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Maximal entanglement versus entropy for mixed quantum states
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Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible
entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures,
the form of the corresponding maximally entangled mixed states is determined primarily analytically. As
measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and
negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms
of the maximally entangled mixed states can vary with the combination of~entanglement and mixedness!
measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can
change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a
given value of entropy, achieve maximal violation of Bell’s inequality.

DOI: 10.1103/PhysRevA.67.022110 PACS number~s!: 03.65.Ud, 03.67.2a
th
a

rio
se

ar
-

ro
a
tio

m

es
iv
o
a
at
o
e

te
th

ty
n-
b

e

g
m
re

res

-
are
s
lly
-
nd-

ix-
the

. II
and
on-
, in
eral

the
the
ec.

ter-

le-
rix
, the

-

I. INTRODUCTION

Over the last decade, the physical characteristics of
entanglement of quantum-mechanical states, both pure
mixed, has been recognized as a central resource in va
aspects of quantum information processing. Significant
tings include quantum communication@1#, cryptography@2#,
teleportation@3#, and, to an extent that is not quite so cle
quantum computation@4#. Given the central status of en
tanglement, the task of quantifying the degree to which
state is entangled is important for quantum information p
cessing and, correspondingly, several measures of it h
been proposed. These include entanglement of forma
@5,6#, entanglement of distillation@7#, relative entropy of en-
tanglement@8#, negativity @9,10#, and so on. It is worth re-
marking that even for the smallest Hilbert space capable
exhibiting entanglement, i.e., the two-qubit system~for
which Wootters has determined the entanglement of for
tion @6#!, there are aspects of entanglement which remain
be explored.

Among the family of mixed quantum-mechanical stat
special status should be accorded to those that, for a g
value of the entropy@11#, have the largest possible degree
entanglement@12#. The reason for this is that such states c
be regarded as mixed-state generalizations of the Bell st
the latter being known to be the maximally entangled tw
qubit pure states. The notion of maximally entangled mix
states was introduced by Ishizaka and Hiroshima@13# in a
closely related setting, i.e., that of two-qubit mixed sta
whose entanglement is maximized at fixed eigenvalues of
density matrix~rather than at fixed entropy of the densi
matrix!. Evidently, the entanglement of the maximally e
tangled mixed states of Ishizaka and Hiroshima cannot
increased by anyglobal unitary transformation. For thes
states, it was shown by Verstraeteet al. @14# that the maxi-
mality property continues to hold if any of the followin
three measures of entanglement—entanglement of for
tion, negativity, and relative entropy of entanglement—is
1050-2947/2003/67~2!/022110~12!/$20.00 67 0221
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placed by one of the other two.
The question of the ordering of entanglement measu

was raised by Eisert and Plenio@15#, and investigated nu-
merically by them and by Z˙yczkowski @16# and analytically
by Verstraeteet al. @17#. It was proved by Virmani and Ple
nio @18# that all good asymptotic entanglement measures
either identical or fail to uniformly give consistent ordering
of density matrices. This implies that the resulting maxima
entangled mixed states~MEMS! may depend on the mea
sures one uses to quantify entanglement. Moreover, in fi
ing the form of MEMS, one needs to quantify themixedness
of a state, and there can also be ordering problems for m
edness. This implies that the MEMS may depend on
measures of mixedness as well.

This paper is organized as follows. We begin, in Secs
and III, by reviewing several measures of entanglement
mixedness. In the main part of the paper, Sec. IV, we c
sider various entanglement-versus-mixedness planes
which entanglement and mixedness are quantified in sev
ways. Our primary objective, then, is to determine thefron-
tiers, i.e., the boundaries of the regions occupied by
physically allowed states in these planes, and to identify
structure of these maximally entangled mixed states. In S
V, as well as making some concluding remarks, we de
mine the states that~for a given value of entropy! achieve
maximal violation of Bell’s inequality.

II. ENTANGLEMENT CRITERIA AND THEIR MEASURES

It is well known that there are a large number of entang
ment measuresE. For a state described by the density mat
r, a good entanglement measure must satisfy, at least
following conditions@19,20#.

(C1) ~a! E(r)>0; ~b! E(r)50 if r is not entangled
@21#; ~c! E(Bell states)51.

(C2) For any stater and any local unitary transforma
tion, i.e., a unitary transformation of the formUA^ UB , the
entanglement remains unchanged.
©2003 The American Physical Society10-1
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(C3) Local operations and classical communication c
not increase the expectation value of entanglement.

(C4) Entanglement is convex under discarding inform
tion: ( i pi E(r i)>E(( i pi r i).

The entanglement quantities chosen by us satisfy
propertiesC1 –C4. Here, we do not impose the conditio
that any good entanglement measure should reduce to
entropy of entanglement~to be defined in the following! for
pure states.

A. Entanglement of formation and entanglement cost

The first measure we shall consider is the entanglemen
formation,EF @5#; it quantifies the amount of entangleme
necessary to create the entangled state. It is defined by

EF~r![ min
$pi ,c i %

(
i

piE~ uc i&^c i u!, ~2.1!

where the minimization is taken over those probabilities$pi%
and pure states$c i% that, taken together, reproduce the de
sity matrix r5( i pi uc i&^c i u. Furthermore, the quantity
E(uc i&^c i u) ~usually called theentropy of entanglement!
measures the entanglement of the pure stateuc i& and is de-
fined to be the von Neumann entropy of the reduced den
matrix r i

(A)[TrBuc i&^c i u, i.e.,

E~ uc i&^c i u!52Trr i
(A) log2r i

(A) . ~2.2!

