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Universality of decoherence for macroscopic quantum superpositions
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We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which
that process is much faster than any competing one generated by the HamiltonianHsys of the isolated system.
This interaction-dominated decoherence limit is of importance for the emergence of classical behavior in the
macroscopic domain, since it will always be the relevant regime for large enough separations between the
superposed wave packets. The usual golden-rule treatment then does not apply, but we can employ a short-time
expansion for the free motion while keeping the interactionH int in full. We thus reveal decoherence as a
universal short-time phenomenon largely independent of the character of the system as well as the bath and of
the basis the superimposed states are taken from. Simple analytical expressions for the decoherence time scales
are obtained in the limit in which decoherence is even faster than any time scale emerging from the reservoir
HamiltonianH res.
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I. INTRODUCTION

A. Environment induced decoherence

Interferences from quantum superpositions of wave pa
ets representing, say, the translational motion of a body,
come more and more difficult to observe as the body
comes more massive and the superposed states are
more distinct. Eventually, when the separation of wave pa
ets is increased towards macroscopic magnitudes~for which
latter case we shall speak of ‘‘macroscopic superposition!,
classical behavior, i.e., loss of the ability to interfer
emerges. Somehow, along the way from microscopic to m
roscopic superpositions, the quantum capability of a part
to show up ‘‘here’’ and ‘‘there’’ simultaneously escapes d
tectability.

Two reasons are known for the elusiveness of mac
scopic superpositions. One of these even has a classical
analog. To explain it, let us imagine a plane wave with~de
Broglie or classical! wavelengthl traversing a spatial struc
ture of linear dimensiond which splits the wave into partia
ones. The parameterl/d then determines the resolvability o
interference effects. For instance, in a double-slit experim
an incoming plane wave gives rise to an outgoing interf
ence pattern of angular aperturel/d. The latter angle be-
comes exceedingly small whenl is the de Broglie wave-
length of a macroscopic body.

The second reason for the notorious absence of quan
superpositions from the macroscopic domain, called envir
ment induced decoherence@1,2#, is of dissipative origin and
is the one of concern to us here. Decoherence is, for mi
scopic bodies, just a facet of dissipation caused by inte
tions with many-freedom surroundings. However, if two s
ficiently distinct wave packetsuw1&,uw2& are brought to an
initial superpositionu&5c1uw1&1c2uw2&, the density opera-
1050-2947/2003/67~2!/022101~13!/$20.00 67 0221
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tor r(t) starts out as the projectorr(0)5u&^u and then, for
suitable coupling to the environment~see below!, decoheres
to the mixture uc1u2uw1&^w1u1uc2u2uw2&^w2u, with the
weights uci u2 still as in the initial superposition, on a tim
scaletdecwhile the subsequent relaxation of that mixture h
a much longer characteristic timetdiss. The smallness of the
decoherence timetdec is manifest in its proportionality to a
power of Planck’s constant and inverse proportionality to
power of the ‘‘distance’’d between the superposed packe

tdec}
\m

dn
with m,n.0. ~1.1!

We may interpret that power law as assigning a quant
scale of reference}\m/n to the distanced such that the de-
coherence timetdec becomes vanishingly small whend as-
sumes classical magnitude. On the other hand, the chara
istic times for temporal changes of probabilities or oth
observables capable of a well defined classical limit rem
finite in the formal limit \→0. As a consequence, a give
environment may have so weak an influence that probab
relaxation is hard to follow because oftdiss being very large,
while giving rise to unresolvably small lifetimestdec to co-
herences between sufficiently far apart wave packets.

A variety of experimental studies of decoherence ha
been undertaken@3–7#, all of them involving weakly coupled
environments~‘‘reservoirs’’ or ‘‘heat baths’’! and wave-
packet separations of but modest magnitudes: the acce
tion of decoherence over dissipation was not at all extre
the time scale ratiotdec/tdiss not even down to 1022 yet.
Moreover, dissipation was sufficiently weak in all these e
periments for the decoherence time to exceed the time sc
tsys characteristic of the free motion of the system isola
©2003 The American Physical Society01-1
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from the environment. In that limit, a lot of free motion tak
place during decoherence, and therefore the latter pro
becomes rather system specific in its characteristics. A
fied treatment can, however, be based on the very fact
the environmental influence is weak and thus allows for p
turbative treatment by the golden rule.

To illustrate decoherence in the golden-rule limittsys
,tdec,tdiss, one often considers a harmonic oscillator
massM and frequencyV and a bath in thermal equilibrium
If the interaction Hamiltonian is the product of two couplin
agents, one for the system~Q! and the other for the bath (B),
i.e., H int5QB, and if two superposed wave packets are d
tinguished by the coupling agentQ in terms of the distance
d5uq12q2u5u^w1uQuw1&2^w2uQuw2&u, the golden rule is
easily seen to yield the decoherence and dissipation tim

1

tdec
GR

5
~q12q2!2

\2 E
0

`

dtK 1

2
$B̃~ t !,B%L cosVt,

1

tdiss
GR

5
1

MVE
0

`

dtK i

\
@B̃~ t !,B#L sinVt, ~1.2!

whereB̃(t)5eiH rest/\Be2 iH rest/\ refers to free time evolution
of the bath; note that the dissipation time involves the
sponse function̂ ( i /\)@B̃(t),B#& and the decoherence tim

the equilibrium correlation function̂ 1
2 $B̃(t),B%&, with

$•,•% and @•,•# denoting anticommutator and commutato
respectively, and̂ •••& thermal equilibrium average. Inter
estingly, the golden-rule decoherence time obeys the po
law ~1.1!, while the dissipation time is independent
Planck’s constant and of the distanced.

