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Entwined paths, difference equations, and the Dirac equation
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Entwined space-time paths are bound pairs of trajectories which are traversed in opposite directions with
respect to macroscopic time. In this paper, we show that ensembles of entwined paths on a discrete space-time
lattice are simply described by coupled difference equations which are discrete versions of the Dirac equation.
There is no analytic continuation, explicit or forced, involved in this description. The entwined paths are
“self-quantizing.” We also show that simple classical stochastic processes that generate the difference equa-
tions as ensemble averages are stable numerically and converge at a rate governed by the details of the
stochastic process. This result establishes the Dirac equation in one dimension as a phenomenological equation
describing an underlying classical stochastic process, in the same sense that the diffusion and telegraph
equations are phenomenological descriptions of stochastic processes.
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[. INTRODUCTION entwined paths provide the Dirac equation with a new con-
text that is conceptually very different from its context in
This paper is the first of a series of papers exploring theguantum mechanics. In quantum theory, the Dirac equation is
consequences of a recent discovery. The new result is that tlee “fundamental” equation. Wave-function solutions are
Feynman chessboard model of the Dirac propagator can kiought to contain “all the information about the state of a
transplanted into classical statistical mechanics, bypassingystem,” and the Dirac equation describes the evolution of
formal analytic continuatiofFAC) completely[1]. The new  the wave function.
feature allowing this is the use of entwined space-time paths |n the context described in this paper, the Dirac equation
which are essentially self-quantizing. These will be discusseg not a fundamental equation at all. Rather it is a phenom-
shortly, but first we clarify what is meant by the phraseenological equation that describes ensemble averages of a
“transplanted into classical statistical mechanics.” classical charge density arising from entwined paths. Just as
One usually arrives at quantum mechanics through one ahe diffusion equation is a phenomenological equation de-
two routes. The most common approach is to analyticallyscribing a density of random pattiBrownian motion, so
continue fromR to C explicitly by imposing operator rela- the Dirac equation describes net densities of entwined paths,
tions[e.g., p— —i#(d/9x),E—ih(dldt)]. Another alterna- where the time-reversed portions of paths add the new quali-
tive is to force a FAC by imposing physical conditions that tative features of interference and reversibility. Because there
cannot be met within the original spate.g., requiring dif- is a specific underlying stochastic model involved, wave-
fusion to be reversible2—-6]. Both of these procedures ex- function solutions do not contain all the information about

tend classical physics to a suitably enlarged regdinee, Hil-  the state of a system, they are simply ensemble averages of
bert spack However, the resultant wave functions arethe background stochastic process. In the new context, the
formal objects with no direct interpretation. stochastic process itself is the fundamental object. This

We avoid these routes entirely. In our approach, the commeans that there is an identifiable underlying stochastic pro-
ponents of wave functions are classical ensemble averagegss involved in théormationof wave functions.
obtainable by simple counting processes. It is the spatio- In contrast, quantum mechanics has nothing to say about
temporal geometry of entwined paths that gives rise to thehe process of wave-function formation, since there, the
properties described by the standard quantum-mechanic@lave function is just part of an algorithm. Probability only
complex wave equations. The relevant algebraic progérty enters quantum mechanics through the measurement postu-
=—1 appears explicitly through the geometry of entwinedlates, not through unitary evolutidffrig. 1). Thus, in quan-
paths. It is because the equivalent of this algebraic structureim mechanics we postulate that the modulus squared of the
(expressed, as we shall later see, by an anti-Hermitian operarave function represents a probability density. That the pos-
tor) is built into the geometry of the space-time paths them+ulate is correct is well verified experimentally, but remains a
selves that we never need to introduce it artificially through &eature which does not follow from unitary evolution itself.
FAC. This is the main feature of our results and we will On the other hand, entwined paths support unitary evolution
return to the relation between geometry and algebra in thef an ensemble average which itself has an underlying sto-
discussion at the end of the paper. chastic process that, as we shall see, is amenable to direct
By avoiding the FAC generally used to quantize a systemsimulation. In the future we shall be able to ask “does the
underlying stochastic process also mimic the measurement
postulates through the stochastic formation of the wave func-
*Corresponding author. Electronic address: gord@acs.ryerson.ction?” If the answer is yes, then the stochastic process we are
"Electronic address: mann@avatar.uwaterloo.c proposing for the Dirac equation may have a deeper connec-
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Eve’s instructions for coloring her path through the lattice
are as follows. Eve starts at the origin and her first step is to
the lattice site §,€). At the next step she consults the ran-
dom process. If &) is the first letter on the tape, she main-