For two-qubit systems,EF can be expressed explicitly a
@6#

EF~r!5hS 1

2
@11A12C~r!2# D , ~2.3a!

h~x![2x log2x2~12x!log2~12x!, ~2.3b!

whereC(r), theconcurrenceof the stater, is defined as

C~r![max$0,Al12Al22Al32Al4%, ~2.3c!

in which l1 , . . . ,l4 are the eigenvalues of the matr
r(sy^ sy)r* (sy^ sy) in nonincreasing order andsy is a
Pauli spin matrix. EF(r), C(r), and the tangle t(r)
[C(r)2 are equivalent measures of entanglement, inasm
as they are monotonic functions of one another.

A measure associated with the entanglement of forma
is the entanglement costEC @5#, which is defined via

EC~r![ lim
n→`

EF~r ^ n!

n
. ~2.4!

This is the asymptotic value of the average entanglemen
formation.EC is, in general, difficult to calculate.

B. Entanglement of distillation and relative entropy
of entanglement

Related to the entanglement of formation is the entan
ment of distillation,ED @7#, which characterizes the amou
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of entanglement of a stater as the fraction of Bell states
which can be distilled using the optimal purification proc
dure:ED(r)[ limn→`m/n, wheren is the number of copies
of r used andm is the maximal number of Bell states th
can be distilled from them. The differenceEC2ED can be
regarded asundistillable entanglement. ED is a difficult
quantity to calculate, but the relative entropy of entang
mentER @8#, which we shall define shortly, provides an u
per bound onED and is more readily calculable than it. Fo
this reason, it is the second measure that we consider in
paper. It is defined variationally via

ER~r![ min
sPD

Tr~r logr2r logs!, ~2.5!

whereD represents the~convex! set of all separable densit
operatorss. In certain ways, the relative entropy of en
tanglement can be viewed as adistanceD(ruus* ) from the
entangled stater to the closest separable states* . We re-
mark that for pure states,EF5EC5ER5ED ; but in general,
EF>EC>ER>ED .

C. Negativity

The third measure that we shall consider is thenegativity.
The concept of the negativity of a state is closely related
the well-known Peres-Horodecki condition for the separa
ity of a state@22#. If a state is separable~i.e., not entangled!,
then the partial transpose@23# of its density matrix is again a
valid state, i.e., it is positive semidefinite. It turns out that t
partial transpose of a nonseparable state may have on
more negative eigenvalues. The negativity of a state@9# in-
dicates the extent to which a state violates the positive pa
transpose separability criterion. We will adopt the definiti
of negativity as twice the absolute value of the sum of
negative eigenvalues:

N~r!52 max~0,2lneg!, ~2.6!

wherelneg is the sum of the negative eigenvalues ofrTB. In
C2

^ C2 ~i.e., two-qubit! systems, it can be shown that th
partial transpose of the density matrix can have at most
negative eigenvalue@24#. It was proved by Vidal and Werne
@10# that negativity is an entanglementmonotone, i.e., it sat-
isfies criteriaC1 –C4 and, hence, is a good entangleme
measure. We remark that for two-qubit pure states the ne
tivity gives the same value as the concurrence does.

D. Ordering difficulties with entanglement measures

We now pause to touch on certain difficulties posed by
task of ordering physical states using entanglement. As
discussed and explored numerically by Eisert and Plenio@15#
and by Życzkowski@16#, and subsequently investigated an
lytically by Verstraeteet al. @17#, different entanglemen
measures can give different orderings for pairs of mix
states. Verstraeteet al. showed that, instead, the negativi
of the two-qubit states of a given concurrenceC, rather
than having a single value, ranges betwe
A2@C2(1/2)#21(1/2)1(C21) andC. Thus, there is an or-
dering difficulty: pairs of states,A and B, exist for which
0-2
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C(A)2C(B) andN(A)2N(B) differ in sign. Hence, when
one wishes to explore maximally entangled mixed states,
must be explicit about the measure of entanglement~and also
the measure of mixedness; see the following section! consid-
ered. Different measures have the potential to lead to dif
ent classes of MEMS.

III. MEASURES OF MIXEDNESS

In the entanglement-measure literature, two measure
mixedness have basically been used: 12Tr(r2) and the von
Neumann entropy. Whereas the latter has a natural sig
cance stemming from its connections with statistical phys
and information theory, the former is substantially easier
calculate. Of course, for density matrices that are alm
completely mixed, the two measures show the same tren

A. The von Neumann entropy

The von Neumann entropy, the standard measure of
domness of a statistical ensemble described by a density
trix, is defined by

SV~r![2Tr~r logr!52(
i

l i logl i , ~3.1!

wherel i are the eigenvalues of the density matrixr and the
log is taken to baseN, the dimension of the Hilbert space i
question. It is straightforward to show that the extremal v
ues ofSV are zero~for pure states! and unity~for completely
mixed states!. To compute the von Neumann entropy, it
necessary to have the full knowledge of the eigenvalue s
trum.

