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Effect of initial correlations on short-time decoherence
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We study the effect of initial correlations on the short-time decoherence of a particle linearly coupled to a
bath of harmonic oscillators. We analytically evaluate the attenuation coefficient of the superposition of two
wave packets both for a free and a harmonically bound particle, with and without initial thermal correlations
between the particle and the bath. While short-time decoherence appears to be independent of the system in the
absence of initial correlations, we find on the contrary that, for initial thermal correlations, decoherence
becomes system dependent even for times much shorter than the characteristic time of the system. The
temperature behavior of this system dependence is discussed.
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[. INTRODUCTION initial thermal correlations on short-time decoherence by
analytically comparing the attenuation factor of a free par-
Environment induced decoherence plays a fundamentdicle with that of a harmonic oscillator, with and without
role in many areas, ranging from quantum cosmolggly thermal initial correlations. As our main tool, we shall em-
and the theory of quantum measuremigitto quantum in-  ploy the by now standard model of a system linearly coupled
formation and guantum Computir[@]_ Experimen’[a| inves- toa bath of harmonic oscillators. This model is exactly solv-
tigations of the decoherence process have recently been rable and the exact reduced density operator of the quantum
ported in Refs[4—6]. Environmental decoherence can beSystem is conveniently obtained within a path-integral ap-
defined as*. . . the (irreversible loss of quantum coherence Proach[17]. This model has been extensively used in deco-
of a guantum system due to its Coup”ng to an en\/ironment’herence studies for the case of factorizable initial conditions,
[7]; it manifests itself in the dynamical suppression of inter-building up on the work of Caldeira and Legggt8]. It has
ference phenomer(@,9]. A simple way to quantify the de- been extended later on to correlated thermal initial condi-
struction of coherence is thus to consider the superposition dfons by Hakim and Ambegaokar for a free partifléd] and
two localized wave packets and to look at the decay of théndependently by Morais Smith and Caldefiz®,21], and by
interference term, as measured, for instance, by the attenugrabert, Schramm, and Ingdi@2] for a harmonically bound
tion coefficienfsee Eq(11) below]. An important character- particle. In the following we shall use the exact results de-
istic of decoherence is that it occurs on a very fast time scaldived by Morais Smith and Caldeif21] to compute the time
usually much shorter than the energy dissipation scale. Wevolution of the superposition of two Gaussian wave packets
note that the short-time limit of decoherence has recentlypeparated by a distance a2  and
attracted a renewed interest in the literat[t6—14. Inter- of width b,  ¢(x)=ciexd —(x—a)%4b?]+c exf —(x
estingly, Braun, Haake, and Strufi2,13 have identified a +&%4b?]. The corresponding initial density operator,
new regime of fast decoherence beyond the usual golden rulg(Xx,y,0)= #(x) ¢* (y), is given by
regime. In this limit of large separations between the wave

packets(interaction-dominated decoherehoguantum deco- (x.y.0)=cyexd] — (x—a)*+(y—a)?
herence appears independent of both the system and the heat PIXY,0)=1C1 4b2
bath.

Most studies of environment-induced decoherence make ) (x+a)?+(y+a)?
use of the simplified assumption that the system and the bath +]c,|*exp — D2

are initially uncorrelated15]. Then, the initial composite
density operator for system plus bath can be factorized into a (x—a)2+ (y+a)?
+c4.C5 ex;{ -

product of a system operator and a bath operator. However, :
4b

in the general, and more realistic, case, initial correlations are
present. A case in point is the cooling of a sample before a
+c3 czex;{ -

(x+a)?+(y—a)?
4b?

