension of
individual surfaces after introducing a suitable short-dista
cutoff @59#. The necessity for a cutoff stems from our co
tinuum approach which breaks down on microscopic len
scales. The remaining terms in Eq.~13! all contribute to the
Casimir force~with KD replaced byKD,reg). The local con-
tributions in the second row are half~due to TM modes only!
of the individual surface~nonmixed! terms which follow in
second order of perturbation theory inha from the pairwise
summation approach, cf. the second term in Eq.~26!. The
third row in Eq. ~13! describes nonlocal individual surfac
contributions which are missing in the pairwise summat
approach. Finally, the last row accounts for contributions d
to the interference between the two surface profiles. Ob
ously, it has a more complicated form than the correspond
last term in the approximative pairwise summation resul
Eq. ~26!.

B. The Neumann boundary conditions

Expanding lnZN in a series with respect toha as before,
the lowest-order result is the same as for the Dirichlet ca

ln ZNu05
AL

H3

p2

1440
, ~18!

and the first-order result lnZNu1 again vanishes. The com
plete second-order result assumes a similar form as for
Dirichlet boundary conditions. We find
02211
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ln ZNu251
1

4E d3y$@h18~y1!#21@h28~y1!#2%E d3p

~2p!3
31

1
p2

240

1

H5E d3y$@h1~y1!#21@h2~y1!#2%

1
1

2E d3yE d3y8KN~ uy02y08u,uyi2yi8u!

3H 2
1

2
@h1~y1!2h1~y18!#2

2
1

2
@h2~y1!2h2~y18!#2J 2

1

2E d3yE d3y8

3QN~ uy02y08u,uyi2yi8u!@h1~y1!h2~y18!

1h2~y1!h1~y18!#. ~19!

The kernels for the Neumann boundary conditions assum
more complicated form, since the normal derivative brea
the equivalence of space and time directions. The result re

KN~ uy0u,uyiu!5F1~y!]z
2g~y,0!1F1~y!F5~y!1F3~y!2

1] i] j@F1~y!] i] jG~y,0!1F1~y!] i] jF7~y!

1] iF9~y!] jF9~y!#12] i@F1~y!] ig~y,0!

1F1~y!] iF11~y!1F3~y!] iF9~y!#, ~20a!

QN~ uy0u,uyiu!5F4~y!]z
2g~y,H !1F4~y!F6~y!1F2~y!2

1] i] j@F4~y!] i] jG~y,H !1F4~y!] i] jF8~y!

1] iF10~y!] jF10~y!#12] i@F4~y!] ig~y,H !

1F4~y!] iF12~y!1F2~y!] iF10~y!#, ~20b!

where summation overi 51,2 andj 51,2 is understood. Note
that] i and] j act on thespatialcomponentsyi of y only. This
is the reason why the rotational symmetry within the thre
dimensionaly space is broken for Neumann boundary co
ditions. For translationally invariant profilesha(y1) only
terms withi 5 j 51 contribute as can be seen by integrati
by parts. However, as in the case of the Dirichlet bound
conditions, the above result is valid for anyha(y), but then
can no longer be interpreted as the contribution from
modes to the electrodynamic Casimir energy.

Here, we have introduced

g~y,z!5E d3p

~2p!3
eip•yg~p,z!, ~21!

with g(p,z)5]z
2G(p,z)5(p/2)e2puzu, and the functions

Fj (y) defined as

F1~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
, ~22a!
4-5
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F2~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
]zg~p,H !, ~22b!

F3~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
]zg~p,H !, ~22c!

F4~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
, ~22d!

F5~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
@]zg~p,H !#2, ~22e!

F6~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
@]zg~p,H !#2, ~22f!

F7~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
@]zG~p,H !#2, ~22g!

F8~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
@]zG~p,H !#2, ~22h!

F9~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
]zG~p,H !, ~22i!

F10~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
]zG~p,H !, ~22j!

F11~y!5E d3p

~2p!3
eip•y

g~p,0!

h~p,H !
]zg~p,H !]zG~p,H !,

~22k!

F12~y!5E d3p

~2p!3
eip•y

g~p,H !

h~p,H !
]zg~p,H !]zG~p,H !,

~22l!

with h(p,H)5@g(p,0)#22@g(p,H)#2. The explicit form of
these functions can be found in Appendix B2.

