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Schraodinger equation for a noninteracting Bose gas on a spatiotemporal lattice
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We propose a spatiotemporal discretization of the Stihger equation for field operators of noninteracting
bosons. The scheme, being based on the associated space of the creation and annihilation operators and on a
discretization of the Schdinger equation, preserves equal time commutation relations, possesses Hermitian
action, unitary evolution operator, and all relevant integrals which are counterparts of the respective conser-
vation quantities in the continuum limit. Although the scheme is implicit, it allows a reduction to a nonlocal but
explicit scheme. In the limit of small time steps the scheme is reduced to a model studied earlier. Some
particular examples of the discrete-time Salinger equation in the presence of external potentials are given.
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[. INTRODUCTION evolution problem for operators, have been performed, so
far, directly for the field operators. On the other hand, in the
There exist several reasons for interest in developingonventional quantum theory, where time is continuous, the
difference-difference schemes for quantum-mechanical ogfield operators are constructed by means of the second-
erator equations. The traditional ones are lattice formulationguantization procedure on the basis of the creation and anni-
of the quantum field1] and statistica[2] theories, which hilation operators and the associated Sdhmger picture.
represent a natural approximation to the path-integral apUnderstanding the discrete analog of that procedure seems to
proach displaying no ultraviolet divergences. One more reabe of practical interest. To be more specific, in the present
son is that the finite element approadorrowed from the paper we will be interested in the discrete analog of the
numerical techniqu@sto the continuum-time Heisenberg Schralinger equatiori8]
equation can be employed for numerical solution of operator .
field equationg3]. Since the evolution equations are now = ot V¥ @

written for operators rather than farnumbers, one of the for field operator possessing the canonical ETCR:
main requirements for that approach is the preserving equa? ’

time commutation relatiofETCR) under the discretization. [0, (X H]1=[¢"(x,t),¢"(x",)]=0 2
The finite elements method, proposed in R&f. does take
into account the operator nature of the equations and does [(x,0), (X" ,1)]= 8(x—x")

preserve ETCR, resulting, however, in an implicit scheme.
This last property of the discretization due[®] stimulated describing the one-dimensional Bose gas in an external po-
appearing of an alternative approach based on the “leapfrogtential V(x). We will be looking for a discretization that
method of finite differencindg4], which preserves ETCR as resembles as much as possible the dynamics of the con-
well, but coincides with the exact solution only in the con-tinuum model(1) and (2) and reduces to it when a step of
tinuum limit. Finally, as it has been shown in RE%] (see, discretization goes to zero. Finally, the third motivation for
also, Ref.[6] for review) a discrete time approach allows the present work is the intention to make an improvement of
rather elegant and simple estimation of spectra of quantunthe existing results on the discretization of Edj) at V(x)
mechanical systems. =0, which has been considered in REJ] where two dis-
The present work is motivated by several factors. First ofcretizations of Eqs(1) and (2) have been proposed. How-
all, after famous experimen{3], where Bose-Einstein con- ever, one of the schemes presented in Ffwhich displays
densate has been obtained, one can observe an explosionneéin physical properties including conservation quantities
studies of low-temperature behavior of Bose gases. Thand existence of a Hermitian action, does not preserve
original problem is formulated in terms of the field operatorsETCR, while another scheme, preserving ETQRr a
in the presence of an external trap potential. The study of thaniquely defined step of discretizatiodoes not possess a
spectra, starting with the quantum problérather than with  number of essential physical properties.
the mean-field approach known as the Gross-Pitaevskii equa- In the present work we report a discretization of Sehro
tion) is of natural interest. An approach based on thedinger field equation whichi) preserves ETCR(ii) pos-
discrete-time evolution of the field operators in the Heisensesses a Hermitian actiofiii) does not show the spectrum
berg picture is an alternative way of solving the problem.doubling in a homogeneous cas®,) holds the main physi-
The second factor is that, the studies of the discrete-timeal properties of the field existing in the continuum céise,
possesses all necessary integrals of motiand (v) is uni-
tary (the unitary evolution operator is found explicitly
*Electronic address: konotop@cii.fc.ul.pt Naturally, the step of discretization of our scheme is arbitrary
"Electronic address: spire@cii.fc.ul.pt (unlike in Ref.[9]).
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The organization of the paper is as follows. In Sec. II, we

provide a discretization of a Schtimger equation for the
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1
[ =Ly 0'R1=0,  [4 ¥'R]= 0. (9

case of free noninteracting bosons, which preserves ETCR

and possesses the main conserved quantities: the number
particles, momentum, and the energy. In Sec. Ill we con

acH(d compute them for the next step of time 1,

struct the Hermitian action and relate the proposed discreti-

zation to an explicit scheme. The theory is generalized in
Sec. IV, where examples of three different potentials are pre-

sented. The results are summarized in the Conclusion.