low-temperature experiment. The resulting correlations be-
tween the system and the thermostat might then affect the
decoherence process, especially at very short times, as first
pointed out by Romero and P426]. In fact, as recently We calculate the short-time limit of the attenuation coeffi-
shown by Ford and co-workef&0,11], initial thermal con-  cient for a harmonically bound particle with and without
ditions can dramatically modify the decoherence rate. Theynitial thermal correlations and compare the obtained results
find that the decoherence time for an unbound particle bewith those of a free particle. We find that for initial decorre-
comes independent of the strength of the dissipation when lation, the attenuation coefficient is identical for both the free
is initially at the same temperature as the bath. Our aim irparticle and the linear oscillator, in other words, decoherence
this paper is to complement the discussion of the effect ofs independent of the nature of the system. On the other

.
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hand, for initial thermal correlations, we find that the attenu-We shall refer to these two cases (@suncorrelated initial
ation coefficient acquires a system dependent part, even f@onditions and(ii) thermal initial conditions, respectively.
times much smaller than the characteristic time of the sysWe mention that other correlated initial conditions have also
tem. This shows that in the presence of initial thermal correbeen consideredsee Refs.[20-22). The integrals over
lations, decoherence is system dependent. At very high tenR, R’, andQ’ in Eq. (4) can now be performed exactly,
perature, this system dependence turns out to be negligiblyjielding

small. However, in the opposite limit of low temperature, it
becomes increasingly important.

po0.60= [ dadzaa.cra’e 0pa.e 0, ©
Il. THE MODEL

We consider a particle of unit mass, moving in an externalvhere we have introduced the center of mass and relative
potentialV(x) and linearly coupled through its position to a coordinatesy=(x+Yy)/2 andé=x—y. The dynamics of the
set of independent harmonic oscillators with magsand  particle is completely determined by the propagating func-
frequencyw; . The composite Hamiltonian is written in the tion J(q,&,t;q’,£',0). Equation(5) can be considered as the
form full solution of the master equation describing the time evo-

lution of the dissipative particle witkand withouj thermal

2 L. . .
_ p Pi 2 2 initial conditions. In the diagonal cage=0, the propagatad
H= 7+V(X)+Z X Cixi+zi 2m, 2 MK is given by(we put=kg=1 throughout the papgr
+2 X i (2) 30,060,800 = Y exfifa(tg £~ N(DgE’
= ome?’ (9,0£9",¢".0)= 5 —exfi{a(t)q’¢’ = N(H)q¢'}]
where theC;'s are coupling constants. In the limit of infi- xexg—(eq'?+A(1)E?)], (6)
nitely many oscillators, the bath is entirely characterized by
the spectral density function with
T c? _
l(0)= 7 2 ——8(0—w)=2y0 OW-0), (3 a(t)=K(t)+y-2eE(W), @
2 i Mw;
— 2
where the last equality defines Ohmic damping with damp- A(M=C(t)—eE[)7, ®
ing coefficienty. Herew, is a cutoff frequency that will be
replaced by infinity in all convergent integrals later on. Theand
reduced density operatgrg(t) of the system at timé is
obtained after tracing out the bath degrees of freedom. In B
coordinate representation, it reads e=5 9
PS(X’y't):f dx'dy’dRdR’dQ"K(x,R,t;x",R",0) The exact expressions for the coefficieKt&@), N(t), C(t),
o, L o, andE(t) have been derived in R¢R1] for a linear oscillator
XK*(y,R,t;y",Q",0(x",R"[p(0)]y",Q"). with frequency w, initially in thermal equilibrium with a

(4) heat bath at inverse temperatyge=1/T. They are repro-
duced in Appendix B for completeness. Remarkably, the

