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Effect of initial correlations on short-time decoherence

Eric Lutz
Sloane Physics Laboratory, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 1 October 2002; published 25 February 2003!

We study the effect of initial correlations on the short-time decoherence of a particle linearly coupled to a
bath of harmonic oscillators. We analytically evaluate the attenuation coefficient of the superposition of two
wave packets both for a free and a harmonically bound particle, with and without initial thermal correlations
between the particle and the bath. While short-time decoherence appears to be independent of the system in the
absence of initial correlations, we find on the contrary that, for initial thermal correlations, decoherence
becomes system dependent even for times much shorter than the characteristic time of the system. The
temperature behavior of this system dependence is discussed.

DOI: 10.1103/PhysRevA.67.022109 PACS number~s!: 03.65.Yz, 05.40.Fb
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I. INTRODUCTION

Environment induced decoherence plays a fundame
role in many areas, ranging from quantum cosmology@1#
and the theory of quantum measurement@2# to quantum in-
formation and quantum computing@3#. Experimental inves-
tigations of the decoherence process have recently bee
ported in Refs.@4–6#. Environmental decoherence can
defined as ‘‘ . . . the ~irreversible! loss of quantum coherenc
of a quantum system due to its coupling to an environme
@7#; it manifests itself in the dynamical suppression of int
ference phenomena@8,9#. A simple way to quantify the de
struction of coherence is thus to consider the superpositio
two localized wave packets and to look at the decay of
interference term, as measured, for instance, by the atte
tion coefficient@see Eq.~11! below#. An important character-
istic of decoherence is that it occurs on a very fast time sc
usually much shorter than the energy dissipation scale.
note that the short-time limit of decoherence has rece
attracted a renewed interest in the literature@10–14#. Inter-
estingly, Braun, Haake, and Strunz@12,13# have identified a
new regime of fast decoherence beyond the usual golden
regime. In this limit of large separations between the wa
packets~interaction-dominated decoherence!, quantum deco-
herence appears independent of both the system and the
bath.

Most studies of environment-induced decoherence m
use of the simplified assumption that the system and the
are initially uncorrelated@15#. Then, the initial composite
density operator for system plus bath can be factorized in
product of a system operator and a bath operator. Howe
in the general, and more realistic, case, initial correlations
present. A case in point is the cooling of a sample befor
low-temperature experiment. The resulting correlations
tween the system and the thermostat might then affect
decoherence process, especially at very short times, as
pointed out by Romero and Paz@16#. In fact, as recently
shown by Ford and co-workers@10,11#, initial thermal con-
ditions can dramatically modify the decoherence rate. T
find that the decoherence time for an unbound particle
comes independent of the strength of the dissipation whe
is initially at the same temperature as the bath. Our aim
this paper is to complement the discussion of the effec
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initial thermal correlations on short-time decoherence
analytically comparing the attenuation factor of a free p
ticle with that of a harmonic oscillator, with and withou
thermal initial correlations. As our main tool, we shall em
ploy the by now standard model of a system linearly coup
to a bath of harmonic oscillators. This model is exactly so
able and the exact reduced density operator of the quan
system is conveniently obtained within a path-integral a
proach@17#. This model has been extensively used in de
herence studies for the case of factorizable initial conditio
building up on the work of Caldeira and Leggett@18#. It has
been extended later on to correlated thermal initial con
tions by Hakim and Ambegaokar for a free particle@19# and
independently by Morais Smith and Caldeira@20,21#, and by
Grabert, Schramm, and Ingold@22# for a harmonically bound
particle. In the following we shall use the exact results d
rived by Morais Smith and Caldeira@21# to compute the time
evolution of the superposition of two Gaussian wave pack
separated by a distance 2a and
of width b, c(x)5c1exp@2(x2a)2/4b2#1c2exp@2(x
1a)2/4b2#. The corresponding initial density operato
r(x,y,0)5c(x)c* (y), is given by

r~x,y,0!5uc1u2expF2
~x2a!21~y2a!2

4b2 G
1uc2u2expF2

~x1a!21~y1a!2

4b2 G
1c1c2* expF2

~x2a!21~y1a!2

4b2 G
1c1* c2expF2

~x1a!21~y2a!2

4b2 G . ~1!