Classical Physics

p— —ihV Measurement tains her direction and steps tod2¢). If she gets aiM, she
FAC{ E - inf Postulates changes her direction im and steps to (04). Again she
consults the tape. If she getdJashe maintains her direction
Schrédinger/Dirac and takes another step. If she gets her seddnshe drops a
(Unitary Propagation) 27 “marker” at the site but steps forward maintaining her direc-

tion. This process is repeated, alternately changing direction
and dropping markers whenever the random process indi-
cates a mark. Eve colors her path blue as she goes. With each
step she advances one lattice spacinguntil the first time

she is called to drop a marker after a set return “tintg”

FIG. 1. In conventional interpretations of quantum mechanics,ThiS marker will be the last symbol on the tape that describes

we pass from classical physi¢spper box to the Schidinger or t_hls _partlcular path. At this ma_rker, Eve r_namtams her direc-
Dirac equation(rounded box through a formal analytic continua- 10N in zbut steps back one unit irand switches to the color
tion (FAC). This brings wave features into the classical particle€d [Fig. 2@]. Eve now makes her way back to the origin
paradigm as wave functions propagate unitarily. Measurement poglown the “light-cone” pathgpaths with slopes of unit mag-
tulates are then used to interpret wave-function solutions in terms ofitude in the g,t) plang which intersect all of the markers,
macroscopic measurements. This paper discusses an alternativeloring the path red as she gdésg. 2(b)]. On her return
route to the Dirac equation from classical statistical mechanics uspath, Eve does not need to consult a tape since her trail of
ing “entwined paths”(lower left). This route does not require a markers uniquely defines her return path.

FAC since the geometry of the paths automatically builds in the There are several things of interest about the entwined
relevant wave behavior. Furthermore, in the new context, the Dirapath generated by Eve’s walk. The first thing to notice is that
equation appears as a phenomenology for the underlying stochastige distribution of distances between the corners in the path
process. Further examination of the stochastic process is required #hd neighboring markers/crossing points is identical to the
see if the measurement postulates can also be supported in the neyétribution of steps between the marks on the tape. Further-
context. more, because Eve returns to the origin at the end of her

tion to quantum mechanics. If not, the two contexts for thereturn journey, we see that her walk is ergodic. She can cover

Dirac equation will remain distinct. all sugh paths sm_1p|y Igy r_epe_atmg the process enough t|mes,
covering all possible distributions of marks on the tapes with

the appropriate frequency from the random process. Thus the
time-average contribution from Eve, in the limit of large
We shall be working in a two-dimensional discrete spacdime, is the same as the ensemble average, for when Eve has
(z,t) with lattice spacingss and e, respectively. Although returned to the origin afteN circuits to tgr and back, we
we shall eventually think of as time, it is convenient at this cannot distinguish the pattern of the space-time path from
point to think oft as a spatial coordinate. Entwined paths carthat of N Eves each traversing the lattice once.
be generated in two different ways, both ways being impor- We also note that an entwined pair generated by Eve can
tant in understanding the resulting phenomenology. We shalfe viewed as two osculating paths which start at the origin
employ two walkers, Eve and Max, who will generate andmoving in opposite directions and finally merge where Eve
color random walks, using the two different methods. Eve'schanges directions ih We call these two paths the left and
method is explicitly ergodic in the sense that she will generight envelopes of the pair.
ate the full ensemble of entwined paths in a serial fashion The envelopes themselves have simple properties. They
after a sufficiently long time. Max will not use an explicitly always have opposite coloring. They both change color at
ergodic process. He will, however, generate an ensemble &very second corner of the envelope. The distribution of
paths using a Markovian process which generates paths ifngths between corners is the same for both envelopes and
parallel, many at a time. At each step, Max’s behavior willis the same as the distribution of waiting times between the
depend only on his current state. Both walkers generate arf#arks on the tape.
color their paths throughz(t) based on calls to a random  The simple properties of the envelopes allow Max, our
processR which generates a string of letters, with the distri- second walker, to traverse and color the paths in a different