The result in Eq.~19! has the same type of contribution
as discussed for the Dirichlet case. Both the Dirichlet a
Neumann cases include ‘‘surface tension’’ contributions,
with opposite signs, and identical local terms@second row in
Eq. ~19!#. Since these local terms are the only~nonmixed!
contributions obtained by the pairwise summation approa
the latter does not distinguish between the two types
boundary conditions. The main results of our general an
sis of surface deformations are contained in Eqs.~13! and
~19!. In Sec. IV we apply these results to the important c
of modulated plates.

III. PAIRWISE SUMMATION APPROXIMATION

The path-integral approach may be compared with
commonly used approximative method of pairwise summ
02211
d
t

h,
f

y-

e

e
-

tion ~PWS!. In the latter approach, the Casimir energyE(H)
for two arbitrary shaped bodies of mean distanceH is ob-
tained by the pairwise summation of a two-body poten
U(r ). In terms of the deformation fieldsha this leads to

E~H !5
1

AE d2yi E d2yi8E
H1h2(y1)

`

dzE
2`

h1(y1)

dz8

3U„@~yi2yi8!21~z2z8!2#1/2
…. ~23!

In general, these integrals need to be computed numeric
However, there are the following simplifications. If one
the plates is flat, e.g.,h1(y1)50, the integrals can be per
formed explicitly, leading to the simple result

E~H !5
1

AE d2yiE0@H1h2~y1!#, ~24!

whereE0 is here the energy of two flat plates at distanceH,
calculated from the same pair potentialU(r ). Thus, in this
particular case the pairwise summation approximation
equivalent to a geometrical average of the flat-plate ene
with locally varying plate distance over the plate area.

For two deformed plates, the integrals in Eq.~23!, in gen-
eral, can only be performed perturbatively in the height p
file. To do so, we follow the usual PWS approximation a
assume a ‘‘renormalized’’ retarded van der Waals poten
@11,60#

U~r !52
p\c

24
r 27. ~25!

The ‘‘renormalization factor’’ of the pair potential is chose
here such that in the limit of two flat plates the exact Casim
result E0, cf. Eq. ~32!, is recovered. To second order inha
one obtains now

E~H !52
p2

720

\c

H3
2

p2

120

\c

H5A
E d2yi@h1

2~y1!1h2
2~y1!#

1
p

24

\c

A E d2yi E d2yi8
h1~y11y18!h2~y1!

~H21yi8
2!7/2

. ~26!

For simple types of plate modulations, the integrals over
deformation fields can be calculated easily. This will allo
us a direct assessment of the validity range of the pairw
summation approach by comparing Eq.~26! to the predic-
tions of the path-integral technique.

IV. MODULATED PLATES

We now apply the results of Sec. II to static uniaxi
modulations of two parallel plates. In the first part we foc
on thenormalCasimir force between a flat and a corrugat
plate. This force per unit area is defined as

Fn52
]E
]H

~27!
4-6
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in terms of the Casimir energy in Eq.~10!. However, in most
of the experiments, the flat plate is replaced by a spher
lens with large radiusR@H. In the latter case the norma
force can be obtained by using the Derjaguin approxima
~or proximity force rule! @22#, leading to

FDA,n52pRE. ~28!

Therefore, in the context of the normal Casimir force,
just calculateE explicitly.

In the second part of this section we generalize our res
for two modulated plates with equal modulation length, b
with a phase shift between them. Due to the broken tran
tional symmetry, there is now also alateral force between
the two plates which arises solely from the cross-ter
;h1h2 in Eqs.~13! and~19!. If we denote the shift betwee
the two corrugations by the lengthb, the lateral force is
obtained from

F l52
]E
]b

. ~29!

A. Normal force

As a prototype of a corrugated surface, and to make c
tact with recent experiments by Roy and Mohideen@50#, we
consider a sinusoidally modulated plate along they1 direc-
tion, with amplitudea, wavelengthl, and mean distanceH
from the flat plate~see Fig. 1!, i.e.,

h1~y1!5a cos~2py1 /l! and h2~y1!50. ~30!

For this particular deformation@61#, only the Fourier mode
of wavelengthl in the kernelsKD(y) and KN(uy0u,uyiu) is
probed. Thus, the calculation of lnZD and lnZN via Eqs.
02211
al

n

ts
t
a-

s

n-

~13! and~19! reduces to the Fourier transforming the kern
with respect toy1. The corresponding expression forE in Eq.
~10! can be written as

E5E01Ecf ~31!

with

E052
p2

720

\c

H3
,

Ecf52
\ca2

H5 FGTMS H

l D1GTES H

l D G1O~a3!, ~32!

whereE0 is the energy of two flat plates and the index cf
Ecf stands for corrugated-flat geometry. The notationO(a3)
indicates that the third and higher powers ofa/H and a/l
are not considered here. The corrugation induced contr
tions toEcf from TM and TE modes at second order ina are
governed by the functions

GTM~x!5
p2

480
1g0~x!, ~33a!

