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Normal and lateral Casimir forces between deformed plates
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The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study
this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the
electromagnetic field which properly treats the many-body nature of the interaction, going beyond the com-
monly used pairwise summatidiPW9 of van der Waals forces. For arbitrary deformations we provide an
analytical result for the deformation induced change in the Casimir energy, which is exact to second order in
the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal
and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a
corrugated plate shows an interesting crossover as a function of the ratio of the mean plate Higtatioe
corrugation length\: For \<H we find aslowerdecay~H ~*, compared to thél ~° behavior predicted by
PWS which we show to be valid only for=>H. The amplitude of the lateral force between two corrugated
plates which are out of registry is shown to have a maximum at an optimal wavelengyts 26 H. With
increasingH/\ =0.3 the PWS approach becomes a progressively worse description of the lateral force due to
many-body effects. These results may be of relevance for the design and operation of novel microelectrome-
chanical system&@MEMS) and other nanoscale devices.
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I. INTRODUCTION later by Van Blokland and Overbeek in 19FB3], were not
conclusive due to large experimental uncertainty. In recent
More than five decades ago, Casimir predicted that thgears, however, there have been a number of precision mea-
ground-state energy of photons is alternated in the presencgirements which set the modern stage in this field; starting in
of two parallel perfectly conducting metal plates in such a1997 by Lamoreaukl4] who used a torsion pendulum with
way as to lead to an observable macroscopic force betweegh electromechanical feedback system to measure the Ca-
them[1]. The attractive forcéper plate are#) has an uni-  simir force between a spherical surfatens and a flat plate.

versal amplitude, an energy scale set by the fundamentafiohideenet al. [15] measured the Casimir force between a
constantic, and decays with the distand¢ between the sphere mounted on the tip of a flexible cantilever and a flat

plates as plate by an atomic force microscope. Chetral. [16] mea-
) sured the Casimir force between a sphere and a flat plate in a
E:_ W_E (1) microelectromechanical systeVMEMS) using a microma-
A 240 44" chined torsional device. All these experiments confirm the

Casimir force formula in the range from 100 nm to several

This remarkable prediction of quantum electrodynamics hasicrometer to a few percent accuracy. In order to achieve
implications in many contexts ranging from surface physicsthis high precision, a careful analysis of the corrections due
[2], particle physicq3], to cosmology[4]. Because of its to the finite conductivity of the metal surfaces, roughness,
fundamental nature, the Casimir effect has motivated exterand nonzero temperature is indispensglle, 17—21. The
sive theoretical work, especially during the last decade. Thabove cited experiments in fact deviate from the flat-plate
pioneering result in Eq(l) has been generalized to include geometry corresponding to E#) by using a plane-sphere
important effects such as the finite conductivity and surfaceonfiguration(thus avoiding the experimental difficulty of
roughness of the plates, finite temperature, and even movinkgeping two flat surfaces sufficiently paralleThe force for
plates in the dynamic counterpart to the Casimir effsee  a spherical surface witflarge radiusR at a distanceH of
Refs.[5-11] for reviews. closest surface-to-surface approach from a flat plate can then

On the experimental front, the early attempts at observindpe calculated from the Casimir potenti&lH) for two flat
the Casimir force, initiated by Sparnaay in 1988] and plates by using theroximity force rule[22], see Eq.(28)
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below. Recently, however, Bresst al. [23] measured the
Casimir force between two parallel flat surfaces directly,
confirming Eq.(1) to 15% accuracy.

The Casimir force in Eqi1l) has analogies to the effective
force between particles or plates immersed in a system close
to its critical point, which arises due to the modification of
thermal fluctuations of the bulk order parameter. This effect
was originally predicted in 1978 by Fisher and de Gennes F|G. 1. The setup used for calculating the Casimir energy be-
[24] for colloidal particles immersed in a binary quuid MiX- tween a flat and a corrugated plate at mean separktion
ture near its critical demixing point, and observed experi-
mentally for silica spheres immersed in a mixture of waterterial properties offers the opportunity to manipulate this in-
and oil (2,6 Iutidine [25]. Related phenomena occur in lig- teraction in a controlled way, e.g., by tailoring the shape of
uid crystals[26], microemulsiong27], and for inclusions in  the interacting surfaces. On the other hand, movable ele-
fluctuating membranel8] (see Ref[10] for a review. In ments of nanoscale devices may unwantedly stick together
recent years, the critical-point Casimir effect has attractediue to the strong attractive Casimir force, impeding their
increasing theoreticdl10,29—33 and experimental interest operation[44,45. This so-called stiction could possibly be
[34,35. For Hé wetting films close to the superfluid phase prevented by using shapés.g., suitable modulationsaind
transition, the theoretical predictiog9] for critical-point  materials of movable elements such that the Casimir force
Casimir forces between parallel surfaces exhibiting the Dibetween them is repulsiv@r at least reduced
richlet boundary conditions have been confirmed quantita- Due to the importance of the Casimir force to basic and
tively [35]. applied science, it is highly desirable to demonstrate its

Equation (1) for the electromagnetic Casimir force is strong shape dependence in a setup that clearly shows its
valid in the ideal limit of perfectly conducting plates. In the distinction from the usual pairwise additive interactipAg).
more general context of the Lifshitz theory for dielectric In a previous Lettef48] we pointed out that a promising
bodies[36], this corresponds to an infinite dielectric constantroute to this end is via modifications of the parallel plate
e for all frequenciesw. For finitee=¢(w), this power law geometry, since measurement of the putative repulsive Ca-
for the force is recovered for large distancEs>c/wy, simir interaction for a conducting sphere is experimentally
wherewy is the smallest resonan¢absorption frequency of  difficult. The corrections due to deformations, such as sinu-
the dielectric(usually ¢/ wy=~10-100 nm). In this, the so- soidal corrugations, of the metal plates can be significant,
called retarded, limit, the force isniversalin the sense that and have been studi¢d9,21]. In Ref.[47] it was proposed
it only depends on the electrostatic dielectric constant that an artificially corrugated geometry can be used to probe
=¢(0). Theopposite limit ofH<c/w, gives the unretarded novel features of the Casimir force. In searching for non-
van der Waals forcd/A~H 3. The interpretation of the trivial boundary dependences, Roy and Mohid¢g@] ex-
Casimir force in terms of changes in zero-point vacuum elecamined the force between a sphere and a sinusoidally corru-
tromagnetic energy suggests it to be a strong function ofjated plate with amplitudei~60 nm and wavelength
geometry; probing the global shape of the boundary that cor==1.1um. Over the range of separatiofit~0.1—0.9um,
fines the vacuum fluctuation87]. Indeed, whereas the van the observed force showed clear deviations from the depen-
der Waals force between electrically polarizable particles iglence expected on the basis of decomposing the Casimir
always attractive, even theign of the Casimir force is ge- force to a sum of pairwise contributiorig effect, an aver-
ometry dependent, and can bepulsive e.g., for a thin age over the variations in separatinn$his experimental
spherical or cubic conducting shéB8—41. The repulsive result motivated our calculation of the exact Casimir force in
Casimir forces are expected also whmagneticproperties the geometry depicted in Fig. 1, without the assumption of
of the boundaries are exploited, e.g., by using a perfectlpairwise additivity. Our analytic resulssee Eq.(32) and
conducting and an infinitely permeable plate]. Fig. 2] hold to second order in, and show that for fixedH