Our principal goal in the present paper is to contrast
golden-rule limittsys,tdec,tdiss with the opposite case in
which decoherence is the fastest process by far,

tdec!tsys,tdiss, ~1.3!

irrespective of the relative size oftsys and tdiss. That
interaction-dominated limitprevails for sufficiently far apar
wave packets and, in particular, for the decoherence of t
macroscopic superpositions; it may, therefore, be seen as
evant for the emergence of classical behavior in the ma
scopic world and for the difficulties in experimentally pus
ing quantum coherent dynamics into the macrosco
domain. Moreover, the limit~1.3! must assign much mor
universal properties to decoherence since it allows no
‘‘very little’’ free motion during times of the ordertdec. We
shall, in fact, see that the interaction-dominated limit~1.3!
yields decoherence times independent of the forceF(Q) that
may act on the isolated body. The decoherence times t
met with will involve different exponentsm,n in expression
~1.1! than the golden-rule one,tdec

GR of Eq. ~1.2!.
For a major part of the paper we not only base our ana

sis on limit ~1.3!, but furthermore assume

tdec!t res, ~1.4!
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i.e., decoherence is fast even on environmental time sca
In that case, simple expressions of universal character, in
pendent of the details of environmental dynamics, are
tained.

As soon as we drop limit~1.4! yet retain limit ~1.3!, we
find more complicated decoherence dynamics, the temp
decay now being governed by the details of the time evo
tion of environmental correlations.

It would be highly desirable to experimentally observe t
crossover from the golden-rule limit to the interactio
dominated limit~1.3!, and further to the extreme limit wher
both limits~1.3! and~1.4! are satisfied. As already mentione
above, the experiments done thus far pertain to the gold
rule limit where the separation exponentn takes on the value
2. We shall present some discussion of the crossover co
tion in Paper II of this series@8#. A quantitative treatment of
that crossover itself will have~i! to be nonperturbative~like
ours and in contrast to the golden rule! and~ii ! have to avoid
even the short-time approximation with respect to free m
tion whose simplicity we will take profit of in the presen
paper. In Paper II of this series@8#, we treat the crossover in
question for an exactly solvable model where both the s
tem and the bath consist of harmonic oscillators.

The above remark about interaction-dominated decoh
ence showing greater universality than its golden-rule co
terpart deserves some qualification. If both limits~1.3! and
~1.4! are satisfied, of the three parts of the Hamiltonian of
composite system,H5Hsys1H res1H int , the generators of
free motion,HsysandH res, play but a minor role in compari-
son to the interaction partH int . As a consequence, it is not o
much importance whether the ‘‘body’’ under study is an o
cillator, a large angular momentum or some other fe
freedoms system. All we require is the possibility of sup
posing wave packets with large separationsd, large in
relation to microscopic quantum scales. Similarly, it does
matter whether the reservoir is composed of harmonic os
lators ~such as modes of electromagnetic or elastic wav!,
atoms or other entities; what counts is that the reservoir
many degrees of freedom effective inH int , i.e., for H int

5QB in its coupling agentB; we shall assumeB5( i 51
N Bi

with N, the number of reservoir freedoms, large.
It is appropriate to admit that in one other respect

interaction-dominated limit is no more but rather even a
less universal than the golden-rule one. Obviously, the s
tem coupling agentQ in H int5QB is distinguished over
other system observables not showing up in the interact
As we shall see, the coupling agentQ is most effective in
decohering superpositions of wave packets with large se
rations u^w1uQuw1&2^w2uQuw2&u and considerably less ef
fective if the distinction of the packets is one with respect
some other observableP not commuting with the coupling
agentQ. In fact, packets far apart inQ will turn out to de-
cohere with a Gaussian decay of suitable indicators,
exp@2(t/tdec

Q )2#, and that decay is captured already in zero
order in Hsys1H res; in that zeroth order, however, wav
packets distinguished byP but not by Q would appear as
retaining their relative coherence. Such latter packets ar
fact also decohered byH int5QB, but in general in a non-
Gaussian manner, like exp@2(t/tdec)

n# with n.2 and a de-
1-2
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coherence timetdec which differs fromtdec
Q in the exponents

m,n but still is of quantum character due tom.0; to capture
that latter decoherence, a ‘‘little bit’’ of free motion must b
accounted for in a systematic manner, as will be explaine
Sec. III below. On the other hand, decoherence fully sy
metric inQ andP would result from an interaction involving
both of these observables as coupling agents towards d
ent reservoirs,H int5QB11PB2, as described in Sec. V an
previously pointed out in a first report on this project@9#.

The decay in terms of exponentials of powerstn just men-
tioned arises when decoherence outruns both dissipation
the decay of bath correlations, i.e., when both limits~1.3!
and~1.4! are satisfied. When only dissipation is cut short b
bath correlation decay remains effective, such that limit~1.3!
is respected but not limit~1.4!, the qualitative picture of the
above discussion does not change, yet the precise tem
course of decoherence involves the full time dependenc
the bath correlation function and can no longer be written
an exponential of a power of time@9#; Sec. VI of the presen
paper is devoted to that case.