GTE~x!5
p2

480
1g1~x!1xg2~x!1x3g3~x!. ~33b!

The first termp2/480 in both equations corresponds to t
local contributions, cf. the second row in Eqs.~13! and~19!.
Since these are the only terms which are obtained withi
pairwise summation approach, the functionsgm(x) represent
nontrivial corrections which are neglected in the pairw
summation scheme. These functions can be calculated f
the kernelsKD(y) andKN(uy0u,uyiu) by the Fourier transfor-
mation, leading to the expressions
g0~x!52
p2

480
1

p3

480
x1

p2

128E2`

`

ds
sin~4xs!

4xs F2
1

s6
1

2

15s2
1

cosh2~s!

sinh6~s!
G , ~34a!

g1~x!52
p2

480
1

p3

1440
x1

p2

64E2`

`

ds
sin~4xs!

4xs F2
13

4s6
2

5

3s4
1

4

45s2
1

5

2s5

cosh~s!

sinh~s!
2

3

2s3

cosh~s!

sinh3~s!
1

1

2s

cosh3~s!

sinh5~s!

1
1

s

cosh~s!

sinh5~s!
1

1

2

cosh4~s!

sinh6~s!
1

5

4

cosh2~s!

sinh6~s!
2

1

s4

1

sinh2~s!
G2

p2

64

3E
2`

`

dscos~4xs!F 1

s6
1

1

45s2
2

2

3s4
2

1

s4

1

sinh2~s!
1

1

s5

cosh~s!

sinh~s!
2

1

s3

cosh~s!

sinh3~s!
G , ~34b!

g2~x!5
p2

64E2`

`

dssin~4xs!F 2

45s
2

5

s5
1

1

s4

cosh~s!

sinh~s!
1

2

s3

1

sinh2~s!
1

1

s2

cosh~s!

sinh3~s!
1

1

s

cosh2~s!

sinh4~s!
G , ~34c!

g3~x!5
p

32E2`

`

dssin~4xs!F2
3

s3
2

4

3s
1

2

s2

cosh~s!

sinh~s!
1

1

s

cosh2~s!

sinh2~s!
G . ~34d!
4-7
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Before giving the explicit forms of these functions, let
consider two limiting cases. Forx→0, orl/H→`, we have
g0(x), g1(x)→0, andg2(x), g3(x) converge to finite num-
bers, thus leaving in Eqs.~33! only the local contributions
from the pairwise summation approach. In the opposite li
x→`, or l/H→0, the integrals in Eqs.~34! decay to zero,
leading to

g0~x!5
p2

480S px211
5p

126

1

xD1O~e24px!,

g1~x!5
p2

480S p

3
x211

p

18

1

xD1O~e24px!, ~35!

and bothg2(x) andg3(x) areO(e24px). From this result it
is obvious that forl/H→0 in Eqs.~33!, the termsp2/480
from the pairwise summation approach are exactly canc
th
th
yr

th

m
th

02211
it

d

by corresponding terms of opposite sign in the nontriv
corrections described byg0(x) andg1(x). The most relevant
contributions in this limit are now provided by the first ter
in g0(x) andg1(x) in Eq. ~35!, leading to the novel scaling
behaviorGTM/TE(x);x1O(1/x).

The integrals in Eqs.~34! can be carried out forl.0, or
equivalently forx.0, by closing the integration contour vi
a semicircle at infinity in the upper half of the complexs
plane, using the residue theorem@62#. The resulting sum of
an infinite series of residues can be expressed in terms o
polylogarithm function@63#

Lin~z!5 (
n51

`
zn

nn
, ~36!

leading to, withu[exp(24px),
GTM~x!5
p3x

480
2

p2x4

30
ln~12u!1

p

1920x
Li2~12u!1

px3

24
Li2~u!1

x2

24
Li3~u!1

x

32p
Li4~u!

1
1

64p2
Li 5~u!1

1

256p3x
S Li6~u!2

p6

945D , ~37!

GTE~x!5
p3x

1440
2

p2x4

30
ln~12u!1

p

1920x
Li2~12u!2

px

48
~112x2!Li2~u!1S x2

48
2

1

64DLi3~u!

