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Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible
entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures,
the form of the corresponding maximally entangled mixed states is determined primarily analytically. As
measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and
negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms
of the maximally entangled mixed states can vary with the combinatioferfinglement and mixednéss
measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can
change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a
given value of entropy, achieve maximal violation of Bell's inequality.
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[. INTRODUCTION placed by one of the other two.
The question of the ordering of entanglement measures

Over the last decade, the physical characteristics of thwas raised by Eisert and Plenj@5], and investigated nu-
entanglement of quantum-mechanical states, both pure angerically by them and by yczkowski[16] and analytically
mixed, has been recognized as a central resource in vario®y Verstraeteet al.[17]. It was proved by Virmani and Ple-
aspects of quantum information processing. Significant setdio [18] that all good asymptotic entanglement measures are
tings include quantum communicatiph], cryptography2], either identical or fail to uniformly give consistent orderings
teleportation3], and, to an extent that is not quite so clear, of density ma_trices. This implies that the resulting maximally
quantum computatioi4]. Given the central status of en- entangled mixed stateEMS) may depend on the mea-
tanglement, the task of quantifying the degree to which @Ures one uses to quantify entanglement. Moreover, in find-
state is entangled is important for quantum information proing the form of MEMS, one needs to quantify thréxedness
cessing and, correspondingly, several measures of it ha a state, and there can also be ordering problems for mix-
been proposed. These include entanglement of formatiofdness. This implies that the MEMS may depend on the
[5,6], entanglement of distillatiofi7], relative entropy of en- measures of mixedness as well. o
tanglemen{8], negativity[9,10], and so on. It is worth re- This paper is organized as follows. We begin, in Secs. Il
marking that even for the smallest Hilbert space capable ofind Ill, by reviewing several measures of entanglement and
exhibiting entanglement, i.e., the two-qubit systefior ~ Mixedness. In the main part of the paper, Sec. IV, we con-
which Wootters has determined the entanglement of formaSider various entanglement-versus-mixedness planes, in
tion [6]), there are aspects of entanglement which remain tavhich entanglement and mixedness are quantified in several
be explored. ways. Our primary objective, then, is to determine tion-

Among the family of mixed quantum-mechanical states tiers, i.e., the boundaries of the regions occupied by the
special status should be accorded to those that, for a givePhysically allowed states in these planes, and to identify the
value of the entropy11], have the largest possible degree of Structure of these maximally entangled mixed states. In Sec.
entanglemenfl12]. The reason for this is that such states canV, as well as making some concluding remarks, we deter-
be regarded as mixed-state generalizations of the Bell state®ine the states thafor a given value of entropyachieve
the latter being known to be the maximally entangled two-maximal violation of Bell's inequality.
qubit pure states. The notion of maximally entangled mixed
states was introduced by Ishizaka and Hirosh{®8 in a | ENTANGLEMENT CRITERIA AND THEIR MEASURES
closely related setting, i.e., that of two-qubit mixed states
whose entanglement is maximized at fixed eigenvalues of the It is well known that there are a large number of entangle-
density matrix(rather than at fixed entropy of the density ment measureB. For a state described by the density matrix
matrix). Evidently, the entanglement of the maximally en- p, a good entanglement measure must satisfy, at least, the
tangled mixed states of Ishizaka and Hiroshima cannot béollowing conditions[19,20.
increased by anylobal unitary transformation. For these (C1) (@ E(p)=0; (b) E(p)=0 if p is not entangled
states, it was shown by Verstraateal. [14] that the maxi- [21]; (c) E(Bell statesF 1.
mality property continues to hold if any of the following (C2) For any statep and any local unitary transforma-
three measures of entanglement—entanglement of formdion, i.e., a unitary transformation of the foroh,® Uy, the
tion, negativity, and relative entropy of entanglement—is re-entanglement remains unchanged.
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(C3) Local operations and classical communication canof entanglement of a state as the fraction of Bell states

not increase the expectation value of entanglement. which can be distilled using the optimal purification proce-
(C4) Entanglement is convex under discarding informa-dure: Ep(p)=Ilim,_.m/n, wheren is the number of copies
tion: =;p; E(pi)=E(Zpi pi)- of p used andm is the maximal number of Bell states that

The entanglement quantities chosen by us satisfy thean be distilled from them. The differen&&-—Ep can be
propertiesC1-C4. Here, we do not impose the condition regarded asundistillable entanglementEp is a difficult
that any good entanglement measure should reduce to tlygiantity to calculate, but the relative entropy of entangle-
entropy of entanglemerfto be defined in the followingfor ~ mentEg [8], which we shall define shortly, provides an up-
pure states. per bound orEp and is more readily calculable than it. For
this reason, it is the second measure that we consider in this
A. Entanglement of formation and entanglement cost paper. It is defined variationally via

The first measure we shall consider is the entanglement of Er(p)=minTr(plogp—plogo), (2.5
formation, E¢ [5]; it quantifies the amount of entanglement oeD

necessary to create the entangled state. It is defined by )
whereD represents théconvex set of all separable density

. operatorso. In certain ways, the relative entropy of en-
Er(p)= min Z PE( (WD), (2. tanglement can be viewed agistanceD(p||o*) from the
{piyid entangled statg to the closest separable stat&. We re-
where the minimization is taken over those probabilifieg ~ Mark that for pure state&r=Ec=Eg=Ep; butin general,
and pure statefy;} that, taken together, reproduce the den-EF=Ec=Er=Ep.
sity matrix p=3;p;|#i){#i|. Furthermore, the quantity