Il. UNITARY DISCRETIZATION OF THE SCHRO DINGER
EQUATION

Let us introduce discrete time=7n and spacex=hl
variables, whera andl are integers and andh are temporal

n+1
m

1 T ™ . ’
[Wlnﬂaw ]:ﬁf ko7 dk’ e (k)= u(k")

xeikl—ik/m[an(k)'aTn(k/)]
=L . (10)

Thus we have proven that ETCR are preserved during the
discrete time evolution. It is to be emphasized here, that the

and spatial steps of the discretization, respectively. Consideybtained results are essentially based on the particular form

the following difference-difference Schdimger equation for
the field operatow)|'= ¢(hl,n):
n+1

Y=yl = =iy B L+ Bag = Bay
—iylay's 1+ a1 — ezl (3

where y=r/h? and the complex parameters satisfy the con

ditions (i) ;= B; (the overbar stands for the complex con-
jugation and (i) Re(a;+a,—a3)=0. It is a straightfor-
ward algebra to ensure that when-0 andh—0 Eq.(3) is
reduced to Eq(1) with V(x)=0 . Equation(3) is nothing but

n

]

a generalization of the implicit scheme proposed for the

Schralinger equation in Ref.10] to the operator case.

Now we show that Eq(3) preserves ETCR. To this end,

of discretization(3) subject to the condition§) and (ii) of
the coefficients of the discretization.

As it is clear from the construction of the operatai'§k)
anda(k) they can be interpreted as creation and annihilation
operators of a quasiparticle in the quantum stat&otice
that the quantum-state space is restricted to the first Brillouin
zone: ke[ —a, ] which is a natural consequence of the
discretization. Then one can verify that sche®es unitary.
Indeed, introducing the unitary operator

U:eXp(th w(ka(a(k)dk|, (11)

and using that)Ta(k)U=a(k)exdiu(k)] one arrives at the

considering the lattice to be infinite we employ the discretequation which determines the evolution of the field operator

Fourier transform and introduce operataf¢k) according to
the formula

lp“:if” ekl an(k)dk @)
Y . '
Substituting this representation in E&) we obtain
an+1(k):ei,u(k)an(k):ei,u(k)(n+1)a(k)' (5)
wherea(k)=a’(k) and
wk)=2arg1+iyas—iya,e*—iya,e ). (6)

Let us now impose the following commutation relation at,iows from the fact thaiN"

the initial moment of timen=0,

1
[0 ) =[9F 'RI=0, [ .4T0]=5m,  (7)

which is the simplest discretization of E(R). Then, using
Eq. (4) one ensures that E¢7) means

1
[a(k),af(k')]=ﬁ5(k—k’), 8

on the spatiotemporal lattice

yrt=uTylu. (12
The last formula implies conservation of ETCR as well as
conservation of the total number of particled"*1=N"
=N, where

N”=E| p|”=2 R (13

andp'= ¢y is an operator of the density of particlés.,
the number of particles at a lattice siteat time n). This
is a functional ofa’(k)a(k)
and thus commutes with the unitary operatdr Alterna-
tively, using relationg4) and(5) one can obtain

1 T )
Nyn= — _ i(P—K)+i(u(p)—n(k)n
Z v (277)22 ffwe o
xa'(k)a(p)dkdp

% J j a'(ka(k)dk, (14)

and the imposed ETCR hold after the first temporal step, i.e.,

atn=1. Then, using the induction we suppose that at som
time n, the ETCR are verified, i.e.,

€e.,N" indeed does not depend on discrete timé is to be
mentioned here that the operator of number of partitles
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given by Eq.(13) and having natural representation through - i . i o
the density operator differs from the definition of a charge Jn:; (= Dby — - (22
Qn7
1 is conserved. As it follows from definitiofl6) and(17) the
Q"=5 Z (T T ) (15  energy and the momentum are composed®oéndJ™, and
hence the conservation af" implies conservation laws:

introduced in Ref[9], although the both quantities coincide E"*'=E" andP"*1=P".
in the continuum limit. In this context it is interesting to ~ Then the scheme we have chosen appears to be stable in
mention that discretization3) preserves als®Q™ Q"*1! the sense that all physical properties given at initial time
=Q"=Q [this can be proven by a slight modification of (n=0) are conserved for any time.
relations(14)].

