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Schrödinger equation for a noninteracting Bose gas on a spatiotemporal lattice

V. V. Konotop* and A. Spire†
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We propose a spatiotemporal discretization of the Schro¨dinger equation for field operators of noninteracting
bosons. The scheme, being based on the associated space of the creation and annihilation operators and on a
discretization of the Schro¨dinger equation, preserves equal time commutation relations, possesses Hermitian
action, unitary evolution operator, and all relevant integrals which are counterparts of the respective conser-
vation quantities in the continuum limit. Although the scheme is implicit, it allows a reduction to a nonlocal but
explicit scheme. In the limit of small time steps the scheme is reduced to a model studied earlier. Some
particular examples of the discrete-time Schro¨dinger equation in the presence of external potentials are given.
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I. INTRODUCTION

There exist several reasons for interest in develop
difference-difference schemes for quantum-mechanical
erator equations. The traditional ones are lattice formulati
of the quantum field@1# and statistical@2# theories, which
represent a natural approximation to the path-integral
proach displaying no ultraviolet divergences. One more r
son is that the finite element approach~borrowed from the
numerical techniques! to the continuum-time Heisenber
equation can be employed for numerical solution of opera
field equations@3#. Since the evolution equations are no
written for operators rather than forc numbers, one of the
main requirements for that approach is the preserving e
time commutation relation~ETCR! under the discretization
The finite elements method, proposed in Ref.@3# does take
into account the operator nature of the equations and d
preserve ETCR, resulting, however, in an implicit schem
This last property of the discretization due to@3# stimulated
appearing of an alternative approach based on the ‘‘leapfr
method of finite differencing@4#, which preserves ETCR a
well, but coincides with the exact solution only in the co
tinuum limit. Finally, as it has been shown in Ref.@5# ~see,
also, Ref.@6# for review! a discrete time approach allow
rather elegant and simple estimation of spectra of quant
mechanical systems.

The present work is motivated by several factors. Firs
all, after famous experiments@7#, where Bose-Einstein con
densate has been obtained, one can observe an explosi
studies of low-temperature behavior of Bose gases.
original problem is formulated in terms of the field operato
in the presence of an external trap potential. The study of
spectra, starting with the quantum problem~rather than with
the mean-field approach known as the Gross-Pitaevskii e
tion! is of natural interest. An approach based on
discrete-time evolution of the field operators in the Heis
berg picture is an alternative way of solving the proble
The second factor is that, the studies of the discrete-t

*Electronic address: konotop@cii.fc.ul.pt
†Electronic address: spire@cii.fc.ul.pt
1050-2947/2003/67~2!/022111~6!/$20.00 67 0221
g
p-
s

p-
a-

r

al

es
.

’’

-

f

of
e

e

a-
e
-
.
e

evolution problem for operators, have been performed,
far, directly for the field operators. On the other hand, in t
conventional quantum theory, where time is continuous,
field operators are constructed by means of the seco
quantization procedure on the basis of the creation and a
hilation operators and the associated Schro¨dinger picture.
Understanding the discrete analog of that procedure seem
be of practical interest. To be more specific, in the pres
paper we will be interested in the discrete analog of
Schrödinger equation@8#

ic t5cxx1V~x!c ~1!

for field operator possessing the canonical ETCR:

@c~x,t !,c~x8,t !#5@c†~x,t !,c†~x8,t !#50 ~2!

@c~x,t !,c†~x8,t !#5d~x2x8!

describing the one-dimensional Bose gas in an external
tential V(x). We will be looking for a discretization tha
resembles as much as possible the dynamics of the
tinuum model~1! and ~2! and reduces to it when a step o
discretization goes to zero. Finally, the third motivation f
the present work is the intention to make an improvemen
the existing results on the discretization of Eq.~1! at V(x)
50, which has been considered in Ref.@9# where two dis-
cretizations of Eqs.~1! and ~2! have been proposed. How
ever, one of the schemes presented in Ref.@9# which displays
main physical properties including conservation quantit
and existence of a Hermitian action, does not prese
ETCR, while another scheme, preserving ETCR~for a
uniquely defined step of discretization! does not possess
number of essential physical properties.

