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Entwined paths, difference equations, and the Dirac equation
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Entwined space-time paths are bound pairs of trajectories which are traversed in opposite directions with
respect to macroscopic time. In this paper, we show that ensembles of entwined paths on a discrete space-time
lattice are simply described by coupled difference equations which are discrete versions of the Dirac equation.
There is no analytic continuation, explicit or forced, involved in this description. The entwined paths are
‘‘self-quantizing.’’ We also show that simple classical stochastic processes that generate the difference equa-
tions as ensemble averages are stable numerically and converge at a rate governed by the details of the
stochastic process. This result establishes the Dirac equation in one dimension as a phenomenological equation
describing an underlying classical stochastic process, in the same sense that the diffusion and telegraph
equations are phenomenological descriptions of stochastic processes.
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I. INTRODUCTION

This paper is the first of a series of papers exploring
consequences of a recent discovery. The new result is tha
Feynman chessboard model of the Dirac propagator ca
transplanted into classical statistical mechanics, bypas
formal analytic continuation~FAC! completely@1#. The new
feature allowing this is the use of entwined space-time pa
which are essentially self-quantizing. These will be discus
shortly, but first we clarify what is meant by the phra
‘‘transplanted into classical statistical mechanics.’’

One usually arrives at quantum mechanics through on
two routes. The most common approach is to analytica
continue fromR to C explicitly by imposing operator rela
tions @e.g., p→2 i\(]/]x),E→ i\(]/]t)]. Another alterna-
tive is to force a FAC by imposing physical conditions th
cannot be met within the original space~e.g., requiring dif-
fusion to be reversible! @2–6#. Both of these procedures ex
tend classical physics to a suitably enlarged regime~i.e., Hil-
bert space!. However, the resultant wave functions a
formal objects with no direct interpretation.

We avoid these routes entirely. In our approach, the co
ponents of wave functions are classical ensemble aver
obtainable by simple counting processes. It is the spa
temporal geometry of entwined paths that gives rise to
properties described by the standard quantum-mecha
complex wave equations. The relevant algebraic properti 2

521 appears explicitly through the geometry of entwin
paths. It is because the equivalent of this algebraic struc
~expressed, as we shall later see, by an anti-Hermitian op
tor! is built into the geometry of the space-time paths the
selves that we never need to introduce it artificially throug
FAC. This is the main feature of our results and we w
return to the relation between geometry and algebra in
discussion at the end of the paper.

By avoiding the FAC generally used to quantize a syste
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entwined paths provide the Dirac equation with a new c
text that is conceptually very different from its context
quantum mechanics. In quantum theory, the Dirac equatio
a ‘‘fundamental’’ equation. Wave-function solutions a
thought to contain ‘‘all the information about the state of
system,’’ and the Dirac equation describes the evolution
the wave function.

In the context described in this paper, the Dirac equat
is not a fundamental equation at all. Rather it is a pheno
enological equation that describes ensemble averages
classical charge density arising from entwined paths. Jus
the diffusion equation is a phenomenological equation
scribing a density of random paths~Brownian motion!, so
the Dirac equation describes net densities of entwined pa
where the time-reversed portions of paths add the new qu
tative features of interference and reversibility. Because th
is a specific underlying stochastic model involved, wav
function solutions do not contain all the information abo
the state of a system, they are simply ensemble average
the background stochastic process. In the new context,
stochastic process itself is the fundamental object. T
means that there is an identifiable underlying stochastic p
cess involved in theformationof wave functions.