We calculate the short-time limit of the attenuation coe
cient for a harmonically bound particle with and witho
initial thermal correlations and compare the obtained res
with those of a free particle. We find that for initial decorr
lation, the attenuation coefficient is identical for both the fr
particle and the linear oscillator, in other words, decohere
is independent of the nature of the system. On the ot
©2003 The American Physical Society09-1
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ERIC LUTZ PHYSICAL REVIEW A 67, 022109 ~2003!
hand, for initial thermal correlations, we find that the atten
ation coefficient acquires a system dependent part, even
times much smaller than the characteristic time of the s
tem. This shows that in the presence of initial thermal cor
lations, decoherence is system dependent. At very high t
perature, this system dependence turns out to be neglig
small. However, in the opposite limit of low temperature,
becomes increasingly important.

II. THE MODEL

We consider a particle of unit mass, moving in an exter
potentialV(x) and linearly coupled through its position to
set of independent harmonic oscillators with massmi and
frequencyv i . The composite Hamiltonian is written in th
form

H5
p2

2
1V~x!1(

i
x Cixi1(

i
S pi

2

2mi
1

1

2
miv i

2xi
2D

1(
i

x2
Ci

2

2miv i
2

, ~2!

where theCi ’s are coupling constants. In the limit of infi
nitely many oscillators, the bath is entirely characterized
the spectral density function

I ~v!5
p

2 (
i

Ci
2

miv i
d~v2v i !52gv u~w2vc!, ~3!

where the last equality defines Ohmic damping with dam
ing coefficientg. Herevc is a cutoff frequency that will be
replaced by infinity in all convergent integrals later on. T
reduced density operatorrS(t) of the system at timet is
obtained after tracing out the bath degrees of freedom
coordinate representation, it reads

rS~x,y,t !5E dx8dy8dRdR8dQ8K~x,R,t;x8,R8,0!

3K* ~y,R,t;y8,Q8,0!^x8,R8ur~0!uy8,Q8&.

~4!

Here R, R8, andQ8 collectively denote the coordinates o
the bath,K is the propagator, andr(0) is the initial density
operator of the composite system. If we assume thatt
50 the system and the bath are uncoupled and that the l
is in thermal equilibrium, then the initial density operator c
be written as r0(x8,R8;y8,Q8)5rS(x8,y8,0)req(R8,Q8),
where rS(x8,y8,0) describes the initial state of the syste
and req(R8,Q8) is the equilibrium density operator of th
bath. On the other hand, if the system and the bath are
tially coupled and in thermal equilibrium with each othe
r(0) cannot be factorized into a product of a system an
bath operator anymore. Instead, we haver0(x8,R8;y8,Q8)
5r(x8,y8,0)req(x8,y8,R8,Q8), wherereq(x8,y8,R8,Q8) is
now the equilibrium density operator of the composite s
tem andr(x8,y8,0) is a function that parametrizes the initi
preparation of the system~see the discussion in Appendix A!.
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We shall refer to these two cases as~i! uncorrelated initial
conditions and~ii ! thermal initial conditions, respectively
We mention that other correlated initial conditions have a
been considered~see Refs.@20–22#!. The integrals over
R, R8, and Q8 in Eq. ~4! can now be performed exactly
yielding

rS~q,j,t !5E dq8dj8J~q,j,t;q8,j8,0!r~q8,j8,0!, ~5!

where we have introduced the center of mass and rela
coordinatesq5(x1y)/2 andj5x2y. The dynamics of the
particle is completely determined by the propagating fu
tion J(q,j,t;q8,j8,0). Equation~5! can be considered as th
full solution of the master equation describing the time ev
lution of the dissipative particle with~and without! thermal
initial conditions. In the diagonal casej50, the propagatorJ
is given by~we put\5kB51 throughout the paper!