As we shall mention in the following section, there is
linear entropy threshold above which all states are separa
Qualitatively identical behavior is encountered for the v
Neumann entropy. In particular, as we shall see in S
IV C 1, for two-qubit systems all states are separable
SV>2(1/2)log4(1/12)'0.896.

B. Purity and linear entropy

The second measure that we shall consider is called
linear entropy and is based on the purity of a state,P
[Tr(r2), which ranges from 1~for a pure state! to 1/N for a
completely mixed state with dimensionN. The linear en-
tropy SL is defined via

SL~r![
N

N21
@12Tr~r2!#, ~3.2!

which ranges from 0~for a pure state! to 1 ~for a maximally
mixed state!. The linear entropy is generally a simpler qua
tity to calculate than the von Neumann entropy as there is
need for diagonalization. ForC2

^ C2 systems, the linear en
tropy can be written explicity as

SL~r![
4

3
@12Tr~r2!#. ~3.3!
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A related measure, which we shall not use in this pa
~but mention for the sake of completeness!, is the inverse
participation ratio. Defined viaR[1/Tr(r2), it ranges from
1 ~for a pure state! to N ~for the maximally mixed state!. An
attractive property of the inverse participation ratio is that
states withR>N21 are separable@9#, which implies all
states with a linear entropySL(r)>N(N22)/(N21)2

~which is 8/9 whenN54) are separable.

C. Comparing linear and von Neumann entropies

The aim of this section is to illustrate the difference b
tween the linear and von Neumann entropies. We shall
this by considering theN54 Hilbert space, and seeking th
highest and lowest von Neumann entropies consistent wi
given value of linear entropy. Before restrictingN to 4, the
corresponding stationarity problem reads

dS SV~r!1b
N21

2N SL~r!2~n21!Trr D50, ~3.4!

whereb andn are, respectively, Langrange multipliers th
enforce the constraints that linear entropy should be fi
and thatr should be normalized. Thus, we arrive at the e
gaging self-consistency condition

r5exp~2n2br!, ~3.5!

in which n andb can be fixed upon implementing the co
straints. By working with the eigenvalues of density mat
ces, the stationarity problem becomes straightforward: m
mize or minimize the von Neumann entropy2( il i ln li

subject to the constraints( il i
25const~fixed linear entropy!

and( il i51 ~normalization!. The maximalSV versusSL cor-
responds to eigenvalues of the form

~3.6a!

The minimal SV versusSL consists ofN21 segments, of
which the kth segment corresponds to eigenvalues of
form

~3.6b!

wherek51, . . . ,N21. For the case ofN54, the boundary
of the physical region in theSL versusSV plane~see Fig. 1!,
when given in terms of eigenvalues, reads

H l,
12l

3
,
12l

3
,
12l

3 J for
1

4
<l<1, ~3.7a!

$l,12l,0,0% for
1

2
<l<1, ~3.7b!
0-3
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$l,l,122l,0% for
1

3
<l<

1

2
, ~3.7c!

$l,l,l,123l% for
1

4
<l<

1

3
. ~3.7d!

These segments, respectively, correspond to the u
boundary, and the lowest, middle, and highest pieces of
lower boundary. Note that the lower boundary compris
three ~in general,N21) segments that meet at cusps. W
remark, parenthetically, that the solutions with zero eigenv
ues correspond to extrema within some subspace spanne
those eigenvectors with nonzero eigenvalues, and there
only obey the stationarity condition~3.5! within the sub-
space.

Is there any significance to the boundary states? Boun
segment~a! includes the Werner states defined in Eq.~4.7!.
Boundary segment~b! includes the first branch of the MEMS
for EF andSL specified below in Eq.~4.6!. The segment~c!
includes the states

rc5r uf1&^f1u1
12r

2
~ u01&^01u1u10&^10u!. ~3.8!

States on segment~d! are all unentangled. Of course, th
boundary segments include not only the specified states
also all states derivable from them by global unitary tra
formation.

As for the interior, we have obtained this numerically
constructing a large number of random sets@25# of eigenval-
ues of legitimate density matrices, and computing the t
entropies for each. As Fig. 1 shows, no points lie outside
boundary curve, providing confirmatory evidence for t
forms given in Eq.~3.7!.

The fact that the bounded region is two-dimensional in
cates the lack of precision with which the linear entro
characterizes the von Neumann entropy~and vice versa, if
one wishes!. In particular, the figure reveals an ordering d

FIG. 1. Comparison of linear entropy and von Neumann
tropy. 6000 dots~2000 each for the rank-2, -3, and -4 cases! repre-
sent randomly generated states~see Ref.@25#!; pure ~rank-1! states
lie at the origin; rank-2 states lie on segmentb; the lighter dots in
the interior are rank-3 states; the darker ones are rank-4 states
lower boundary comprises three segments meeting at cu
whereas the upper boundary is a smooth curve. The two da
lines represent thresholds of entropies beyond which no states
tain entanglement.
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ficulty: pairs of states,A andB, exist for whichSL
A2SL

B and
SV

A2SV
B differ in sign. Worse still, states having a commo

value of SV have a continuum of values ofSL , and vice
versa.