E(J¢i){(#i]) (usually called theentropy of entanglement C. Negativity
measures the entanglement of the pure dtafeand is de-  The third measure that we shall consider is tiegativity
fined to (2)6 the von Neumann entropy of the reduced densityhe concept of the negativity of a state is closely related to
maitrix iV =Trg| ¢ )( ¢, i.e., the well-known Peres-Horodecki condition for the separabil-
ity of a state[22]. If a state is separabl@e., not entangled
- _ (A) (A) ! ) . . K
E(lyi) (i) = —Trpi” logzp™ . (22 then the partial transpo$23] of its density matrix is again a

For two-qubit systemsE- can be expressed explicitly as valid state, i.e., it is positive semidefinite. It turns out that the

6] q Y F P phicitly partial transpose of a nonseparable state may have one or

more negative eigenvalues. The negativity of a sfétdn-
1 dicates the extent to which a state violates the positive partial
Er(p)=h §[1+ J1-C(p)?]], (2.3  transpose separability criterion. We will adopt the definition
of negativity as twice the absolute value of the sum of the
h(x)= —x logsX— (1— X)l0gy(1— ), (2.3 negative eigenvalues:

N(p)=2 max0,— Aneg 2.6
whereC(p), the concurrenceof the statep, is defined as (p) A negl 29

where) neqiS the sum of the negative eigenvaluespdt. In
C(p)=max0.\i— o= W3— N4}, (230  c2ec? (i?e., two-qubi} systems, it can be shown that the
) ) ) . partial transpose of the density matrix can have at most one
in which A, ...\, are the eigenvalues of the matrix pegative eigenvalug24]. It was proved by Vidal and Werner
p(oy®ay)p* (ay@0y) in nonincreasing order andy is a  [10] that negativity is an entanglememonotonei.e., it sat-
Pauli Spin_matrix. Er(p), C(p), and thetangle 7(p) jsfies criteriaC1-C4 and, hence, is a good entanglement
=C(p)* are equivalent measures of entanglement, inasmucgheasure. We remark that for two-qubit pure states the nega-

as they are monotonic functions of one another. _ tivity gives the same value as the concurrence does.
A measure associated with the entanglement of formation

is the entanglement coBic [S], which is defined via D. Ordering difficulties with entanglement measures

Er(p®™) We now pause to touch on certain difficulties posed by the
- n - 24 task of ordering physical states using entanglement. As first
discussed and explored numerically by Eisert and PIgrsp

nd by Zczkowski[16], and subsequently investigated ana-
ytically by Verstraeteet al. [17], different entanglement
measures can give different orderings for pairs of mixed
states. Verstraetet al. showed that, instead, the negativity
of the two-qubit states of a given concurrenCe rather
than having a single value, ranges Dbetween

Related to the entanglement of formation is the entangle/2[ C— (1/2)]?+ (1/2)+ (C—1) andC. Thus, there is an or-

ment of distillation,E [7], which characterizes the amount dering difficulty: pairs of statesA and B, exist for which

Ec(p)=lim

— 00

This is the asymptotic value of the average entanglement
formation.Ec is, in general, difficult to calculate.

B. Entanglement of distillation and relative entropy
of entanglement
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C(A)—C(B) andN(A) —N(B) differ in sign. Hence, when A related measure, which we shall not use in this paper
one wishes to explore maximally entangled mixed states, onébut mention for the sake of completengss the inverse
must be explicit about the measure of entanglenf@md also  participation ratia Defined viaR= 1/Tr(p?), it ranges from
the measure of mixedness; see the following segtionsid- 1 (for a pure stateto V (for the maximally mixed stajeAn
ered. Different measures have the potential to lead to differattractive property of the inverse participation ratio is that all

ent classes of MEMS. states withR=AN—1 are separabl§9], which implies all
states with a linear entropys (p)=MN-2)/(N—1)?
IIl. MEASURES OF MIXEDNESS (which is 8/9 when\'=4) are separable.

In the entanglement-measure literature, two measures of ~ C. Comparing linear and von Neumann entropies
mixedness have basically been usee:Tr(p?) and the von The aim of this section is to illustrate the difference be-
Neumann entropy. Whereas the latter has a natural signiftween the linear and von Neumann entropies. We shall do
cance stemming from its connections with statistical physicshis by considering thev'=4 Hilbert space, and seeking the
and information theory, the former is substantially easier tchighest and lowest von Neumann entropies consistent with a

calculate. Of.COUI'SE, for density matrices that are a'mOS@iven value of linear entropy. Before restrictim@to 4, the
completely mixed, the two measures show the same trend.corresponding stationarity problem reads