J~q,0,t;q8,j8,0!5
N~ t !

2p
exp@ i $a~ t !q8j82N~ t !qj8%#

3exp@2~« q821D~ t !j82!#, ~6!

with

a~ t !5K~ t !1g22«E~ t !, ~7!

D~ t !5C~ t !2«E~ t !2, ~8!

and

«5
b

2k
. ~9!

The exact expressions for the coefficientsK(t), N(t), C(t),
andE(t) have been derived in Ref.@21# for a linear oscillator
with frequencyv0 initially in thermal equilibrium with a
heat bath at inverse temperatureb51/T. They are repro-
duced in Appendix B for completeness. Remarkably,
form of the propagating function~6! remains the same fo
uncorrelated initial conditions, as well as for a free partic
The case of uncorrelated initial conditions is recovered
setting« to zero and keeping only the first double integral
Cv(t), Eq.~B5! @K(t) andN(t) being unchanged#, while the
unbound particle is obtained by letting the frequencyv0 go
to zero@21#. The quantityk that appears in Eq.~9! is equal to
the variance of the position̂x2&eq in equilibrium @see Eq.
~B3! in Appendix B#. The factor« (51/2l in the notation of
Ref. @21#!, which stems from the initial thermal correlation
will turn out to be important in the following discussion. It
asymptotic behavior at high (T@v0) and low temperature is
(T!v0) is, respectively, given by«;(bv0)2/2!1 and «
;bv0@1. The diagonal density operator of the system
time t can then be easily obtained by combining Eqs.~1!, ~5!,
and ~6!. We find
9-2



re
t

Th
-
he

s
or
u

a

th
t

r
o

c

t

e

ave
xpo-

ts
c
le.

istic
of
shall
is
by
also

rac-

ex-

,
ce
me
ears

p-

s in
ce,

ath
it
ly
tly

free

n
lie
re
nce
-

re is

at-
r

EFFECT OF INITIAL CORRELATIONS ON SHORT- . . . PHYSICAL REVIEW A 67, 022109 ~2003!
rS~q,0,t !;expF2
2b2~Nq2aa!21a2~118b2D!«

s2 G
1expF2

2b2~Nq1aa!21a2~118b2D!«

s2 G
12 expF2

a2~4D12b2a2!12b2N2q2

s2 G
3cos

2aNq~112b2«!

s2
, ~10!

where we have defineds25(118b2D)(112b2«)14b4a2

~for simplicity, we have putc1 equal toc2). Equation~10! is
written as a sum of three terms. The first two terms cor
spond to two separately propagating wave packets, while
third one, containing the cosine, is an interference term.
attenuation coefficienta(t) is defined as the ratio of the fac
tor multiplying the cosine to twice the geometric mean of t
first two terms. It then follows from Eq.~10! that

a~ t !5expF24a2D1a2~118b2D!«

s2 G . ~11!

This expression is still exact. The attenuation factor~11! is
the measure of decoherence we shall use in what follow
investigate the short-time limit of decoherence. To be m
specific, we shall place ourselves in the limit of weak co
pling between the system and the bath,g!v0, and assume
that time is small compared to the relaxation time,gt!1,
and also small compared to the evolution time of the h
monic oscillator,v0t!1.

III. UNCORRELATED INITIAL CONDITIONS

We begin by considering initial decorrelation between
system and the heat bath. Physically, this corresponds to
situation where the system and the bath are isolated prio
their coupling att50, the system being effectively at zer
temperature. In this case«50, a(t)5N(t), and D(t)
5C(t) ~with only the first double integral!. In the high-
temperature limit,T@g,v0, we approximate the hyperboli
cotangent in Eq.~B4! by cothx.1/x. Expandinga(t) and
D(t), Eqs.~7! and ~8!, in lowest order in time, we find tha
the attenuation coefficient~11! is given by

a0
FP~ t !5expF2

4a2Tgt3

12b418b2Tgt313t2G ~12!

for the free particle (t!g21), and by

a0
OH~ t !5expF2

4a2Tgt3

12b418b2Tv0
2gt313t2G ~13!

for the harmonic oscillator (t!v0
21). For very short times,

we thus obtain thesameattenuation coefficient for both th
free particle and the linear oscillator,
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a0~ t !.expF2
a2Tgt3

3b4 G . ~14!