HereR, R’, andQ’ collectively denote the coordinates of form of the propagating functiof6) remains the same for
the bath K is the propagator, angd(0) is the initial density uncorrelated initial conditions, as well as for a free particle.
operator of the composite system. If we assume that at The case of uncorrelated initial conditions is recovered by
=0 the system and the bath are uncoupled and that the latteettinge to zero and keeping only the first double integral in
is in thermal equilibrium, then the initial density operator canC,(t), Eq.(B5) [K(t) andN(t) being unchanggdwhile the
be written as po(x',R";y",Q")=pg(X",y",0)peq(R",Q"), unbound particle is obtained by letting the frequengygo
where pg(x’,y’,0) describes the initial state of the systemto zero[21]. The quantityx that appears in Eq9) is equal to
and pe(R’,Q’) is the equilibrium density operator of the the variance of the positiofx?), in equilibrium [see Eg.
bath. On the other hand, if the system and the bath are iniB3) in Appendix B|. The factore (= 1/2\ in the notation of
tially coupled and in thermal equilibrium with each other, Ref.[21]), which stems from the initial thermal correlations,
p(0) cannot be factorized into a product of a system and avill turn out to be important in the following discussion. Its
bath operator anymore. Instead, we haéx’,R’;y’,Q’) asymptotic behavior at highl& wg) and low temperature is
=p(x",y",0)peg(X’,y",R",Q"), wherepe(x",y",R",Q") is  (T<wy) is, respectively, given by~ (Bwo)?/2<1 ande
now the equilibrium density operator of the composite sys—~ Bwy>1. The diagonal density operator of the system at
tem andp(x’,y’,0) is a function that parametrizes the initial timet can then be easily obtained by combining Eds, (5),
preparation of the syste(see the discussion in Appendix. A and(6). We find
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2b%(Ng—aa)?+a?(1+8b%A)e
ps(a,01)~exg — >

o

(14

2 Interference patterns between the two superposed wave

packets are hence destroyed according to a stretched expo-
nential on a time scalerp=(3b* yTa?)¥3. The decoher-
ence timerp depends solely on the friction strenggh the
temperaturd, and the parameters of the initial wave packets
2aNq(1+2b%) (separatiora and widthb), and not on any system-specific
X COS 5 , (100 quantity, such as the frequency of the oscillator, for example.
7 Since we look at times much shorter than the characteristic
where we have defined?=(1+8b2A)(1+2b%)+4b%e?  time of the system_rs~g;51, such a system independence of
(for simplicity, we have put, equal toc,). Equation(10) is  the decoherence time is to be expected. However, as we shall
written as a sum of three terms. The first two terms Corre.see, this is Only true for uncorrelated initial conditions. This

spond to two separately propagating wave packets, while thggsult is reminiscent of the universal regime discussed by
third one, containing the cosine, is an interference term. Th&taake and co-workers, where the decoherence rate was also

attenuation coefficierd(t) is defined as the ratio of the fac- found to be independent of the nature of the sysfe#13.
tor multiplying the cosine to twice the geometric mean of theHowever, the short-time attenuation factk4) does not

o

p[ 2b2(NQ+ae)?+a2(1+8b%A)e
+exp —

2

;{ a2(4A+2b%a?) + 2b°N%g?
+2exp —
(o

first two terms. It then follows from Eq10) that quite belong to this regime of very fast decoherence charac-
terized by a Gaussian decay law, Bxt/75)?]. On the other
—4a%A+a2(1+8b%A)e hand, the cubic time dependence clearly indicates that ex-
a(t)=ex 5 . (11)  pression (14) goes beyond thelong-time golden rule
a regime, t>w51, and its typical exponential decay,

This expression is still exact. The attenuation fagth) is ~ €XP(~U). Here we have a much slower initial decoherence
the measure of decoherence we shall use in what follows t§°MpPared to the golden rule expression. A similar short-time
investigate the short-time limit of decoherence. To be moré&UPic dependence of the decoherence factor already appears
specific, we shall place ourselves in the limit of weak cou-" Refs.[18,23. We also mention that the short-time ap-
pling between the system and the baghs wy, and assume Proximation used in the derivation of E¢l4) amounts to

that time is small compared to the relaxation timé<1, neglecting .the spreading of the wave pgcket that appears in
and also small compared to the evolution time of the harihe denominator of the attenuation coefficient. For instance,

: ; - the short-time spreading of the free wave packet in (E8)
monic oscillatorwot<1. s given by(Ax*(1)) =b? +{%/4b+ 2T yt%/3, which reduces
Il UNCORRELATED INITIAL CONDITIONS to the initial widthb“ for very short times.