In the present work we report a discretization of Sch¨-
dinger field equation which~i! preserves ETCR,~ii ! pos-
sesses a Hermitian action,~iii ! does not show the spectrum
doubling in a homogeneous case,~iv! holds the main physi-
cal properties of the field existing in the continuum case~i.e.,
possesses all necessary integrals of motion!, and ~v! is uni-
tary ~the unitary evolution operator is found explicitly!.
Naturally, the step of discretization of our scheme is arbitr
~unlike in Ref.@9#!.
©2003 The American Physical Society11-1
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The organization of the paper is as follows. In Sec. II,
provide a discretization of a Schro¨dinger equation for the
case of free noninteracting bosons, which preserves ET
and possesses the main conserved quantities: the numb
particles, momentum, and the energy. In Sec. III we c
struct the Hermitian action and relate the proposed disc
zation to an explicit scheme. The theory is generalized
Sec. IV, where examples of three different potentials are p
sented. The results are summarized in the Conclusion.

II. UNITARY DISCRETIZATION OF THE SCHRO ¨ DINGER
EQUATION

Let us introduce discrete timet5tn and spacex5hl
variables, wheren andl are integers andt andh are temporal
and spatial steps of the discretization, respectively. Cons
the following difference-difference Schro¨dinger equation for
the field operatorc l

n5c(hl,tn):

c l
n112c l

n52 ig@b1c l 21
n111b2c l 11

n112b3c l
n11#

2 ig@a1c l 11
n 1a2c l 21

n 2a3c l
n#, ~3!

whereg5t/h2 and the complex parameters satisfy the co
ditions ~i! a j5b̄ j ~the overbar stands for the complex co
jugation! and ~ii ! Re(a11a22a3)50. It is a straightfor-
ward algebra to ensure that whent→0 andh→0 Eq. ~3! is
reduced to Eq.~1! with V(x)[0 . Equation~3! is nothing but
a generalization of the implicit scheme proposed for
Schrödinger equation in Ref.@10# to the operator case.

Now we show that Eq.~3! preserves ETCR. To this end
considering the lattice to be infinite we employ the discr
Fourier transform and introduce operatorsan(k) according to
the formula

c l
n5

1

2pE2p

p

eiklan~k!dk. ~4!

Substituting this representation in Eq.~3! we obtain

an11~k!5eim(k)an~k!5eim(k)(n11)a~k!, ~5!

wherea(k)[a0(k) and

m~k!52 arg~11 iga32 iga1eik2 iga2e2 ik!. ~6!

Let us now impose the following commutation relation
the initial moment of timen50,

@c l
0 ,cm

0 #5@c†
l
0 ,c†

m
0 #50, @c l

0 ,c†
m
0 #5

1

h
dml , ~7!

which is the simplest discretization of Eq.~2!. Then, using
Eq. ~4! one ensures that Eq.~7! means

@a~k!,a†~k8!#5
1

h
d~k2k8!, ~8!

and the imposed ETCR hold after the first temporal step,
at n51. Then, using the induction we suppose that at so
time n, the ETCR are verified, i.e.,
02211
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@c l
n ,cm

n #5@c†
l
n ,c†

m
n #50, @c l

n ,c†
m
n #5

1

h
dml , ~9!

and compute them for the next step of timen11,

@c l
n11 ,c†

m
n11#5

1

4p2E2p

p

dkE
2p

p

dk8ei (m(k)2m(k8))

3eikl 2 ik8m@an~k!,a†n~k8!#

5@c l
n ,c†

m
n #. ~10!

Thus we have proven that ETCR are preserved during
discrete time evolution. It is to be emphasized here, that
obtained results are essentially based on the particular f
of discretization~3! subject to the conditions~i! and ~ii ! of
the coefficients of the discretization.

As it is clear from the construction of the operatorsa†(k)
anda(k) they can be interpreted as creation and annihilat
operators of a quasiparticle in the quantum statek. Notice
that the quantum-state space is restricted to the first Brillo
zone: kP@2p,p# which is a natural consequence of th
discretization. Then one can verify that scheme~3! is unitary.
Indeed, introducing the unitary operator

U5expS ihE
2p

p

m~k!a†~k!a~k!dkD , ~11!

and using thatU†a(k)U5a(k)exp@im(k)# one arrives at the
equation which determines the evolution of the field opera
on the spatiotemporal lattice

c l
n115U†c l

nU. ~12!