Interference patterns between the two superposed w
packets are hence destroyed according to a stretched e
nential on a time scale,tD5(3b4/gTa2)1/3. The decoher-
ence timetD depends solely on the friction strengthg, the
temperatureT, and the parameters of the initial wave packe
~separationa and widthb), and not on any system-specifi
quantity, such as the frequency of the oscillator, for examp
Since we look at times much shorter than the character
time of the system,tS;v0

21, such a system independence
the decoherence time is to be expected. However, as we
see, this is only true for uncorrelated initial conditions. Th
result is reminiscent of the universal regime discussed
Haake and co-workers, where the decoherence rate was
found to be independent of the nature of the system@12,13#.
However, the short-time attenuation factor~14! does not
quite belong to this regime of very fast decoherence cha
terized by a Gaussian decay law, exp@2(t/tD)2#. On the other
hand, the cubic time dependence clearly indicates that
pression ~14! goes beyond the~long-time! golden rule
regime, t@v0

21, and its typical exponential decay
exp(2t/tD). Here we have a much slower initial decoheren
compared to the golden rule expression. A similar short-ti
cubic dependence of the decoherence factor already app
in Refs. @18,23#. We also mention that the short-time a
proximation used in the derivation of Eq.~14! amounts to
neglecting the spreading of the wave packet that appear
the denominator of the attenuation coefficient. For instan
the short-time spreading of the free wave packet in Eq.~12!
is given by^Dx2(t)&5b21t2/4b212Tgt3/3, which reduces
to the initial widthb2 for very short times.

IV. THERMAL INITIAL CONDITIONS

We now turn to the case where the system and the b
are initially correlated and in thermal equilibrium. First,
should be realized that thermal initial conditions not on
modify the coherence time of the system, they also direc
affect the overall coherence length@19#. As a matter of fact,
we easily see from the coordinate representation of the
particle equilibrium density matrix,^xuexp@2bp2/2#uy&
.exp@2(x2y)2/2b#, that there is an exponential cutoff i
x2y over distances of the order of the thermal de Brog
wavelength,l;1/AT. The two wave packets can therefo
only coherently interfere if they are separated by a dista
smaller thanl. This distance is extremely small at high tem
perature, but becomes appreciable when the temperatu
very low.

In the limit of high temperature, we can compute the
tenuation factor~11! for the free particle, for times smalle
than the relaxation time,t!g21, by expanding the functions
a(t) and D(t) up to lowest order int, in analogy with the
preceding section~now keeping all the terms!. For very short
times, this leads to
9-3
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ERIC LUTZ PHYSICAL REVIEW A 67, 022109 ~2003!
ahT
FP~ t !5expF2

2a2Tt2

4b414Tb2t21t2G.expF2
a2Tt2

2b4 G .

~15!

The short-time expression~15! is equivalent to the resul
recently obtained by Ford, Lewis and O’Connell using
exact method based on quantum distribution functions@11#.
It is worth noticing that Ford and O’Connell have also d
rived Eq.~15! with a more elementary method making on
use of basic quantum mechanics and equilibrium statist
mechanics@10#. This approximate method is valid in th
limit of vanishingly small friction. Equation~15! shows that,
in the presence of initial thermal correlations between
system and the bath, the short-time dependence of the e
nent of the decoherence coefficient is now quadratic. T
has to be contrasted with the cubic dependence obtaine
initial decorrelation in Eq.~14!. Moreover, the decoherenc
time tD5(2b4/Ta2)1/2 appears to be independent of the fri
tion coefficientg. This remarkable result indicates that
high temperature, decoherence can occur without dissipa
@10,11#.