N-1
A. The von Neumann entropy 8| Sy(p)+ B S (p)—(v—1)Trp|=0, (3.9
2N
The von Neumann entropy, the standard measure of ran-
domness of a statistical ensemble described by a density masere 8 and v are, respectively, Langrange multipliers that

trix, is defined by enforce the constraints that linear entropy should be fixed
and thatp should be normalized. Thus, we arrive at the en-
Sy(p)=—Tr(plogp)=— 2 Nilogh;, (3.1) gaging self-consistency condition
i
p=exp(—v—pBp), (3.9

where; are the eigenvalues of the density mapiand the  in which » and 8 can be fixed upon implementing the con-
log is taken to basg/, the dimension of the Hilbert space in straints. By working with the eigenvalues of density matri-
question. It is straightforward to show that the extremal val-ces, the stationarity problem becomes straightforward: maxi-
ues ofS, are zera(for pure statesand unity(for completely  mize or minimize the von Neumann entropy=;\;In \;
mixed states To compute the von Neumann entropy, it is sybject to the constraints;\?= const(fixed linear entropy
necessary to have the full knowledge of the eigenvalue spegmqs,\; =1 (normalization. The maximalS, versusS, cor-

trum. o . . _ responds to eigenvalues of the form
As we shall mention in the following section, there is a
linear entropy threshold above which all states are separable. 1=) 1=) 1
Qualitatively identical behavior is encountered for the von [)\, s } for A e —,1}.
Neumann entropy. In particular, as we shall see in Sec. N-1 N1 N
IV C 1, for two-qubit systems all states are separable for N-1
= —(1/2)log,(1/12)~0.896.
Sv=—(1/2)log,(1/12) (3.69
B. Purity and linear entropy The minimal S, versusS, consists ofV—1 segments, of
The second measure that we shall consider is called th¥hich the kth segment corresponds to eigenvalues of the
linear entropy and is based on the purity of a state, 'O
=Tr(p?), which ranges from Ifor a pure stateto 1/\ for a L1
completely mixed state with dimensiok. The linear en- _ =
tropy S, is defined via A AT EN0, . O for he k+1°k)
N k 1 N-k—1
=——[1-Tr(p?], 3.2
Su(p) =57 [1-Tr(p")] (32 368

wherek=1, ... N—1. For the case al=4, the boundary
of the physical region in th&_ versusS, plane(see Fig. ],
Esvhen given in terms of eigenvalues, reads

which ranges from @for a pure stateto 1 (for a maximally
mixed state The linear entropy is generally a simpler quan-
tity to calculate than the von Neumann entropy as there is n

need for diagonalization. F&?® C? systems, the linear en- 1= 1—\ 1—\ 1
tropy can be written explicity as N, : , for —sA<1, (3.7
3 3 3 4
4 ) 1
SL(p)=3z[1-Tr(p]. (3.3 {\,1-X,0,0} for S<A<L, (3.7b
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> 1 . ficulty: pairs of statesA andB, exist for whichS'—SP and

g A d SC—SE differ in sign. Worse still, states having a common

S ! value of S, have a continuum of values &_, and vice

£ 0.6 a c versa.

S :

g 0.4 : IV. ENTANGLEMENT-VERSUS-MIXEDNESS FRONTIERS

) |

E 0.2 ° : We now attempt to identify regions in the plane spanned

o 5 : by entanglement and mixedness that are occupied by physi-

0 0.2 0.4 0.6 0.8 1 cal statedi.e., characterized by legitimate density matrjces

Linear entropy We shall consider the various measures of entanglement and

mixedness discussed in the preceding section. Of particular
interest will be the structure of the states that occupy the
frontier, i.e., the boundary delimiting the region of physical

lie at the origin: rank-2 states lie on segménthe lighter dots in states. Frontier states are maximal in the following sense: for

the interior are rank-3 states; the darker ones are rank-4 states. TEerglven ixalrl:evolf mIXidn(ri']tSSr,] trerﬁ arl:te EaXIme:”y r?]ngnmglﬁd’
lower boundary comprises three segments meeting at cusp0 a give alue of entanglement, they are maximaily

whereas the upper boundary is a smooth curve. The two dashﬁ'xed'

lines represent thresholds of entropies beyond which no states con-
tain entanglement. A. Parametrization of maximal states

FIG. 1. Comparison of linear entropy and von Neumann en-
tropy. 6000 dot£2000 each for the rank-2, -3, and -4 casepre-
sent randomly generated statese Ref[25]); pure (rank-1) states

The aim of this section is to derive the general form of the

1 1 maximal states given in E@4.4), which is what we will use

M A1=2).0} for §$)\$§’ (8.79 to parametrize maximal states. In REE4], it is shown that,
given a fixed set of eigenvalues, all states that maximize one

1 1 of the three entanglement measufestanglement of forma-

{NAN 13 for Zg)‘s 3" (3.79 tion, negativity, or relative entropyautomatically maximize

the other two. It was further shown that the global unitary
These segments, respectively, correspond to the uppéransformation that takes arbitrary states into maximal ones
boundary, and the lowest, middle, and highest pieces of thkas the form
lower boundary. Note that the lower boundary comprises
three (in general, /—1) segments that meet at cusps. We U:(U1®U2)TD¢‘DT’ (4.1
remark, parenthetically, that the solutions with zero eigenval- hereU du bitarv local unitary t f fi
ues correspond to extrema within some subspace spanned Wy erety andt/; are arbitary focal unitary transtormations

those eigenvectors with nonzero eigenvalues, and therefore 0 0 0 1
only obey the stationarity conditiof3.5 within the sub-
Spgce_ Y Y 12 0 142 O
Is there any significance to the boundary states? Boundary T= 12 0 —142 © (4.2
segmenta) includes the Werner states defined in E4.7). 0 1 0 0

Boundary segmenb) includes the first branch of the MEMS
for Ex andS, specified below in Eq(4.6). The segmentc)

. D, is a unitary diagonal matrix and is the unitary matrix
includes the states ¢ y diag y

that diagonalizes the density matrix, i.e., p=D®ADT
1—r where A is a diagonal matrix, the diagonal elements of

pe=r|dp WP+ T(|01>(01|+|10>(10|). (3.8 which are the four eigenvalues of listed in the ordem
=\,=N\3=\,. Hence, the general form of a density matrix

States on segmerit) are all unentangled. Of course, the that is maximal, given a set of eigenvalues,(ip to local

boundary segments include not only the specified states biitary transformations
also all states derivable from them by global unitary trans-

: Ny O 0 O

formation.