Apart from the importance of these phenomena to basithe corrections due to corrugation strongly dependorin
science, the ongoing refinement of nanofabrication technolfact, for H/A>1 the correction is by a factor ¢i/\ larger
ogy in electronics and mechanics also provides new impetuthan in the opposite limit oH/A <1, where the assumption
for the understanding of such systems in view of application®f pairwise additivity is asymptotically correct. However, the
in nanotechnology. On length scales of about 100 nm anéxperiments of Ref[50] are performed in the range of
below, the Casimir force becomes comparable or even domH/\~0.1-0.8 where the corrections to pairwise additivity
nant to other forcep43], and thus must be taken into account may not be significant enough to account for the observed
in the design and operation of nanoscale deviekg45. deviations. In Ref[51] it has been suggested that these de-
Indeed, the experiment of Cha al. [16] demonstrates the viations are due to kteral force that tends to preferentially
possibility for novel actuation schemes in microelectrome-position the spherical AFM tip on top of local maxima of the
chanical systems based on the Casimir force. They also shomodulated surfac@eading to a smaller separation and stron-
that the Casimir force can be used to contiphamicprop-  ger force. Based on our results, we thus propose that the
erties of such systems, e.g., in a nonlinear micromechanicahape dependence of the Casimir force can be probed more
Casimir oscillatof 46]. The above-mentioned dependence ofclearly by going to modulations of shorter wavelength; a
strength and sign of the Casimir force on geometry and mahard but achievable goal.
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The originally predicted Casimir force between two flat due to the gauge invariance of the electromagnetic field can
metal plategor between a flat and a deformed plai®e for  be eliminated by the Faddeev-Popov gauge fixing procedure
symmetry reasons, oriented normal to the surfaces of thgt7,53.
plates. However, if both plates are deformed there is also a However, for the uniaxial deformations under consider-
lateral Casimir force, as predicted in Refd7] and con- ation here, we can develop a simpler quantization scheme, by
firmed experimentally52]. To date, the lateral force between a similar reasoning as used in the context of waveguides with
two corrugated plates has been calculated explicitly onlyconstant cross-sectional shags]. In this case, the trans-
within the approximative approach of a pairwise summatiorverse magnetiqTM) waves and transverse electriTE)
of the van der Waals forces, see, e.g., Ré&f]. Here we waves(with respect to the translational invariayj direc-
calculate the lateral force exactly to second order in the cortion) constitute a complete set of modes to describe an arbi-
rugation amplitude for the geometry shown in Fig. 4, withouttrary electromagnetic field between the plaftg4]. For T™M
referring to a pairwise summation scheme. As for the normalvaves all field components are then uniquely given by a
force, our resultdcf. Eq. (46) and Fig. § show that the scalar function corresponding to the electric field along the
lateral force strongly depends on the ratio of the corrugatiorinvariant direction,
lengthA and mean plate separatibh We find the pairwise
summation to be a valid approximation only for sufficiently Dru(t,y1,Y2,2) =Ex(t,y1,Y2,2), 3
small values oH/\=<0.3. However, the experiment of Ref.

[52] is performed at a ratidH/A~0.18 where we do not with the Dirichlet boundary conditioni)TM|5u=O on each

expect significant deviations from the pairwise summationsyfaces,. The TE waves are analogously described by the

approximation. _ ~ scalar function
The outline of the paper is as follows: In the following
section we set up the general path-integral formulation for D1e(t,Y1,Y2,2)=Bo(t,Y1,Y2,2), (4)

the Casimir energy of the electromagnetic gauge field. By
separating into transversal electric and magnetic modes, Wgith the Neumann boundary conditiah® /s =0, where
reduce the problem to two decoupled problems for scalar «

fields which differ only in their boundary conditions. In each In 1S theb nt(xma:ll ctjﬁn\{[\?vtlve Ioftthe Zﬁrf?%v%?lﬂt':]% |Et0ntrt1e h
case, we calculate the Casimir energy for general plate gepace between the two plates. Alter a WWick rotation 1o the

- B - O_. .
formations perturbatively. In Sec. Ill, we give a brief sum- Imaginary time variablX' =ict, both fields®ry and ®re

mary of the pairwise summation approach, and the resultinﬁan be quantized using the Euclidean action

Casimir interaction. Section IV gives detailed results on both

the normal and the lateral force between sinusoidally corru- Se{d)= Ef d*X(V D)2, (5)
gated plates. We conclude by discussing the relevance of our 2

results to experiments. Details of the calculations are left to

the Appendices. In the 4D Euclidean space, the plates are parametrized by

X1(y)=[y,hi(y1)] and Xy(y)=[y,H+hy(ys)], wherey
=(Y0.Y1.¥2)=(Yo.y)), andyo=ict.
[l. PATH-INTEGRAL FORMULATION In order to obtain the ground-state energy from this quan-
OF THE CASIMIR ENERGY tization scheme, we now consider the partition functiéis
and Z,, for the scalar field Euclidean acti@ both with the
B . X o Dirichlet (D) and Neumanr(N) boundary conditions at the
(¢=1,2) of mean separatiohi, which are infinitely ex- surfaces. Following Refd.55,47 (cf. also Ref.[56]), we

tended along the plane spanned Wgy=(y,,y,). Assuming " . !
static and uniaxial deformations without overhangs, their'mplement the boundary conditions & using & functions,

profiles are described by height functioms,(y;), with leading to the partition functions
fdy;h,(y;)=0. The Casimir energy at zero temperature

2
corresponds to the difference of the ground-state energies of _ i _
the quantized electromagnetiEM) field for plates at dis- o Z, Dq’}l 1;{ ALP(Xo)Jex = S P}/R),

We consider two perfectly conducting deformed pladgs

tanceH and atH — oo, respectively. To obtain this energy, we (6a)
employ the path-integral quantization method. For general
deformations, it is necessary to consider the action 1 2
Ev=g chaﬂl 1;[ S 9@ (X,) Jexp(— Se{ @}/ H),
s iat=— [ gixp, pav (6b)
em{Au}_ - Zf d XF[,LVF ’ (2)

whereZ; is the partition function of the space without plates.

Note that in Eqs(6a) and(6b) no gauge fixing procedure is
where X denotes a point of 4D spacetim&,,,=d,A,  needed, since the relevant degrees of freedom are expressed
—d,A,, and the four potentiah , is subject to the boundary in terms of the field€E, andB; itself rather than the vector
condition that the tangential components of the electric fieltpotentialA, in Eq. (2). The details of the calculation of the
vanish on the surfaces. The redundant degrees of freedopartition functions are left to Appendix A, and yield
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1 1 corresponding to two flat plates. The first-order resufigh
InZp=—5trinl'p, InZy=—StrinTy. (7)  vanishes since we assume, without loss of generality, that the
mean deformations are zerpdy,h,(y1)=0. Thecomplete
The kerneld'p andI'y are given by second-order contribution is given by

Tolap(¥.y) =[9a(yD) 1*GIXaly) = Xa(y) 19y D 1Y,
[Folap(y,y ) =[9a(y) ]7"GLXa(y) = Xs(y")I[9p(Y1 ](88) InZD|2___j dyiThL(y) T2+ [he yl)]z}f

[FN]aB(yly/):[ga(yl)]1/4‘9na(yl)anﬁ(yi)G[Xa(y)_Xﬁ(y/)]
X[gp(yD]™, (8b)
whereg,(y1)=1+[h/(y1)]? is the determinant of the in-

duced metric, and,(y1) =(—1)“g, *Ay1)[h;(y1),0,— 1]
is the normal vector to the surfa&;,, while

(27 )3

+ a0 o[ ity P ity
1 1
+§f d3yf d3y’KD(|y_y’|)[_§[hl(yl)

1
11 —hy(y) 1= E[hz(h)—hz(%)]z]
G(r)=— ) 9

1
_ _ _ _ - Ef d3yf d®" Qo(ly—y'Dhi(y1)ha(y1)
is the free correlation function(Gaussian propagatocorre-
sponding to the Euclidean acti@ in Eqg. (5). In the follow- +hy(y)hi(yD]. (13
ing, we denote position vectors in the 4D Euclidean space by
r=(y,z). We can then extract the Casimir ene@per unit  |n the first term, which is further discussed beloi/,
area as =Vh,. The kernels appearing above are given 5§