IV. ENTANGLEMENT-VERSUS-MIXEDNESS FRONTIERS

We now attempt to identify regions in the plane spann
by entanglement and mixedness that are occupied by ph
cal states~i.e., characterized by legitimate density matrice!.
We shall consider the various measures of entanglement
mixedness discussed in the preceding section. Of partic
interest will be the structure of the states that occupy
frontier, i.e., the boundary delimiting the region of physic
states. Frontier states are maximal in the following sense:
a given value of mixedness, they are maximally entangl
for a given value of entanglement, they are maxima
mixed.

A. Parametrization of maximal states

The aim of this section is to derive the general form of t
maximal states given in Eq.~4.4!, which is what we will use
to parametrize maximal states. In Ref.@14#, it is shown that,
given a fixed set of eigenvalues, all states that maximize
of the three entanglement measures~entanglement of forma-
tion, negativity, or relative entropy! automatically maximize
the other two. It was further shown that the global unita
transformation that takes arbitrary states into maximal o
has the form

U5~U1^ U2!TDfF†, ~4.1!

whereU1 andU2 are arbitary local unitary transformation

T[S 0 0 0 1

1/A2 0 1/A2 0

1/A2 0 21/A2 0

0 1 0 0

D . ~4.2!

Df is a unitary diagonal matrix andF is the unitary matrix
that diagonalizes the density matrixr, i.e., r5FLF†,
where L is a diagonal matrix, the diagonal elements
which are the four eigenvalues ofr listed in the orderl1
>l2>l3>l4. Hence, the general form of a density matr
that is maximal, given a set of eigenvalues, is~up to local
unitary transformations!

TS l1 0 0 0

0 l2 0 0

0 0 l3 0

0 0 0 l4

D
T†5S l4 0 0 0

0 ~l11l3!/2 ~l12l3!/2 0

0 ~l12l3!/2 ~l11l3!/2 0

0 0 0 l2

D . ~4.3!
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This matrix is locally equivalent to the form

S x1~r /2! 0 0 r /2

0 a 0 0

0 0 b 0

r /2 0 0 x1~r /2!
D , ~4.4!

with x1(r /2)5(l11l3)/2, r 5l12l3 , a5l2, and b
5l4. The above derivation justifies the ansatz form~4.5!
used in Ref.@12# to derive the entanglement of formatio
versus linear-entropy MEMS. We remark that one may
well use the four eigenvalues (l i ’s! as the parametrization
Nevertheless, the form~4.4!, as well as~4.5!, can be nicely
viewed as a mixture of a Bell stateuf1& with some diagonal
separable mixed state.

B. Entanglement-versus-linear-entropy frontiers

We begin by measuring mixedness in terms of the lin
entropy, and comparing the frontier states for various m
sures of entanglement.

1. Entanglement of formation

The characterization of physical states in terms of th
entanglement of formation and linear entropy was introdu
by Munroet al. in Ref. @12#. ~Strictly speaking, they consid
ered the tangle rather than the equivalent entanglemen
formation.! Here, we shall consider yet another equivale
quantity: concurrence~see Sec. II A!. In order to find the
frontier, Munroet al. proposed ansatz states of the form

ransatz5S x1~r /2! 0 0 r /2

0 a 0 0

0 0 b 0

r /2 0 0 y1~r /2!

D , ~4.5!

where x,y,a,b,r>0 and x1y1a1b1r 51. They found
that, of these, the subset

rMEMS:EF ,SL
5H r I~r ! for

2

3
<r<1

r I~r ! for 0<r<
2

3
,

~4.6a!

r I ~r !5S r /2 0 0 r /2

0 12r 0 0

0 0 0 0

r /2 0 0 r /2

D , ~4.6b!
02211
s
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r II~r !5S 1

3
0 0 r /2

0
1

3
0 0

0 0 0 0

r /2 0 0
1

3

D ,

lies on the boundary in the tangle-versus-linear-entro
plane and, accordingly, named these MEMS, in the sense
these states have maximal tangle for a given linear entro
We remark that at the crossing point of the two brancher
52/3, the density matrices on either side coincide.

In Fig. 2 we plot the entanglement of formation
concurrence versus linear entropy for the family of MEM
~4.6!; this gives the frontier curve. For the sake of compa
son, we also give the curve associated with the family
Werner states of the form

rW[r uf1&^f1u1
12r

4
1

5S ~11r !/4 0 0 r /2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r /2 0 0 ~11r !/4

D .

~4.7!

FIG. 2. Entanglement frontier. Upper panel: entanglement
formation versus linear entropy. Lower panel: concurrence ver
linear entropy. The states on the boundary~solid curve! are
rMEMS :EF ,SL

. A dot indicates a transition from one branch
MEMS to another. The dashed curve below the boundary cont
Werner states.
0-5
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Evidently, for a given value of linear entropy these MEM
~which we shall denote by$MEMS:EF ,SL%) achieve the
highest concurrence. As the tanglet and entanglement o
formation,EF , are monotonic functions of the concurrenc
Eq. ~4.6! also gives the boundary curve for these measu
This raises an interesting question: Is Eq.~4.6! optimal for
other measures of entanglement?

2. Relative entropy as the entanglement measure

To find the frontier states for the relative entropy of e
tanglement, we again turn our attention to the maximal d
sity matrix ~4.4!. For this form of density matrix, the linea
entropy is given~with x expressed in terms ofa,b,r ) by

SL5
2

3
@23a212a~12b!1~12b!~113b!2r 2#.