Other physically relevant conserved quantities are the enHl. EQUATION OF MOTION: IMPLICIT AND EXPLICIT

ergy SCHEMES
Let us show now that the discretizatiqB) possesses
e 2 [(¢ 1)(1//{?11— t//[‘fll other necessary conditions such as existence of a Hermitian
2h action and absence of spectrum doubling. Moreover, we will
L(ytnrio el n 16 show that the initially |mpl|c_|t_ scheme can be_z rewritten in a
W =) (W= iy (8 form of a nonlocal but explicit one. To simplify the consid-
and the momentum eration we reduce the scheme to a one-parametric one, by

requiring the following conditions to be fulfilled:
(i) ay=a,=ig,

i + n
=55 2 LW+ T )=y (il) 2|ars|cos@y) = —sin(dy),
(iii) 4yla;|*—[ay|+y=0
+(M =T+ D], (17)  (the last requirement can be satisfied fpr<1/4). Then

discrete-time evolution equatidid) takes the form
Demonstration of the conservation of these two quantities
is slightly more complicated. We start from the observation(¢ ! — ', ;+ ¢! = ol )+ 282y 1= o)

that in terms of new operators i1 e IR . .
=AY+ 1 =2 Yt 2¢), (23

qln: ( _ 1)ne—2i§n¢|n’ (18)
where 8=1/(2]a,|).
where é=ardi— y(az+ aq)], EQ. (3), can be rewritten in Now one can write down the action in a simple form
the form
—i o4t o2yt n+1_ ,n
aMt t+apal el =al +asal  Faxal . (19 s I% L a2 00 vi)
where |aj| = y]a; /i = y(agt a1)]|. Let us choosea;=a, +BY N+ M =2y g 29D)].
=ig, from Eq.(19) it follows that
(24)
|”—E (9" +igq™, ;+igq™,) Passing to the dispersion relation of Eg3) we look for
a solution in a formy'= A, (k)e'«"~e™ whereA, (k)
X (gt —iggh i+ —igqrtl is a space and time-independent operator and substitute it
! I+l -1 into the both sides of Eq23). This gives
=2 a'a g2 (aTiuta (e +aly _[kh
! 5 2B sir| —
(20) o= —arctal ——— | . (25
T cogkh)+ B2

is a conserved quantity”=1""1, The first term of the last
relation is conservefby an analogy with Eq(14)], then it  The obtained formula shows the absence of the spectrum
follows that the second term is conserved, as well. Using Eqdoubling.

(14) and the last conserved relation, we obtain that In order to rewrite implicit schemé8) in an explicit form
we introduce the second-order shift operat@sting in the
=3 @i-atha,-aly (e operatorspage
|

By =—B(h1th-1—24),

is a conserved quantity. Returning to the initial operatpit
gives that T =1+ 1+ 2B%Y,,
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and the time-shift operata given by the formulay** ) _
=Uy. Then we obtain that Eq23) can be rewritten as ‘»Dl(k)“?’% Hi mem(K)
follows:
[(U=DTy'=BU+ DB, (26) =e Ol @) —iy2 Hmiem(K) |, (B
wherel ia a unity operator. Thus formally whereg, (k) is the eigenstate corresponding to the “energy”
UN=[(IT+B)"LiT-B)]" 27 (k) andkis a spectral parameter which plays the role of the

quantum state number. It follows from E@1) that the tem-
oral dependence of the eigenstapg(k) is given by
i1y, (k) such that the wave functiog can be repre-
sented as

i.e., U appears to be a unitary operator. Taking into accoung

that[T,B]=0 we finally arrive at the conclusion that the

field operators obey to the temporal dynamits= (L{)”wP

[c.f. Eq. (12)],_ which formally coinc_ides_ with the equation @PZE elukng, (k) (32)

for the evolution of the wave function in the quantum me- K

chanics where a wave function should be used instead of the

operator. (for the sake of simplicity in the present section we consider
Consider now the limit when the tempora| Step goes tcﬁ finite lattice SubjeCt to the periOdiC boundary Condit}oﬂs

zero 7—0 (B—®). Then B=h?27+0(27/h?) and the Valuekq giving the minimum of| u(Kk)| corresponds to the

evolution operator takes the form ground state of the system. o
Before providing the second quantization of E80), let

us consider in more details spectral problgh). First of all
: one can ensure that(k) is real. To this end, multiplying Eq.