EH)=E(H)~ lim E(H) (19 Ko(y)=F1(y)#ZG(y,0)+F1(y)Fs(y) +Fa(y)?,
- (143

with
Qo(Y)=Fa(y)%3G(y,H) +F4(y)Fg(y) +Fa(y)?,
E(H) = — 2tz tin 2,1 (11) (14D
=——[InZy+In Zy],
AL-TTP N with the set of functions

whereA is the surface area of the plates, dndenotes the 3
. ea o1 e pe d*p . G(p.0)
overall Euclidean length in time direction. Fi(y)= giPy , (153
The above equations provide aractresult which yields (2m)3 Mp,H)
the Casimir energy for arbitrary static uniaxial deformations.
These equations can be used to evaluate the Casimir force by d®p . G(p,0)
a recently developed numerical approd6if]. However, in 2(y)—f 3€ Nop H
: : ; . (2m) (p,H)
order to obtain a closed analytical expression for the partition
functions in terms of the kernels in Ed8), here we resort to 3
a perturbative expansion with respect to the height profiles (y)zf d°p eip_yG(p,H)
h.(y1). In fact, for this expansion to be valid, we have to 3 (2m)3 N(p,H)
assume that the amplitude of the deformations sets the small-
est(geometrig length scale of the system. In what follows, 3
. : : . d>p . G(p,H)
the perturbation theory is carried out to second order in Fa(y)= Se'Py , (150
h,(y,), separately for the two types of boundary conditions. (2m) Mp,H)
However, within second order in the height profile, the result

3,G(p,H), (15b

9,G(p,H), (150

is exact in the sense that it correctly takes into account the oy G(p,0) )
many-body nature of the Casimir interaction. F5(y)=f (277)36 N(p'H)[aZG(p’H)] . (159
A. The Dirichlet boundary conditions G(p,

Following Refs.[55,47, we expand Ir€ in a series F6(y)=J’ 2 )39' y/\/(p H)['? ,G(p,H)J?, (150
In Zp|o+In Zp|1+In Zp|,+ - - -, where the subscript indi- &
cates the corresponding orderhip. The lowest-order result wherey=|y|, p=|p|, G(p,2)=(1/2)pe P is the partially
IS Fourier transformed free propagator of Eq9), and

AL o2 Mp,H)=[G(p,0)]>-[G(p,H)]?. The functions in Egs.

In Zpo=— ’ (120 (15 can be calculated explicitlisee Appendix BJ, leading
H3 1440 to the simple result
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Ko(Y)=2Kp (Y) + Kp red ¥, (16a d3p "

(2m)®

1
in 2=+ 5 | dY{Thiy 12+ thgy 7 |
> 1 sink(s)

QD(Y):EB?—, (16b) 5
HOy? coslf(s) w1 . i
+ 5 | y{[ha(y) 17+ [ha(y1) 1%}
with 24oH5f
l 3 3y, ! !
Ko(Y) % +2fd yfd y"Kn(lyo=yol.lyj=yjl)

1
Xy — E[hl(yl) —hy(yD1?

Koredy)=— gt oo = SO g
Dred Y 27%y® 128 H6y? sintf(s) ,

1 1
LA R R R
wheres=7y/(2H). The kernelKy has two contributions of

different origin. In the limitH—o, corresponding to two % =yl lyi—yiDh Yho(y!)
decoupled surfaces, one hag— 2Ky .., while Qp(y) van- Qn(lyo=yalIy y||| (ha(ya)halys
ishes. Thus the paK ., describes a single-surface. The two +hy(y)hi(yy)]. (19

(H-independentsingle surface contributions have to be sub-

tracted from the total kernéd in order to obtain the regu- The kernels for the Neumann boundary conditions assume a
larized kernelKp g Which has to be used in the calculation more complicated form, since the normal derivative breaks
of the Casimir energy in Eq.10). For finite H, the kernel the equivalence of space and time directions. The result reads
Kp(y) actually has contributions from botbutsideand in-

side the cavity, whereaXp .. comes from outside and the  Ky(|yo|.|yj|)=Fi(y)929(y.,0) + Fa(y) Fs(y) + Fa(y)?

second term oKp ¢4 from inside. The kerneQp(y) has

only contributions from inside the cavity. +019;[ F1(y) 09, Gy, 0+ F1(y) did; F7(y)
It is instructive to discuss the meaning of the contribu- o g 124 2a(v.0

tions to InZp|, in Eq. (13). The terms in the first row are FoY)aiFoY)1+ 241 F1(y)519(y.0)

independent and formally divergent. They do not contribute + F1(y)diFra(y) + Fa(y) diFo(y)], (208

to the Casimir force between the surfaces, but yield a quan-

tum electrodynamical increase of the surface tension of thEQN(Iyol,|y|||)=}"4(y)&§g(y,H)+]-'4(y)]-‘6(y)+]-‘2(y)2
individual surfaces after introducing a suitable short-distance

cutoff [59]. The necessity for a cutoff stems from our con- + 3;0;[ Fa(y) 0;9;G(y,H) + Fu(y) d;d; Fg(y)
tinuum approach which breaks down on microscopic length

scales. The remaining terms in E43) all contribute to the + 0. F1oY) 9 F1oy) 1+ 20;[ Fa(y) 9i9(y,H)

Casimir force(with Ky replaced byKp ). The local con- + Fa(Y) 0 FalY) + Fo(¥) 1 Fao(y)],  (20b)

tributions in the second row are hatfue to TM modes only

of the individual surfacénonmixed terms which follow in  \ynere summation over=1.2 andj =1,2 is understood. Note
second _order of perturbation theory i, from _the pairwise  hat g, andd; act on thespatialcomponenty of y only. This
summation approach, cf. the second term in E). The s the reason why the rotational symmetry within the three-
third row in Eq.(13) describes nonlocal individual surface gimensionaly space is broken for Neumann boundary con-
contnbuuon; which are missing in the pairwise summationgitions. For translationally invariant profiles,(y;) only
approaph. Finally, the last row accounts for contrlb_utlons d“,fferms withi=j =1 contribute as can be seen by integration
to the interference between the two surface profiles. Obwby parts. However, as in the case of the Dirichlet boundary

ously, it has a more complicated form than the Co”esF’O”di”Qonditions, the above result is valid for ahy(y), but then

last term in the approximative pairwise summation result inoon 1o longer be interpreted as the contribution from TE

Eq. (26). modes to the electrodynamic Casimir energy.
Here, we have introduced
B. The Neumann boundary conditions
Expanding InZy in a series with respect to, as before, 3 ip-y
the lowest-order result is the same as for the Dirichlet case, 9(y,2)= (277)39 9(p,2), (21
2
In ZN|O:A_I; %40 (18 with g(p,2)=92G(p,2)=(p/2)e PZ, and the functions
H Fi(y) defined as

and the first-order result l&y|, again vanishes. The com- 4 0)

plete second-order result assumes a similar form as for the f’l(y):f P_ainy 9(p. , (223
Dirichlet boundary conditions. We find (2m)3 n(p,H)
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d*p . g(p,0 tion (PWS. In the latter approach, the Casimir eneéyH)
fz(Y)Zf ;e 0.H) 3,9(p,H), (22b  for two arbitrary shaped bodies of mean distarideis ob-
(27) 7P tained by the pairwise summation of a two-body potential
& (p.H) U(r). In terms of the deformation fields, this leads to
p i g p!
fs(Y):f 3e|p-y d,9(p,H), (229 1 . hy(yq)
(2m?® w(p.H) 5(H):_f dzyufdzyu'f dzf 4
, A Hthylyy)  J—o
d : H) / ,
7= | 5 F;ge'p'yfli‘; 5 (e XUY=y))?+ (2=, 23
aa 3
In general, these integrals need to be computed numerically.
d®p g(p,0) 5 However, there are the following simplifications. If one of
fs(y):f (277)3‘9 n(p'H)[ézg(p,H)] . (228 the plates is flat, e.gh;(y;)=0, the integrals can be per-
formed explicitly, leading to the simple result
d°p g(p,H)
= ip-y ’ 2 1
Fol¥) f 2m3C p(p.Ay PP, (220 EH)= % f A2y ol H+ha(y1)], (24)
d3p in.y 9(P.0) 5 where&, is here the energy of two flat plates at distahte
7:7(Y)=f 2m)? P yn(p 1 [9,G(p,H)]% (229  calculated from the same pair potentia(r). Thus, in this
7 ’ particular case the pairwise summation approximation is
3 equivalent to a geometrical average of the flat-plate energy
P (y):J d°p Py 9(p.H) [4,G(p.H)]? (221  With locally varying plate distance over the plate area.
8 (2m)° n(p,H) 2 ’ For two deformed plates, the integrals in E2@), in gen-
eral, can only be performed perturbatively in the height pro-
d’p ., 9(p.H) file. To do so, we follow the usual PWS approximation and
]-‘g(y)=f ;e H 3,G(p,H), (22) assume a “renormalized” retarded van der Waals potential
(27r) n(p,H) [11,60
d°p 9(p,0) whe
F =f e'Py 3,G(p,H), 22 ur)y=———r"", 25
10(Y) 2m3C (A (p.H),  (22) (N==—,r (25

d>p

ip-y

g(p,0)