We begin by considering initial decorrelation between the

system and the heat bath. Physically, this corresponds to the IV. THERMAL INITIAL CONDITIONS

situation where the system and the bath are isolated prior to

their coupling att=0, the system being effectively at zero VW& now tum fo the case where the system and the bath

temperature. In this case=0, a(t)=N(t), and A(t) are initially correlated and in the'rrr)gl equlllt_Jr'lum. First, it

=C(t) (with only the first double integral In the high- should be realized that thermal initial conditions not only
modify the coherence time of the system, they also directly

affect the overall coherence lendth9]. As a matter of fact,

we easily see from the coordinate representation of the free

particle equilibrium density matrix,(x|exd —Bp%2]|y)

=exd —(x—y)%28], that there is an exponential cutoff in

temperature limit,T> v, 0y, We approximate the hyperbolic
cotangent in Eq(B4) by cothx=1/x. Expandinga(t) and
A(t), Egs.(7) and(8), in lowest order in time, we find that
the attenuation coefficieriill) is given by

42T 413 x—Yy over distances of the order of the thermal de Broglie
alP(t)=exg — e (120 wavelength\ ~1/yT. The two wave packets can therefore
12b"+8b " Tyt"+ 3t only coherently interfere if they are separated by a distance

smaller than\. This distance is extremely small at high tem-

. < _1
for the free particle(<y™~), and by perature, but becomes appreciable when the temperature is

222T 412 very low.
aS"(t)=exg — Y (13 In the limit of high temperature, we can compute the at-
120+ 8b?Twiyt3+ 3t2 tenuation factor(11) for the free particle, for times smaller

than the relaxation timé<y~ !, by expanding the functions
for the harmonic oscillatort wy *). For very short times, «(t) and A(t) up to lowest order irt, in analogy with the
we thus obtain thesameattenuation coefficient for both the preceding sectiotnow keeping all the termsFor very short
free particle and the linear oscillator, times, this leads to
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a2Tt2 where vy, is Euler’s constant. We note that in contrast to the
zex;{— 7 |- high-temperature expressiqi5), Eq. (17) now explicitly
2b contains the damping coefficient This shows the impor-
(19  tance of friction for low-temperature decoherer(see the
) ) ) ) recent discussion in Ref24] on this poinj. We also note
The short-time expressiofil5) is equivalent to the result (n5¢ the exponent in Eq17) is negative, as it should, since
recently obtained by Ford, Lewis and O'Connell using an, ;<1 Thet2Int behavior of the decoherence factor in Eq.
exact method based on quantum distribution functidd.  (17) is consistent with the result found by Romero and Paz
It is worth noticing that Ford and O’Connell have also de-for the superposition of two translatiofi$6]. In an analo-
rived Eq.(15) with a more elementary method making only g4ys way, we find that the short-time expression of the at-

use of basic quantum mechanics and equilibrium statisticbnyation coefficient for the linear oscillator is given by (
mechanics[10]. This approximate method is valid in the

limit of vanishingly small friction. Equatioii15) shows that,
in the presence of initial thermal correlations between the

system and the bath, the short-time dependence of the expo- OH 2a’y
nent of the decoherence coefficient is now quadratic. This ar (t)=ex b*
has to be contrasted with the cubic dependence obtained for
initial decorrelation in Eq(14). Moreover, the decoherence 232
time 7p = (2b*/Ta?) 2 appears to be independent of the fric- :exr{—‘l yt2In wot(1+2b%)
tion coefficienty. This remarkable result indicates that at b

Fll%rllltﬁmperature, decoherence can occur without dISSIpatlovr\]/here nowe=fBwo. In the limit of low temperatureT

Similarly, the attenuation coefficient for the harmonic os-éé‘;g’r I?] b?ﬁ%me(sl;l)egnlgg?r'om ?Eggilritb deoSSItcleCii(tjetrlg} it:e
cillator can be calculated in the limtt<wg®. Still in the " g 9

. o . . .. C,(1), Eq.(B3), whereas the factor lagt in Eq. (18) comes
g:\g/jghtebr;perature limit, we find that for very short times it is from the next two single integrals of EGB3).