In contrast, quantum mechanics has nothing to say ab
the process of wave-function formation, since there,
wave function is just part of an algorithm. Probability on
enters quantum mechanics through the measurement p
lates, not through unitary evolution~Fig. 1!. Thus, in quan-
tum mechanics we postulate that the modulus squared o
wave function represents a probability density. That the p
tulate is correct is well verified experimentally, but remains
feature which does not follow from unitary evolution itse
On the other hand, entwined paths support unitary evolu
of an ensemble average which itself has an underlying
chastic process that, as we shall see, is amenable to d
simulation. In the future we shall be able to ask ‘‘does t
underlying stochastic process also mimic the measurem
postulates through the stochastic formation of the wave fu
tion?’’ If the answer is yes, then the stochastic process we
proposing for the Dirac equation may have a deeper conn

ca
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G. N. ORD AND R. B. MANN PHYSICAL REVIEW A67, 022105 ~2003!
tion to quantum mechanics. If not, the two contexts for
Dirac equation will remain distinct.

II. ENTWINED PATHS

We shall be working in a two-dimensional discrete spa
(z,t) with lattice spacingsd and e, respectively. Although
we shall eventually think oft as time, it is convenient at thi
point to think oft as a spatial coordinate. Entwined paths c
be generated in two different ways, both ways being imp
tant in understanding the resulting phenomenology. We s
employ two walkers, Eve and Max, who will generate a
color random walks, using the two different methods. Ev
method is explicitly ergodic in the sense that she will gen
ate the full ensemble of entwined paths in a serial fash
after a sufficiently long time. Max will not use an explicitl
ergodic process. He will, however, generate an ensembl
paths using a Markovian process which generates path
parallel, many at a time. At each step, Max’s behavior w
depend only on his current state. Both walkers generate
color their paths through (z,t) based on calls to a random
processR which generates a string of letters, with the dist
bution

R5H U with probability 12aDt,

M with probability aDt.
~1!

We can think ofM as standing for marked andU standing for
unmarked, with the whole string of symbols a sequential
or tapeT.

FIG. 1. In conventional interpretations of quantum mechan
we pass from classical physics~upper box! to the Schro¨dinger or
Dirac equation~rounded box! through a formal analytic continua
tion ~FAC!. This brings wave features into the classical parti
paradigm as wave functions propagate unitarily. Measurement
tulates are then used to interpret wave-function solutions in term
macroscopic measurements. This paper discusses an altern
route to the Dirac equation from classical statistical mechanics
ing ‘‘entwined paths’’~lower left!. This route does not require
FAC since the geometry of the paths automatically builds in
relevant wave behavior. Furthermore, in the new context, the D
equation appears as a phenomenology for the underlying stoch
process. Further examination of the stochastic process is requir
see if the measurement postulates can also be supported in the
context.
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Eve’s instructions for coloring her path through the latti
are as follows. Eve starts at the origin and her first step i
the lattice site (d,e). At the next step she consults the ra
dom process. If aU is the first letter on the tape, she mai
tains her direction and steps to (2d,2e). If she gets anM, she
changes her direction inz and steps to (0,2e). Again she
consults the tape. If she gets aU, she maintains her direction
and takes another step. If she gets her secondM, she drops a
‘‘marker’’ at the site but steps forward maintaining her dire
tion. This process is repeated, alternately changing direc
and dropping markers whenever the random process i
cates a mark. Eve colors her path blue as she goes. With
step she advances one lattice spacing int until the first time
she is called to drop a marker after a set return ‘‘time’’tR .
This marker will be the last symbol on the tape that descri
this particular path. At this marker, Eve maintains her dire
tion in z but steps back one unit int and switches to the colo
red @Fig. 2~a!#. Eve now makes her way back to the orig
down the ‘‘light-cone’’ paths@paths with slopes of unit mag
nitude in the (z,t) plane# which intersect all of the markers
coloring the path red as she goes@Fig. 2~b!#. On her return
path, Eve does not need to consult a tape since her tra
markers uniquely defines her return path.