(31) by ¢;(k) and computing the sum ovéme obtain

Thus, in this limit we arrive at the straightforward discrete _ 24 PR
scheme for the “Schidinger field” on a Galileo lattice, r (k) Zar%zl 1K) 'YLzm (P|(k)H|,m(Pm(k))-

2
h

n+1 n n 27 n n n T
= UR= _m—2(¢|+1+¢|—1_2¢|)+0 -

which was discussed in RgP]. (33
To conclude this section we compute the non-equal-time o
commutation relation€(k,1)=[ 4", 4']. It follows from  Next multiplying Eq.(31) by ¢,(k") with k’#k and sum-
Eq. (23) that they obey the lattice equation ming over alll we obtain the orthogonality conditions
C(k,H=F(k,)+igC(k,I+1)+igC(k,I-1), (28 > e(kKNe(K)+ivY, o(k)H| mem(k)=0 (34)
| I,m

whereF(k,1) =6y +i9(dx +1t Sk —1). Using the discrete

. . and an additional condition
Fourier transform one obtains

1+ 2ig cosq 2 (HintHn)ei(k)en(k)=0, K'#k. (39

1-2igcosq’

(29 It is worth pointing out here that in the continuum time limit
[ y—0 and henceuw(k)— 0] eigenvalue problen3l) is re-
duced to

~ 1 (= '

In particular, C(0)=2(1+4g?) Y2-1 and C(*1)

[ _ 2\ —1/ _
=(/g)[1-(1+4g%) "], P00 =7, (Fl - H ) on(K) +O(7) (39

IV. GENERALIZATIONS: BOSONS IN AN EXTERNAL

POTENTIAL and thus Eqs(34) and(35) coincide in the leading order and

take the form of the conventional orthogonality conditions.
The approach developed above for the simplest case of For the sake of simplicity the consideration in the rest of
free bosons, can be generalized to a number of cases, whefis section will be restricted to the cabg, =H, ,, [which
external potential is present. This can be done using the ags the most interesting case from the physical point of view

sociated Schidinger picture and the analogy with the proce- and corresponds to the suppositioh from Sec. IIll. Then
dure of the second quantization. To this end we consider gor the coefficients
discrete space-time version of the Salirger equation for

the wave functionp!" in a form a m=2> ¢1(K)emk) (37)
' k

T @P:iJ’% (Hmiem “+Hi mem).- (30 one obtains the equation

. a, mRe(H, ) —a, Re(H =0, 38
Then the analog of the stationary Satlimger equation reads g[ nmREH ) = am ReHnm)] 38
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which must be valid for alln and | and a, ,—0 for |n H =5 _ () 4 6 S
—m|—. This is satisfied by, = nm, i.€., mi = Om L Ba~ Bal@n=10m'+ o fm)]
S + Bl Om-1F Smi+1l, (44)
k K)=6im 39
K 1K) @m(k) = o 39 we obtain the following discrete model
n+1_ ,n
which can be interpreted as the completeness condition. iu= —,6’3¢F+1+ ,Bl(wlnj—iL+ ¢|n++11)— azy
Now we can construct the filed operators Y
— n N - (8) 9
l/f|:; e(kyak), 'JITI:; <p|(k)aT(k). (40) ar(Piit 1) — BileiZ 19
+ @10y = a0 Y
Then requiring [a(k),a’(k’)]=(1/h)S4 we obtain (s) ~(8)\ .40
+ . 4
1 011 )= (1) o, MES 49
Finally, we define temporal evolution for the field opera- Equation(45) represents the discretization of the equation
tors by the relationy]"*=UTyPU with unitary operatoi A2
defined as in Eq(11) with integral substituted by a sum and = Yyt ————— 1. (46)
n being an eigenvalue of problef31). This immediately coslt(Ax)

leads to the Schdinger equation on a Galileo lattice: _ ) )
The respective potential possesses one discrete level, and

n+1_ n_; n+1, 53 N0 thus the condensate at the zero temperature is approximately
i il W% (i dm =+ Himm). 4D described by the field operatai= @,a,e'#0". Thus g is
nothing but the energy of the background state of the discrete
i.e., as it is expected it has formally the same form as thenodel.
Schralinger equation for the wave functias' (30). As it is
clear the diSCfetiZatiO(B) is of the type of Eq(4l) with B. Bosons in a linear potentia|