3
fll(y):f (277)3e

p.11) 9P H)3:G(p.H),
(22k)

in.y 9(P.H)

d3p
flz(y)=f ;€

(2)

with 7(p,H)=[g(p,0)]1°—[g(p,H)]%. The explicit form of

U(p-H) é)Zg(p!H)aZ(B(p!H)i
(220

these functions can be found in Appendix B2.

The “renormalization factor” of the pair potential is chosen
here such that in the limit of two flat plates the exact Casimir
result&y, cf. Eq.(32), is recovered. To second order lin,
one obtains now

@ he  w?

S~ s~ o IO

o hc q
+ﬂAf Yuf

ha(y1+y1)ha(y1)
(H2+ ‘!2)7/2

(26)

The result in Eq(19) has the same type of contributions
as discussed for the Dirichlet case. Both the Dirichlet and-or simple types of plate modulations, the integrals over the
Neumann cases include “surface tension” contributions, butleformation fields can be calculated easily. This will allow
with opposite signs, and identical local terfsgecond row in  us a direct assessment of the validity range of the pairwise
Eg. (19)]. Since these local terms are the ofhonmixed ~ summation approach by comparing Eg6) to the predic-
contributions obtained by the pairwise summation approactjons of the path-integral technique.
the latter does not distinguish between the two types of
boundary conditions. The main results of our general analy-
sis of surface deformations are contained in E48) and
(19). In Sec. IV we apply these results to the important case We now apply the results of Sec. Il to static uniaxial
of modulated plates. modulations of two parallel plates. In the first part we focus
on thenormal Casimir force between a flat and a corrugated
plate. This force per unit area is defined as

IV. MODULATED PLATES

Ill. PAIRWISE SUMMATION APPROXIMATION

The path-integral approach may be compared with the = :_‘9_5 27)
commonly used approximative method of pairwise summa- " JH
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in terms of the Casimir energy in ELO). However, in most  (13) and(19) reduces to the Fourier transforming the kernels
of the experiments, the flat plate is replaced by a sphericakith respect to/;. The corresponding expression omn Eq.
lens with large radiu®>H. In the latter case the normal (10) can be written as

force can be obtained by using the Derjaguin approximation

(or proximity force rulé [22], leading to E=Eot &t (39
with
FDA,n: 27TRg (28) 2
m° hC
Therefore, in the context of the normal Casimir force, we Co=— 72043’
just calculateg explicitly.
In the second part of this section we generalize our results heal H
for two modulated plates with equal modulation length, but E=— ——| Gl = | +Gg —| [+ O(@3%), (32
with a phase shift between them. Due to the broken transla- H® A A

tional symmetry, there is now alsolateral force between

the two plates which arises solely from the cross-term

~h;h, in Egs.(13) and(19). If we denote the shift between
the two corrugations by the length, the lateral force is
obtained from

€

F|:_%.

(29

A. Normal force

As a prototype of a corrugated surface, and to make con-

tact with recent experiments by Roy and Mohid¢g@], we
consider a sinusoidally modulated plate along yhedirec-
tion, with amplitudea, wavelength, and mean distandd
from the flat plate(see Fig. 1, i.e.,
hl(yl):aCOiZWyll)\) and hz(y1)=0 (30)

For this particular deformatiof61], only the Fourier mode
of wavelength\ in the kernelsKp(y) andKy(lyol.lyl) is
probed. Thus, the calculation of B and InZy via Egs.

whereé&, is the energy of two flat plates and the index cf of

SSCf stands for corrugated-flat geometry. The notaii@fa®)

indicates that the third and higher powersadtH and a/x

are not considered here. The corrugation induced contribu-
tions to& from TM and TE modes at second orderarare
governed by the functions

2

Gru(X)= 755+ 9o(X), (33

2
a
Gre(X) = 7557 91(¥) +XG(X) +x%g5(x).  (33b)
The first term?/480 in both equations corresponds to the
local contributions, cf. the second row in E¢$3) and(19).
Since these are the only terms which are obtained within a
pairwise summation approach, the functigngx) represent
nontrivial corrections which are neglected in the pairwise
summation scheme. These functions can be calculated from
the kernelKp(y) andKy(|yol.|yl) by the Fourier transfor-
mation, leading to the expressions

I @2 (= sin(d4xs)| 1 2  cosH(s)
go(x)——@Jr@xﬂL@ 7wdS—4XS —E @ sinhe(s) , (343
oA @ (= sin(4xs)| 13 4 5 cosis) 3 coshs) 1 cosk(s)
907" 280" 1220" " 6a) .9 Taxs | a5 3% am? | 295 SMNS) 297 sini(s) | 25 sinff(s)
1 coshis) 1 cosHt(s) 5 cosH(s) 11 77_2
S sintP(s) 2 sintf(s) 4 sintf(s) s*sintf(s)| 64
o 1 1 2 1 1 1 coshs) 1 coshs)
dScog4xs)| = + —— — — — — B s , 34b)
xf_w scog4xs) 56+ 4582 3s* & s;inl‘?(s)jL s sinf(s) &3 sinl‘?’(s)l (340
(e _ 5 1coshs) 2 1 1 cosks) 1 cosH(s)
92(x)= af_mdssm(4xs) 45 $+ s sinh(s) i s sink?(s) i s sink?(s) s sintf(s) |’ (349
o (> . 4 2 coshls) 1 cosH(s)
gg,(x)—s—2 7wd55|n(4xs) _§_§+§ Sinf(s) S Sn?(s) . (340
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Before giving the explicit forms of these functions, let us by corresponding terms of opposite sign in the nontrivial
consider two limiting cases. Far—0, or\/H—x, we have corrections described kyy(x) andg,(x). The most relevant
go(x), 91(x)—0, andg,(x), gs(x) converge to finite num- contributions in this limit are now provided by the first term
bers, thus leaving in Eq$33) only the local contributions in go(x) andg4(x) in Eqg. (35), leading to the novel scaling
from the pairwise summation approach. In the opposite limitbehaviorGyre(X) ~Xx+ O(1/x).

x—o, or \/H—0, the integrals in Eq¥34) decay to zero, The integrals in Eq9.34) can be carried out fox>0, or
leading to equivalently forx>0, by closing the integration contour via
a semicircle at infinity in the upper half of the complex

w? 1 5
9000)= 280\ ™~ 1+ 126

77_2

1 +O(e 4™, plane, using the residue theorg¢62]. The resulting sum of
an infinite series of residues can be expressed in terms of the
polylogarithm function63]

T 1
—x—1+ +O(e 4™, (35

. ar
9:0= 280! 3 8%

o] ZV
_ _ = —, (36)
and bothg,(x) andgs(x) areO(e™*™). From this result it v=1 v
is obvious that fo\/H—0 in Egs.(33), the termsm?/480
from the pairwise summation approach are exactly canceleléading to, withu=exp(—4mx),

ax et X3 X2

. - X .
Gmu(x)= 280 30 In(l—u)+1920(L|2(1 u)+ ﬁle(u)Jrﬂng(u)JrELu(u)

1 6
s+ - gt - . 37

m3x A
Gre(x)= 14420 Wln(l— u)+

2

) X 1
———Liy,(1-u)— (1+2x )Lis(u)+ 28 64 Lis(u)

192K

6
(38)

+5XL' + ! Li + ! 7L' 2L +
&4 i4(u) Tog? is(u) P b ig(U) — m“Liys(u) 135

It should be noted that the appearance of the polylogarithr
function in quantum electrodynamics is also known from the 175
fine-structure constant dependent corrections to the gyro
magnetic ratio of the electrdi64]. 15

Figure 2 displays separately the contributions frG¥ ol s
and G¢ to the corrugation induced correctidly to the Ca-
simir energy. WhileGy(H/\) is a monotonically increasing
function of H/\, Gtg(H/\) displays a minimum foH/\ U s
~0.3.