Similarly, the attenuation coefficient for the harmonic o
cillator can be calculated in the limitt!v0

21. Still in the
high-temperature limit, we find that for very short times it
given by

ahT
OH~ t !5expF2

2a2Tv0
2t21a2«~4b2Tv0

2t2!

4v0
2b414b2Tv0

2t21v0
2t2 G

.expF2
a2Tt2

2b4
~112b2«!G , ~16!

with «.(bv0)2/2. Contrary to Eq.~14!, we observe that for
initial thermal conditions, the short-time attenuation coe
cients for the free particle~15! and the harmonically bound
particle ~16! are not identical, even for times much smalle
than the characteristic system timetS . Equation~16! indeed
contains an additional, system-specific correction, which
pends on the frequency of the linear oscillatorv0 and on the
temperatureT. This term finds its origin in the initial therma
correlations existing between the system and the heat ba
t50 ~see the discussion below!. In the limit of high tempera-
ture, T@v0, this correction, which is proportional to«, is
negligibly small. However, as we shall see next, it becom
increasingly important as the temperature is lowered.

In the low-temperature limit, we replace the hyperbo
cotangent in Eq.~B4! by unity, cothx.1. For very short
times, we find that the attenuation coefficient for the fr
particle reads (t!g21)

alT
FP~ t !5expF a2g

pb4
~ ln gt1ge231 ln 2!t2G

.expF a2

pb4
gt2ln gtG , ~17!
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wherege is Euler’s constant. We note that in contrast to t
high-temperature expression~15!, Eq. ~17! now explicitly
contains the damping coefficientg. This shows the impor-
tance of friction for low-temperature decoherence~see the
recent discussion in Ref.@24# on this point!. We also note
that the exponent in Eq.~17! is negative, as it should, sinc
gt,1. The t2ln t behavior of the decoherence factor in E
~17! is consistent with the result found by Romero and P
for the superposition of two translations@16#. In an analo-
gous way, we find that the short-time expression of the
tenuation coefficient for the linear oscillator is given byt
!v0

21),

alT
OH~ t !5expF2a2g

pb4
~ ln v0t1ge!t

2~112b2«!G
.expF 2a2

pb4
gt2ln v0t~112b2«!G , ~18!

where now «.bv0. In the limit of low temperature,T
!v0 , « becomes very large. It should be noticed that t
factor lngt in Eq. ~17! comes from the first double integral i
Cv(t), Eq. ~B3!, whereas the factor lnv0t in Eq. ~18! comes
from the next two single integrals of Eq.~B3!.

V. DISCUSSION

From a technical point of view, the inclusion of initia
correlations between the system and the bath results
modification of the integration contour in the complex-tim
plane ~Keldish contour! that appears in the path-integr
evaluation of the influence functional@20–22#. More pre-
cisely, the effect of the initial correlations is to couple th
forward and backward integration paths along the real-ti
axis through an imaginary path along the Euclidean ti
axis, t5 i t . This leads to additional terms in the influenc
functional that are given by Euclidean integrals of the fo
*0

bdt f (t). The presence of the factor« in the propagating
function ~6! can be directly traced back to these term
Clearly, even for very short times, when the dynamics of
system can be completely neglected, some of these te
which depend only on temperature and not on time, will s
be present. For initial thermal correlations, these terms
plicitly depend on the nature of the system through the co
mon initial equilibrium state of the system with the bath. A
a consequence, even for arbitrarily small times, the atten
tion coefficient will be system dependent. Only in the spec
case of uncorrelated initial conditions is the attenuation f
tor system independent at short times. It turns out, furth
more, that the contribution of these system-specific term
the decoherence time will be negligibly small in the limit
high temperature,b→0 ~as easily seen from the Euclidea
integral above! and will become very important in the oppo
site limit of low temperature,b→`. This general discussion
confirms the results obtained for the special examples o
free particle and a linear oscillator.