~4.8!

To calculate the relative entropy of entanglement, we nee
determine the closest separable state to Eq.~4.4!. It is sim-
pler to do this analysis via several cases. We begin by c
sidering the rank-2 and rank-3 cases of Eq.~4.4!. We setb
50 (l450) and expressx in terms ofa andr in the density
matrix, obtaining

r5S ~12a!/2 0 0 r /2

0 a 0 0

0 0 0 0

r /2 0 0 ~12a!/2

D , ~4.9!

and the corresponding closest separable density matrixs*
was found by Vedral and Plenio@19#:

s* 5S C 0 0 D

0 E 0 0

0 0 122C2E 0

D 0 0 C

D , ~4.10a!

C[
~11a!~12a22r 2!

2~11a2r !~11a1r !
, ~4.10b!

D[
a~11a!r

~11a2r !~11a1r !
, ~4.10c!

E[
a~11a!2

~11a2r !~11a1r !
. ~4.10d!

The relative entropy is now simply given by

ER~r!5
11a

2
log2

~11a!22r 2

~11a!2
1

r

2
log2

11a1r

11a2r
,

~4.11!

with the linear entropy being given by

SL5
2

3
~112a23a22r 2!, ~4.12!
02211
,
s.
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subject to the constraint (a1r )<1. For the rank-2 case,a
512r (b5x50), and the resulting solution is the rank-
matrix r I(r ) given in Eq.~4.6! with 1/2<r<1. We remark
that this rank-2 solution is always a candidate MEMS for t
three entanglement measures that we consider in this pa
In order to determine whether or in what range the ran
solution achieves the global maximum, we need to comp
it with the rank-3 and rank-4 solutions.

By maximizing ER(r) for a given value ofSL , we find
the following stationary condition:

r ln
~11a!22r 2

~11a!2
5~3a21!ln

11a1r

11a2r
. ~4.13!

Given a value ofSL , we can solve Eqs.~4.12! and~4.13! at
least numerically to obtain the parametersa and r, and
hence, from Eq.~4.9!, the rank-3 MEMS. However, if the
constraint inequalitya1r<1 turns out to be violated, the
solution is invalid.

We now turn to the rank-4 case. It is straightforward,
tedious, to show that the Werner states, Eq.~4.7!, obey the
stationarity conditions appropriate for rank 4. However,
turns out that this solution is not maximal.

To summarize, the frontier states, which we denote
$MEMS:ER ,SL%, are states of the form~4.9!; the depen-
dence of the parametersa andr on SL is shown in Fig. 3. In
Fig. 4, we show the resulting frontier, as well as curves c
responding to nonmaximal stationary states. The fron
states have the following structure:~i! for SL&0.5054 they
are the rank-2 MEMS of Eq.~4.6! but with r restricted to the
range from 1~at SL50) to '0.7459~at SL'0.5054);~ii ! for
SL*0.5054 the MEMS are rank 3, with parametersa and r
satisfying Eqs.~4.13! and ~4.12! at each value ofSL , and
(a,r ) ranging between'(0.3056,0.7459)~at SL'0.5054)
and (1/3,0) ~at SL58/9). As noted previously, beyondSL
58/9, there are no entangled states. As the inset of Fig
shows, the parametera can be regarded as a continous fun
tion of parameterr P@0,1#. The two branches of the solution
~i! and ~ii !, cross at (SL* ,ER* )'(0.5054,0.3422); at this
point, the states on the two branches coincide,

FIG. 3. Dependence ofa and r of the frontier states on linea
entropy. The upper curve isa versusSL whereas the lower isr
versusSL . The dotted line indicates the transition between tw
branches of MEMS. The inset shows the dependence ofa on r for
the frontier states.
0-6
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r* .S 0.372 947 0 0 0.372 947

0 0.254 106 0 0

0 0 0 0

0.372 947 0 0 0.372 947

D .

~4.14!

Just as in the case of entanglement of formation versus li
entropy, the density matrix is continuous at the transit
between branches.

We remark that the curve generated by the sta
$MEMS:EF ,SL%, when plotted on theER versusSL plane,
falls just slightly below that generated by the sta
$MEMS:ER ,SL% for SL*0.5054~and coincides for smalle
values ofSL). We also remark that the parameterr turns out
to be the concurrenceC of the states, so that Fig. 3 can b
interpreted as a plot of the concurrence of the frontier sta
versus their linear entropy. By comparing this concurren
versus linear-entropy curve to that in Fig. 2, we find that
former lies just slightly below the latter forSL*0.5054~and
the two coincide for smaller values ofSL), the maximal dif-
ference between the two being less than 1022.

It is evident that, for a given linear entropy, the relati
entropies of entanglement for both$MEMS:ER ,SL% and
$MEMS:EF ,SL% are significantly less than the correspon
ing entanglements of formation. In fact, for small degrees
impurity, the entanglements of formation for the two MEM
states are quite flat; however, the relative entropies of
tanglement fall quite rapidly. More specifically, for a chan
in linear entropy ofDSL50.1 nearSL50, we haveDEF
'0.05~see Fig. 2! andDER'0.2 ~see Fig. 4!. As the curves
of the states$MEMS:EF ,SL% and$MEMS:ER ,SL% are very
close on the two planes,EF versusSL andER versusSL , we
show in Fig. 5 the entanglement differenceEF2ER for the
states$MEMS:EF ,SL%, and compare it with the correspond
ing difference for the Werner states. While it is clear th
ER(r)<EF(r), for certain values of the linear entropy th
difference turns out to be quite large, this difference be
uniformly larger for $MEMS:EF ,SL% than for the Werner
state; see Fig. 5.