As for the interior, we have obtained this numerically by 0 A O O
constructing a large number of random 4&8§] of eigenval- T 0 0 A3 O
ues of legitimate density matrices, and computing the two
entropies for each. As Fig. 1 shows, no points lie outside the 0 0 0 X
boundary curve, providing confirmatory evidence for the
forms given in Eq(3.7). Ay O 0 0

The fact that the bounded region is two-dimensional indi- - 0 (N+tN3)/2 (M—N3)/2 O @3
cates the lack of precision with which the linear entropy = _ . .
characterizes the von Neumann entrdpyd vice versa, if 0 (M=A)f2 (AHAg)f2 0
one wishes In particular, the figure reveals an ordering dif- 0 0 0 A2
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This matrix is locally equivalent to the form S
5 8 \\\\
2 0 0 r/2 = s

X+ (r £o0.6 S

0 a 0 o0 o A

0 0 b O , (4.9 504

—— ~
r/2 0 0 x+(r/2) S G2 \\
% 0.2 0.4 0.6 0.8 1
. Linear entropy
with X+ (r/2)=(N1+N3)/2, r=N;—\3, a=\,, and b
=\4. The above derivation justifies the ansatz foffn5) L S
used in Ref[12] to derive the entanglement of formation 0.8 Shae
versus linear-entropy MEMS. We remark that one may as 3~ Sso
well use the four eigenvalues (s) as the parametrization. § 0.6 S
Nevertheless, the forrd.4), as well as(4.5), can be nicely 5 S~
viewed as a mixture of a Bell stat¢*) with some diagonal Q0.4 s
separable mixed state. 8 N
0.2 ~
Y
N\
B. Entanglement-versus-linear-entropy frontiers 00 0.2 0.4 0.6 0.8 1

. . . . . Linear entr
We begin by measuring mixedness in terms of the linear Ingar entropy

entropy, and comparing the frontier states for various mea- |G, 2. Entanglement frontier. Upper panel: entanglement of
sures of entanglement. formation versus linear entropy. Lower panel: concurrence versus
linear entropy. The states on the bounddsplid curve are
PMEMS Ep 5 - A dot indicates a transition from one branch of

The characterization of physical states in terms of theiMEMS to another. The dashed curve below the boundary contains
entanglement of formation and linear entropy was introducedVerner states.
by Munroet al.in Ref.[12]. (Strictly speaking, they consid-

1. Entanglement of formation

ered the tangle rather than the equivalent entanglement of } 0 0 r/2
formation) Here, we shall consider yet another equivalent 3
guantity: concurrencésee Sec. Il A In order to find the 1
frontier, Munroet al. proposed ansatz states of the form or(r)= 0 300
T - ’
0O 0 0 O
x+(r/2y 0 0 r/2 1
0 a 0 0 r/2 0 0 3
Pansatz— 0 0b O ) (4.9 ] ) )
lies on the boundary in the tangle-versus-linear-entropy
r/2 0 0 y+(r/2) plane and, accordingly, named these MEMS, in the sense that

these states have maximal tangle for a given linear entropy.
We remark that at the crossing point of the two branches,
=2/3, the density matrices on either side coincide.

In Fig. 2 we plot the entanglement of formation/
concurrence versus linear entropy for the family of MEMS
(4.6); this gives the frontier curve. For the sake of compari-
son, we also give the curve associated with the family of
Werner states of the form

where x,y,a,b,r=0 and x+y+a+b+r=1. They found
that, of these, the subset

2
p(r) for §sr<1

PMEMSE, .S = 5 (4.6a 1-r
pi(r) for O<r<gz, pw=rlo N [+——1
(1+r)/4 0O 0 r/i2
r/i2 0 r/2 0 (1-r)/4 O 0
0 1-r 0 0 o 0 (1-1)/4 0
D=1, 00| (4.6b (2 0 0 (1+71)/4
(2 0 0 r2 4.7
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Evidently, for a given value of linear entropy these MEMS

(which we shall denote byMEMS:E¢,S;}) achieve the
highest concurrence. As the tangteand entanglement of

formation, Eg, are monotonic functions of the concurrence,
Eq. (4.6) also gives the boundary curve for these measures.

This raises an interesting question: Is E4.6) optimal for
other measures of entanglement?