In Sec. VII, we treat decoherence of superpositions
angular-momentum coherent states, with one componentJx ,
of an angular momentumJW acting as coupling agent. In ana
ogy to our findings for superpositions of states distinguish
by P and Q, we shall be led to most rapid decoherence
pairs of states with differing mean values of the coupli
agent and slowest decoherence for pairs of states with c
ciding mean values for all system observables coupled to
coupling agent by the evolution generated byHsys; ‘‘rapid’’
and ‘‘slow’’ will again be quantified by the exponentsm,n in
the power law~1.1!.

B. Related literature

Some words about related literature are in order. Inter
tion dominance is often invoked in studies of the measu
ment process~see, for instance, von Neumann@10#!, where
the coupling of the system to a pointer degree of freedom
the most relevant part for the dynamics, andHsys is simply
neglected. The short-time limit of decoherence has been
vestigated very early by Joos and Zeh who expand an
tanglement measure based on a Schmidt decompositio
powers of the elapsed time@11# ~see also the earlier work b
Kübler and Zeh@12#!. Moreover, there are a number of a
ticles on decoherence in the exactly solvable model of a
monic oscillator coupled to a reservoir itself consisting
harmonic oscillators@13–17#. Decoherence dynamics ma
then be studied on all time scales, as in Paper II of this se
@8#, including very early times@15–17#. In none of these
earlier works based on the oscillator model particular att
tion was paid to the investigation of decoherence in the li
of a more and more macroscopic initial separation of
superposed states, on which we focus here. As we will sh
this limit is of astonishing simplicity, allowing us to revea
decoherence to be largely independent of the detailed na
of the isolated system and bath dynamics and to ob
simple analytical expressions for the decoherence time sc

In a discussion of the quantum measurement proc
where an entangled state of a microscopic quantum sys
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and a macroscopic pointer involves superpositions of ma
scopically distinct pointer states, Haake and Z˙ukowski @18#
have employed the oscillator model and its exact solution
argue that the superposition in question decoheres in
limit tdec!tsys. More recently, discussing decoherence d
ing a measurement process, the importance of that early-
limit has also been realized by Mozyrsky and Privman; in
later preprint Privman applies their approach to spin de
herence@19#.

We emphasize that our results apply to decoherence
fully coherent initial superposition of two macroscopical
distinct states, and thus to an initial product of a pure sys
and arbitrary environment state. The only restriction on
latter is the applicability of the central limit theorem for a
additive quantity comprising many degrees of freedom of
environment~see Sec. III for details!.

The influence of initial correlations between system a
environment on decoherence was investigated by Rom
and Paz@16# using preparation function techniques and t
harmonic-oscillator model. Their results indicate that su
correlations may lead to a different temporal decay of
then less pronounced initial coherence. The second pa
their work is devoted to a preparation resulting from a p
jection onto a pure superposition of distinct system sta
That choice leads to a factorized state of system and e
ronment, as in our work. Romero and Paz choose, howe
not to investigate the corresponding early-time regime wh
becomes relevant for more and more macroscopic initial
tance between the superposed states. The simplicity of
early-time regime is exploited here to liberate the discuss
from oscillator models and thus demonstrate a large deg
of universality of decoherence.

In a series of papers, Ford, Lewis, and O’Connell~FLO!
@17,20# also emphasize that the presence of initial corre
tions and deviations from a fully coherent initial system st
may lead to a different time scale governing the open-sys
dynamics. In Ref.@20#, they argue that two wave packets
widths s and separationd in Q space experience the tim
scaletFLO5s2/dv, wherev5AkBT/m is a thermal velocity
with m a typical mass; they point out that the latter time m
be short compared to the golden-rule prediction for the
coherence time and thus also question the golden-rule
proach to decoherence for more and more macroscopic
perpositions. In contrast to Ref.@20#, and in line with recent
decoherence experiments@3–5#, however, we do not assum
that the initial system state had time to equilibrate at
environmental temperatureT. We assume that the cohere
initial state is created quasiinstantaneously, poss
achieved by a projection onto a pure system state, as in
tigated in the second part of Ref.@16#. The success of a
matter interferometric experiment as in Vienna@3#, strongly
depends on that possibility to carefully velocity select t
beam. No interference fringes could be observed if one w
to use a thermal beam of buckyballs. Thus, we do not
counter the time scaletFLO in our analysis, yet nevertheles
we confirm that the speed of decoherence invalidates
golden-rule approach rather easily~see also Paper II of this
series @8#!. Interestingly, tFLO is independent of Planck’s
constant as well as of the strength of any interactionH int . In
1-3
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fact, as Ford, Lewis, and O’Connell show in Ref.@20#, the
‘‘attenuation factor’’ introduced by them as a measure of
fate of coherence may decay on the time scaletFLO under the
unitary evolution of the isolated system. This is provided
initial system density operator has already experience
bath at temperatureT, such that in position representation
has significant entries only along a diagonal band with
width of the order of a thermal de Broglie wavelength. Th
the temporal behavior of the attenuation factor of Fo
Lewis, and O’Connell is markedly different from the evol
tion of standard measures employed to studyenvironment
induceddecoherence, based on entropy or purity of the s
tem state@1,2#: these latter quantities remain constant un
unitary time evolution, as does our measure for cohere
the Hilbert-Schmidt norm of the off-diagonal part of the de
sity operator~see Sec. II!, which is closely related to purity
This qualitatively different behavior of the attenuation fac
of Ford, Lewis and O’Connell and our standard measure
environment induced decoherence also explains why the
no agreement between these results even in those lim
cases where it might be naively expected.