There are several things of interest about the entwi
path generated by Eve’s walk. The first thing to notice is t
the distribution of distances between the corners in the p
and neighboring markers/crossing points is identical to
distribution of steps between the marks on the tape. Furt
more, because Eve returns to the origin at the end of
return journey, we see that her walk is ergodic. She can co
all such paths simply by repeating the process enough tim
covering all possible distributions of marks on the tapes w
the appropriate frequency from the random process. Thus
time-average contribution from Eve, in the limit of larg
time, is the same as the ensemble average, for when Eve
returned to the origin afterN circuits to tR and back, we
cannot distinguish the pattern of the space-time path fr
that of N Eves each traversing the lattice once.

We also note that an entwined pair generated by Eve
be viewed as two osculating paths which start at the ori
moving in opposite directions and finally merge where E
changes directions int. We call these two paths the left an
right envelopes of the pair.

The envelopes themselves have simple properties. T
always have opposite coloring. They both change color
every second corner of the envelope. The distribution
lengths between corners is the same for both envelopes
is the same as the distribution of waiting times between
marks on the tape.

The simple properties of the envelopes allow Max, o
second walker, to traverse and color the paths in a differ
way. Max will not actually step between each neighbori
lattice site as did Eve. We imagine Max to have long ar
and he will paint entwined paths as pairs, painting one en
lope with each hand. Max uses the same tapes as Eve b
will interpret them in a different way.

Max reads the tape out to the end of the second mark
say, t2. He notes the position of the two marks on the ta
and walks to the position where the envelopes touch at
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ENTWINED PATHS, DIFFERENCE EQUATIONS, AND . . . PHYSICAL REVIEW A67, 022105 ~2003!
FIG. 2. Forming entwined paths in space-time.z is horizontal,t is vertical.~a! Eve travels at constant speed but occasionally reve
direction in response to a stochastic process. At every other indication from the stochastic process, a marker is dropped instead of
change~disks in the figure!. Eve paints her path blue~thick line in figure! as she goes.~b! After some specified timetR (tR5700), Eve stops
at the next marker. She then reverses her direction in time but not in space. She changes from blue to red~thin line in figure! and follows
the ‘‘light-cone’’ paths through the markers back to the origin.~c! The entwined path formed in~b! can be regarded as two osculating pat
which we call envelopes. These are separated for clarity. Max paints these envelopes with a simple rule specifying a change of colo
second corner, with opposite colors on the envelopes.
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second mark. As he does this, he paints the right enve
path blue with his right hand and the left envelope path
with his left hand. Max needed to see where the first t
marks on the tape were in order to get both corners on
right and left hand in the appropriate places. Att2, Max
interchanges the paintbrushes, reads the tape out to the f
mark, and repeats his double-handed painting. Max con
ues this process until he brings the paint brushes togeth
or beyond the return timetR . At this point, Max picks up his
brushes and returns to the origin without painting the latti
Max can cover the entire ensemble of paths by repeating
process a large number of times, however, since he alw
returns to the origin without painting, Max’s technique is n
continuously ergodic. Note that Eve always painted where
she moved, including on the return path to the origin. E
can fully paint any of Max’s paths without having to remo
her brushes from the lattice. Note also that a single t
codes for an entwinedpair for both Eve and Max. Eve
traverses the pair in a forward and reversed path@Fig. 2~a!#;
Max ‘‘traverses’’ the pair by painting the two envelopes
parallel.

Although Max’s technique is not ergodic, it can be ma
Markovian. That is, if we allow Max enough arms, and t
ability to paint many pairs in parallel, he can paint the ent
ensemble of paths in a single pass from the origin totR ,
without ever requiring information beyond the current sy
bols on an ensemble of tapes, and the current state of
‘‘arm.’’ Thus, he paints at stepn according to his state at th
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previous step. He never has to reverse his direction int, and
he never has to read more than one symbol per envelope
at a time. He does not need to read out to the second mar
each tape before he starts painting.