2. Relative entropy as the entanglement measure

To find the frontier states for the relative entropy of en-
tanglement, we again turn our attention to the maximal den-

sity matrix (4.4). For this form of density matrix, the linear
entropy is given(with x expressed in terms @&,b,r) by

SL=§[—3a2+2a(1—b)+(1—b)(1+3b)—r2].
(4.9

PHYSICAL REVIEW A 67, 022110 (2003

1 T
|
|

0.8 |
0.4 i
0.6 |
= ©0.2 |
|
® 0.4 0 I
0 0.3 0.7 11

r
0.2 :
|

0 L

0 0.2 0.4 0.6 0.8 1

Linear entropy

FIG. 3. Dependence di andr of the frontier states on linear
entropy. The upper curve ia versusS, whereas the lower is
versusS, . The dotted line indicates the transition between two
branches of MEMS. The inset shows the dependenaearfr for
the frontier states.

To calculate the relative entropy of entanglement, we need t§UPJ€ct o the constrain@(tr)<1. For the rank-2 casg

determine the closest separable state to(Ed). It is sim-

=1-r (b=x=0), and the resulting solution is the rank-2

pler to do this analysis via several cases. We begin by codalrix pi(r) given in Eq.(4.6) with 1/2<r=<1. We remark

sidering the rank-2 and rank-3 cases of E44). We setb
=0 (A ,=0) and expresg in terms ofa andr in the density
matrix, obtaining

(1-a))2 0 0 r/2
0 a 00

P=1o 0 0 0 ’ “.9
r2 0 0 (1-a)2

and the corresponding closest separable density madtix
was found by Vedral and Plen[d9]:

C 0 0 D

, o E O 0

“7lo 0o 1-2c-E 0]’ (4.103
D 0 0 C

_ (1+a)(1-a®-r?)
c= 2(1+a-r)(1+a+r)’ (4.100

B a(l+ar
D=ira—ni+rarn’ (4.109
a(l+a)?
E= (4.100

(1+a—-r)(1+a+r)’
The relative entropy is now simply given by

c _1+aI (1+a)®>—r? rI 1+a+r
r(P)= —5—10g Y +510% o

(1+
(4.11)

with the linear entropy being given by

2
SL=§(1+2a—3a2—r2), (4.12

that this rank-2 solution is always a candidate MEMS for the
three entanglement measures that we consider in this paper.
In order to determine whether or in what range the rank-2
solution achieves the global maximum, we need to compare
it with the rank-3 and rank-4 solutions.

By maximizing Eg(p) for a given value ofS_, we find
the following stationary condition:

(4.13

Given a value ofS , we can solve Eqg4.12 and(4.13 at
least numerically to obtain the parametexsand r, and
hence, from Eq(4.9), the rank-3 MEMS. However, if the
constraint inequalitya+r=<1 turns out to be violated, the
solution is invalid.

We now turn to the rank-4 case. It is straightforward, if
tedious, to show that the Werner states, Eq7), obey the
stationarity conditions appropriate for rank 4. However, it
turns out that this solution is not maximal.

To summarize, the frontier states, which we denote by
{MEMS:ER,S,}, are states of the forn4.9); the depen-
dence of the parameteasandr on S, is shown in Fig. 3. In
Fig. 4, we show the resulting frontier, as well as curves cor-
responding to nonmaximal stationary states. The frontier
states have the following structur@) for S, <0.5054 they
are the rank-2 MEMS of Edq4.6) but withr restricted to the
range from 1(atS, =0) to~0.7459(at S, ~0.5054);(ii) for
S, =0.5054 the MEMS are rank 3, with parametarandr
satisfying Egs.(4.13 and (4.12 at each value oS , and
(a,r) ranging between~(0.3056,0.7459)at S, ~0.5054)
and (1/3,0)(at S, =8/9). As noted previously, beyon§
=8/9, there are no entangled states. As the inset of Fig. 3
shows, the parametarcan be regarded as a continous func-
tion of parameter €[ 0,1]. The two branches of the solution,
(i) and (i), cross at 8 ,Ef)~(0.5054,0.3422); at this
point, the states on the two branches coincide,
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- o 0.3
-y 2o.25
o )
< o 0.2 e
[} = e \\\
d>) 5 0.15 Al .
[T} 0.05 N
o o s
0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 Linearentropy

Linear entropy

FIG. 5. Difference in entanglemenE{—Eg) versusS, for the
EMS in Eq.(4.6) and Werner states. The solid curve shows states
from pyems Ep .S, the dashed curve shows the Werner states.

FIG. 4. Entanglement frontier: relative entropy of entanglementM
versus linear entropy. The frontier states BRREMS Ep S, - The dot
indicates the transition between branches of MEMS.

see in the following section, if we measure entanglement via

0.372947 0O 0 0.372947 negativity, then for a given amount of linear entropy, the
0 0254106 0 O Werner stategas well as another rank-3 class of states
p*= . achieve the largest value of entanglement. Said equivalently,
0 0 00 the Werner states belong {MEMS:N, S, }.
0.372947 O 0 0.372947
(4.19 3. Negativity