Finally, in a very recent preprint, Lutz@21# takes up initial
system-environment correlations as well. In particular, L
allows for a composite density matrix differing from the o
for overall thermal equilibrium by a factor corresponding
a superposition of two wave packets for the system. A
result of such correlations, different early-time courses
decoherence when the system is a free and a harmoni
bound particle are found in the Ford-Lewis-O’Connell a
tenuation factor; at the same time, it is stated clearly t
such a ‘‘nonuniversal’’ decay only concerns thermally
lowed coherences, which do not extend beyond the ther
de Broglie wavelength.

II. SUPERPOSITIONS OF DISTINCT WAVE PACKETS

We consider a single-freedom system for which the co
dinateQ and momentumP obey the canonical commutatio
rule

@P,Q#5
\

i
. ~2.1!

The initial states we shall have to deal with are pure state
the form of superpositions of two separate wave packets

u&5c1uw1&1c2uw2&, uc1u21uc2u251. ~2.2!

We may specify the individual packets in either the posit
or momentum representation and choose, for the sake of
venience, the Gaussians

^quw i&5w i~q!5
1

~2ps!1/4
eipi (q2qi )/\e2(q2qi )

2/4s,

^puw i&5w̃ i~p!5
~2ps!1/4

~p\!1/2
e2 ipqi /\e2s(p2pi )

2/\2
,

~2.3!
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with i 51,2. Needless to say,w i(q) and w̃ i(p) are Fourier
transforms of one another. These packets are located in
sition space atqi with ~rms! uncertaintyDq5As and in
momentum space atpi with uncertaintyDp5\/2As; the
uncertainty productDqDp5\/2 is the minimum one al-
lowed by the uncertainty principle; were we to chooses as a
classical quantity independent of Planck’s constant,
would confront two extremely squeezed states with the m
mentum much more sharply defined than the position;
will actually envisage the symmetric situations}\, where
both Dq andDp are}A\, like for coherent states@22#. To
ensure good separation, we stipulate that eitherDq!uq1
2q2u or Dp!up12p2u or both ~see Fig. 1!. Actually, inas-
much as we are interested in ‘‘macroscopic superposition
we may assume at least one of the two distancesuq1
2q2u,up12p2u of classical magnitude, i.e., independent
\.

Our choice of Gaussian packets is a matter of con
nience; it will allow us to evaluate all subsequently encou
tered integrals analytically. The universal decoherence la
to be established rest on sufficient separation of the
packets, however, rather than on their specific form or th
minimum-uncertainty property.

The initial density operator corresponding to the st
~2.2! is a sum of four terms,

rsys~0!5 (
i , j 51

2

cicj* uw i&^w j u5(
i , j

cicj* rsys
i j ~0!, ~2.4!

two ‘‘diagonal’’ ones weighted by probabilitiesuci u2 and two
off-diagonal ‘‘interference terms’’ rsys

12 (0)5uw1&^w2u
5rsys

21 (0)† weighted by the ‘‘coherences’’c1c2* andc1* c2.
Inasmuch as quantum-mechanical time evolution is rep

sented by linear operators each of the four terms in Eq.~2.4!
has its own temporal successorcicj* rsys

i j (t). To show that

FIG. 1. Position-space densityuc(q)u2 for a coherent superpo
sition of two Gaussian wave packets as envisaged in this paper.
distance between the packets is assumed much larger than
individual spread.
1-4
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interaction with an environment tends to destroy the inter
ence terms before the diagonal terms change noticeably
shall employ the norms

Ni j ~ t !5Trsysrsys
i j ~ t !rsys

i j ~ t !†. ~2.5!

Clearly, if the system in question were isolated, these no
would all remain time independent,Ni j (t)51, since the uni-
tary time evolution operatorsUsys(t)5e2 iH syst/\ would can-
cel under the trace operation. The time scale separation
are after arises only due to the interaction with an envir
ment, and then only if the initial wave packetsw i are suffi-
ciently distinct.

III. INTERACTION-DOMINATED DECOHERENCE

To allow for dissipative motion ofQ andP, we introduce
a reservoir with many degrees of freedom and deal wit
Hamiltonian of the structure

H5Hsys1H res1H int . ~3.1!

We need not specify the HamiltonianH res governing the free
motion of the environment; the Hamiltonian of the isolat
single-freedom system is taken as the usual sum of a kin
and a potential term,Hsys5P2/2M1V(Q); for the interac-
tion Hamiltonian, however, we do assume a slightly rest
tive form involving only one of the two system observable
sayQ, as a coupling agent,

H int5QB, ~3.2!

with B some reservoir coupling agent which should invol
all degrees of freedom of the reservoir in a way to be co
mented on below.

The simplest initial state to deal with has our sing
freedom system prepared so as to be statistically indepen
from the reservoir; the initial joint density operator the
takes the form of a product

r~0!5rsys~0!r res~0!, ~3.3!

with rsys representing the superposition of two distinct wa
packets as described in the preceding section. The initial d
sity operator of the reservoir could but need not be the th
mal equilibrium state with respect toH res; our precise de-
mand onr res(0) will be given presently.

The reduced system density operator originating from
one of the four termsrsys

i j (0) can now be written as

rsys
i j ~ t !5Trrese

2 iHt /\rsys
i j ~0!r res~0!eiHt /\. ~3.4!