The last formula implies conservation of ETCR as well
conservation of the total number of particles:Nn115Nn

5N, where

Nn5(
l

r l
n5(

l
c†

l
nc l

n ~13!

andr l
n5c†

l
nc l

n is an operator of the density of particles~i.e.,
the number of particles at a lattice sitel at time n). This
follows from the fact thatNn is a functional ofa†(k)a(k)
and thus commutes with the unitary operatorU. Alterna-
tively, using relations~4! and ~5! one can obtain

(
l

c l
nc l

n5
1

~2p!2 (
l
E E

2p

p

ei (p2k) l 1 i (m(p)2m(k))n

3a†~k!a~p!dkdp

5
1

2pE2p

p

a†~k!a~k!dk, ~14!

i.e., Nn indeed does not depend on discrete timen. It is to be
mentioned here that the operator of number of particlesN
1-2



gh
ge

e
o

of

e

tie
io

E

:

le in
e

itian
will
a
-
, by

te it

rum
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given by Eq.~13! and having natural representation throu
the density operator differs from the definition of a char
Qn,

Qn5
1

2 (
l

~c†
l
nc l

n111c†
l
n11c l

n! ~15!

introduced in Ref.@9#, although the both quantities coincid
in the continuum limit. In this context it is interesting t
mention that discretization~3! preserves alsoQn: Qn11

5Qn5Q @this can be proven by a slight modification
relations~14!#.

Other physically relevant conserved quantities are the
ergy

En5
1

2h2 (
l

@~c†
l 11
n 2c†

l 21
n !~c l 11

n112c l 21
n11!

1~c†
l 11
n112c†

l 21
n11!~c l 11

n 2c l 21
n !#, ~16!

and the momentum

Pn5
i

2h (
l

@~c†
l 11
n111c†

l 21
n !~c l 11

n112c l 21
n !

1~c†
l 11
n 2c†

l 21
n11!~c l 11

n 1c l 21
n11!#. ~17!

Demonstration of the conservation of these two quanti
is slightly more complicated. We start from the observat
that in terms of new operators

ql
n5~21!ne22i jnc l

n , ~18!

where j5arg@ i 2g(a31a1)#, Eq. ~3!, can be rewritten in
the form

ql
n111ā2ql 11

n111ā1ql 21
n115ql

n1a1ql 11
n 1a2ql 21

n , ~19!

where uaj u5gua j /@ i 2g(a31a1)#u. Let us choosea15a2
5 ig, from Eq. ~19! it follows that

I n5(
l

~q†
l
n1 igq†

l 11
n 1 igq†

l 21
n !

3~ql
n112 igql 11

n1112 igql 21
n11!

5(
l

q†
l
nql

n112g2(
l

~q†
l 11
n 1q†

l 21
n !~ql 11

n111ql 21
n11!

~20!

is a conserved quantity:I n5I n11. The first term of the last
relation is conserved@by an analogy with Eq.~14!#, then it
follows that the second term is conserved, as well. Using
~14! and the last conserved relation, we obtain that

Jn5(
l

~q†
l 11
n112q†

l 21
n11!~ql 11

n 2ql 21
n ! ~21!

is a conserved quantity. Returning to the initial operatorc l
n it

gives that
02211
n-

s
n

q.

J̃n5(
l

~c†
l 11
n 2c†

l 21
n !~c l 11

n112c l 21
n11! ~22!

is conserved. As it follows from definition~16! and ~17! the
energy and the momentum are composed ofJ̃n and J̃†n, and
hence the conservation ofJ̃n implies conservation laws
En115En andPn115Pn.

Then the scheme we have chosen appears to be stab
the sense that all physical properties given at initial tim
~n50! are conserved for any time.

III. EQUATION OF MOTION: IMPLICIT AND EXPLICIT
SCHEMES

Let us show now that the discretization~3! possesses
other necessary conditions such as existence of a Herm
action and absence of spectrum doubling. Moreover, we
show that the initially implicit scheme can be rewritten in
form of a nonlocal but explicit one. To simplify the consid
eration we reduce the scheme to a one-parametric one
requiring the following conditions to be fulfilled:

~i! a15a25 ig,
~ii ! 2ua1ucos(f1)52sin(f1),
~iii ! 4gua1u22ua1u1g50

~the last requirement can be satisfied forg,1/4). Then
discrete-time evolution equation~3! takes the form

~c l 11
n112c l 11

n 1c l 21
n112c l 21

n !12b2~c l
n112c l

n!