Finally, it is also interesting to look at the temperatu
dependence of the factor«, which can be written in the form
9-4
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«5F 4g

pbE0

`

dv
v coth~bv/2!

~v22v0
2!214g2v2G21

. ~19!

At high temperature,« asymptotically decays to zero asT21,
whereas at low temperature it diverges asT22 ~see Fig. 1!. In
the absence of damping, Eq.~19! reduces to the simple
expression

«5
bv0

coth~bv0/2!
, g50. ~20!

We see from Eq.~20! that the high-temperature limitb→0 is
formally equivalent to the free particle limitv0→0. This
offers another explanation why the system dependent cor
tion to the attenuation coefficient becomes vanishingly sm
at high temperature. Moreover, the presence of the hy
bolic cotangent in the denominator of Eq.~20! hints at a
connection between the divergence of« close to zero tem-
perature and zero-point oscillations of the bath.

In conclusion, we have examined the effect of initial co
relations on the short-time decoherence of a superpositio
two Gaussian wave packets. To this end, we have calcul
the attenuation coefficient for a free particle and a lin
oscillator, with and without initial thermal correlations. W
have found that for factorizable initial conditions, the atten
ation factor, and accordingly the decoherence time, is sys
independent at very short times. On the other hand, for
related thermal initial conditions, not only the temporal pro
erties of decoherence are modified—changing from
stretched exponential to a Gaussian decay—but also the
herence length is affected. The latter is of the order of the
Broglie thermal wavelength. Moreover, the attenuation fac
now has a system dependent term, containing the freque
of the oscillator and the temperature, and this even at tim
much smaller than the system characteristic timetS;v0

21.
The system-specific correction to the attenuation coeffic
is small in the high-temperature limit, where zero-point flu
tuations are neglected, but becomes more and more im
tant as the temperature is lowered. These findings show
thermal initial correlations can have profound effects on
short-time decoherence of systems in contact with a low t

FIG. 1. Temperature dependence of the factor«, given by Eq.
~19!, in the limit of small friction,g!v0.
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perature thermostat. This should be of interest for curr
solid-state quantum computing investigations.
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APPENDIX A

In this appendix we clarify the physical meaning of th
functionr(x,y,0) that appears in the expression of the init
global density operatorr0(x,R;y,Q) for the case of therma
initial conditions. Let us assume that the system and the b
were brought together in the distant past and that they h
interacted for a time long enough in order to reach a comm
equilibrium state described by the density operatorreq
5Z21exp(2bH). Let us further assume that att50 the sys-
tem is ‘‘prepared’’ in some initial state by means of som
measurement. The initial global density operator can then
written in terms of the equilibrium density operatorreq as
@22#

r0~x,R;y,Q!5E dx̄dȳl~x,x̄,y,ȳ!req~ x̄,R; ȳ,Q!,

~A1!

where l(x,x̄,y,ȳ) is a ‘‘preparation function.’’ The initial
reduced density operator of the system reads accordingl

rS~x,y,0!5E dx̄dȳl~x,x̄,y,ȳ!req~ x̄,ȳ!, ~A2!

with req( x̄,ȳ)5*dRreq( x̄,R; ȳ,R). The function l de-
scribes the deviation of the initial reduced density opera
from its thermal equilibrium form: If the system is initially
unprepared,l(x,x̄,y,ȳ)5d(x2 x̄)d(y2 ȳ), one easily sees
thatrS(x,y,0)5req(x,y), that is, the system is initially in its
thermal equilibrium state. On the other hand, if the system
initially prepared in a localized state, such as a wave pac
or a superposition of wave packets,l(x,x̄,y,ȳ)
5r(x,y,0)d(x2 x̄)d(y2 ȳ), then one obtainsrS(x,y,0)
5r(x,y,0)req(x,y). This is the form used in the paper wit
r(x,y,0) given by Eq.~1!. It should be noted that in this
case,r(x,y,0) is not the initial reduced density operator
the system.