In view of our intention to evaluate the normsNi j (t) defined
in Eq. ~2.5!, it is advantageous to pass to the interact
picture and write the time evolution operator as
02210
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e2 iHt /\5e2 i (Hsys1Hres)t/\Ũ~ t !5U0~ t !Ũ~ t !,

Ũ~ t !5S expF2 i E
0

t

dt8H̃ int~ t8!/\G D
1

,

~3.5!
H̃ int~ t !5U0

†~ t !H intU0~ t !5Q̃~ t !B̃~ t !,

where (•••)1 demands time ordering of the operator produ
(•••). The norms in question thus read

Ni j ~ t !5Trsysr̃sys
i j ~ t !r̃sys

j i ~ t !,
~3.6!

r̃sys
i j ~ t !5TrresŨ~ t !rsys

i j ~0!r res~0!Ũ†~ t !.

We are interested in the limiting case where decoheren
i.e., the decay ofN12(t) is faster than any process arising
the absence of the couplingH int . Our results will self-
consistently confirm this limit as relevant for large enou
separations~with respect to position, or momentum, or bot!
between the wave packets. The short-time behavior t
aimed at allows to approximate the interaction-picture e
lution operatorŨ(t) by expanding its logarithm as a powe
series in the timet. To find that expansion we start with th
interaction-picture Hamiltonian

Q̃~ t !B̃~ t !5~Q1M 21Pt2V8~Q!t2/2M1••• !

3~B1Ḃt1B̈t2/21••• !, ~3.7!

whereḂ5( i /\)@H res,B#,B̈5( i /\)@H res,Ḃ#. Notice that this
short-time expansion is meaningful only if both conditio
~1.3! and~1.4! are satisfied. We shall drop the latter conditio
in Sec. VI where we keep the full time dependence ofB̃(t).

A simple sequence of unitary transformations, describ
in the Appendix, brings about the desired expansion as

Ũ~ t !5e2( i /\)$Q(Bt1Ḃt2/2)1PBt2/2M1•••%, ~3.8!

where the dots refer to cubic and higher-order terms int; in
particular, the force2V8(Q) enters lnŨ(t) only in ordert3.

We intend to evaluate the trace Trsys in the Q representa-
tion, whereQuq&5quq& and, with an arbitrary state vecto
uc&, ^cuPuq&5 i\]/]q^cuq&, ^quPuc&52 i\]/]q^quc&.
We thus have

^qursys
i j ~ t !uq8&5DQ~ t !^qursys

i j ~0!uq8& ~3.9!

with the decoherence factor

DQ~ t !5^e2( i /\)(q2q8)(Bt1Ḃt2/2)2(]/]q1]/]q8)Bt2/2M&;
~3.10!

the angular brackets in the last member of the forego
equation denote an average with respect to the initial stat
the reservoir.

At this point we need to specify the previously announc
structure of the reservoir coupling agent asadditively com-
prising a large numberN of degrees of freedom,
1-5
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B5(
i 51

N

Bi . ~3.11!

Moreover, we require the reservoir initial stater res to involve
those many degrees of freedom with sufficiently weak co
lations for the central limit theorem to hold for the statistic
behavior of B as well as its time derivativeḂ. To avoid
unnecessarily voluminous expressions in the sequel we
stipulate vanishing initial means of these observables,^B&
5^Ḃ&50. The exponentB[2( i /\)(q2q8)(Bt1Ḃt2/2)
2(]/]q1]/]q8)Bt2/2M in the reservoir expectation valu
in Eq. ~3.10! is thus assigned Gaussian statistics accordin

^eB&5e(1/2)^B 2&. The decoherence factor~3.10! then takes
the form

DQ~ t !5e2(q2q8)2^(Bt1Ḃt2/2)2&/2\2

3ei (q2q8)(]/]q1]/]q8)^(Bt1Ḃt2/2)Bt2&/2M\

3e(]/]q1]/]q8)2^B2&t4/8M2
; ~3.12!

it may be worth noting that we could write three separ
exponentials, since the relative displacement and the ce
of-mass momentum commute,@q2q8,]/]q1]/]q8#50.
We shall save a lot of space and gain better transparenc
retaining, in each of the three exponentials inDQ(t), only
the respective leading-order terms in the timet; it will be-
come clear further below that nothing of relevance for
final result is thus lost. A similar calculation in theP basis
yields

^pursys
i j ~ t !up8&5DP~ t !^pursys

i j ~0!up8&,
~3.13!

DP~ t !5e(]/]p1]/]p8)2^B2&t2/2ei (p2p8)(]/]p1]/]p8)^B2&t3/2M\

3e2(p2p8)2^B2&t4/8M2\2
.

Note that now we have retained only theO(t2) term in the
first exponential and theO(t3) term in the second exponen
tial.

The asymmetry betweenQ andP in the matrix elements
~3.9!, ~3.12!, and ~3.13! arises from the distinction of the
coordinateQ as the system coupling agent in the interact
~3.2!. By their asymmetric appearance these matrix eleme
already suggest different temporal courses of decohere
for superpositions of wave packets macroscopically dis
guished inQ and inP; that difference will become yet easie
to discern once we have evaluated the norms~3.6!. Upon
there inserting the matrix elements~3.9!,~3.12!, integrating
by parts, and changing integration variables to relative
center-of-mass coordinate ask5q2q8,q̄5 1

2 (q1q8), and
]/]q̄5]/]q1]/]q8[] we get

Ni j 5E dq̄dkw i* ~ q̄1k/2!w j~ q̄2k/2!DQ
2 ~ t !

3w i~ q̄1k/2!w j* ~ q̄2k/2!,
~3.14!