Entwined Paths

Classical Statistical Mechanics [

IIl. ENTWINED PATHS

bution way. Max will not actually step between each neighboring
lattice site as did Eve. We imagine Max to have long arms
U with probability 1-aAt, and he will paint entwined paths as pairs, painting one enve-
R= M  with probability aAt. @ lope with each hand. Max uses the same tapes as Eve but he
will interpret them in a different way.
We can think ofM as standing for marked andistanding for Max reads the tape out to the end of the second mark at,
unmarked, with the whole string of symbols a sequential listsay, t,. He notes the position of the two marks on the tape
or tapeT. and walks to the position where the envelopes touch at the
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FIG. 2. Forming entwined paths in space-timaes horizontal,t is vertical.(a) Eve travels at constant speed but occasionally reverses
direction in response to a stochastic process. At every other indication from the stochastic process, a marker is dropped instead of a direction
change(disks in the figurg Eve paints her path blughick line in figure as she goegb) After some specified timg; (tg=700), Eve stops
at the next marker. She then reverses her direction in time but not in space. She changes from bl@hitolieel in figure and follows
the “light-cone” paths through the markers back to the origa).The entwined path formed ifb) can be regarded as two osculating paths
which we call envelopes. These are separated for clarity. Max paints these envelopes with a simple rule specifying a change of color at every
second corner, with opposite colors on the envelopes.

second mark. As he does this, he paints the right envelopgrevious step. He never has to reverse his directian amd
path blue with his right hand and the left envelope path redhe never has to read more than one symbol per envelope path
with his left hand. Max needed to see where the first twoat a time. He does not need to read out to the second mark on
marks on the tape were in order to get both corners on hisach tape before he starts painting.
right and left hand in the appropriate places. tf Max To see how he does this, suppose that Max takes one of
interchanges the paintbrushes, reads the tape out to the fouritve’s tapesT, say, and regards it as instructions for his right
mark, and repeats his double-handed painting. Max continhand only. He interprets it in the following way. Each mark
ues this process until he brings the paint brushes together wiill now correspond to a direction change and every other
or beyond the return timgy . At this point, Max picks up his mark will also be interpreted as a color change, so he only
brushes and returns to the origin without painting the latticeneeds to read the tape one symbol at a time. Although this
Max can cover the entire ensemble of paths by repeating thieterpretation of the tape by Max will not generate the same
process a large number of times, however, since he alwaygght envelope for him as it would for Eve, the difference is
returns to the origin without painting, Max’s technique is nota simple, unique permutation of the symbols on the tape.
continuously ergodic. Note that Eve always painted whereveThat is, Max’s right envelope foF, will correspond to Eve’s
she moved, including on the return path to the origin. Everight envelope for another unique tapg: and vice versa. If
can fully paint any of Max’s paths without having to remove Max is going to paint all distinct tapes in the ensemble si-
her brushes from the lattice. Note also that a single tapenultaneously, he can use his new interpretation of Eve's
codes for an entwinegair for both Eve and Max. Eve tapes to do this, since the mapping betwdgnand T is
traverses the pair in a forward and reversed p&ib. 2(a)]; invertible. Thus, although Eve’s traversal of entwined paths
Max “traverses” the pair by painting the two envelopes inis not Markovian, the ensemble average generated by her
parallel. traversing the full ensembis Markovian, and we may write
Although Max’s technique is not ergodic, it can be madea difference equation for it just by noting how Max interprets
Markovian. That is, if we allow Max enough arms, and theand paints trajectories. This is true for both envelopes.
ability to paint many pairs in parallel, he can paint the entire  Now we have been thinking dfas a spatial coordinate,
ensemble of paths in a single pass from the origintgp  but since Max can generate the ensemble of paths via a Mar-
without ever requiring information beyond the current sym-kov process which just steps forwardtinwe can think oft
bols on an ensemble of tapes, and the current state of eaes a macroscopic time. In this case, the red/blue coloring of
“arm.” Thus, he paints at step according to his state at the Eve’s path, which indicated the directiontiof the traversal,
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now indicates particle-antiparticle status. For example, blue
indicates particle and red indicates antiparticle. If we associ-
ate a plus 1 with blue we have to associate a minus 1 with
red. This number associated with color we shall call charge,
but it is not to be confused with electromagnetic charge. Our
charge is a classical concept which is associated with the
(discrete continuity of the trajectory. Since our entwined
pairs all return to the origin, we see them as either pairs of
points at fixed;, or as two points superimposed, or no points
at all at fixedt. Particle number is not conserved tirbut
charge is, if we allow particle and antiparticle opposite
charge.

How does charge behave in ensembles of entwined pairs?
This is easy to calculate if we consider ensembles of paths by
their envelopes, generated by Max’s Markovian method.