1
5x

64p
Li4~u!1

7

128p2
Li 5~u!1

1

256p3x
S 7

2
Li6~u!2p2Li 4~u!1

p6

135D . ~38!
e

ns
It should be noted that the appearance of the polylogari
function in quantum electrodynamics is also known from
fine-structure constant dependent corrections to the g
magnetic ratio of the electron@64#.

Figure 2 displays separately the contributions fromGTM
andGTE to the corrugation induced correctionEcf to the Ca-
simir energy. WhileGTM(H/l) is a monotonically increasing
function of H/l, GTE(H/l) displays a minimum forH/l
'0.3.

Examining the limiting behaviors of Eq.~31! is instruc-
tive. In the limitl@H, the functionsGTM andGTE approach
constant values, and the Casimir energy takes
l-independent form

E52
\c

H3

p2

720S 113
a2

H2D 1O~a3!. ~39!

Note thatonly in this case both wave types provide the sa
contribution to the total energy, and the result agrees with
m
e
o-

e

e
e

FIG. 2. Rescaled correctionEcf to the Casimir energy due to th
corrugation as given by the terms in square brackets of Eq.~31!
~upper curve!. The lower curves show the separate contributio
from TM and TE modes. The rescaling ofEcf is chosen such that the
corresponding prediction of the pairwise summation~PWS! ap-
proximation@second term of Eq.~26!# is a constant~dashed lines!.
4-8
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pairwise summation approximation~see Fig. 2!. In the oppo-
site limit of l!H, as demonstrated above, bothGTM and
GTE grow linearly in H/l. Therefore, in this limit the cor-
rection to the Casimir energy decays according to aslower
power law inH, as

E52
\c

H3

p2

720S 112p
a2

lH D1O~a3!, ~40!

with an amplitude proportional to 1/l. Note that this behav-
ior is completely missed by the pairwise summation a
proach which always yields al-independent Casimir energ
in the presence of modulations on one plate.

In the limit l!a,(H2a) we expect that the factor mul
tiplying a/H in Eq. ~40! saturates at a number of order unit
This result can be justified by noting that the most relev
contributions to the force come from modes of wavelength
order H. The corrugation also affects modes of wavelen
of order l, but these modes contribute to the single pl
energy only. Thus, in the extreme limitl!a,(H2a), one
has a clear separation of the length scalesH andl, and the
modes ‘‘see’’ flat plates at the reduced separationH2a, (a
.0) @48#. More recently, anexactapproach for calculating
the Casimir force has been developed which confirms
above argument and yields for the case of TM modes~Di-
richlet boundary conditions at both plates! the exact result
@57#,

E52
p2

720

\c

~H2a!3
, l!a,~H2a!. ~41!

This leads to a correction of the ordera/H ~with prefactor 3!
after expansion ina.

The above behavior of the correctionEcf for small and
largeH/l clarifies the limits of validity of previous results i
the literature. The upper dashed line in Fig. 2 correspond
the PWS approximation~see Refs.@11,60# and Sec. III!. It is
evident that this approximation is accurate only forH/l
→0 ~which in this limit is equivalent to the Derjagui
method to any order in the amplitudea @22#!. Already for
H/l of order unity, the PWS approximation breaks dow
The opposite limit,H/l→`, corroborates the result reporte
in Ref. @21#, which is larger than the former by a factor o
H/l@1. However, in experiments with lateral distortion
l of the order of H, none of the above limiting case
is realized, which makes the present, more complete ana
necessary. Our results forH/l@1 should also be relevan
for the case where the surface is stochastically rou
corresponding to a relatively small and varyingl, see
Sec. V.

The use of a spherical tip, of large radiusR, in experi-
ments@50# causes some differences from the flat-plate geo
etry used in our calculations. First, the positioning of the
relative to the modulations is important whenH and l are
02211
-

t
f

h
e

e

to

.

sis

h,

-

comparable, but becomes insignificant in the proposed li
of l!H,R. Second, as long asR@H,l the curvature of the
tip does not lead to nontrivial corrections, and the force c
be related to the energy per surface areaE in Eq. ~31! by the
proximity force ruleF52pRE in Eq. ~28!. These formulas
thus provide a specific recipe for evaluating the nontriv
shape dependences of the Casimir force in the experime
setup.