APPENDIX B

In this section we collect for convenience the exact e
pressions of the quantities appearing in the propagator~6!.
The derivation of these quantities can be found in Ref.@21#.
The functionsK(t) andN(t) are given by

K~ t !5n cotnt, ~B1!
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N~ t !5
n exp@gt#

sinnt
, ~B2!

where n5(v0
22g2)1/2. We work in the limit of an under-

damped oscillator where the friction coefficientg is smaller
than the frequencyv0 of the harmonic oscillator. For a fre
particle,v050, one has to replacen→ ig. The variance of
the position in equilibrium,k5^x2&eq , is given by@22#

k5
2g

p E
0

`

dv
v coth~bv/2!

~v22v0
2!214g2v2

. ~B3!

Its asymptotic behavior at high (T@v0) and low tempera-
tures (T!v0) is, respectively, given byk;1/bv0

2 and k
;1/2v0. The functionsC(t) and E(t) are, on the other
hand, of the form

f ~ t !5
g

pE0

vc
dv v coth~bv/2! f v~ t !, ~B4!

where f v(t) has, respectively, to be replaced by

Cv~ t !5
1

sin2nt
E

0

t

dt8E
0

t

dt9sinn~ t2t8!cosv~ t82t9!

3sinn~ t2t9!exp@g~ t81t9!#

1
4gv2

~v0
22v2!214g2v2

1

sinntE0

t

dt8cosvt8

3sinn~ t2t8!exp@gt8#

2
2v~v22v0

2!

~v0
22v2!214g2v2

1

sinntE0

t

dt8sinvt8

3sinn~ t2t8!exp@gt8#1
v2

~v0
22v2!214g2v2

,

~B5!

Ev~ t !5
2

sinnt

1

~v0
22v2!214g2v2E0

t

dt8sinn~ t2t8!

3exp@gt8#@~v0
22v2!cosvt822gv sinvt8#.

~B6!
02210
APPENDIX C

The aim of this appendix is to sketch the evaluation of
function C̃(t)5sin2nt C(t) @the contributions coming from
the functionE(t) are of higher order and can therefore
neglected in the limit considered in the paper#. We begin by
computing the first double integral in Eq.~B5!. Introducing
the new variablesu5(t81t9)/2 andv5t82t9, we have

av~ t !5E
0

t

dt8E
0

t

dt9sinn~ t2t8!sinn~ t2t9!cosv~ t82t9!

3exp@g~ t81t9!#

5E
0

t

duE
0

t

dvsinn~ t2u2v/2!

3sinn~ t2u1v/2!exp@2gu#cosvv. ~C1!

The integral overu is readily obtained as

E
0

t

du sinn~ t2u2v/2!sinn~ t2u1v/2!e2gu

5
1

4 F ~e2gt21!cosnv
g

1
g cos 2nt2n sin 2nt2ge22gt

g21n2 G ,

~C2!

while the integral overv can be calculated using

E
0

`

dv v coth~bv/2!cosvv.2TE
0

`

dv cosvv52pT d~v !

~C3!

at high temperature, and

E
0

`

dv v coth~bv/2!cosvv.E
0

`

dv v cosvv52
1

v2

~C4!

at low temperature~the latter should be interpreted as a pri
cipal value@25#!. Furthermore, by using the following two
expressions:
E
0

t

dt8cosvt8sinn~ t2t8!egt85
2n~v0

22v2!cosnt2g~v0
21v2!sinnt1negt@~v0

22v2!cosvt12gv sinvt#

~v0
22v2!214g2v2

, ~C5!

E
0

t

dt8sinvt8sinn~ t2t8!egt85
2gn cosnt1v~g22n21v2!sinnt1gegt@22gv cosvt1~v0

22v2!sinvt#

~v0
22v2!214g2v2

, ~C6!
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we can rewrite the remaining three terms in Eq.~B5! in the
compact form

bv~ t !5
2v sinvt n sinnt exp@gt#2v2sin2nt

~v0
22v2!214g2v2

. ~C7!