Consider the left envelope path in Figcl Note that the .
rule for its generation is very simple. Starting at the origin, F!C: 3. Left envelope scattering. Most paths do not scatter, but
the particle proceeds in thez direction until a mark on the hose that do behave differently depending on which direction they
tape indicates a direction change. At the firgght) turn, the are coming from. Paths scattering from right-moving tc_) Ieft-movmg
particle just changes direction but not color. At the secon hange COIO'(.Charge when they scatte.ﬂeﬁmOSt. path in figurg
(lef)) turn, the path also changes color, and the Charg%aths scattering from Igft-movmg to rllgh.t—movmg do not change

T . . ’ . olor when they scattdrightmost path in figure
changes sign. This process is repeated. Each right corner

mainFains the color, and each left turn ,C,ha”@!es the color and Note that the change in signs of the scattering terms in the
the sign of the charge. The reader familiar with the Feynman,, /e equations are a direct result of the geometry of en-

chessboard model will recognize this rule as a version ofineq pairs. It is Eve's insistence on entwining forward and

Feynman's corner rulg7,8]. In this context, the rule is dic- o ersed paths that allows Max to use his simple coloring
tated by the geometry of entwined paths. Left tums in the leff 1o ¢ 5 change in color after every second corner. This rule

envelope are actually crossing points of the particles, y,m forces the ensemble to alternate the signs of the scat-

antiparticle pair, and the origin of the sign change iStering terms, since it is a detailed feature of every path in the

physical. . ) ensemble.
If we now let¢,(2) be the ensemble charge density from  gquations(2) and (3) constitute a set of coupled differ-

Ie;t envelope links parallel to the left Iight cone at stepnd  gnce equations in the four densitigd— ¢*. Although their
¢,(2) be the ensemble charge density from left envelopgjerivation is straightforward, their consequences as a de-

links parallel to the right light cone, we can write scription of a classical ergodic stochastic process are poten-

1 1 ) tially far-reaching, since these are representations of the dis-
#n(2)=(1—aAt)¢y_4(z+CcAt) —aAte;,_4(z—cAl), crete Dirac equation. This will be demonstrated in Sec. IV.

5 5 L Furthermo_re, the _above arguments discuss_ only ensemble av-

én(z)=(1-alt) ¢, _,(z—cAt)+aAte, ,(z+CcAt). erages. It is possible that the above equations are correct for

2 the ensemble average, but that the underlying stochastic pro-

cess gives rise to such large fluctuations that the ensemble

That is, regarding Fig. 3, most paths maintain their direction,erage survives only in the event of a uniformly covered
and color as they pass through a lattice site. The proportiognsemple. In this case, normal stochastic fluctuations would
which does this is (+aAt). However, a proportioreAt  gyamp the signal and the system would not exhibit the above
changes direction at the site. When they scatter from thgqations except under the rare circumstance of an almost
right light cone they change charge on scattering, S0 theYe facily uniform coverage of the ensemble. In other words,
decreasehe net charge in the new direction in proportion t0 i \ve watch Eve sequentially follow a large number of ran-

the density in the old direction. However, when they scattefyomiy chosen tapes, adding and subtracting her contributions
from the left light cone they maintain their charge on scat-

tering, so theyncreasethe net charge in the new direction in ;[/c;rth: tzatrr?gfnggr?ﬁ%eévvc\e/?;li thr': d;scétlgjp:ﬁ %’:ﬁg?g)l
proportion to the density in the old direction. 9 ge p :

The right envelope is similar, except here it is the right!sri]ngﬁ?aI%LO\(/)vflnEngZCUZz’eg%;ﬁséftzlr?tv?/#\eesdnogt?s/ stochastic
turns which change charge. If we l¢ﬁ(2) and qbﬁ(z) be the 9 P '

right envelope charges parallel to, respectively, left light

cones and right light cones, we have lll. NUMERICAL CHECKS

In the preceding section, we discussed entwined paths

Pa(2)=(1-aAt)¢;_;(z+CAt) +altey_,(z—CcAb), from the perspective of two walkers, Eve and Max. Eve
draws a single entwined path by traversing a pair through a
¢;‘(z):(1—aAt)¢ﬁ,1(z—cAt)—aAt¢§,l(z+ CAt). forward passage followed by the entwined reverse passage.