The net Casimir energyE is shown in Fig. 3 for two
representative values ofa/l, including the parameters use
in the experiment of Ref.@50#. Note that the corrugation
induced correction leads to a larger energyE, and hence the
corresponding~attractive! force F52pRE is enhanced,
at least to second order ina/H and a/l, which becomes
exact in the limita!H,l. This trend suggests, in particula
that in the setup of Fig. 1 the force is always attractiv
although definite statements for values ofa/H and a/l of
order 1 can only be made by using nonperturbative metho
as indicated by the question mark in Fig. 3~see Ref.@57# and
the discussion in Sec. V!. However, in the opposite limit, for
which the tips of the modulations of the lower plate in Fig.
almost touch the upper~flat! plate, i.e.,H2a!l2/a,a, the
energy can be calculatedexactlyby using the Derjaguin ap
proximation for the individual tips of the modulations; th
leads to

FIG. 3. The rescaled Casimir energy to second order ina/H and
a/l as given by Eq.~31! for two fixed values ofa/l, shown
as dashed curves. The rescaling is chosen such that the Ca
energy of two flat plates becomes one~horizontal line!. The curve
for a/l50.05 corresponds to the parameters used in the experim
of Ref. @50#, whereH/a varies between approximately 3 and 1
Note that the dashed lines are accurate predictions for the true
simir energy in the limita!H,l only, as indicated by the questio
mark ~see text and the discussion in Sec.V!. For comparison, the
result of the pairwise summation~PWS! approximation@cf. Eq.
~24!# is shown. It agrees with the perturbative result in the limitl
5` only. In the opposite limit,l/a→0, the energy can presumabl
be estimated from a reduced distance argument@48,57# @see Eq.
~41!#.
4-9
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E52
p2A2

3840

\c

a1/2~H2a!5/2
, H2a→0, ~42!

which corresponds to the result in Eq.~24! after takingH
2a→0. The above result implies that at least for the p
ticular case of an uniaxial sinusoidal corrugation the cor
sponding forceF52pRE is attractive when the surfaces a
most touch.

B. Lateral force

As a natural generalization of the geometry of the prec
ing section, we study the Casimir interaction between t
sinusoidally corrugated plates. For direct correspondenc
recent experiments@52#, we consider the specific profiles

h1~y1!5a cos~2py1 /l!

and

h2~y1!5a cos@2p~y11b!/l#, ~43!

which are shifted relative to each other by the lengthb ~see
Fig. 4!.

By inspection of the deformation dependent contributio
to the Casimir energy in Eqs.~13! and ~19!, one obtains for
the total Casimir energyE of the corrugated-corrugated ge
ometry, the relation

E5E012Ecf1Ecc, ~44!

with E0 and Ecf given in Eq. ~32!, and the corrugation-
corrugation interaction energyEcc which can be calculated in
terms of the kernelsQD(y) andQN(uy0u,uyiu) in Eqs. ~14b!
and ~20b!. Besides oscillating contributions to the norm
Casimir forceFn(b) from Ecc(b), a lateral force

F l52
]Ecc

]b
~45!

is induced by the corrugation-corrugation interaction. T
lateral force is much better suited for experimental tests
the influence of deformations, since there is no need for s
tracting a larger baseline force~the contribution of flat
plates! as in the case of the normal force.

The calculation of the interaction energyEcc again reduces
for sinusoidally corrugated plates to Fourier transforming

FIG. 4. Geometry used for calculating the lateral Casimir fo
between two corrugated plates with lateral shiftb. The equilibrium
position is atb5l/2.
02211
-
-

-
o
to

s

l

s
f

b-

e

kernelsQD(y) and QN(uy0u,uyiu). Separating the contribu
tions from TM and TE modes, we find

Ecc5
\ca2

H5
cosS 2pb

l D FJTMS H

l D1JTES H

l D G1O~a3!

~46!

with

JTM~x!5 j 0~x!, ~47a!

JTE~x!5 j 1~x!2x2 j 2~x!1x4 j 3~x!, ~47b!

and the functionsj m(x) are given by

j 0~x!5
p2

32E2`

`

ds
sin~4xs!

4xs

sinh2~s!

cosh6~s!
, ~48a!

j 1~x!5
p2

32E2`

`

ds
sin~4xs!

4xs

sinh2~s!

cosh6~s!
F5

2
2sinh2~s!G ,

~48b!

j 2~x!5
p2

4 E
2`

`

ds
sin~4xs!

4xs

sinh2~s!

cosh4~s!
, ~48c!

j 3~x!5
p2

2 E
2`

`

ds
sin~4xs!

4xs

sinh2~s!

cosh2~s!
. ~48d!