Useful identities to calculatebv(t) at high and low tempera
tures are (g→0)

E
0

`

dv
v sinvt

~v0
22v2!214g2v2

.
p

4g
t2

p

24g
v0

2t3,

~C8!

E
0

`

dv
v2

~v0
22v2!214g2v2

.
p

4g
,

-

c

nd
ca

nt

02210
and

E
0

`

dv
v2sinvt

~v0
22v2!214g2v2

.F12ge2 ln v0t2
pg

4v0
1

pv0

4g G t. ~C9!

The functionC̃(t) is eventually given by

C̃~ t !5
g

pE0

vc
dv v coth~bv/2!@av~ t !1bv~ t !#. ~C10!
int

s

@1# A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, and I.V. Misha
kov, Nucl. Phys. B551, 374 ~1999!.

@2# Quantum Theory and Measurement, edited by J. Wheeler and
W. Zurek ~Princeton University Press, Princeton, NJ, 1983!.

@3# A. Galindo and M.A. Martı´n-Delgado, Rev. Mod. Phys.74,
347 ~2002!.

@4# M. Bruneet al., Phys. Rev. Lett.77, 4887~1996!.
@5# C.J. Myattet al., Nature~London! 403, 269 ~2000!.
@6# M. Mei and M. Weitz, Phys. Rev. Lett.86, 559 ~2000!.
@7# P. Mohanty, inComplexity from Microscopic to Macroscopi

Scales: Coherence and Large Deviations, edited by A.T. Skjel-
torp and T. Vicsek~Kluwer, Dordrecht, 2001!.

@8# W.H. Zurek, Phys. Rev. D24, 1516~1981!; 26, 1862~1982!;
Phys. Today44~10!, 36 ~1991!.

@9# D. Giulini, E. Joos, K. Kiefer, J. Kupsch, I.O. Stamatescu, a
H.D. Zeh, Decoherence and the Appearance of a Classi
World in Quantum Theory~Springer, Berlin, 1996!.

@10# G.W. Ford and R.F. O’Connell, Phys. Lett. A286, 87 ~2001!.
@11# G.W. Ford, J.T. Lewis, and R.F. O’Connell, Phys. Rev. A64,

032101~2001!.
@12# D. Braun, F. Haake, and W.T. Strunz, Phys. Rev. Lett.86, 2913

~2001!.
@13# W.T. Strunz, F. Haake, and D. Braun, e-pri
l

quant-ph/0204129; W.T. Strunz and F. Haake, e-pr
quant-ph/0205108.

@14# V. Privman, Mod. Phys. Lett. B16, 459 ~2002!.
@15# J.P. Paz and W.H. Zurek, inProceeding of the Les Houche

Summer School, Session 72, Coherent Atomic Waves, edited by
R. Kaiser, C. Westbrook, and F. David~Springer, Berlin,
1999!, p. 533.

@16# L.D. Romero and J.P. Paz, Phys. Rev. A55, 4070~1997!.
@17# R.P. Feynman and F.L. Vernon, Ann. Phys.~N.Y.! 24, 118

~1963!.
@18# A.O. Caldeira and A.J. Leggett, Phys. Rev. A31, 1059~1985!.
@19# V. Hakim and V. Ambegaokar, Phys. Rev. A32, 423 ~1985!.
@20# C. Morais Smith and A.O. Caldeira, Phys. Rev. A36, 3509

~1987!.
@21# C. Morais Smith and A.O. Caldeira, Phys. Rev. A41, 3103

~1990!.
@22# H. Grabert, P. Schramm, and G.L. Ingold, Phys. Rep.168, 115

~1988!.
@23# G.W. Ford and R.F. O’Connell, Phys. Rev. D64, 105020

~2001!.
@24# F. Marquardt, e-print cond-mat/0207692.
@25# A. Papoulis, The Fourier Integral and its Applications

~McGraw-Hill, New York, 1962!.
9-7