©)] Since she returns to the origin after each pair traversal, she
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can sequentially cover all members of the ensemble of pathshe paths simultaneously with his Markovian algorithm. As
Each time she traverses the lattice, she records her passdgee sequentially paints path after path, a question that needs
by adding and subtracting 1's as appropriate to the directiotesting is whether the difference equatié®@sand(3) emerge

she is moving int to her record of path visits. §he thus 4q approximate descriptions of the sample averageen-
creates a space-time field which we shall denotefby=or  erated by Eve. With no extra controls over the stochastic
example, before she starts, all t@eare 0 for allz with t process, the probabilitiea=aAt and B=1—« as actual
>0. At her first step she arrives ab,) and adds a 1 to frequencies will necessarily fluctuate over the sample. It is
$*(5,€). If her tape gives her & at this point, her second important to check that the fluctuations do not destroy the
step is to (2,2¢€) where she will ad a 1 to$%(25,2¢). If ~ Signal, and that Eve’s sequentially generated sample does
she receives al at the second step she would instead moveaPproximately satisfy the difference equations. To check this
to (0,2) where she would atla 1 to¢3(0,2€). She repeats We note that on the lattice tﬁ\é‘ at any time step are vectors
this process until the return time where she traverses thiadexed by the value of. At time stepm each vectoi has
return path, adding-1's to the appropriatéb on the way. If ~ roughly m+1 nonzero elements. Iff.|| is the Euclidean
Eve were to perform this task so as to cover all distinct pathsiorm, we can then test the relative measure of error in each
exactly once, the arguments of the previous section implpgeparate difference equation in E¢®). and(3) for a sample

that the'g will satisfy the difference equation®) and (3)  average generated by Evieor example, to test Eq2) for a
exactly, since these difference equations represent the esample average® we consider the erroEﬁ after Eve has
semble averages that Max would generate if he painted atraversed the lattica times,

c1_ 1902~ [(1-adt ¢y 4(z—cAl) —adtdy 4(z—cAD]|
' [e=eall '

4

Analogous expressions apply for the other sample averageses « and 8. Random sampling with replacement in which
Herea is the ensemble parametenot the sample approxi- the “local” probability is not consulted and each call to the
mation. If we were to replace thé in Eq. (4) by the en- fandom process is independent gives rise to figures similar to

semble averageb, we would get zero. HoweveEi>0
since, after only one traversal, the ensemble averages cann'
be met, there being only a single entwined path through the
lattice. If, however, limg_.E:=0, then the stochastic pro-
cess is stable and the ensemble average description is a val .
approximation of the process for large wr
Figure 4 showfg1 for various values of the sample sige
plotted on a log-log scale. The three groups of points repre- +
sent three values df Ast increases, the range pincreases -
and the relative coverage by the sample paths decreases, r
sulting in a larger error. If Eve randomly chooses at each R
lattice site whether or not to scatter, we would expect the o o
convergence to have the usual/fi/dependence characteris- 4| °
tic of random sampling without replacement. This would ©
yield a very slow rate of convergence. This does indeed hap o, .
pen, so we have modified the underlying stochastic proces: Boo,
to a form of sampling without replacement. In our approach, 1L . ooy,
when Eve has to make a decision at a lattice site, she checks ©
her previous decisions and chooses to scatter or not scatter ¢ 4 A numerical test of Eq3) using Eq.(4). The numerical
based on her local scattering probability, making the choiC@ror is plotted vs the number of entwined paths in the run. The
that causes this probability to come closer to the ensemblgyper sequence is a4, which is 16 time steps for this run. The
average if this is possible, choosing randomly if not. Thissojid line is a reference line which decreases as 4iggesting that
improves the convergence so that it is asymptotically. 1/ for this stochastic process the error goes down as The middle
The other three error&?},E2,E3 show the same conver- sequence is at=8 and the lowest sequence istat2. Ast in-
gence characteristics. Note that the sampling technique onlgreases, the error increases since the configuration space is larger
speeds up the convergence. It does not affect the limit itselind thed; less well covered by the sample. The tendency to con-
since it does not alter the ensemble average for the probabilerge as Il appears to hold for al.

10*
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{a) {0y {ch

FIG. 5. Entwined paths draw the Dirac propagator. Pictured are contour pldts fof, respectively, 18 1¢°, and 13 entwined paths.
In the simulation, the return time is 24 lattice steps and the probability of scatterinfytis 1/2. (c) is visually indistinguishable from the
ensemble average solution obtained by solving(Bgexactly. The sawtooth appearance of the light cone is an artifact of the lattice used to
store theg.