Examining the limiting behaviors of Eq31) is instruc- 05
tive. In the limitA>H, the functions€G+),, andG+g approach 025 ! . . !
constant values, and the Casimir energy takes the 0
N -independent form

hc 2 2 FIG. 2. Rescaled correctiafy; to the Casimir energy due to the

T a ) . .

= 1+3_ +(9(a3) (39 corrugation as given by the terms in square brackets of(&f.
3 720 (upper curveg The lower curves show the separate contributions

from TM and TE modes. The rescaling & is chosen such that the
Note thatonly in this case both wave types provide the samecorresponding prediction of the pairwise summati®Wws ap-
contribution to the total energy, and the result agrees with thgroximation[second term of Eq(26)] is a constantdashed lines
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pairwise summation approximatigeee Fig. 2. In the oppo-
site limit of A<H, as demonstrated above, bd#y,, and

Gre grow linearly inH/\. Therefore, in this limit the cor-
rection to the Casimir energy decays according tslcaver

power law inH, as

2 a2

1+27T}\_H

_ﬁCﬂ'

—$7—20 +O(&3),

(40)

with an amplitude proportional to X/ Note that this behav-

ior is completely missed by the pairwise summation ap-

proach which always yields ®-independent Casimir energy
in the presence of modulations on one plate.

In the limit A<a,(H—a) we expect that the factor mul-
tiplying a/H in Eq. (40) saturates at a number of order unity.

This result can be justified by noting that the most relevanf’
contributions to the force come from modes of wavelength o
orderH. The corrugation also affects modes of wavelengthf
of order \, but these modes contribute to the single plate

energy only. Thus, in the extreme limit<a,(H—a), one
has a clear separation of the length scédeand\, and the
modes “see” flat plates at the reduced separatibna, (a
>0) [48]. More recently, arexactapproach for calculating

PHYSICAL REVIEW A67, 022114 (2003

25

a/A =04

/ "reduced distance”

£ 3
n2 th

720

. 15f

H/a

FIG. 3. The rescaled Casimir energy to second ordev i and
/\ as given by Eq.(31) for two fixed values ofa/\, shown
f’;’tS dashed curves. The rescaling is chosen such that the Casimir
energy of two flat plates becomes ofi®rizontal ling. The curve
or a/\=0.05 corresponds to the parameters used in the experiment
of Ref. [50], whereH/a varies between approximately 3 and 17.
Note that the dashed lines are accurate predictions for the true Ca-
simir energy in the limia<<H,\ only, as indicated by the question
mark (see text and the discussion in Sek.¥or comparison, the
result of the pairwise summatioPWS approximation[cf. Eqg.

the Casimir force has been developed which confirms th€24)] is shown. It agrees with the perturbative result in the limit

above argument and yields for the case of TM mo(®is
richlet boundary conditions at both platebe exact result
[57],

2 hc

—ﬁ)m, A<<a,(H—a).

(41)

This leads to a correction of the ordeiH (with prefactor 3
after expansion ira.

The above behavior of the correcti@fy for small and
largeH/\ clarifies the limits of validity of previous results in

the literature. The upper dashed line in Fig. 2 corresponds t

the PWS approximatiofsee Refs[11,60 and Sec. Il). It is
evident that this approximation is accurate only tof\
—0 (which in this limit is equivalent to the Derjaguin
method to any order in the amplitude[22]). Already for
H/\ of order unity, the PWS approximation breaks down.
The opposite limitH/\ — o, corroborates the result reported
in Ref.[21], which is larger than the former by a factor of
H/N>1. However, in experiments with lateral distortions

=oo only. In the opposite limit\/a— 0, the energy can presumably
be estimated from a reduced distance arguniéBi57 [see Eq.
4]

comparable, but becomes insignificant in the proposed limit
of A\<H,R. Second, as long &> H,\ the curvature of the

tip does not lead to nontrivial corrections, and the force can
be related to the energy per surface aféa Eq. (31) by the
proximity force ruleF=2#RE in Eq. (28). These formulas
thus provide a specific recipe for evaluating the nontrivial
8hape dependences of the Casimir force in the experimental
setup.

The net Casimir energ¥ is shown in Fig. 3 for two
representative values affA, including the parameters used
in the experiment of Ref[50]. Note that the corrugation
induced correction leads to a larger enefjyand hence the
corresponding (attractive force F=27RE is enhanced
at least to second order i@H and a/\, which becomes
exact in the limita<<H,\. This trend suggests, in particular,

N of the order ofH, none of the above limiting cases that in the setup of Fig. 1 the force is always attractive,
is realized, which makes the present, more complete analysathough definite statements for valuesadH and a/\ of
necessary. Our results fot/A>1 should also be relevant order 1 can only be made by using nonperturbative methods,
for the case where the surface is stochastically roughas indicated by the question mark in Fig(sge Ref[57] and

corresponding to a relatively small and varying see
Sec. V.

The use of a spherical tip, of large radiBs in experi-

the discussion in Sec.)VHowever, in the opposite limit, for
which the tips of the modulations of the lower plate in Fig. 1
almost touch the uppédflat) plate, i.e.,H—a<\?/a,a, the

ments[50] causes some differences from the flat-plate geomenergy can be calculategkactlyby using the Derjaguin ap-
etry used in our calculations. First, the positioning of the tipproximation for the individual tips of the modulations; this

relative to the modulations is important whehand \ are

leads to
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kernelsQp(y) and Qn(lyol.ly;). Separating the contribu-
tions from TM and TE modes, we find

hca® (2mb H H 5
ECC: H5 CO T ‘JTM X +‘JTE X +O(a)
(46)
FIG. 4. Geometry used for calculating the lateral Casimir force
between two corrugated plates with lateral shifThe equilibrium ~ With
position is atb=\/2.
. 72\2 he ! . - Jrm(X) =]o(X), (479
T 3840 al?(H—a)%?’ —a=u, (42)
Ire(x) =] 1(X) = X2] 2(X) +x*]3(X), (47b)

which corresponds to the result in E@4) after takingH

—a—0. The above result implies that at least for the par-

ticular case of an uniaxial sinusoidal corrugation the correand the functiong,,(x) are given by
sponding force==27RE is attractive when the surfaces al-

most touch.
. w (> sin(4xs) sintf(s)
B. Lateral force Jo(x)= 32| 95 axs coslf(s)’ (483
As a natural generalization of the geometry of the preced-
ing section, we study the Casimir interaction between two
sinusoidally corrugated plates. For direct correspondence to 2 sm(4xs) sink(s) [5
recent experimentb2], we consider the specific profiles j1(X) === ——smhz(s)
4xs  coslf(s) |2
hi(y,)=acog2my,/\) (48b)
and
hao(y1)=acog2m(y;+b)/\], (43 (0= _J {SIMAxS) sinfr(s) (480
. . . 4xs  cosH(s)’
which are shifted relative to each other by the lenigtfsee
Fig. 4).
By inspection of the deformation dependent contributions 2
to the Casimir energy in Eq$13) and(19), one obtains for ja(x)= _f sm(4xs) sinfr(s) (480
the total Casimir energy of the corrugated-corrugated ge- 3 4xs  cosH(s)
ometry, the relation
E=Egt 2E+ e (44 Before giving explicit forms for these integrals, it is instruc-