Hm1 =~ B16m+11— B26m-11+ B30m, - Let us consider another consequence of the fact that Eq.
(3) is a linearization of the integrable discrete-time nonlinear
The discretizationi41) preserves ETCR, which now follows schralinger equation. Namely, we use that once a classical
directly from the definition of the temporal evolution. integrable model is found, and thus admits the Lax represen-
As far as the link between Schdinger, Eq.(30), and  tation, one can construct a new integrable model by applying
Heisenberg, Eq41), pictures on a lattice is established, one gayge transformatiofi2]. Such a transform may give a non-
can take advantage of the absence of interactions, and use figial, from the physical point of view, generalization of the
fact that is solvable, even inhomogeneous, Bf) means  model, which in particular happens with inclusion of a linear
SO|Vabi|ity [the SOIVabiIity is understood here in the sense Offorce into Consideratiomlg]_ Name|y, we are interested on
possibility to represent the field operatg¢f in an explicit  the discretization

form (40), where all (k) are knowr of the discretized gty
Schralinger equation(41). Let us consider three examples, AT A —B3¢P+1+[32¢{‘Ife‘h”2'“)
allowing one to construct some exact solutions. Y
. , . + Byl e T — gy
A. Reflectionless sech-like potential

' . o i N a-ihF(2-1) 4 n  AihF(21+1)
First of all we observe, that the discretization of the @118 @18 '

Schralinger equation corresponding to E§) is nothing but (47)
the linear part of the integrable discretization of the classical

nonlinear Schidinger equatior[11]. We make use of the Which come from Eq(3) after the transformyi'— yj'e
explicit form of the respective statice., having an envelope The continuum limit corresponds to a noninteracting Bose

ihF12

independent om) one-soliton solution gas subject to the linear force:
pon= S2W)_ g @ 1= ot 2F x4 (48)
' cosh2lw) :

Equation(47) is obtained from Eq(41) using the matrix
H m|= — BSﬁm,I + :825m,l +1eth(2m71)

+B15m,|—1e_th(2m+l)- (49)

where

4acosh2w)
1+ 2a%+ 4a%cosi4w) |

Moo= arctaf( (43

C. Potential with nonlocal interactions

wherew is a real parameter characterizing the soliton ampli- To construct the last example we take into account that
tude anda=|ya,/(i—y(a3—a;)|. Considering Eq.31) the development in Secs. Il and lll has been based on the
with discrete Fourier transform. Thus inclusion potential energy
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terms in a form of convolution with the field.e., the case

PHYSICAL REVIEW A67, 022111 (2003

relevant properties of the underline continuum field. Al-

H, m=H,_n) does not change properties of the system withthough the scheme is implicit it is reducible to a nonlocal
respect to the Fourier transform. This allows us to write theexplicit one. Our discretization can be viewed as a generali-

discrete mode(30) using

Hmi1=B361 m= B1i-1m= B26i+1m— lE hVi m6i, m-
1

Then, we obtain discrete equation for wave function of

bosons with nonlocal interactions
n+1 n
i ¢ T

_ 1 1 +1
5 == Bae] P11+ Boelt 1 — azel

+al€0|n+1+az¢|n—1+|21 hVio (el ).
(50)

The continuum limit of this equation reads
i(Pt:(:Dxx+f dyV(X=y)e(y). (51)

And the explicit form of Eq.(33) is now
wk)=2ard1+iyaz—iyae*—iyae  —iV(k)]
(52)

zation of the implicit scheme due {d.0] the operator case.
In the limit of relatively small time step our discretization
coincides with the straightforward one discussed in details in
Ref.[9].

The main approach was based on the link between filed
operators and creation and annihilation operators, which
were introduced through the associate discretization of the
time-dependent Schdinger equation. The stationary dis-
crete Schrdinger equation defines a spectral problem, which
is to be investigated in more details elsewhere.

Discretizations of three different inhomogeneous models
have been presented. Meantime, in this communication we
left open the problem of application of the procedure to more
general physical models, i.e., including potentials of a more
general form, for the sake of the definition of their spectra by
numerical methods. We also believe that the proposed ap-
proach will be fruitful for description of weakly nonlinear
nonintegrable models on a perturbative basis, when known
exact methodg14] are not applicable, as well as for the
generalization to two- and three-dimensional cases. Finally,
we mention that the discretization based on the associated
discrete Schidinger picture is a natural way for introducing

and thus the whole analysis for free bosons provided the Setwo- and three-dimensional discrete Salinger models.
Il can be reproduced here for the case of the nonlocal poten-

tial.

V. CONCLUSION
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