As we have seen, Werner states are not frontier st
either in the case of entanglement of formation or in the c
of relative entropy of entanglement. By contrast, as we s

FIG. 4. Entanglement frontier: relative entropy of entanglem
versus linear entropy. The frontier states arerMEMS:ER ,SL

. The dot
indicates the transition between branches of MEMS.
02211
ar
n

s

s

s
e
e

-
f

n-

t

g

es
e
ll

see in the following section, if we measure entanglement
negativity, then for a given amount of linear entropy, t
Werner states~as well as another rank-3 class of state!
achieve the largest value of entanglement. Said equivale
the Werner states belong to$MEMS:N,SL%.

3. Negativity

In order to derive the form of the MEMS in the case
negativity, we again consider the density matrix of the fo
~4.4!, for which it is straightforward to show that the neg
tivity N is given by

N5max$0,A~a2b!21r 22~a1b!%. ~4.15!

Furthermore, because we aim to find the entanglement f
tier, we can simply restrict our attention to states satisfy
N.0, i.e., to states that are entangled@22#. Then, by making
N stationary at fixedSL and with the constraint 2x1a1b
1r 51, we find two one-parameter families of stationa
states~in addition to the rank-2 MEMS, which are commo
to all three entanglement measures!. The parameters of the
first family obey

a5b5x,r 5124x. ~4.16!

When expressed in terms of parameterr, the density matrix
takes the form

r
MEMS:N,SL

(1) 5S ~11r !/4 0 0 r /2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r /2 0 0 ~11r !/4

D ,

~4.17!

which are precisely the Werner states in Eq.~4.7!. For the
second solution, the parameters obey

a5
422A3r 211

6
,b50,x5

11A3r 211

6
2

r

2
.

~4.18!

When expressed in terms of parameterr, the density matrix
takes the form

t
FIG. 5. Difference in entanglement (EF2ER) versusSL for the

MEMS in Eq.~4.6! and Werner states. The solid curve shows sta
from rMEMS :EF ,SL

; the dashed curve shows the Werner states.
0-7



r
MEMS:N,S
(2) 5

~11A3r 211!/6 0 0 r /2

0 ~422A3r 211!/6 0 0
. ~4.19!

WEI et al. PHYSICAL REVIEW A 67, 022110 ~2003!
L S 0 0 0 0

r /2 0 0 ~11A3r 211!/6

D
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We remark that the two solutions give the same bound on
negativity for a given value of linear entropy. The resulti
frontier in the negativity-versus-linear-entropy plane
shown in Fig. 6.

Thus, the states$MEMS:N,SL% on the boundary include
up to local unitary transformations, both Werner states in
~4.17! and states in Eq.~4.19!. We also plot in Fig. 6 the
curve belonging to$MEMS:EF ,SL%; note that it falls
slightly below the curve associated with$MEMS:N,SL% and
that it has a cusp, due to the structure of the states, a
value 2/3 for the parameterr in Eq. ~4.6!. Here, we see tha
maximally entangled mixed states change their form wh
we adopt a different entanglement measure.

C. Entanglement versus von Neumann entropy frontiers

We continue this section by choosing to measure mix
ness in terms of the von Neumann entropy, and compa
the frontier states for various measures of entanglement
e

o
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1. Entanglement of formation

To find this frontier, we consider states of the form~4.4!,
and compute for them the concurrence and the von Neum
entropy:

C5r 22Aab, ~4.20a!

SV52a log4a2b log4b2x log4x2~x1r !log4~x1r !.
~4.20b!

Note that the parameters obey the normalization constr
2x1a1b1r 51.

As we remarked previously, the rank-2 MEMS is always
candidate. For the rank-3 case, we can setb50 in Eq.~4.20!.
By maximizingC at fixedSV , we find a stationary solution
~i! r 5C, x5(423C2A423C2)/6, and a5(A423C2

21)/3; the resulting density matrix is
r i5S ~42A423C2!/6 0 0 C/2

0 ~A423C221!/3 0 0

0 0 0 0

C/2 0 0 ~42A423C2!/6

D . ~4.21!
nu-

lu-
nly
ol-

wo

-

t,
the
For the rank-4 case (bÞ0), the stationarity condition can b
shown to be

u ln~u!5w ln~w!, ~4.22a!

2u ln~u!5~u1w!ln~v !, ~4.22b!

where u[Aa/(x1r ), v[Ax/(x1r ), and w[Ab/(x1r ).
There are two solutions, due to the two-to-one property
the function z ln z for zP(0,1). The first one is (u5v
5w). ~ii ! a5b5x5(12C)/6, and r 5(112C)/3, which
can readily be seen to be a Werner state as in Eq.~4.7! or,
equivalently,

r i i 5S ~21C!/6 0 0 ~112C!/6

0 ~12C!/6 0 0

0 0 ~12C!/6 0

~112C!/6 0 0 ~21C!/6

D .