. . . . tive to again consider their extreme limits. Fgr=H/A
with & and & given in Eq. (32, and the corrugation- 5 '\ye find that both functiondry(x) andJre(x) tend to
corrugation interaction enerdi. which can be calculated in 2/240. In the opposite limix=H/\— both functions

terms of the kemelQp(y) and Qu(|Yol,|yj|) in Egs.(14b  gecay exponentially fast to zero so that the lateral force van-
and (20b). Besides oscillating contributions to the normal ishes in this limit. In order to get the behavior in between

Casimir forceF(b) from &.(b), alateral force these extremes, we have to calculate the integrals in Egs.
(48). Using the residue theorem, we finally obtain, after sum-

Fi=— e (45  ming over an infinite series of residues by using the Lerch
b transcendent63],
is induced by the corrugation-corrugation interaction. This
lateral force is much better suited for experimental tests of % K
the influence of deformations, since there is no need for sub- d(z,5,8)= D (49
tracting a larger baseline forc&he contribution of flat =0 (a+k)s’

plateg as in the case of the normal force.
The calculation of the interaction ener§y. again reduces
for sinusoidally corrugated plates to Fourier transforming thethe resultdwith u=exp(—4mx)],
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1 X2
Jm(x)= 120(16x4 D)arctantiu) +Vu ( @><D(u,2,%) - <u3,2>+ﬁ¢<u4 53)
d(u,62) |, 50
+128073X (u,6,3) (508
1 3
Jre(x) = 120(16x 4_1)arctanti\Ju) + Ju| — —=| x3+ 2+ SOX)cb(u 2,2)+ Z)@(u,s,%)
5 1 . ) 7 )
t 3o | X ook P(UA : ,z)+256ﬁ3x¢(l176,§) : (50b)

This result can be compared to the pairwise summation agferce). These results are thus exact to second order and
proach by considering the last term in Eg6). For the sur-  correctly take into account the many-body nature of the Ca-
face profiles considered hefef. Eq. (43)], this term pro-  simir interaction, going beyond the commonly used pairwise
vides an interaction energy given by Eg6) with the sum  summation(PWS of the van der Waals forcd41,60. Our
Jmm(X) +J1e(X) replaced by the function results show significant deviations from PWS to second or-
der in a. However, for finite values o&/\ anda/H, there
will be corrections at higher orders /A anda/H; in the
present experiments, the sensitive rangeaffl is of the
order of 0.2[50,52, while we suggest values fa/\ of
order 1 to probe the nontrivial shape dependence of the Ca-
simir force (see below. At present, it is not clear how rel-
evant the perturbative results to secdod any finite order
in a are for this range of the parametars. anda/H (cf. the
related discussion in Sec.IV)A

To make further connection between our findings and the
experimental situations, corrections due to the finite conduc-
tivity of the plates, finite temperature, and surface roughness
should be taken into account as w¢ll1,21,17—-20,5p
in contrast to the~x> behavior in Eq.(51). These corrections introduce additional length scales into the

Since bothJry(x) +J7e(X) andJpws(X) are positive for  problem, which are in turn the plasma wavelenyhof the
all values ofx, the equilibrium position of two modulated plates (e.g., A »~100 nm for aluminum[50]), the thermal

surfaces is predicted at=\/2 in both approaches. This cor- wavelength)\T fic/(2kgT) (=4um at 300°K), and the
responds to aligning the maxima and minima of the two

2

o
360(477 X2+ 67X+ 3)JUu. (52)

Jpwe(X) =

The two results agree fox=H/N—0, since J(0)
+J1e(0)=7?/120=Jpyw40). At the other extreme ofx
<H, bothJy(X) +J1e(X) andJpyX) decay exponentially
fast, but with differentH/\-dependent coefficients. In par-
ticular, for largex=H/\, we get to leading order

4772 4 2
I+ Ire() = 7 [X*+ OO WU (x—2) (52)

corrugations(cf. Fig. 4. The amplitude|F,| of the lateral 0.12
force per unit aredEq. (45)] as obtained from both ap-
proaches is plotted in Fig. 5. Interestingly, for fixeldthere 01+ ~
is an optimal modulation length~2.5H, at which the lat- N
eral force is largest. Our result shows that the pairwise sum- ~ o.08 | .
mation approximation is not justified beyokt!\ ~0.3. For é \
H/\ of order one, the pairwise summation approach has al- =~ o0s b
ready a relative error of about 150%. With increaskf\ T / N

. : w
this error grows monotonically. 004 PWS v

AY
V. DISCUSSION AND OUTLOOK 0.02 1 \\\
We calculated normal and lateral Casimir forces between 0 . Tt T
0.5 1 15 2

perfectly conducting modulated platégigs. 1 and 4 by
means of the path-integral quantization methede Refs.
[55,47), and Sec. . Based on the resultingxact expres-
sions for the Casimir enerd¥qgs.(7)—(11)], we performed a

FIG. 5. Rescaled lateral Casimir force amplitudg| as ob-

tained from the path-integral approadiqg. (50)] (solid curve, and

perturbative calculation to second order in the deformatiofdrom the pairwise summation approaPws [Eq. (51)] (dashed
parametera to obtain the results outlined in Sec. IV and line). The results hold to second order én(cf. the discussion in
shown in Figs. 2 and 3normal force and Fig. 5(lateral  Sec. V.
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transverse correlation length of the roughnessgusually ¢  useful discussions. This work was supported by the Deutsche
~300nm[16]). Finite conductivity corrections become im- Forschungsgemeinschaft through the Emmy Noether Grant
portant forH=10\,, as manifested in the cases of Al  NO. EM70/2-1(T.E), through Grant No. HA3030/1-@.H.,
=100 nm) and Au X,=138 nm), where they contribute at MIT), and by the National Science Foundation through

around 10% of the total Casimir force evertht 1um[19]. ~ Grant No. DMR-01-18213T.E., AH., and M.K).
The corrections due to finite temperature are negligible at

H<\;, while at H>\; the high-temperature asymptotic APPENDIX A: PATH-INTEGRAL FORMULATION
limit holds. The plasma and thermal wavelengths thus pro- FOR PARTITION FUNCTIONS

vide, roughly speaking, lower and upper bounds Hyrre-

spectively, such that our results for perfectly conducting_ We consider N manifolds (objecty (1, with «a

.. N. Each point on the manifolf , is represented by

p<<l'c)1\tes at zero temperature are valid fofH>\,, and H a vector X,(y)=(X“(y);u=1, ... d); a D-dimensional
The importance of stochastic surface roughness can brg;gn_lfggclié)a_embedded in ak-dimensional space is param-
deduced from our calculations. The relative corrections © ' W=1. .- Yo)-

& /€ to the Casimir energy due to roughness of amplitade

and transverse correlation lengftshould be of the fornito

second order im) a?/H? for ¢&>H, and a?/(¢éH) for & The Dirichlet boundary conditio® =0 on the manifolds,

<H. The latter behavior is in accordance with Réf7]. The  can be enforced by the functiondl 6[®(X,)] in Eq. (6a),

experimental case corresponds to neither extreme, making,gnich can be expressed in terms C(“)f auxiliary fieWs(X,)

more complete analysis necessary. as[47,55 “

Given the above-mentioned limitations, as well as the

technical difficulties in achieving the desirable geometries inl_[

experiments, it seems that it is difficult to conclusively es-1 [P (X,)]

tablish the nontrivial boundary dependence of the Casimir *

force. Figure 3 shows that in the experiment of Roy and _
EJ D\Ifa(xa)exp{JQ

1. The Dirichlet boundary conditions

dX ¥ (X)) P(X,) |- (A

a

Mohideen[50], the lengthsa and \ are such that the non-
trivial dependence of the Casimir force on the boundary
Shape is rather weak within the monitored rangHM, and The Gaussian integration ovdr in Eq (63) can then be
a pairwise summation of two-body forces is a possibly adperformed, resulting in
equate approximation. Our results suggest that a setup\with
of the order ofa is better suited for observing the nontrivial -
geometry dependence predicted above. Zo=| I DY (X, e Sl (A2)
In general, one expects that as long as the nontrivial fea- ot
tures in the geometry of the plates appear only as small pe[I:
turbations to the trivial flat-plate geometry, the corresponding
many-body effects of these features will be hard to measure.