DQ
2 ~ t !5e2k2^B2&t2/\2

eik]^B2&t3/M\e]2^B2&t4/4M2
.
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The second and third exponentials in the foregoing quan
DQ

2 (t) are integral operators acting on the subsequ

functions of the center-of-mass variableq̄ as,
respectively, eD] f (q̄)5 f (q̄1D) and et]2

f (q̄)
5*dx(4pt)21/2e(q̄2x)2/4t f (x), i.e., like shift and diffusion.
Of course, apart from the change of variables just indica
DQ

2 (t) is nothing but the square ofDQ(t) given in Eq.~3.12!.
After inserting the initial states~2.3! and doing the three
Gaussian integrals overq̄,k,x we finally obtain the ‘‘coher-
ence norm’’N12(t) in its dependence on the timet and the
separationsq12q2 andp12p2 of the two wave packets inQ
space andP space,

N12~ t !5$114s^B2&t2/\21O~ t4!%21/2

3exp$2~q12q2!2^B2&t2/\2%

3exp$2~q12q2!~p12p2!^B2&t3/M\2%

3exp$2~p12p2!2^B2&t4/4M2\2%

[P~ t !E Q~ t !E QP~ t !E P~ t !. ~3.15!

For typographical reasons we have not indicated the cor
tions }tn11 to the leading-order termstn in the three expo-
nentials; they are independent of the separationsq12q2 and
p12p2; neither do these separations enter the prefa
P(t).

We have thus established one of the central results of
present paper and proceed to a critical appreciation.

IV. DISCUSSION OF INTERACTION-DOMINATED
DECOHERENCE

A. Decoherence time scales

If the two wave packets in our superposition differ both
their center positions and momenta, the three exponentia
the coherence normN12(t) have the decay times

tdec
Q 5

\

uq12q2uA^B2&
,

tdec
QP5S M\2

u~q12q2!~p12p2!u^B2&
D 1/3

, ~4.1!

tdec
P 5S 4M2\2

~p12p2!2^B2&
D 1/4

.

All three of these decoherence times are quantum in c
acter and tend to vanish in the formal classical limit\→0.
They may be considered ordered in their magnitudes by
respective powers of Planck’s constant@23# tdec

Q }\,tdec
QP

}\2/3,tdec
P }\1/2. The distancesuq12q2u and up12p2u be-

tween the two wave packets appear as referred to quan
scales and in those units tend to take on huge values if
soscopic or even macroscopic. At any rate, it is the smalln
1-6
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of the decoherence times for which macroscopic superp
tions would have little chance to be detectable even if pre
rable.

Which of the three exponentials wins out in governing t
decoherence of macroscopically distinct packets depend
the distancesuq12q2u and up12p2u; obviously, different
cases arise, and these will be dealt with individually belo

It may be worth noting that the powers of Planck’s co
stant as well as those of the distances differ from the o
more familiar from the golden-rule result~1.2!.

B. Universality and limits of validity

Inasmuch as our result for the decay of coherence
tween the superposed wave packets is based on a short
expansion of the~logarithm of! the time evolution operato
Ũ(t), @cf. Eqs. ~3.5! and ~3.8!#, we have to emphasize it
limit of validity. To appreciate that limit we must realize th
it is the free motion of the single-freedom system and
reservoir which was treated as nearly ineffective during
decoherence, while the interactionH int was kept in full; in
particular, the first exponentialE Q(t) in the coherence norm
~3.15! can immediately be checked to arise from entire
neglecting Hsys1H res in Eq. ~3.5! and thus takingŨ(t)
5e2 iH intt/\5e2 iQBt/\. Shouldering the burden of theO(t2)
terms in Eq. ~3.8!, which bring in Q̇5( i /\)@Hsys,Q#

5P/M ,Ḃ5( i /\)@H res,B# is necessary only in the caseq1
5q2; note again that the potential energyV(Q) is barred
from entering at all, to the order int accepted. It follows that
our result~3.15! for the coherence norm is valid only in th
limit when the decoherence times~4.1! are much smaller
than any of the time scales characteristic of the free moti
of the single-freedom system as well as the reservoir,

tdec!tsys, t res. ~4.2!

Just for the sake of illustration, if the single-freedom syst
were an oscillator, the relevant system time scale would
the basic period of oscillation, while for the reservoir t
shortest time scale is either the inverse of the highest
quency provided by the environmental degrees of freedom
the thermal time\/kT. In Sec. VI, we discuss the mor
general regime where no assumption is made about the
tive size oftdec andt res.

The self-consistency condition~4.2! is fulfilled for suffi-
ciently large distances between the superposed wave pac
it is hard, probably impossible, to violate for truly macr
scopic superpositions and that fact may be seen as the re
for the absence of quantum interferences from the ma
scopic world. We hasten to add that the condition is
fulfilled for the present-day experiments on decoheren
which all still operate in the situationt res!tsys!tdec where
the golden rule applies. In order to distinguish the decoh
ence phenomena taking place in our short-time limit from
golden-rule-type decoherence processes thus far observe
speak of interaction-dominated decoherence in the li
~4.2!.

Within its range of applicability, our short-time result ha
a certain universal character. Inasmuch as the free-mo
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Hamiltonian Hsys1H res is not operative through the ful
cycle of any free oscillation in either the single-freedom s
tem or the reservoir, the character of such oscillations
mains irrelevant for decoherence as a short-time phen
enon. It does not matter whether the single-freedom sys
is a harmonic or anharmonic oscillator since, as alrea
stressed before, the force2V8(Q) gets no chance to act
likewise, whether the bath consists of oscillators~such as
lattice vibrations, electromagnetic or gravitational wave!,
two-level atoms, or other elementary units is immaterial.