2 ) 2a’Tt?
a =expg —————55—
" 4D+ 4T+t

<wg ),

(In wot + ye)t?(1+2b%)

, (18

V. DISCUSSION

From a technical point of view, the inclusion of initial
correlations between the system and the bath results in a
modification of the integration contour in the complex-time
plane (Keldish contour that appears in the path-integral
evaluation of the influence functionf20-22. More pre-
cisely, the effect of the initial correlations is to couple the
forward and backward integration paths along the real-time
axis through an imaginary path along the Euclidean time
axis, 7=it. This leads to additional terms in the influence
functional that are given by Euclidean integrals of the form

2a?Twit?+ a’e(4b?Twit?)
4wgb4+ 4b2TwSt2+ wgt2

aﬁ{'(t)zex;{ —

: (16)

aZth(1+2b2 )
=exp — &
2b*

with £=(Bw)?/2. Contrary to Eq(14), we observe that for
initial thermal conditions, the short-time attenuation coeffi-
cients for the free particl€l5) and the harmonically bound

particle (16) are not identical, even for times much smaller Bl of Th t the facterin th i
than the characteristic system timg. Equation(16) indeed ffo r (T).6 € pretz)ser:jge OI c acd@rl')m K € prﬁpaga N9
contains an additional, system-specific correction, which delunction (6) can be |rect){ traced back to t ese terms.
pends on the frequency of the linear oscillatgyand on the Clearly, even for very short times, when the dynamics of the

temperaturd’. This term finds its origin in the initial thermal system can be completely neglected, some of these terms,

correlations existing between the system and the heat bath ‘gP'Ch depend only on temperature and not on time, will st

t=0 (see the discussion belowin the limit of high tempera- € present. For initial thermal correlations, these terms ex-
ture, T>wy, this correction, which is proportional te, is plicitly depend on the nature of the system through the com-

negligibly small. However, as we shall see next, it become§nOnnmmaI er(]qumbr\l/urrr: ft?tergi];rthf” syfrt_]erl? t\i/;l:h tht'";] battrt]' r,?s i
increasingly important as the temperature is lowered. a consequence, even for arbitrartly sma es, fhe attenua

I the loeiemperatre i, e replce the hyperboic 7 OEMIOEnt i be svtem dependent. oniy b he speci
cotangent in Eq(B4) by unity, cothx=1. For very short

times, we find that the attenuation coefficient for the freetor system indepen(_jen'g at short times. It tums out, further-
particle readsti<y 1) more, that the con'trlbutl_on of thes'e_system—spemflc t'er.ms to
the decoherence time will be negligibly small in the limit of
high temperature—0 (as easily seen from the Euclidean
integral abovgand will become very important in the oppo-
site limit of low temperature— 0. This general discussion
confirms the results obtained for the special examples of a
free particle and a linear oscillator.
, (17) Finally, it is also interesting to look at the temperature
dependence of the facter which can be written in the form

FP a’y
air (H)=exg —(In yt+ye—3+In2)t?
b

il t2In yt
=exg ——;yuriny
wb*
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12 perature thermostat. This should be of interest for current
10 ~12 solid-state quantum computing investigations.
w g
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~T APPENDIX A
0.5 1 1.5 2

In this appendix we clarify the physical meaning of the
Temperature T/ ®, functionp(x,y,0) that appears in the expression of the initial
global density operatgsy(x,R;y,Q) for the case of thermal
initial conditions. Let us assume that the system and the bath
were brought together in the distant past and that they have
interacted for a time long enough in order to reach a common
equilibrium state described by the density operatqy,
(19 —=Z lexp(—pBH). Let us further assume thatit 0 the sys-
tem is “prepared” in some initial state by means of some
measurement. The initial global density operator can then be

At high temperature; asymptotically decays to zero@S™,  \yritten in terms of the equilibrium density operatpg, as
whereas at low temperature it divergesTag (see Fig. 1 In 22]

the absence of damping, E@L9) reduces to the simple
expression

FIG. 1. Temperature dependence of the faetogiven by Eq.
(19), in the limit of small friction, y< w.