To see how he does this, suppose that Max takes on
Eve’s tapes,Tp say, and regards it as instructions for his rig
hand only. He interprets it in the following way. Each ma
will now correspond to a direction change and every ot
mark will also be interpreted as a color change, so he o
needs to read the tape one symbol at a time. Although
interpretation of the tape by Max will not generate the sa
right envelope for him as it would for Eve, the difference
a simple, unique permutation of the symbols on the ta
That is, Max’s right envelope forTp will correspond to Eve’s
right envelope for another unique tapeTp8 and vice versa. If
Max is going to paint all distinct tapes in the ensemble
multaneously, he can use his new interpretation of Ev
tapes to do this, since the mapping betweenTp and Tp8 is
invertible. Thus, although Eve’s traversal of entwined pa
is not Markovian, the ensemble average generated by
traversing the full ensembleis Markovian, and we may write
a difference equation for it just by noting how Max interpre
and paints trajectories. This is true for both envelopes.

Now we have been thinking oft as a spatial coordinate
but since Max can generate the ensemble of paths via a M
kov process which just steps forward int, we can think oft
as a macroscopic time. In this case, the red/blue coloring
Eve’s path, which indicated the direction int of the traversal,
5-3
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G. N. ORD AND R. B. MANN PHYSICAL REVIEW A67, 022105 ~2003!
now indicates particle-antiparticle status. For example, b
indicates particle and red indicates antiparticle. If we ass
ate a plus 1 with blue we have to associate a minus 1 w
red. This number associated with color we shall call char
but it is not to be confused with electromagnetic charge. O
charge is a classical concept which is associated with
~discrete! continuity of the trajectory. Since our entwine
pairs all return to the origin, we see them as either pairs
points at fixedt, or as two points superimposed, or no poin
at all at fixed t. Particle number is not conserved int but
charge is, if we allow particle and antiparticle oppos
charge.

How does charge behave in ensembles of entwined pa
This is easy to calculate if we consider ensembles of path
their envelopes, generated by Max’s Markovian method.

Consider the left envelope path in Fig. 1~c!. Note that the
rule for its generation is very simple. Starting at the orig
the particle proceeds in the2z direction until a mark on the
tape indicates a direction change. At the first~right! turn, the
particle just changes direction but not color. At the seco
~left! turn, the path also changes color, and the cha
changes sign. This process is repeated. Each right co
maintains the color, and each left turn changes the color
the sign of the charge. The reader familiar with the Feynm
chessboard model will recognize this rule as a version
Feynman’s corner rule@7,8#. In this context, the rule is dic
tated by the geometry of entwined paths. Left turns in the
envelope are actually crossing points of the partic
antiparticle pair, and the origin of the sign change
physical.

If we now letfn
1(z) be the ensemble charge density fro

left envelope links parallel to the left light cone at stepn and
fn

2(z) be the ensemble charge density from left envelo
links parallel to the right light cone, we can write

fn
1~z!5~12aDt !fn21

1 ~z1cDt !2aDtfn21
2 ~z2cDt !,

fn
2~z!5~12aDt !fn21

2 ~z2cDt !1aDtfn21
1 ~z1cDt !.

~2!

That is, regarding Fig. 3, most paths maintain their direct
and color as they pass through a lattice site. The propor
which does this is (12aDt). However, a proportionaDt
changes direction at the site. When they scatter from
right light cone they change charge on scattering, so t
decreasethe net charge in the new direction in proportion
the density in the old direction. However, when they sca
from the left light cone they maintain their charge on sc
tering, so theyincreasethe net charge in the new direction
proportion to the density in the old direction.

The right envelope is similar, except here it is the rig
turns which change charge. If we letfn

3(z) andfn
4(z) be the

right envelope charges parallel to, respectively, left lig
cones and right light cones, we have

fn
3~z!5~12aDt !fn21

3 ~z1cDt !1aDtfn21
4 ~z2cDt !,

fn
4~z!5~12aDt !fn21

4 ~z2cDt !2aDtfn21
3 ~z1cDt !.