Before giving explicit forms for these integrals, it is instru
tive to again consider their extreme limits. Forx5H/l
→0, we find that both functionsJTM(x) andJTE(x) tend to
p2/240. In the opposite limitx5H/l→` both functions
decay exponentially fast to zero so that the lateral force v
ishes in this limit. In order to get the behavior in betwe
these extremes, we have to calculate the integrals in E
~48!. Using the residue theorem, we finally obtain, after su
ming over an infinite series of residues by using the Le
transcendent@63#,

F~z,s,a!5 (
k50

`
zk

~a1k!s
, ~49!

the results@with u[exp(24px)],

e
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JTM~x!5
p2

120
~16x421!arctanh~Au!1AuF p

12S x32
1

80xDF~u,2,12 !1
x2

12
F~u,3,12 !1

x

16p
F~u,4,12 !1

1

32p2
F~u,5,12 !

1
1

128p3x
F~u,6,12 !G , ~50a!

JTE~x!5
p2

120
~16x421!arctanh~Au!1AuF2

p

12S x31
x

2
1

1

80xDF~u,2,1
2 !1

1

24S x22
3

4DF~u,3,1
2 !

1
5

32p S x2
1

20xDF~u,4,1
2 !1

7

64p2
F~u,5,1

2 !1
7

256p3x
F~u,6,1

2 !G . ~50b!
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This result can be compared to the pairwise summation
proach by considering the last term in Eq.~26!. For the sur-
face profiles considered here@cf. Eq. ~43!#, this term pro-
vides an interaction energy given by Eq.~46! with the sum
JTM(x)1JTE(x) replaced by the function

JPWS~x!5
p2

360
~4p2x216px13!Au. ~51!

The two results agree forx5H/l→0, since JTM(0)
1JTE(0)5p2/1205JPWS(0). At the other extreme ofl
!H, bothJTM(x)1JTE(x) andJPWS(x) decay exponentially
fast, but with differentH/l-dependent coefficients. In pa
ticular, for largex5H/l, we get to leading order

JTM~x!1JTE~x!5
4p2

15
@x41O~x2!#Au ~x→`! ~52!

in contrast to the;x2 behavior in Eq.~51!.
Since bothJTM(x)1JTE(x) andJPWS(x) are positive for

all values ofx, the equilibrium position of two modulate
surfaces is predicted atb5l/2 in both approaches. This co
responds to aligning the maxima and minima of the t
corrugations~cf. Fig. 4!. The amplitudeuF lu of the lateral
force per unit area@Eq. ~45!# as obtained from both ap
proaches is plotted in Fig. 5. Interestingly, for fixedH there
is an optimal modulation lengthl'2.5H, at which the lat-
eral force is largest. Our result shows that the pairwise s
mation approximation is not justified beyondH/l'0.3. For
H/l of order one, the pairwise summation approach has
ready a relative error of about 150%. With increasingH/l
this error grows monotonically.

V. DISCUSSION AND OUTLOOK

We calculated normal and lateral Casimir forces betw
perfectly conducting modulated plates~Figs. 1 and 4! by
means of the path-integral quantization method~see Refs.
@55,47#, and Sec. II!. Based on the resultingexact expres-
sions for the Casimir energy@Eqs.~7!–~11!#, we performed a
perturbative calculation to second order in the deformat
parametera to obtain the results outlined in Sec. IV an
shown in Figs. 2 and 3~normal force! and Fig. 5~lateral
02211
p-

-

l-

n

n

force!. These results are thus exact to second order ina, and
correctly take into account the many-body nature of the C
simir interaction, going beyond the commonly used pairw
summation~PWS! of the van der Waals forces@11,60#. Our
results show significant deviations from PWS to second
der in a. However, for finite values ofa/l and a/H, there
will be corrections at higher orders ina/l anda/H; in the
present experiments, the sensitive range ofa/H is of the
order of 0.2 @50,52#, while we suggest values fora/l of
order 1 to probe the nontrivial shape dependence of the
simir force ~see below!. At present, it is not clear how rel
evant the perturbative results to second~or any finite! order
in a are for this range of the parametersa/l anda/H ~cf. the
related discussion in Sec.IV A!.