N

he effective actiorS is given by

~ 1
Considerably larger effects could result, however, in pat- Seﬁ{\lf}zz > f dxaf dXzW ,(X,)
terned surfaces with geometrical features that come close aB Qg Qp
together across various parts of the surfaces. In such circum- X G (X, X)W 4(X) (A3)

stances a nonperturbative calculation of the forces becomes

necessary. Indeed it is most desirable to find robust numerWhereG(r r') is the two-point correlation function in an

cal schemespossibly along the lines of Ref57]) that can  ynpounded bulk space. The functional integration over the

also incorporate the finite conductivity effects and surfacg,,rved manifold€) . in Eq. (A2) is facilitated by introduc-

roug_hness typical for exp_enmental set-ups._ . ing the new fieldsy,(y)=W [X,(y)]. However, this trans-
Finally, we note that in the setup of Fig. 1, nontrivial formation requires some care regarding the integration mea-

shape dependencies appear as corrections tq a larger Casi%rrefQ dX, in Eq. (A3), as well as the functional measure
force. For the purpose of experimental tests, it is much mor DY (X,) in Eq. (A2). The result i56,65

desirable to devise setups which directly probe differences,
without the need for subtracting a larger baseline force. For B
example, in an atomic force experiment, simultaneous scan- f II v, (X, e eff{‘l’}zj [I Do.(y)e Sl
ning of a flat and corrugated substrate would be desirable; a a

while in the torsion pendulum experiment, one can imagine (A4)

suspending a spherical lens equidistantly from two pIatesWhere the fieldg, (y)=[g.(y)1*“w.(y) is given for each

one of which is corrugated. manifold Q) , in terms of the determinarg,(y) of its in-
duced metric
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The new effective actioB. is then given by APPENDIX B: CALCULATION OF THE KERNELS

1. The Dirichlet boundary conditions

1
Serl ¢1= 5 QEB f dDYf d®y’ (V)T wp(¥,Y' ) ba(Y), The kernels for the Dirichlet boundary conditions were
(A6) defined in Egs(14) in terms of the functions in Eq$15).
The explicit form of these functions is given by

where
. B 1 T COshs) B1
raﬁw,y')=[ga<y>]“4e[xa<y>,xﬁ<y'>1[gﬁ<y')]1’4.(A7) W)= i ey s B
The functional measuréDd¢ ,(y) on the right-hand side of Eov) m  sinh(s) B1b
Eq. (A4) is the one conventionally used on a flat manifold 2(Y)=— 16H3%y cosﬁ(s)’ (B1b)

(the local coordinate systemThe corresponding Gaussian
integrations can thus be performed, resulting in Egsand 1
(8a), Witl_1 I'p=I" from Eq. (A7). Note that in t_he present Fa(y)=23°G(y,0)— EFl(y)’ (B1o)
formulation, the trace and products bfare carried out by
integratingy over the flat manifold of the local coordinate
system. Any dependence 8, on the metriay,, ;;(y) is con- Fa(y)=—2Fy(y), (B1d)
tained explicitly in the definition of™ in Eq. (A7).
1
2. The Neumann boundary conditions Fs(y)=- 2 Fay), (B19
For the Neumann boundary conditiah®=0 on the 1
manifolds, the boundary condition enforcing functional __ 2 -
Iy o[, (X,)] in Eqg.(6b) can again be expressed in terms Fe(¥) 2G(y.H) 2 Faly), (B1f)

of the auxiliary fields¥ ,(X,) as
with s=wy/(2H).

lx'[ S an®(X,)]

2. The Neumann boundary conditions

For Neumann'’s boundary conditions the functions appear-

Ef D‘I’a(xa)ex;{if an‘Pa(Xa)andJ(Xa)} (A8) ing in the kernels in Eq920) and defined in Eqg22) have
Qe the explicit forms

. 1 coshs)
= | DV (X - dX, [,V (X,)]P(X,) |, = - 7
J o a)exr{ i fﬂa oL I o(X0) ] @} FY)=26(y0+ o ass (823
(A9)
. . . T sinh(s)
where the second line follows from an integration by parts. Foly)=— , (B2b)
The Gaussian integration over in Eq. (6b) can then be 16H3y cosli(s)
performed, resulting in
k Fy) =gy, 04— S (B29)
~ = s s C
Zy=| Il DY (X,)e Sert¥} (A10) Y=y 16H3y sink?(s)
a=1
. . . 1 sinh(s)
with the effective action - T 7
Fay) 47Hy coshs)’ (B2d)
~ 1
Sl 1=5 3 |, 0. [, 0Xlv. X160, %y . 2 cosis)
Fs(y)=—529(y,.00+ —5- — =
X[nW 5(Xp) ] 32H>y sink’(s)
1 72 coshs)
== dX f dXW (X + : , B2¢
2 % o, “Ja, * o(Xa) 16H°%y siniP(s) B29
X[ dn In G(Xy, X)W 5(Xp). All
Lo, " ( DIV sXg) (A1) 5 7> sink(s) m>  sinh(s)
, o : : Fo(y)=—0d79(y,H) = — 3 ,
Calculations along similar lines as in the previous paragraph 32H% cosh(s) 16H%y cosk(s)
then lead to Eq$7) and(8b). (B2f)
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1 1
Foy)==Gy,0+ z7(y), (B2g Fu(y) == 573(y), (B2k)
1
Fo(y)==G(y,H)+ ZFuly), (B2h) .
Fidy)=—9(y.H) = 572(¥), (82)
Foly)=—2F7(y), (B2i)
1 ) . 2
Froy) == 5Fay), (B2))  with g(y,2)=d;G(y.2).
[1] H.B.G. Casimir, Proc. K. Ned. Akad. Wek1, 793 (1948. [24] M.E. Fisher and P.G. de Gennes, C. R. Seances Acad. Sci., Ser.
[2] J.N. Israelachvili,Intermolecular and Surface Force@\ca- B 287, 207(1978; P.G. de Gennes, C. R. Seances Acad. Sci.,
demic, London, 1992 Ser. 2292 701(198)).

[3] K.A. Milton, Phys. Rev. D22, 1441(1980; 22, 1444(1980.  [25] D. Beysens and D. Este, Phys. Rev. Lett54, 2123 (1985;
[4] A.A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, Phys.  for a review see D. Beysens, J.-M. Petit, T. Narayanan, A.

Rep.266 1(1996. Kumar, and M.L. Broide, Ber. Bunsenges. Phys. Ché&®g).
[5] G. Plunien, B. Mller, and W. Greiner, Phys. Ref34, 87 382 (1994.
(1986. [26] P. Ziherl, R. Podgornik, and §umer, Phys. Rev. Lett32,

[6] E. Elizalde and A. Romeo, Am. J. Phys9, 711 (199J).

[7] P.W. Milonni, The Quantum Vacuur(Academic, San Diego,
1994).

[8] V.M. Mostepanenko and N.N. TrunoVhe Casimir Effect and
its Applications(Clarendon, Oxford, 1997

[9] S.K. Lamoreaux, Am. J. Phy§7, 850(1999.

[10] M. Kardar and R. Golestanian, Rev. Mod. Phyd, 1233

1189(1999; A. Borshnik, H. Stark, and S. dmer, Phys. Rev. E
61, 2831(2000; R. Golestanian, A. Ajdari, and J.-B. Fournier,
ibid. 64, 022701(20012).

[27] N. Uchida, Phys. Rev. LetB7, 216101(2001).

[28] R. Golestanian, M. Goulian, and M. Kardar, Europhys. Lett.
33, 241 (19969; R. Golestanianijbid. 36, 1217 (1996; R.R.