) ) . In order to derive the form of the MEMS in the case of
Just as in the case of entanglement of formation versus linegjegativity, we again consider the density matrix of the form
entropy, the density matrix is continuous at the transition4.4), for which it is straightforward to show that the nega-

between branches. tivity N is given by
We remark that the curve generated by the states
{MEMS:E¢,S.}, when plotted on th&g versusS, plane, N=max0,/(a—b)%+r2—(a+b)}. (4.15

falls just slightly below that generated by the states
{MEMS:Eg,S, } for S =0.5054(and coincides for smaller Furthermore, because we aim to find the entanglement fron-
values ofS;). We also remark that the parametelurns out  tier, we can simply restrict our attention to states satisfying
to be the concurrenc€ of the states, so that Fig. 3 can be N>0, i.e., to states that are entang[@&]. Then, by making
interpreted as a plot of the concurrence of the frontier stateN stationary at fixedS, and with the constraint2+a+b
versus their linear entropy. By comparing this concurrencerr=1, we find two one-parameter families of stationary
versus linear-entropy curve to that in Fig. 2, we find that thestates(in addition to the rank-2 MEMS, which are common
former lies just slightly below the latter f8 =0.5054(and  to all three entanglement measuyreBhe parameters of the
the two coincide for smaller values 8f), the maximal dif-  first family obey
ference between the two being less than40

It is evident that, for a given linear entropy, the relative a=b=x,r=1-4x. (4.19
entropies of entanglement for bo§fMEMS:ER,S } and
{MEMS:E;,S,} are significantly less than the correspond-When expressed in terms of paramatethe density matrix
ing entanglements of formation. In fact, for small degrees otakes the form
impurity, the entanglements of formation for the two MEMS

states are quite flat; however, the relative entropies of en- (1+r)/4 0 0 r/2
ftanglement fall quite rapidly. More specifically, for a change 0 (1-r)l4 0 0

in linear entropy ofAS =0.1 nearS =0, we haveAEx  p) = ,
~0.05(see Fig. 2andAEg~0.2 (see Fig. 4 As the curves ~ “EMSNSL 1 0 0 (1-nr)/4 0

of the state{MEMS:E,S,} and{MEMS:Eg,S,} are very r/2 0 0 (1+r)/4
close on the two planeg&g versusS, andEg versusS, , we (4.17

show in Fig. 5 the entanglement differenée— E for the

statesf MEMS:E¢,S, }, and compare it with the correspond- Which are precisely the Werner states in &4.7). For the

ing difference for the Werner states. While it is clear thatsecond solution, the parameters obey

Er(p)<Eg(p), for certain values of the linear entropy the

difference turns out to be quite large, this difference being C4-23r’+1 1+43r%+1 x

uniformly larger for {MEMS:E,S,} than for the Werner a= 6 b=0x= 6 T

state; see Fig. 5. (4.18
As we have seen, Werner states are not frontier states

either in the case of entanglement of formation or in the cas&hen expressed in terms of paramatethe density matrix

of relative entropy of entanglement. By contrast, as we shallakes the form
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(1++3r’+1)/6 0 0 r/2
0 (4—2y3r°+1)/6 0 O
pt) = . (4.19
MEMSINS. | 0 0 0 0
ri2 0 0 (1+3r?+1)/6
|
We remark that the two solutions give the same bound on the 1. Entanglement of formation

negativity for a given value of linear entropy. The resulting 14 find this frontier, we consider states of the fot#4),

frontier in the negativity-versus-linear-entropy plane isanq compute for them the concurrence and the von Neumann
shown in Fig. 6. entropy:

Thus, the stateSMEMS:N, S, } on the boundary include,
up to local unitary transformations, both Werner states in Eq.

(4.17 and states in Eq(4.19. We also plot in Fig. 6 the C=r—2\ab, (4.203
curve belonging to{MEMS:E;,S }; note that it falls

slightly below the curve associated wtMEMS:N, S, } and S,= —alog,a—blog,b—xlogdx— (x+r)logs(x+r).
that it has a cusp, due to the structure of the states, at the (4.20b

value 2/3 for the parameterin Eq. (4.6). Here, we see that
maximally entangled mixed states change their form whe

) 'Note that the parameters obey the normalization constraint
we adopt a different entanglement measure.

2x+a+b+r=1.

As we remarked previously, the rank-2 MEMS is always a
candidate. For the rank-3 case, we carnbsed in Eq.(4.20.

We continue this section by choosing to measure mixedBy maximizingC at fixedS,,, we find a stationary solution:
ness in terms of the von Neumann entropy, and comparing) r=C, x=(4-3C— J4—3C?)/6, and a=(\/4—3C?
the frontier states for various measures of entanglement. —1)/3; the resulting density matrix is

C. Entanglement versus von Neumann entropy frontiers

(4—\4—3C?%/6 0O 0 CI2
0 (y4—3C?-1)/13 0 O
pi= (4.21)
0 0 00
C/2 0 0 (4—\4-3C?/6

For the rank-4 caseb(* 0), the stationarity condition can be Being the concurrence is restricted to the intervdlO,1].

shown to be The second solution is transcendental, but can be solved nu-
merically.
uln(u)=wIn(w), (4.229 In Fig. 7 we compare the four possible candidate solu-
tions, and find that the global maximum is composed of only
2uln(u)=(u+w)in(v), (4.220 (i) and (ii). We summarize the states at the frontier as fol-

lows:
where u=val/(x+r), v=yx/(x+r), and w=b/(x+r).