4y (= w coth( Bw/2) o

— 1)
7BJo (cuz—wg)2+4y2w2

po(X,Riy, Q)= f dXdyX (X,X,Y,Y) peq(%.R:Y.Q),
Feoo y=0. (20) (A1)

&= coth( Bwyl2)’

_ _ ~ where\(x,x,y,y) is a “preparation function.” The initial
We see from Eq(20) that the high-temperature limg—0is  reduced density operator of the system reads accordingly
formally equivalent to the free particle limibg—0. This

offers another explanation why the system dependent correc-

tion to the attenuation coefficient becomes vanishingly small — - =

at high temperature. Moreover, the presence of the hyper- PS(X'V*O):J’ dxdyA(X,x,y,Y)pedXy),  (A2)
bolic cotangent in the denominator of E0) hints at a

connection between the divergenceeotlose to zero tem- . — — .
perature and zero-point oscillations of the bath. with  peq(X,y) = [dRpeq(X,R;Y,R). The function N de-

In conclusion, we have examined the effect of initial CC)r_scnbes the deviation of the initial reduced density operator

relations on the short-time decoherence of a superposition §fo™ 1ts thermal equilibrium form: If the system is initially
two Gaussian wave packets. To this end, we have calculatédiPreparedi (x,x,y,y) = 6(x—x)s(y—y), one easily sees
the attenuation coefficient for a free particle and a lineathatps(X,y,0)=peq(X,y), thatis, the system is initially in its
oscillator, with and without initial thermal correlations. We thermal equilibrium state. On the other hand, if the system is
have found that for factorizable initial conditions, the attenu-initially prepared in a localized state, such as a wave packet
ation factor, and accordingly the decoherence time, is systelr a superposition of wave packetsh(x,X,y,y)
independent at very short times. On the other hand, for cor=p(x,y,0)8(x—x) 8(y—y), then one obtainsps(x,y,0)
related thermal initial conditions, not only the temporal Prop-=p(x,y,0)peq(X,y). This is the form used in the paper with
erties of decoherence are modified—changing from g (x y 0) given by Eq.(1). It should be noted that in this

stretched exponential to a Gaussian decay—but also the cgase,p(x,y,0) is not the initial reduced density operator of
herence length is affected. The latter is of the order of the dghe system.

Broglie thermal wavelength. Moreover, the attenuation factor
now has a system dependent term, containing the frequency
of the oscillator and the temperature, and this even at times

much smaller than the system characteristic tirg¢ @, . |n this section we collect for convenience the exact ex-
The system-specific correction to the attenuation coefﬂuenlt)ressions of the quantities appearing in the propag#tor

is small in the high-temperature limit, where zero-point fluc-The derivation of these quantities can be found in [R2f].
tuations are neglected, but becomes more and more impofhe functionsk (t) andN(t) are given by

tant as the temperature is lowered. These findings show that
thermal initial correlations can have profound effects on the
short-time decoherence of systems in contact with a low tem- K(t)=wvcotut, (B1)

APPENDIX B
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vex t] APPENDIX C

: (B2)

sinwt The aim of this appendix is to sketch the evaluation of the

function C(t) =sirfit C(t) [the contributions coming from
the functionE(t) are of higher order and can therefore be
neglected in the limit considered in the papékle begin by
computing the first double integral in E(B5). Introducing
the new variablesi=(t’ +t")/2 andv=t'—t", we have

where v=(w3— y?)Y2. We work in the limit of an under-
damped oscillator where the friction coefficieptis smaller
than the frequencw, of the harmonic oscillator. For a free
particle, wo=0, one has to replace—iy. The variance of
the position in equilibrium;cz(x2>eq, is given by[22]