To make further connection between our findings and
experimental situations, corrections due to the finite cond
tivity of the plates, finite temperature, and surface roughn
should be taken into account as well@11,21,17–20,52#.
These corrections introduce additional length scales into
problem, which are in turn the plasma wavelengthlp of the
plates ~e.g., lp'100 nm for aluminum@50#!, the thermal
wavelengthlT5\c/(2kBT) ('4mm at 300°K), and the

FIG. 5. Rescaled lateral Casimir force amplitudeuF lu as ob-
tained from the path-integral approach@Eq. ~50!# ~solid curve!, and
from the pairwise summation approach~PWS! @Eq. ~51!# ~dashed
line!. The results hold to second order ina ~cf. the discussion in
Sec. V!.
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transverse correlation lengthj of the roughness~usually j
'300nm @16#!. Finite conductivity corrections become im
portant forH&10lp , as manifested in the cases of Al (lp
.100 nm) and Au (lp.138 nm), where they contribut
around 10% of the total Casimir force even atH51mm @19#.
The corrections due to finite temperature are negligible
H!lT , while at H@lT the high-temperature asymptot
limit holds. The plasma and thermal wavelengths thus p
vide, roughly speaking, lower and upper bounds forH, re-
spectively, such that our results for perfectly conduct
plates at zero temperature are valid forl,H@lp , and H
!lT .

The importance of stochastic surface roughness can
deduced from our calculations. The relative correctio
E cf /E to the Casimir energy due to roughness of amplituda
and transverse correlation lengthj should be of the form~to
second order ina) a2/H2 for j@H, and a2/(jH) for j
!H. The latter behavior is in accordance with Ref.@17#. The
experimental case corresponds to neither extreme, maki
more complete analysis necessary.

Given the above-mentioned limitations, as well as
technical difficulties in achieving the desirable geometries
experiments, it seems that it is difficult to conclusively e
tablish the nontrivial boundary dependence of the Casi
force. Figure 3 shows that in the experiment of Roy a
Mohideen@50#, the lengthsa and l are such that the non
trivial dependence of the Casimir force on the bound
shape is rather weak within the monitored range ofH/a, and
a pairwise summation of two-body forces is a possibly
equate approximation. Our results suggest that a setup wl
of the order ofa is better suited for observing the nontrivi
geometry dependence predicted above.

In general, one expects that as long as the nontrivial
tures in the geometry of the plates appear only as small
turbations to the trivial flat-plate geometry, the correspond
many-body effects of these features will be hard to meas
Considerably larger effects could result, however, in p
terned surfaces with geometrical features that come c
together across various parts of the surfaces. In such circ
stances a nonperturbative calculation of the forces beco
necessary. Indeed it is most desirable to find robust num
cal schemes~possibly along the lines of Ref.@57#! that can
also incorporate the finite conductivity effects and surfa
roughness typical for experimental set-ups.

Finally, we note that in the setup of Fig. 1, nontrivi
shape dependencies appear as corrections to a larger Ca
force. For the purpose of experimental tests, it is much m
desirable to devise setups which directly probe differenc
without the need for subtracting a larger baseline force.
example, in an atomic force experiment, simultaneous sc
ning of a flat and corrugated substrate would be desira
while in the torsion pendulum experiment, one can imag
suspending a spherical lens equidistantly from two pla
one of which is corrugated.
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APPENDIX A: PATH-INTEGRAL FORMULATION
FOR PARTITION FUNCTIONS

We consider N manifolds ~objects! Va with a
51, . . . ,N. Each point on the manifoldVa is represented by
a vector Xa(y)5(Xa

m(y);m51, . . . ,d); a D-dimensional
manifold Va embedded in ad-dimensional space is param
eterized byy5(y1 , . . . ,yD).

1. The Dirichlet boundary conditions

The Dirichlet boundary conditionF50 on the manifolds,
can be enforced by the functional)Xa

d@F(Xa)# in Eq. ~6a!,

which can be expressed in terms of auxiliary fieldsCa(Xa)
as @47,55#

)
Xa

d@F~Xa!#

[E DCa~Xa!expF i E
Va

dXaCa~Xa!F~Xa!G . ~A1!

The Gaussian integration overF in Eq. ~6a! can then be
performed, resulting in

ZD5E )
a51

N

DCa~Xa!e2S̃eff$C%. ~A2!

The effective actionS̃eff is given by

S̃eff$C%5
1

2 (
ab

E
Va

dXaE
Vb

dXbCa~Xa!

3G~Xa ,Xb!Cb~Xb!, ~A3!

where G(r ,r 8) is the two-point correlation function in an
unbounded bulk space. The functional integration over
curved manifoldsVa in Eq. ~A2! is facilitated by introduc-
ing the new fieldsca(y)[Ca@Xa(y)#. However, this trans-
formation requires some care regarding the integration m
sure*Va

dXa in Eq. ~A3!, as well as the functional measur

*DCa(Xa) in Eq. ~A2!. The result is@56,65#

E )
a

DCa~Xa!e2S̃eff$C%5E )
a

Dfa~y!e2Seff$f%,

~A4!

where the fieldfa(y)[@ga(y)#1/4ca(y) is given for each
manifold Va in terms of the determinantga(y) of its in-
duced metric

ga,i j ~y!5 (
m51

4 ]Xa
m

]yi

]Xa
m

]yj
. ~A5!
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The new effective actionSeff is then given by

Seff$f%5
1

2 (
ab

E dDyE dDy8fa~y!Gab~y,y8!fb~y8!,

~A6!

where

Gab~y,y8!5@ga~y!#1/4G@Xa~y!,Xb~y8!#@gb~y8!#1/4.
~A7!