5 ib~c l 11
n111c l 21

n1122c l
n111c l 11

n 1c l 21
n 22c l

n!, ~23!

whereb51/(2ua1u).
Now one can write down the action in a simple form

S5 i(
l ,n

@~c†
l 11
n 1c†

l 21
n 12b2c†

l
n!~c l

n112c l
n!

1bc†
l
n~c l 11

n111c l 21
n1122c l

n111c l 11
n 1c l 21

n 22c l
n!#.

~24!

Passing to the dispersion relation of Eq.~23! we look for
a solution in a formc l

n5Ah,t(k)ei (klh2vtn), whereAh,t(k)
is a space and time-independent operator and substitu
into the both sides of Eq.~23!. This gives

v5
2

t
arctanS 2b sin2S kh

2 D
cos~kh!1b2

D . ~25!

The obtained formula shows the absence of the spect
doubling.

In order to rewrite implicit scheme~3! in an explicit form
we introduce the second-order shift operators~acting in the
operator space!

Bc l52b~c l 111c l 2122c l !,

Tc l5c l 111c l 2112b2c l ,
1-3
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and the time-shift operatorU given by the formulac l
n11

5Uc l
n . Then we obtain that Eq.~23! can be rewritten as

follows:

i ~U2I !Tlc l
n5b~U1I !Blc l

n , ~26!

whereI ia a unity operator. Thus formally

U n5@~ iT1B!21~ iT2B!#n, ~27!

i.e., U appears to be a unitary operator. Taking into acco
that @T,B#50 we finally arrive at the conclusion that th
field operators obey to the temporal dynamicsc l

n5(U)nc l
0

@c.f. Eq. ~12!#, which formally coincides with the equatio
for the evolution of the wave function in the quantum m
chanics where a wave function should be used instead o
operator.

Consider now the limit when the temporal step goes
zero t→0 (b→`). Then b5h2/2t1O(2t/h2) and the
evolution operator takes the form

c l
n115Uc l

n5c l
n2

2t

ih2
~c l 11

n 1c l 21
n 22c l

n!1OS t2

h4D .

Thus, in this limit we arrive at the straightforward discre
scheme for the ‘‘Schro¨dinger field’’ on a Galileo lattice,
which was discussed in Ref.@9#.

To conclude this section we compute the non-equal-t
commutation relationsC(k,l )[@c l

n11 ,c†
k
n#. It follows from

Eq. ~23! that they obey the lattice equation

C~k,l !5F~k,l !1 igC~k,l 11!1 igC~k,l 21!, ~28!

whereF(k,l )5dk,l1 ig(dk,l 111dk,l 21). Using the discrete
Fourier transform one obtains

C~k,l ![C̃~k2 l !5
1

2pE2p

p

dqeiq( l 2k)
112ig cosq

122ig cosq
.

~29!

In particular, C̃(0)52(114g2)21/221 and C̃(61)
5( i /g)@12(114g2)21/2#.

IV. GENERALIZATIONS: BOSONS IN AN EXTERNAL
POTENTIAL

The approach developed above for the simplest cas
free bosons, can be generalized to a number of cases, w
external potential is present. This can be done using the
sociated Schro¨dinger picture and the analogy with the proc
dure of the second quantization. To this end we conside
discrete space-time version of the Schro¨dinger equation for
the wave functionw l

n in a form

w l
n112w l

n5 ig(
m

~Hm,lwm
n111H̄ l ,mwm

n !. ~30!

Then the analog of the stationary Schro¨dinger equation read
02211
t
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he

o

e

of
en
s-

a

w l~k!1 ig(
m

H̄l ,mwm~k!

5eim(k)S w l~k!2 ig(
m

Hm,lwm~k! D , ~31!

wherew l(k) is the eigenstate corresponding to the ‘‘energ
m(k) andk is a spectral parameter which plays the role of t
quantum state number. It follows from Eq.~31! that the tem-
poral dependence of the eigenstatew l(k) is given by
eim(k)nw l(k) such that the wave functionw l

n can be repre-
sented as

w l
n5(

k
eim(k)nw l~k! ~32!

~for the sake of simplicity in the present section we consi
a finite lattice subject to the periodic boundary conditions!. A
value k0 giving the minimum ofum(k)u corresponds to the
ground state of the system.