2y wd o coth( Bw/2)

® .
T Jo (wz—w%)2+4y2w2

t t
P (B3) aw(t)=fodt’fodt”sinv(t—t’)sinv(t—t”)cos(u(t’—t”)

Its asymptotic behavior at highTé wy) and low tempera- xexply(t' +1)]

tures T<wy) is, respectively, given by<~1/,8w§ and « t t
~1/2wq. The functionsC(t) and E(t) are, on the other =j0dufodvsmv(t—u—v/2)
hand, of the form

Xsinv(t—u-+v/2)exq 2yu]coswu. (Cy
y (e
f(H)= ;fo do w coth Bw/2)f (1), (B4) " The integral oveu is readily obtained as

wheref ,(t) has, respectively, to be replaced by .
fdusinv(t—u—v/2)sinv(t—u+v/2)e27u
0

1 t t
C,(t)= Jdt’f dt’"siny(t—t")cosw(t’ —t" )
® sirfvtJo 0 ( ) ( ) 1 (e27t—1)005vvJr v €cos vt — v sin 2vt— ye~ 2N
X sinv(t—t")exg y(t' +t")] 4 14 Y2+ v?
C2
4yw? 1 t (C2
N T Jdt’cosm’
(05— @) +4y“0” SN0 while the integral over can be calculated using
Xsinv(t—t")exg yt']
Zw(wz—wé) O ) f dwaOtI’(,Bw/Z)COSwUZZTf dw coswv=27T 8(v)
—— > 3 o dt’sinwt 0 0
(w§— w?)?+4y?w? SiNvtJo (C3)
o’ high d
Xsinp(t—t')exd yt']+ , at high temperature, an
o] (wg—w2)2+4'y2w2
(B5) ) i} .
f dwwcotf‘(,Bw/Z)COSwv=f da)wCOSa)v:——2
0 0 v
1 t
= ’'gj —t/ (C4)
E,(1) St (wg—w2)2+4y2w2fodt siny(t—t’)

at low temperaturéthe latter should be interpreted as a prin-
cipal value[25]). Furthermore, by using the following two
(B6) expressions:

X exd yt' [ (w3— w?)coswt’ —2yw sinwt'].

t . —v(wi— w?)cosvt— y(wi+ w?)sinvt+ ve’[(wi— w?)coswt + 2yw sinwt]
fdt’cosm’sinv(t—t’)eyt = 0 0 55 5 20 , (CH
0 (wg— )" +4y°w
t . 2yvcosvt+ w(y?— v+ w?)sinvt+ ye? [ — 2yw coswt + (wi— w?)sinwt]
folt’sinwt'siny(t—t')evt = — 0 . (Ce)
0 (wg— 0 +4vy°w

022109-6



EFFECT OF INITIAL CORRELATIONS ON SHORT. .. PHYSICAL REVIEW A 67, 022109 (2003

we can rewrite the remaining three terms in E85) in the  and
compact form

2w sinwt vsinvt exd yt]— w?sirfut

b1 7 f’”d w?sinwt
w t w
(wS—w2)2+472w2 0 (wé—w2)2+472w2
Useful identities to calculatke,,(t) at high and low tempera- e Ty | Twg
tures are §—0) =1 vemInwo 4oy Ay " €9
% w Sinwt T T .
do——— > 2~ a,' 22,20 The functionC(t) is eventually given b
0 (wg— 0)+4vy°w 4y 24y y9 y
(CY
f d o 7 = Y[
0] = =
0 (w(z)— w2)2+4’)/2(1)2 4,), C(t) Wfo do o COtf‘(ﬂwlZ)[aw(t)-F bw(t)] (ClO)
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