~4.23!
f

Being the concurrence,C is restricted to the interval@0,1#.
The second solution is transcendental, but can be solved
merically.

In Fig. 7 we compare the four possible candidate so
tions, and find that the global maximum is composed of o
~i! and ~ii !. We summarize the states at the frontier as f
lows:

rMEMS:EF ,SV
5H r i i for 0<C<C* ,

r i for C* <C<1.
~4.24!

Note the crossing point at (C,SV)5@C* ,SV(C* )#, at which
extremality is exchanged, so the true frontier consists of t
branches. It is readily seen thatC* is the solution of the
equationSV@r i(C)#5SV@r i i (C)#, and the approximate nu
merical values ofC* and the correspondingSV* are 0.305
and 0.741, respectively.

The resulting form of MEMS states is peculiar, in tha
even at the crossing point of two branches on
0-8
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entanglement-mixedness plane, the forms of matrices on
two branches are not equivalent~one is rank 3, the other ran
4!. This is in contrast to the$MEMS:EF ,SL%. This peculiar-
ity can be partially understood from the plot of the two mi
edness measures, Fig. 1. As the value of the von Neum
entropy rises, there are fewer and fewer rank-3 entang
states, and above some threshold, no more rank-3 state
ist, let alone entangled rank-3 states. There are, however,
entangled states of rank 4. Hence, if rank-3 states at
higher entanglement than rank-4 states do when the ent
is low, a transition must occur between MEMS states
ranks 3 and 4.

From Fig. 7 it is evident that beyond a certain value of t
von Neumann entropy, no entangled states exist. This v
can be readily obtained by considering the MEMS st
~4.23! at C50,

S 1

3
0 0

1

6

0
1

6
0 0

0 0
1

6
0

1

6
0 0

1

3

D , ~4.25!

for which SV52(1/2)log4(1/12)'0.896.
As an aside, we mention a tantalizing but not yet fu

developed analogy with thermodynamics@26#. In this anal-
ogy, one associates entanglement with energy and von N
mann entropy with entropy, and it is therefore tempting
regard the MEMS just derived as the analog of thermo
namic equilibrium states. If we apply the Jaynes principle
an ensemble in equilibrium with a given amount of entang
ment, then the most probable states are those MEMS sh
above.

2. Relative entropy of entanglement

Let us now find the frontier states for the case of relat
entropy of entanglement. To do this, we first consider

FIG. 6. Entanglement frontier: negativity versus linear entro
States on the boundary~full line! are rMEMS:N,SL

(1) and rMEMS:N,SL

(2) .
The dashed line comprisesrMEMS:EF ,SL

.
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rank-3 states in Eq.~4.9!, for which the relative entropy is
given by Eq.~4.11!. For these states, the von Neumann e
tropy is given by

SV52
12a1r

2
log4

12a1r

2
2alog4 a

2
12a2r

2
log4

12a2r

2
, ~4.26!

where the log function is taken to have base 4. Even tho
the log functions inSV and ER use different bases, the sta
tionary condition for the parametersr anda does not change
because the difference can be absorbed by a rescaling o
constraint-enforcing Lagrange multiplier. Thus, in maxim
ing ER at fixedSV , we arrive at the stationarity condition

ln
~11a!22r 2

~11a!2
ln

12a2r

12a1r
5 ln

11a1r

11a2r
ln

~12a!22r 2

4a2
.

~4.27!

We can solve for the parametera as a function ofr P@0,1#,
at least numerically; the result is shown in Fig. 8, along w
SV andER .

Turning to the rank-4 case, it is straightforward, if tediou
to show that the Werner states satisfy the corresponding
tionarity conditions. In order to ascertain which rank giv
the MEMS for a givenSV , we compare the stationary state
of ranks 2, 3, and 4 in Fig. 9. Thus, we see that forSV

<SV*.0.672, the frontier states are given by the rank
states, whereas forSV>SV* the frontier states are given b

.

FIG. 7. Entanglement frontiers. Upper panel: entanglemen
formation versus von Neumann entropy. Lower panel: concurre
versus von Neumann entropy. The branch structure is describe
the text.
0-9
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WEI et al. PHYSICAL REVIEW A 67, 022110 ~2003!
the Werner states~4.7! with the parameterr ranging from
'0.6059 down to 0. At the crossing point, (SV* ,ER* )
.(0.672,0.124), the MEMS undergo a discontinuous tran
tion; recall that we encountered a similar phenomenon in
case of entanglement of formation versus von Neumann
tropy.

3. Negativity

We saw in Sec. IV B 3 that there is a pair of families
MEMS, which differ in rank but give the identical frontier i
the N versusSL plane. It is interesting to see what happe
for the combination of negativity and von Neumann entro

Once again, we begin with states of the form~4.4!, for
which the negativity and the von Neumann entropy are gi
in Eqs. ~4.15! and ~4.20b!, respectively. By makingN sta-
tionary at fixedSV , we are able to find only one solution~in
addition to the rank-2 candidate!: a5b5x. Expressing the
resulting density matrix, as we may, in terms of the sin
parameterr, we arrive at the following candidate for th
frontier states:

rMEMS:N,SV

5S ~11r !/4 0 0 r /2

0 ~12r !/4 0 0

0 0 ~12r !/4 0

r /2 0 0 ~11r !/4

D ,

~4.28!