Before providing the second quantization of Eq.~30!, let
us consider in more details spectral problem~31!. First of all
one can ensure thatm(k) is real. To this end, multiplying Eq
~31! by w̄ l(k) and computing the sum overl we obtain

m~k!52 argS (
l

uw l~k!u21 ig(
l ,m

w̄ l~k!H̄ l ,mwm~k! D .

~33!

Next multiplying Eq.~31! by w̄ l(k8) with k8Þk and sum-
ming over alll we obtain the orthogonality conditions

(
l

w̄ l~k8!w l~k!1 ig(
l ,m

w̄ l~k8!H̄ l ,mwm~k!50 ~34!

and an additional condition

(
l ,m

~H̄ l ,m1Hm,l !w̄ l~k8!wm~k!50, k8Þk. ~35!

It is worth pointing out here that in the continuum time lim
@g→0 and hencem(k)→0] eigenvalue problem~31! is re-
duced to

w l~k!m~k!5g(
m

~H̄ l ,m1Hm,l !wm~k!1O~g2! ~36!

and thus Eqs.~34! and~35! coincide in the leading order an
take the form of the conventional orthogonality condition

For the sake of simplicity the consideration in the rest
this section will be restricted to the caseHm,l5H̄ l ,m @which
is the most interesting case from the physical point of vi
and corresponds to the supposition~i! from Sec. III#. Then
for the coefficients

al ,m5(
k

w̄ l~k!wm~k! ~37!

one obtains the equation

(
m

@an,mRe~Hl ,m!2am,lRe~Hn,m!#50, ~38!
1-4
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which must be valid for alln and l and an,m→0 for un
2mu→`. This is satisfied byan,m5dnm , i.e.,

(
k

w̄ l~k!wm~k!5d lm , ~39!

which can be interpreted as the completeness condition.
Now we can construct the filed operators

c l5(
k

w l~k!a~k!, c†
l5(

k
w̄ l~k!a†~k!. ~40!

Then requiring @a(k),a†(k8)#5(1/h)dkk8 we obtain
@c l ,c†

l 1
#5(1/h)d l l 1

.
Finally, we define temporal evolution for the field oper

tors by the relationc l
n115U†c l

nU with unitary operatorU
defined as in Eq.~11! with integral substituted by a sum an
m being an eigenvalue of problem~31!. This immediately
leads to the Schro¨dinger equation on a Galileo lattice:

c l
n112c l

n5 ig(
m

~Hm,lcm
n111H̄ l ,mcm

n !, ~41!

i.e., as it is expected it has formally the same form as
Schrödinger equation for the wave functionw l

n ~30!. As it is
clear the discretization~3! is of the type of Eq.~41! with

Hm,l52b1dm11,l2b2dm21,l1b3dm,l .

The discretization~41! preserves ETCR, which now follow
directly from the definition of the temporal evolution.

As far as the link between Schro¨dinger, Eq.~30!, and
Heisenberg, Eq.~41!, pictures on a lattice is established, o
can take advantage of the absence of interactions, and us
fact that is solvable, even inhomogeneous, Eq.~30! means
solvability @the solvability is understood here in the sense
possibility to represent the field operatorc l

n in an explicit
form ~40!, where all w l(k) are known# of the discretized
Schrödinger equation~41!. Let us consider three example
allowing one to construct some exact solutions.

A. Reflectionless sech-like potential

First of all we observe, that the discretization of t
Schrödinger equation corresponding to Eq.~3! is nothing but
the linear part of the integrable discretization of the class
nonlinear Schro¨dinger equation@11#. We make use of the
explicit form of the respective static~i.e., having an envelope
independent onn) one-soliton solution

w (s)
l
n5

sinh~2w!

cosh~2lw !
eim0n, ~42!

where

m05arctanS 4a cosh~2w!

112a214a2cosh~4w!
D , ~43!

wherew is a real parameter characterizing the soliton am
tude anda5uga1 /( i 2g(a32a1)u. Considering Eq.~31!
with
02211
e

the

f

l

i-

Hm,l5dm,l@b32b1~wm21
(s) w̄m

(s)1wm11
(s) w̄m

(s)!#

1b1@dm,l 211dm,l 11#, ~44!

we obtain the following discrete model

i
c l

n112c l
n

g
52b3c l

n111b1~c l 21
n111c l 11

n11!2a3c l
n

1a1~c l 11
n 1c l 21

n !2b1~w l 21
(s) w̄ l

(s)

1w l 11
(s) w̄ l

(s)!c l
n112a1~w l 21

(s) w̄ l
(s)

1w l 11
(s) w̄ l

(s)!c l
n . ~45!