There are two solutions, due to the two-to-one property of pi for 0=C=cC*,

the function zlnz for ze(0,1). The first one is {=v . = 4.2
—w). (i) a=b=x=(1—C)/6, andr =(1+2C)/3, which puenser S~y forcr=c<1. 4%
can readily be seen to be a Werner state as in(&£d) or,
equivalently, Note the crossing point at};S,) =[C*,S,(C*)], at which
extremality is exchanged, so the true frontier consists of two
(2+C)le 0 0 (1+2C)/6 branches. It is readily seen th&t* is the solution of the
0 (1-C)/6 0 0 equationSy[ pi(C)]=Sy[ pii(C)], and the approximate nu-
pi = merical values ofC* and the corresponding, are 0.305
0 0 (1-C)/6 0 and 0.741, respectively.
(1+2C)/6 0 0 (2+C)l6 The resulting form of MEMS states is peculiar, in that,

(423 even at the crossing point of two branches on the
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1 1
c oS ~
0.8 ©0.8 NN
> © S 3 Rank3
) N
S 0.6 Eo0.6 NN /
= \ 5
N -— AN
g 0.4 AN w 0.4 N
\\ ° ' \\
= 3\ = Rank?2 N Werner|
0.2 502 R
8 o Transcendental — > L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Linear entropy von Neumann entropy
FIG. 6. Entanglement frontier: negativity versus linear entropy. 1 ~—
. 1 2 o
States on the boundaffull line) are plitmsns, aNd piitusis, - 0 0.8 A —_——
The dashed line COMPris@fevs:e, s - g SR /
00.6 P, 3
entanglement-mixedness plane, the forms of matrices on the § B ' \\
two branches are not equivaldine is rank 3, the other rank 5 : Rank2 \.\ Werner|
4). This is in contrast to thMEMS:E,,S, }. This peculiar- Oj.2 N\
ity can be partially understood from the plot of the two mix- n \
. ranscendental \
edness measures, Fig. 1. As the value of the von Neumann 00 5% 04 .8 38 5
entropy rises, there are fewer and fewer rank-3 entangled von Neumann Entropy

states, and above some threshold, no more rank-3 states ex-
ist, let alone entangled rank-3 states. There are, however, still £ 7. Entanglement frontiers. Upper panel: entanglement of
entangled states of rank 4. Hence, if rank-3 states attaifyrmation versus von Neumann entropy. Lower panel: concurrence

higher entanglement than rank-4 states do when the entropjrsus von Neumann entropy. The branch structure is described in
is low, a transition must occur between MEMS states ofthe text.

ranks 3 and 4.

From Fig. 7 it is evident that beyond a certain value_ of therank-3 states in Eq4.9), for which the relative entropy is
von Neumann entropy, no entangled states exist. This valugiven by Eq.(4.11). For these states, the von Neumann en-
can be readily obtained by considering the MEMS stataropy is given by

(4.23 atC=0,
~ l-a+r l-a+tr |
1 1 S\/_ 2 100, 2 alogsa
0 0 =
3 6 l-a—r l-a-r (4.26
1 - |Og4 y .
0200 2 2
, (4.259  where the log function is taken to have base 4. Even though
0 0 1 0 the log functions inS,, and Eg use different bases, the sta-
6 tionary condition for the parametersanda does not change,
1 1 because the difference can be absorbed by a rescaling of the
3 0 o 3 constraint-enforcing Lagrange multiplier. Thus, in maximiz-
ing Eg at fixedS,,, we arrive at the stationarity condition
for which Sy, = — (1/2)log,(1/12)~0.896. (1+a)’-r? 1-a-r 1+a+r (1—-a)’—r?
As an aside, we mention a tantalizing but not yet fully  In (1+a)? e _|n1+a—r In 102 .

developed analogy with thermodynami&s]. In this anal- 4.2
ogy, one associates entanglement with energy and von Neu- (4.27)

mann entropy With.entropy, and it is therefore tempting tO\we can solve for the parametaras a function of <[0,1],
rega_rd the_ MEMS just derived as the analog of ther_mody-at least numerically; the result is shown in Fig. 8, along with
namic equilibrium states. If we apply the Jaynes principle tosv andEg

an ensemble in equilibrium with a given amount of entangle- Turning to the rank-4 case, it is straightforward, if tedious,

ment, then the most probable states are those MEMS Shov‘fﬂ show that the Werner states satisfy the corresponding sta-
above. tionarity conditions. In order to ascertain which rank gives
_ the MEMS for a giversS,,, we compare the stationary states
2. Relative entropy of entanglement of ranks 2, 3, and 4 in Fig. 9. Thus, we see that S
Let us now find the frontier states for the case of relativesS;=0.672, the frontier states are given by the rank-3
entropy of entanglement. To do this, we first consider thestates, whereas fd8,=S}, the frontier states are given by

022110-9
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1
0.8 N
z
'E 4.6 .\\ Werner|
S '
g 0.4 \
= Y
0.2 Rank2
0
0 0.2 0.4 0.6 0.8 1

von Neumann entropy

FIG. 8. Dependence oEg, Sy, anda on r for the rank-3

X FIG. 10. Entanglement frontier: negativity versus von Neumann
maximal states.

entropy. The solid curve is the frontier. The broken curve represents

. . the rank-2 candidate states.
the Werner state¢4.7) with the parameter ranging from

~0.6059 down to 0. At the crossing pointS{,EX) )
=(0.672,0.124), the MEMS undergo a discontinuous transiVhere O<r<1, i.e., the Werner states.
tion; recall that we encountered a similar phenomenon in the 1he resuling frontier in the negativity versus von

case of entanglement of formation versus von Neumann ef¥eumann—entropy plane is shown in Fig. 10 that, for com-
tropy. parison, also shows the curve for the rank-2 candidate.