~3!
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Note that the change in signs of the scattering terms in
above equations are a direct result of the geometry of
twined pairs. It is Eve’s insistence on entwining forward a
reversed paths that allows Max to use his simple color
rule of a change in color after every second corner. This r
in turn forces the ensemble to alternate the signs of the s
tering terms, since it is a detailed feature of every path in
ensemble.

Equations~2! and ~3! constitute a set of coupled differ
ence equations in the four densitiesf12f4. Although their
derivation is straightforward, their consequences as a
scription of a classical ergodic stochastic process are po
tially far-reaching, since these are representations of the
crete Dirac equation. This will be demonstrated in Sec.
Furthermore, the above arguments discuss only ensemble
erages. It is possible that the above equations are correc
the ensemble average, but that the underlying stochastic
cess gives rise to such large fluctuations that the ensem
average survives only in the event of a uniformly cover
ensemble. In this case, normal stochastic fluctuations wo
swamp the signal and the system would not exhibit the ab
equations except under the rare circumstance of an alm
perfectly uniform coverage of the ensemble. In other wor
if we watch Eve sequentially follow a large number of ra
domly chosen tapes, adding and subtracting her contribut
to the sample average, would this sample averagef̃ con-
verge to the ensemble average predicted in Eqs.~2! and~3!?
In the following section, we test this question by stochas
simulation of Eve’s generation of entwined paths.

III. NUMERICAL CHECKS

In the preceding section, we discussed entwined pa
from the perspective of two walkers, Eve and Max. E
draws a single entwined path by traversing a pair throug
forward passage followed by the entwined reverse pass
Since she returns to the origin after each pair traversal,

FIG. 3. Left envelope scattering. Most paths do not scatter,
those that do behave differently depending on which direction t
are coming from. Paths scattering from right-moving to left-movi
change color~charge! when they scatter~leftmost path in figure!.
Paths scattering from left-moving to right-moving do not chan
color when they scatter~rightmost path in figure!.
5-4
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ENTWINED PATHS, DIFFERENCE EQUATIONS, AND . . . PHYSICAL REVIEW A67, 022105 ~2003!
can sequentially cover all members of the ensemble of pa
Each time she traverses the lattice, she records her pas
by adding and subtracting 1’s as appropriate to the direc
she is moving int to her record of path visits. She thu
creates a space-time field which we shall denote byf̃. For
example, before she starts, all thef̃ are 0 for allz with t
.0. At her first step she arrives at (d,e) and adds a 1 to
f̃4(d,e). If her tape gives her aU at this point, her second
step is to (2d,2e) where she will add a 1 tof̃4(2d,2e). If
she receives anM at the second step she would instead mo
to (0,2e) where she would add a 1 tof̃3(0,2e). She repeats
this process until the return time where she traverses
return path, adding21’s to the appropriatef̃ on the way. If
Eve were to perform this task so as to cover all distinct pa
exactly once, the arguments of the previous section im
that thef̃ will satisfy the difference equations~2! and ~3!
exactly, since these difference equations represent the
semble averages that Max would generate if he painted
g
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the paths simultaneously with his Markovian algorithm. A
Eve sequentially paints path after path, a question that ne
testing is whether the difference equations~2! and~3! emerge

as approximate descriptions of the sample averagesf̃ gen-
erated by Eve. With no extra controls over the stocha
process, the probabilitiesa5aDt and b512a as actual
frequencies will necessarily fluctuate over the sample. I
important to check that the fluctuations do not destroy
signal, and that Eve’s sequentially generated sample d
approximately satisfy the difference equations. To check

we note that on the lattice thef̃ i at any time step are vector

indexed by the value ofz. At time stepm each vectorf̃ has
roughly m11 nonzero elements. Ifuu.uu is the Euclidean
norm, we can then test the relative measure of error in e
separate difference equation in Eqs.~2! and~3! for a sample
average generated by Eve.For example, to test Eq.~2! for a
sample averagef̃1 we consider the errorEn