The insensitivity of interaction-dominated decoherence
the character of the oscillations generated byHsys1H res also
implies ignorance of whether the reservoir will, at larg
times, impose underdamped or overdamped motion to
single-freedom system.

C. Wave packets distinguished by the coupling agentQ

If the center positionsq1 ,q2 of the superposed wav
packets are classically distinct the decay of the interfere
termrsys

12 (t) is governed by the first of the three exponentia
E Q(t)5exp@2(t/tdec

Q )2#, in the normN12(t). We then en-
counter a Gaussian falloff on the time scaletdec

Q . The second
and third exponentials are trivially ineffective forp15p2;
but even forup12p2uÞ0 and independent of\ they may be
considered as practically constant in time since their li
times tdec

QP}\2/3,tdec
P }\1/2 are much larger thantdec

Q }\.
Equally ineffective are the corrections of third and high
order in t within that first exponential, in our limit of large
distancesuq12q2u. This is because the whole exponent
E Q(t) depends on the distance only through the comm
factor (q12q2)2; the leadingt2 term thus defines a scalin
variablet5tuq12q2u such that higher-order corrections in
volve tn5tn/uq12q2un22. For sufficiently large distance
uq12q2u, the higher-order corrections would come into e
fect only for timest at which the leading Gaussian has a
ready suppressed the coherence norm to rather uninte
ingly small values. For the same reason the prefactorP(t),
which arises from the Gaussian integrals, cannot noticea
deviate from its initial value unity during the lifetime of th
leading exponential.

D. Wave packets distinguished by the conjugate momentumP

An interesting situation arises whenq15q2 and up1
2p2u is of classical magnitude, i.e., independent of Planc
constant, since then the first and second exponentials in
coherence norm remain equal to unity at all time
Interaction-dominated decoherence is thus described by

third exponential,N12(t)5E P(t)5e2(t/tdec
P )4

. Due to the dif-
ferent power of Planck’s constant intdec

P , i.e., tdec
P /tdec

Q

}\1/2, we may say that under the influence of the positionQ
as a coupling agent, momentum-space superpositions d
here more slowly than position-space superpositions. It
in fact been known for quite some time that an interact
H int5QB decoheres superpositions of wave packets m
rapidly if these packets are distinct in the eigenrepresenta
of Q; Zurek @2# speaks of the ‘‘distinction of the pointe
basis;’’ we here see that distinction carrying over to t
1-7
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short-time limit of decoherence. Part of the importance
our result~3.15! lies in bringing to light the rapid decay o
superpositions of packets not at all distinguished by the c
pling agentQ. As already mentioned before, the capability
H int5QB to decohere momentum-space superpositi
would be overlooked if the action of the free-motion Ham
tonian Hsys1H res were dropped entirely, with overzealou
appeal to the limit~4.2! of interaction predominance. Clearl
our short-time expansion of the~logarithm of the!
interaction-picture propagatorŨ(t) accounts, in the next-to
leading order in the timet, for just that much free motion a
necessary to let a pure-momentum superposition acqui
bit of a Q component and thus to become visible and f
prey toH int5QB.

E. Transition between position space and momentum-space
superpositions

The borderline between position-space and moment
space distinction is worth a moment of special attenti
When bothuq12q2u andup12p2u are nonzero and of class
cal magnitude~independent of\), the first exponential
E Q(t) with its Gaussian decay dominates the decohere
process, as already emphasized above. Now imagine the
mentum distinction fixed and the distanceuq12q2u de-
creased; eventually, the lifetimetdec

Q of the first exponential
will have grown to the magnitude of its competito
tdec

QP ,tdec
P , and then the dominance of the first exponentia

lost. The emancipation of the competing exponentials ta
place when, respectively,tdec

Q /tdec
QP5O(\0)'1 andtdec

Q /tdec
P

5O(\0)'1; inserting the various decoherence times
cording to Eq.~4.1!, we see that both transitions concur a

uq12q2u2/up12p2u5O~\!, ~4.3!

i.e., for classical magnitude of the momentum distinction
uq12q2u}A\. Interestingly, then, the transition in questio
requires keeping all three exponentials in the cohere
norm~3.15! for a proper description. Actually, to obtain goo
quantitative reliability it would be advisable to include th
order-t2 term in the prefactorP(t) as well, P(t)5@1
14s^B2&t2/\21O(t4)#21/2'exp(22s^B2&t2/\2), since the
position-space width of each of the superposed wave pac
was assumed asAs}A\, i.e., as of the same order in\ as
the transitional distanceuq12q2u.

V. SEVERAL RESERVOIRS AND COUPLING AGENTS

A single-freedom system may be coupled to two ma
freedom reservoirs with both the positionQ and the momen-
tum P serving as system coupling agents, according to
interaction Hamiltonian@9#

H int5QBQ1PBP . ~5.1!

The two separate reservoirs enter with the respective c
pling agentsBQ ,BP ; for these we assume the structu
~3.11!, i.e., BQ5( iBQi ,BP5( iBPi , and vanishing mean
with respect to the initial state of the reservoirs. The ‘Q
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reservoir’’ and the ‘‘P reservoir’’ are independent and hav
their own free-motion Hamiltonians such thatH res5HQ
1HP .