3. Negativity
. . . - V. CONCLUDING REMARKS
We saw in Sec. IV B 3 that there is a pair of families of

MEMS, which differ in rank but give the identical frontier in In this paper we have determined families of maximally
the N versusS, plane. It is interesting to see what happensentangled mixed stateEMS), i.e., frontier states, which
for the combination of negativity and von Neumann entropy.possess the maximum amount of entanglement for a given
Once again, we begin with states of the fofth4), for  degree of mixedness. These states may be useful in quantum
which the negativity and the von Neumann entropy are giverinformation processing in the presence of noise, as they have
in Egs. (4.15 and (4.20b, respectively. By makindN sta- the maximum amount of entanglement possible for a given
tionary at fixedS,,, we are able to find only one solutidim mixedness. We considered various measures of entanglement
addition to the rank-2 candidatea=b=x. Expressing the (entanglement of formation, relative entropy, and negatfivity
resulting density matrix, as we may, in terms of the singleand mixednesginear entropy and von Neumann entropy
parameterr, we arrive at the following candidate for the = We found that the form of the MEMS depends heavily on

frontier states:

PMEMS:N,S,,

(1+r)/4 0 0 r/2

0
0
r/2

(1-1)/4 0 0

0 (1-1)/4 0 ’

0 0 (1+1)/4
(4.28

o (=] (=]
[ =)} ]

Relative entropy
o
N

NN N
Rankd % S\ Rank3

Rank2 —>\ . Rank4

Rank3—pm

0.2 0.4 0.6 0.8 1
von Neumann entropy

the measures used. Certain classes of frontier stsitieh as
those arising with either entanglement of formation or rela-
tive entropy of entanglement versus the von Neumann en-
tropy) behave discontinuously at a specific point on the
entanglement-mixedness frontier. Under most of the settings
considered, we have been able to explicitly derive analytical
forms for the frontier states.

In the cases of entanglement of formation and relative
entropy, for most values of mixedness, we have found that
the rank-2 and rank-3 MEMS have more entanglement than
Werner states do. On the other hand, at fixed entropy no
states have higher negativity than Werner states do. At small
amounts of mixedness, theMEMS:E¢,S,} states “lose”
entanglement with increasing mixedness at a substantially
lower rate than do the Werner states. However, when the
entanglement is measured by the relative entropy, the differ-
ence in loss rate is significantly smaller.

Having characterized the MEMS for various measures, it
is worthwhile considering them from the perspective of
Bell's-inequality violations. To quantify the violation of
Bell's inequality, it is useful to consider the quantity

FIG. 9. Entanglement frontier: relative entropy of entanglement B= max {E(é,ﬁ)-i- E(é,ﬁ’)—kE(é’,B)— E(f:l’,B’)},

versus von Neumann entropy. The solid curve is the frontier. The

branch structure is described in the text.

aa’,b,b’

(5.9
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whereE(a,b)=(c-a®c-b) and the vectors anda’ (b 3 .
and 5’) are two different measuring apparatus settings for 2.5 V'
observerA (observerB). If B>2, then the corresponding ol ____ 3 s
state violates Bell's inequality. For the density matrix of the /
form (4.4), it is straightforward 27] to show that the quantity m1i.5 / c
B is given by 1 2

r 2 0.5 b—

B=21/|4 x+3]-1 +r2. (5.2 o
0 0.2 0.4 0.6 0.8 1

Linear entropy

Now, Theorem 4 of Ref.28] asserts that for any given spec-
trum (Aq=N,=N\3=\,) of a density matrix, states that
achieve maximal violation of Bell's inequality are diagonal
in the Bell basis [®@~),| ")), and that the quantit is
equal to 2/2y(A;— N2+ (No—N3)2 From this, it is
straightforward to derive states that, for a given value of
mixedness, the maximal Bell's-inequality violation is
achieved. For the case of linear entropy, we get the state with
eigenvalues

1
_ i _ 0 0.2 0.4 0.6 0.8 1
M 170.0,0p with h e 2’1}’ (5.33 von Neumann entropy
1-2\ 1-2\ ) 11 FIG. 11. Violation of Bell's inequality for various families of
NN = 5 with he|Z, 51 (5.3 states(a) {MEMS:E¢,S}, (b) Wemer states(c) p{lus,s, » ()

pi in Eq. (4.2)), (e) the rank-2 Bell diagonal states with spectrum
For the case of von Neumann entropy, the correspondingiven in Eq.(5.33,(f) the rank-4 Bell diagonal states with spectrum
eigenvalues are given in Eq.(5.3b). These two constitute the maximBlversusS, ,
and(g) the rank-4 Bell diagonal states with spectrum given in Eg.
. 1 (5.4), which give maximaB versusS,, .
{(1-a)? a(l-a),a(1—a),a?} with ae[oi}.
(5.4)  Bell's inequality violation, the rank-2 candidates fail to fur-
nish MEMS. Thus, these states seem to be less useful than
In Fig. 11 we plotB versus linear and von Neumann entro- other MEMS. However, from the perspective of distillation,
pies for several families of frontier states. As a comparisonthese states are exactly quasidistillaf®®,30, and can be
we also draw the corresponding maximal violation in eachuseful in the presence of noise because they can be easily

case. distilled into Bell states.
Another natural application for which entanglement is
known to be a critical resource is quantum teleportation. ACKNOWLEDGMENTS
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