1 after Eve has
traversed the latticen times,
En
15

uuf̃n
1~z!2@~12aDt !f̃n21

1 ~z2cDt !2aDtf̃n21
2 ~z2cDt !#uu

uuf̃n
1~z!uu

. ~4!
h
e
r to

he
e

larger

on-
Analogous expressions apply for the other sample avera
Here a is the ensemble parameter, not the sample approxi

mation. If we were to replace thef̃ in Eq. ~4! by the en-
semble averagef, we would get zero. However,E1

1.0
since, after only one traversal, the ensemble averages ca
be met, there being only a single entwined path through
lattice. If, however, limn→`En

150, then the stochastic pro
cess is stable and the ensemble average description is a
approximation of the process for largen.

Figure 4 showsEn
4 for various values of the sample sizen

plotted on a log-log scale. The three groups of points rep
sent three values oft. As t increases, the range ofz increases
and the relative coverage by the sample paths decrease
sulting in a larger error. If Eve randomly chooses at ea
lattice site whether or not to scatter, we would expect
convergence to have the usual 1/An dependence characteri
tic of random sampling without replacement. This wou
yield a very slow rate of convergence. This does indeed h
pen, so we have modified the underlying stochastic proc
to a form of sampling without replacement. In our approa
when Eve has to make a decision at a lattice site, she ch
her previous decisions and chooses to scatter or not sc
based on her local scattering probability, making the cho
that causes this probability to come closer to the ensem
average if this is possible, choosing randomly if not. T
improves the convergence so that it is asymptotically 1n.
The other three errorsEn

1 ,En
2 ,En

3 show the same conver
gence characteristics. Note that the sampling technique
speeds up the convergence. It does not affect the limit it
since it does not alter the ensemble average for the proba
es.

not
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ter
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ties a andb. Random sampling with replacement in whic
the ‘‘local’’ probability is not consulted and each call to th
random process is independent gives rise to figures simila

FIG. 4. A numerical test of Eq.~3! using Eq.~4!. The numerical
error is plotted vs the number of entwined paths in the run. T
upper sequence is attR , which is 16 time steps for this run. Th
solid line is a reference line which decreases as 1/n, suggesting that
for this stochastic process the error goes down as 1/n. The middle
sequence is att58 and the lowest sequence is att52. As t in-
creases, the error increases since the configuration space is

and thef̃ i less well covered by the sample. The tendency to c
verge as 1/n appears to hold for allt.
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FIG. 5. Entwined paths draw the Dirac propagator. Pictured are contour plots off̃3 for, respectively, 103, 105, and 107 entwined paths.
In the simulation, the return time is 24 lattice steps and the probability of scattering isaDt51/2. ~c! is visually indistinguishable from the
ensemble average solution obtained by solving Eq.~3! exactly. The sawtooth appearance of the light cone is an artifact of the lattice us
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Fig. 4 except the slope of the trend lines is less, correspo
ing to 1/An convergence.

Figure 5 shows a contour plot off 3̃ as Eve continues to
traverse entwined paths. At the resolution of the figure, p
~c! is indistinguishable from the exact solution of Eqs.~3!
with the source at the origin. That is, Eve’s formation of t
component of the propagator pictured in Fig. 5~c! is indistin-
guishable from Max’s formation of the ensemble avera
using his Markovian technique. The other components
similar. Interestingly, whereas Max ‘‘draws’’ Fig. 5~c! se-
quentially fromt50 to t5tR , one step at a time, coloring a
paths in parallel and evolving the ‘‘picture’’ in a form o
unitary evolution, Eve assembles the picture as a projec
from a larger space. If we think of Eve as having her mo
ment in the (z,t) plane parametrized by some variables, then
the sequence of pictures in Fig. 5 represents a projectio
Eve’s history onto the (z,t) plane withs increasing from~a!
to ~c!. Projection has been used before to bypass FAC@9#.