Equation~45! represents the discretization of the equation

ic t5cxx1
A 2

cosh2~Ax!
c. ~46!

The respective potential possesses one discrete level,
thus the condensate at the zero temperature is approxim
described by the field operatorc l

n5w la0eim0n. Thus m0 is
nothing but the energy of the background state of the disc
model.

B. Bosons in a linear potential

Let us consider another consequence of the fact that
~3! is a linearization of the integrable discrete-time nonline
Schrödinger equation. Namely, we use that once a class
integrable model is found, and thus admits the Lax repres
tation, one can construct a new integrable model by apply
gauge transformation@12#. Such a transform may give a non
trivial, from the physical point of view, generalization of th
model, which in particular happens with inclusion of a line
force into consideration@13#. Namely, we are interested o
the discretization

i
c l

n112c l
n

g
52b3c l

n111b2c l 11
n11eihF(2l 11)

1b1c l 21
n11e2 ihF(2l 21)2a3c l

n

1a1c l 11
n e2 ihF(2l 21)1a2c l 21

n eihF(2l 11),

~47!

which come from Eq.~3! after the transformc l
n→c l

neihFl 2.
The continuum limit corresponds to a noninteracting Bo
gas subject to the linear force:

ic t5cxx12Fxc. ~48!

Equation~47! is obtained from Eq.~41! using the matrix

Hm,l52b3dm,l1b2dm,l 11eihF(2m21)

1b1dm,l 21e2 ihF(2m11). ~49!

C. Potential with nonlocal interactions

To construct the last example we take into account t
the development in Secs. II and III has been based on
discrete Fourier transform. Thus inclusion potential ene
1-5
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terms in a form of convolution with the field~i.e., the case
Hl ,m5Hl 2m) does not change properties of the system w
respect to the Fourier transform. This allows us to write
discrete model~30! using

Hm,l5b3d l ,m2b1d l 21,m2b2d l 11,m2(
l 1

hVl ,md l 1 ,m .

Then, we obtain discrete equation for wave function
bosons with nonlocal interactions

i
w l

n112w l
n

g
52b3w l

n111b1w l 21
n111b2w l 11

n112a3w l
n

1a1w l 11
n 1a2w l 21

n 1(
l 1

hVl 2 l 1
~w l 1

n111w l 1
n !.

~50!

The continuum limit of this equation reads

iw t5wxx1E dyV~x2y!w~y!. ~51!

And the explicit form of Eq.~33! is now

m~k!52 arg@11 iga32 iga1eik2 iga2e2 ik2 iV~k!#
~52!

and thus the whole analysis for free bosons provided the
II can be reproduced here for the case of the nonlocal po
tial.

V. CONCLUSION

To conclude, we have obtained a discretization of
Schrödinger field equation which on one hand preserv
ETCR and on the other hand possesses in the linear cas
.

an

n

02211
h
e

f

c.
n-

e
s
all

relevant properties of the underline continuum field. A
though the scheme is implicit it is reducible to a nonloc
explicit one. Our discretization can be viewed as a gener
zation of the implicit scheme due to@10# the operator case
In the limit of relatively small time step our discretizatio
coincides with the straightforward one discussed in detail
Ref. @9#.

The main approach was based on the link between fi
operators and creation and annihilation operators, wh
were introduced through the associate discretization of
time-dependent Schro¨dinger equation. The stationary dis
crete Schro¨dinger equation defines a spectral problem, wh
is to be investigated in more details elsewhere.

Discretizations of three different inhomogeneous mod
have been presented. Meantime, in this communication
left open the problem of application of the procedure to m
general physical models, i.e., including potentials of a m
general form, for the sake of the definition of their spectra
numerical methods. We also believe that the proposed
proach will be fruitful for description of weakly nonlinea
nonintegrable models on a perturbative basis, when kno
exact methods@14# are not applicable, as well as for th
generalization to two- and three-dimensional cases. Fina
we mention that the discretization based on the associ
discrete Schro¨dinger picture is a natural way for introducin
two- and three-dimensional discrete Schro¨dinger models.
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