FIG. 8. Dependence ofER , SV , and a on r for the rank-3
maximal states.

FIG. 9. Entanglement frontier: relative entropy of entanglem
versus von Neumann entropy. The solid curve is the frontier.
branch structure is described in the text.
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where 0<r<1, i.e., the Werner states.
The resulting frontier in the negativity versus vo

Neumann–entropy plane is shown in Fig. 10 that, for co
parison, also shows the curve for the rank-2 candidate.

V. CONCLUDING REMARKS

In this paper we have determined families of maxima
entangled mixed states~MEMS!, i.e., frontier states, which
possess the maximum amount of entanglement for a g
degree of mixedness. These states may be useful in qua
information processing in the presence of noise, as they h
the maximum amount of entanglement possible for a giv
mixedness. We considered various measures of entangle
~entanglement of formation, relative entropy, and negativ!
and mixedness~linear entropy and von Neumann entropy!.

We found that the form of the MEMS depends heavily
the measures used. Certain classes of frontier states~such as
those arising with either entanglement of formation or re
tive entropy of entanglement versus the von Neumann
tropy! behave discontinuously at a specific point on t
entanglement-mixedness frontier. Under most of the setti
considered, we have been able to explicitly derive analyt
forms for the frontier states.

In the cases of entanglement of formation and relat
entropy, for most values of mixedness, we have found t
the rank-2 and rank-3 MEMS have more entanglement t
Werner states do. On the other hand, at fixed entropy
states have higher negativity than Werner states do. At sm
amounts of mixedness, the$MEMS:EF ,SL% states ‘‘lose’’
entanglement with increasing mixedness at a substant
lower rate than do the Werner states. However, when
entanglement is measured by the relative entropy, the dif
ence in loss rate is significantly smaller.

Having characterized the MEMS for various measures
is worthwhile considering them from the perspective
Bell’s-inequality violations. To quantify the violation o
Bell’s inequality, it is useful to consider the quantity

B[ max
aW ,aW 8,bW ,bW 8

$E~aW ,bW !1E~aW ,bW 8!1E~aW 8,bW !2E~aW 8,bW 8!%,

~5.1!

t
e

FIG. 10. Entanglement frontier: negativity versus von Neuma
entropy. The solid curve is the frontier. The broken curve repres
the rank-2 candidate states.
0-10
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where E(aW ,bW )[^sW •aW ^ sW •bW & and the vectorsaW and aW 8 (bW

and bW 8) are two different measuring apparatus settings
observerA ~observerB). If B.2, then the correspondin
state violates Bell’s inequality. For the density matrix of t
form ~4.4!, it is straightforward@27# to show that the quantity
B is given by

B52AF4S x1
r

2D21G2

1r 2. ~5.2!

Now, Theorem 4 of Ref.@28# asserts that for any given spe
trum (l1>l2>l3>l4) of a density matrix, states tha
achieve maximal violation of Bell’s inequality are diagon
in the Bell basis (uF6&,uC6&), and that the quantityB is
equal to 2A2A(l12l4)21(l22l3)2. From this, it is
straightforward to derive states that, for a given value
mixedness, the maximal Bell’s-inequality violation
achieved. For the case of linear entropy, we get the state
eigenvalues

$l,12l,0,0% with lPF1

2
,1G , ~5.3a!

H l,l,
122l

2
,
122l

2 J with lPF1

4
,
1

2G . ~5.3b!

For the case of von Neumann entropy, the correspond
eigenvalues are

$~12a!2,a~12a!,a~12a!,a2% with aPF0,
1

2G .
~5.4!

In Fig. 11 we plotB versus linear and von Neumann entr
pies for several families of frontier states. As a comparis
we also draw the corresponding maximal violation in ea
case.

Another natural application for which entanglement
known to be a critical resource is quantum teleportati
How do these frontier MEMS teleport, compared with t
Werner and rank-2 Bell diagonal states? If we restrict
attention to high-purity situations~i.e., to states with only a
small amount of mixedness!, then it is straightforward to
show that, e.g.,$MEMS:EF ,SL% states teleport averag
states better than the Werner states do, but worse than
rank-2 Bell diagonal state does. Part of the explanation
this behavior is that standard teleportation is optimized
using Bell states as its core resource.

It is also interesting to note that for certain combinatio
of entanglement and mixedness measures, as well as
d
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Bell’s inequality violation, the rank-2 candidates fail to fu
nish MEMS. Thus, these states seem to be less useful
other MEMS. However, from the perspective of distillatio
these states are exactly quasidistillable@29,30#, and can be
useful in the presence of noise because they can be e
distilled into Bell states.
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FIG. 11. Violation of Bell’s inequality for various families o
states.~a! $MEMS:EF ,SL%, ~b! Werner states,~c! rMEMS:N,SL

(2) , ~d!

r i in Eq. ~4.21!, ~e! the rank-2 Bell diagonal states with spectru
given in Eq.~5.3a!,~f! the rank-4 Bell diagonal states with spectru
given in Eq.~5.3b!. These two constitute the maximalB versusSL ,
and ~g! the rank-4 Bell diagonal states with spectrum given in E
~5.4!, which give maximalB versusSV .
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