These numerical results confirm the fact that the diff
ence equations~2! and~3! have an underlying stochastic pro
cess and are phenomenological equations for entwined p
In the next section, we show that the difference equati
describing the ensemble averages are discrete versions o
Dirac equation.

IV. COMPARISON WITH DIRAC

By expanding Eqs.~2! and ~3! to first order, we can ap
proximate the difference equations by a set of coup
PDE’s. The resulting equations are

]f1

]t
5c

]f1

]z
2af12af2,

]f2

]t
52c

]f2

]z
2af21af1,
02210
d-

rt

e
re

n
-

of

-

irs.
s
the

d

]f3

]t
5c

]f3

]z
2af31af4,

]f4

]t
52c

]f4

]z
2af42af3. ~5!

Removing the exponential decay by writingum(z,t)
5eatfm(z,t), the above becomes

]u1

]t
5c

]u1

]z
2au2,

]u2

]t
52c

]u2

]z
1au1,

]u3

]t
5c

]u3

]z
1au4,

]u4

]t
52c

]u4

]z
2au3. ~6!

The above is a representation of the Dirac equation in wh
all the densitiesu are real. This may be seen by writing th
equation in matrix form. If we writepz52 i (]/]z), setting
c51 anda5m with az52( 0

sz
sz

0 ), b5( 0
sy

2sy

0 ), we have

i
]u

]t
5~azpz1bm!u, ~7!

where thes are the Pauli matrices. Note thata andb anti-
commute as required, and the relativistic energy-momen
relations are obeyed if we associate the usual meanings
E andp. It is important to note that the rewrite of Eqs.~6! in
~7! is only cosmetic. The use ofp and i is for convention
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only; theu are still real densities, the limit of ensemble a
erages. They are not the formal objects of conventional qu
tum mechanics.

V. DISCUSSION

The Dirac equation is usually produced along the lines
Dirac’s original argument. The start of the argument is
nonical quantizationp→2 i\(]/]x),E→ i\(]/]t). From
there, Dirac leads us through the construction of his alge
to satisfy the requirements of the relativistic energ
momentum relations. From the perspective of the ab
work, the formal step in Dirac’s argument is the first one,
FAC.

Entwined paths are essentially self-quantizing, as can
seen by the form of Eq.~7!. If m is set equal to zero in Eq
~7!, the resulting equation is just two two-component form
of the wave equation which are appropriate for classical p
ticles that stay on their initial light cones. It is themb term
that both describes scattering and brings in the interfere
effects characteristic of the Dirac equation. An inspection
the b matrix shows that its Hermitian character arises
cause of the factor ofi absorbed into it in the rewrite from
Eq. ~6!. The predecessor ofb in Eq. ~6! is anti-Hermitian
and it is this feature that ultimately results in interferen
effects. On the other hand, the anti-Hermitian form ari
directly from the entwined geometry of the paths. It is f
this reason that entwined paths make the canonical quan
tion step
,

y

a

02210
n-

f
-

ra
-
e

e

e

s
r-

ce
f
-

s

a-

from classical physics unnecessary. The space-time geom
of entwined paths automatically builds in the relevant ph
ics. To see this, note that it is the regular crossing of
entwined paths that produces the alternating signs of
scattering terms in Eqs.~2! and ~3!, and ultimately theb
matrix in Eq.~7! .

The existence of an underlying stochastic model for
Dirac equation, as demonstrated in this paper, allows us
opportunity to consider the Dirac equation as a phenome
logical equation describing the evolution of a particle mo
ing on an entwined path in space-time. We now have a
chastic basis for the ‘‘U process’’ of quantum mechanic
~that process by which a wave function unitarily evolves!, to
use Penrose’s terminology@10,11#, at least in the special cas
of a free particle in one dimension. We hope exploration
the stochastic model will help to clarify further the relatio
ships between classical and quantum physics, and pos
shed some light on the process by which wave functio
‘‘collapse’’ as a consequence of a measurement~the ‘‘R’’
process!.
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