The functional measure*Dfa(y) on the right-hand side o
Eq. ~A4! is the one conventionally used on a flat manifo
~the local coordinate system!. The corresponding Gaussia
integrations can thus be performed, resulting in Eqs.~7! and
~8a!, with GD[G from Eq. ~A7!. Note that in the presen
formulation, the trace and products ofG are carried out by
integratingy over the flat manifold of the local coordinat
system. Any dependence ofZD on the metricga,i j (y) is con-
tained explicitly in the definition ofG in Eq. ~A7!.

2. The Neumann boundary conditions

For the Neumann boundary condition]nF50 on the
manifolds, the boundary condition enforcing function
)Xa

d@]nF(Xa)# in Eq. ~6b! can again be expressed in term

of the auxiliary fieldsCa(Xa) as

)
Xa

d@]nF~Xa!#

[E DCa~Xa!expF i E
Va

dXaCa~Xa!]nF~Xa!G ~A8!

5E DCa~Xa!expF2 i E
Va

dXa@]nCa~Xa!#F~Xa!G ,
~A9!

where the second line follows from an integration by pa
The Gaussian integration overF in Eq. ~6b! can then be
performed, resulting in

ZN5E )
a51

N

DCa~Xa!e2S̃eff$C% ~A10!

with the effective action

S̃eff$C%5
1

2 (
ab

E
Va

dXaE
Vb

dXb@]nCa~Xa!#G~Xa ,Xb!

3@]nCb~Xb!#

5
1

2 (
ab

E
Va

dXaE
Vb

dXbCa~Xa!

3@]na
]nb

G~Xa ,Xb!#Cb~Xb!. ~A11!

Calculations along similar lines as in the previous paragr
then lead to Eqs.~7! and ~8b!.
02211
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APPENDIX B: CALCULATION OF THE KERNELS

1. The Dirichlet boundary conditions

The kernels for the Dirichlet boundary conditions we
defined in Eqs.~14! in terms of the functions in Eqs.~15!.
The explicit form of these functions is given by

F1~y!52
1

p2y4
2

p

8H3y

cosh~s!

sinh3~s!
, ~B1a!

F2~y!52
p

16H3y

sinh~s!

cosh3~s!
, ~B1b!

F3~y!52]z
2G~y,0!2

1

2
F1~y!, ~B1c!

F4~y!522F2~y!, ~B1d!

F5~y!52
1

2
F3~y!, ~B1e!

F6~y!52]z
2G~y,H !2

1

2
F2~y!, ~B1f!

with s5py/(2H).

2. The Neumann boundary conditions

For Neumann’s boundary conditions the functions appe
ing in the kernels in Eqs.~20! and defined in Eqs.~22! have
the explicit forms

F1~y!52G~y,0!1
1

4pHy

cosh~s!

sinh~s!
, ~B2a!

F2~y!52
p

16H3y

sinh~s!

cosh3~s!
, ~B2b!

F3~y!5g~y,0!1
p

16H3y

cosh~s!

sinh3~s!
, ~B2c!

F4~y!5
1

4pHy

sinh~s!

cosh~s!
, ~B2d!

F5~y!52
1

2
]z

2g~y,0!1
p3

32H5y

cosh3~s!

sinh5~s!

1
p3

16H5y

cosh~s!

sinh5~s!
, ~B2e!

F6~y!52]z
2g~y,H !2

p3

32H5y

sinh3~s!

cosh5~s!
1

p3

16H5y

sinh~s!

cosh5~s!
,

~B2f!
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F7~y!52G~y,0!1
1

4
F1~y!, ~B2g!

F8~y!52G~y,H !1
1

4
F4~y!, ~B2h!

F9~y!522F7~y!, ~B2i!

F10~y!52
1

2
F4~y!, ~B2j!
s

,
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F11~y!52
1

2
F3~y!, ~B2k!

F12~y!52g~y,H !2
1

2
F2~y!, ~B2l!

with g(y,z)5]z
2G(y,z).
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