Fig. 4 except the slope of the trend lines is less, correspond- s agd . .

ing to 14/n convergence. — —¢—ag’+ag’,
Figure 5 shows a contour plotaﬂ, as Eve continues to

traverse entwined paths. At the resolution of the figure, part o Pre

(c) is indistinguishable from the exact solution of Eg3)
with the source at the origin. That is, Eve’s formation of the
component of the propagator pictured in Figc)Ss indistin- ) . .
guishable from Max’s formation of the ensemble averag(:.Rer‘,j“tOV'ng the exponential decay by writing“(z,1)
using his Markovian technique. The other components arg & ¢“(z.1), the above becomes

similar. Interestingly, whereas Max “draws” Fig.(® se-

7——cg—a¢>4—a¢>3. (5

quentially fromt=0 tot=tg, one step at a time, coloring all ‘?_ljlzc‘?_ljl_auz
paths in parallel and evolving the “picture” in a form of at Jz ’
unitary evolution, Eve assembles the picture as a projection

from a larger space. If we think of Eve as having her move- Iu? Iu?

ment in the ¢,t) plane parametrized by some variabj¢hen ot Sz +aut,

the sequence of pictures in Fig. 5 represents a projection of
Eve’s history onto the4,t) plane withs increasing from(a)

3 3
to (c). Projection has been used before to bypass F8|C aizcai_,_au{
These numerical results confirm the fact that the differ- ot 0z
ence equation&) and(3) have an underlying stochastic pro-
cess and are phenomenological equations for entwined pairs. aut au* 3
In the next section, we show that the difference equations ot Gz Tav ©®)

describing the ensemble averages are discrete versions of the

Dirac equation. The above is a representation of the Dirac equation in which
all the densitiess are real. This may be seen by writing the
IV. COMPARISON WITH DIRAC equation in matrix form. If we writgp,= —i(d/9z), setting

c=1 anda=m with a,=— (% 2), B=(% ° ), we have
By expanding Eqgs(2) and (3) to first order, we can ap- == (g "z) £=C "y)

proximate the difference equations by a set of coupled

\ , . du

PDE’s. The resulting equations are IEZ(OIZPZJF gmu, 7
apt ot L )
WZCE_MS —a¢s, where theo are the Pauli matrices. Note thatand 8 anti-

commute as required, and the relativistic energy-momentum

5 5 relations are obeyed if we associate the usual meanings with
ﬂ: —c%—a¢2+a¢l E andp. It is important to note that the rewrite of Ed$) in

at Jz (7) is only cosmetic. The use gf andi is for convention
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only; theu are still real densities, the limit of ensemble av- from classical physics unnecessary. The space-time geometry
erages. They are not the formal objects of conventional quaref entwined paths automatically builds in the relevant phys-
tum mechanics. ics. To see this, note that it is the regular crossing of the
entwined paths that produces the alternating signs of the
V. DISCUSSION scattering terms in Eq€2) and (3), and ultimately thes

The Dirac equation is usually produced along the lines offatrix in Eq.(7) . . .
Dirac’s original argument. The start of the argument is ca- The existence of an underlying stochastic model for the
nonical quantizationp— —i%(d/dx),E—ifi(a/at). From  Dirac equation, as demonstrated in this paper, allows us the
there, Dirac leads us through the construction of his algebr@pportunity to consider the Dirac equation as a phenomeno-
to satisfy the requirements of the relativistic energy-logical equation describing the evolution of a particle mov-
momentum relations. From the perspective of the abovéng on an entwined path in space-time. We now have a sto-
work, the formal step in Dirac’s argument is the first one, thechastic basis for the U process” of quantum mechanics
FAC. (that process by which a wave function unitarily evolyes

Entwined paths are essentially self-quantizing, as can base Penrose’s terminolog$0,11], at least in the special case
seen by the form of Eq7). If mis set equal to zero in EQ. of a free particle in one dimension. We hope exploration of
(7), the resulting equation is just two two-component formsthe stochastic model will help to clarify further the relation-
of the wave equation which are appropriate for classical parships between classical and quantum physics, and possibly
ticles that stay on their initial light cones. It is the3 term  shed some light on the process by which wave functions

that both describes scattering and brings in the interferenoeco”apsen as a consequence of a measuremghe ‘R’
effects characteristic of the Dirac equation. An inspection Ofprocesaa

the B8 matrix shows that its Hermitian character arises be-

cause of the factor af absorbed into it in the rewrite from

Eq. (6). The predecessor @8 in Eg. (6) is anti-Hermitian ACKNOWLEDGMENTS
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