(1999. Netz, J. Phys. I7, 833 (1997; P.G. Dommersnes and J.-B.
[11] M. Bordag, U. Mohideen, and V.M. Mostepanenko, Phys. Rep. ~ Fournier, Europhys. Letd6, 256(1999; W. Helfrich and T.R.
353 1 (2001). Weikl, Eur. Phys. J. B5, 423(2001).
[12] M.J. Sparnaay, Physid&trechd 24, 751 (1958. [29] M. Krech and S. Dietrich, Phys. Rev. Le@6, 245(1991); 67,
[13] P.H.G.M. Van Blokland and J.T.G. Overbeek, J. Chem. Soc. ~ 1055(1991); Phys. Rev. A6, 1922(1992); 46, 1886(1992); J.
Faraday Trans. 74, 2637 (1978. Low Temp. Phys89, 145(1992.
[14] S.K. Lamoreaux, Phys. Rev. Leff8, 5 (1997; 81, 5475E) [30] M. Krech, The Casimir Effect in Critical Systenfg/orld Sci-
(1998. entific, Singapore, 1994M. Krech J. Phys.: Condens. Matter
[15] U. Mohideen and A. Roy, Phys. Rev. Le#tl, 4549(1998; A. 11, R391(1999.

Roy and U. Mohideenibid. 82, 4380(1999; A. Roy, C.-Y. [31] R. Golestanian, Phys. Rev. @&, 5242(2000.
Lin, and U. Mohideen, Phys. Rev. 60, 111101(1999; B.W. [32] A. Hanke, F. Schlesener, E. Eisenriegler, and S. Dietrich, Phys.

Harris, F. Chen, and U. Mohideen, Phys. Rev62 052109 Rev. Lett.81, 1885(19998; F. Schlesener, A. Hanke, and S.

(2000. Dietrich, J. Stat. Physl10, 981 (2003.

[16] H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, and F. [33] D. Bartolo, A. Ajdari, J.-B. Fournier, and R. Golestanian, Phys.
Capasso, Scienc291, 1941(2001. Rev. Lett.89, 230601(2002.

[17] M.Y. Novikov, A.S. Sorin, and V.Y. Chernyak, Theor. Math. [34] A. Mukhopadhyay and B.M. Law, Phys. Rev. Le83, 772
Phys.82, 124(1990; 82, 252(1990); 91, 658(1992; 92, 773 (1999.

(1992. [35] R. Garcia and M.H.W. Chan, Phys. Rev. L&8, 1187(1999;
[18] S.K. Lamoreaux, Phys. Rev. 39, R3149(1999. Physica B280, 55 (2000; J. Low Temp. Phys121, 495
[19] A. Lambrecht and S. Reynaud, Eur. Phys. J8,[309 (2000. (2000; Phys. Rev. Lett88, 086101(2002.

[20] M. Bordag, B. Geyer, G.L. Klimchitskaya, and V.M. [36] E.M. Lifshitz, Zh. Eksp. Teor. Fiz29, 94 (1955 [Sov. Phys.
Mostepanenko, Phys. Rev. LeB5, 503 (2000; V.B. Bezerra, JETP2, 73 (1956]; I.E. Dzyaloshinskii, E.M. Lifshitz, and
G.L. Klimchitskaya, and V.M. Mostepanenko, Phys. Re®85\ L.P. Pitaevskii, Adv. Physl10, 165 (1961).

052113 (2002; B. Geyer, G.L. Klimchitskaya, and V.M. [37] However, one should note that by virtue of Schwinger’s source

Mostepanenkoibid. 65, 062109(2002. theory[J. Schwinger, L.L. DeRaad, Jr., and K.A. Milton, Ann.
[21] S.K. Karepanov, M.Y. Novikov, and A.S. Sorin, Nuovo Phys.(N.Y.) 115 1 (1978], the Casimir force can be obtained

Cimento Soc. ltal. Fis., B00, 411(1987). without referring to vacuum fluctuations; see also Réf.

[22] B. Derjaguin, Kolloid-Z.69, 155(1934. [38] T.H. Boyer, Phys. Re\l174, 1764(1968.

[23] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Re{39] R. Balian and B. Duplantier, Ann. Phys$N.Y.) 104, 300
Lett. 88, 041804(2002. (1977; 112 165(1978.

022114-14



NORMAL AND LATERAL CASIMIR FORCES BETWEEN . .. PHYSICAL REVIEW A67, 022114 (2003

[40] G.J. Maclay, Phys. Rev. A1, 052110(2000. 1995, Chap. 9.

[41] However, for a different interpretation of the result for the [54] J.D. JacksonClassical Electrodynamicg$Wiley, New York,
Casimir energies, see N. Graham, R.L. Jaffe, V. Khemani, M. 1999.
Quandt, M. Scandurra, and H. Weigel, e-print hep-th/0207205[55] H. Li and M. Kardar, Phys. Rev. Let67, 3275(1991); Phys.

[42] T.H. Boyer, Phys. Rev. &, 2078(1974; V. Hushwater, Am. J. Rev. A46, 6490(1992.
Phys.65, 381(1997; O. Kenneth, I. Klich, A. Mann, and M. [56] A. Hanke and M. Kardar, Phys. Rev. Le8&6, 4596 (2002);
Revzen, Phys. Rev. Let89, 033001(2002. Phys. Rev. B65, 046121(2002.

[43] Y. Srivastava, A. Widom, and M.H. Friedman, Phys. Rev. Lett.[57] T. Emig, e-print cond-mat/0206585.
55, 2246(1985; see also the Comment by M.A. Strosdiaid. [58] The results for the Dirichlet kernels and Q quoted in Ref.

56, 2107(1986. [47] deviate from Eqs(14a and(14b) since the last terms in
[44] F.M. Serry, D. Walliser, and G.J. Maclay, J. Microelectromech. each of the two lines of Eq15) in the second referendd7]
Syst.4, 193(1995; J. Appl. Phys.84, 2501(1998. are interchanged.
[45] E. Buks and M.L. Roukes, Phys. Rev.@3, 033402(200J); [59] J. Schwinger, L.L. DeRaad, Jr., and K.A. Milton, Ann. Phys.
Nature(London 419, 119 (2002. (N.Y.) 115 1 (1978.
[46] H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, and F. [60] M. Bordag, G.L. Klimchitskaya, and V.M. Mostepanenko,
Capasso, Phys. Rev. Le87, 211801(2002. Mod. Phys. Lett. A9, 2515(1994); Int. J. Mod. Phys. ALQ,
[47] R. Golestanian and M. Kardar, Phys. Rev. Lét8, 3421 2661(1995.
(1997; Phys. Rev. A58, 1713(1998. [61] This configuration has also been considered to study geometri-
[48] T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev. cally controlled twist transitions in cells of nematic liquid crys-
Lett. 87, 260402(2002). tals, see P. Patricio, M.M.T. da Gama, and S. Dietrich, Phys.
[49] G.L. Klimchitskaya and Yu.V. Pavlov, Int. J. Mod. Phys 1A, Rev. Lett.88, 245502(2002.
3723(1996. [62] G. Arfken, Mathematical Methods for Physicistécademic,
[50] A. Roy and U. Mohideen, Phys. Rev. Le#?2, 4380(1999. New York, 1970, Sec. 7.2.
[51] G.L. Klimchitskaya, S.l. Zanette, and A.O. Caride, Phys. Rev.[63] A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi,
A 63, 14101(2000. Higher Transcendental Functiori&rieger, New York, 198},
[52] F. Chen, U. Mohideen, G.L. Klimchitskaya, and V.M. \ol. 1.
Mostepanenko, Phys. Rev. Le#8, 101801(2002; Phys. Rev.  [64] S. Laporta and E. Remiddi, Phys. Lett.389 283(1996.
A 66, 032113(2002. [65] See, e.g., F. David iStatistical Mechanics of Membranes and
[53] See, e.g., M.E. Peskin and D.V. Schroeder, Introduction to Surfaces edited by D. Nelson, T. Piran, and S. Weinberg
Quantum Field Theory(Addison-Wesley, Reading, MA, (World Scientific, Singapore, 1989

022114-15