To describe the decoherence of an initial superpositi
like Eqs. ~2.2! and ~2.3! in the limit ~4.2!, we may again
employ the short-time expansion of the~logarithm of the!
interaction-picture propagator. In analogy to Eqs.~3.5! and
~3.8! we have

Ũ~ t !5S expF2 i E
0

t

dt8H̃ int~ t8!/\G D
1

5e2 i $(QBQ1PBP)t1O(t2)%/\. ~5.2!

Note that we need not go to higher than first order int, since
the presence of both reservoirs entails the appearance of
the positionand the momentum in first order; no bit of fre
motion must be invoked here to assist any underprivileg
distinction of the superposed wave packets. The central l
theorem then yields Gaussian decay of the coherence n

N12~ t !5exp$2~ t/tdec
Q !2%exp$2~ t/tdec

P !2%,

tdec
Q 5\/uq12q2uA^BQ

2 &,

tdec
P 5\/up12p2uA^BP

2 &. ~5.3!

The remarks about limits of validity and universality of th
preceding section apply again, except for the simplificat
that the presence of both reservoirs makes for symmetry
tween the pair of observables. In particular, higher-order c
rections int are irrelevant if at least one of the two distanc
uq12q2u, up12p2u is of classical magnitude.

VI. COMPETITION OF DECOHERENCE AND BATH
CORRELATION DECAY

Thus far we have assumed that decoherence is by far
fastest process, shorter even in duration than environme
time scales such that the two conditions~1.3! and~1.4! could
be exploited. Of greater experimental relevance, howeve
the case in which limit~1.3! is satisfied, while the bath cor
relation time scalet res may be comparable with or eve
shorter than the decoherence time. To that important case
shall now generalize our above discussions.

The analysis of Sec. III goes through unchanged up to
short-time expansion~3.7!, except that this very expansio
must now be confined to the free time evolution of the s
tem coupling agent,Q̃(t)5Q1M 21Pt1•••, while the time
dependence of the bath coupling agentB̃(t) generated by the
free bath HamiltonianH res must be kept in full,

H̃ int~ t !5Q̃~ t !B̃~ t !5~Q1••• !B̃~ t !. ~6.1!

Actually, we shall simplify even further by retaining only th
lowest-order term of the expansion of the system coupl
agent,Q̃(t)'Q, thus confining ourselves to treating the d
coherence of wave packets with different locations inQ
space.
1-8
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The propagator~3.8! is now replaced by

Ũ~ t !5S expF2~ i /\!H QE
0

t

dsB̃~s!1•••J G D
1

. ~6.2!

Proceeding in the very same fashion as in Sec. III we find
variant of Eq.~3.10!,

^qursys
i j ~ t !uq8&5DQ~ t !^qursys

i j ~0!uq8&,
~6.3!

DQ~ t !5K S exp~ i /\!F H q8E
0

t

dsB̃~s!J G D
2

3S expF2~ i /\!H qE
0

t

dsB̃~s!J G D
1
L .

Again, the large angular brackets denote an average
respect to the initial state of the reservoir, and (•••)2 refers
to antitime ordering, opposite in sense to (•••)1 .

As in Sec. III we now take advantage of the multicomp
nent structure of the bath coupling agentB which allows to
regardB̃(t) as ~an operator process! of Gaussian statistics
The reservoir average in Eq.~6.3! may then be evaluate
analytically ~most straightforwardly by expanding all expo
nentials!,

K S expF ~ i /\!q8E
0

t

dsB̃~s!G D
2

3S expF2~ i /\!qE
0

t

dsB̃~s!G D
1
L

5expH 2~1/\2!~q2q8!E
0

t

dsE
0

s

ds8@q^B̃~s!B̃~s8!&

2q8^B̃~s8!B̃~s!&#J . ~6.4!

For the superposition of wave packets with different po
tions studied here, this result is a generalization of
~3.12!, valid also for times long compared to environmen
correlation times. A short-time expansion of Eq.~6.4! recov-
ers Eq.~3.12!. We had previously@9# derived Eq.~6.4! for
the special case of a reservoir of harmonic oscillators; h
we can rejoice in the validity for general baths with effe
tively Gaussian coupling agentsB.

All that remains to be done is to determine the cohere
norm N12(t) as in Sec. III. That task, now simplified inas
much as the momentumP is barred, yields

N12~ t !5expS 2
~q12q2!2

\2 E
0

t

dsE
0

s

ds8^$B̃~s!,B̃~s8!%& D ,

~6.5!

with no restriction on the validity beyondtdec!tsys. Clearly,
the foregoing result generalizes the first factorE Q(t) in the
coherence norm~3.15! so as to allow for competition of de
coherence and bath correlation decay.
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While we still observe the quadratic dependence of
exponential suppression of coherence on the distanceuq
2q8u, the precise time evolution of decoherence is govern
by the symmetric part of the bath correlation function. N
system time scale is involved here, in contrast to the an
gous expression~1.2! for exponential golden-rule decay. I
fact, Eq.~6.5! describes nonexponential decay fort→`, un-
less the Fourier transform of̂$B̃(t),B̃(0)%& ~the spectral
density!, differs from zero at zero frequency. This
seen by writing *0

t ds*0
sds8^$B̃(s),B̃(s8)%&5*0

t ds(t2s)

3^$B̃(s),B̃(0)%&, taking advantage of the stationarity of th
Gaussian process. Ast→`, no rate of decay can be define
unless*0

`dŝ $B̃(s),B̃(0)%& remains finite. Examples of suc
decay will be presented for the exactly solvable harmon
oscillator model in Paper II of this series@8#.

VII. ANGULAR-MOMENTUM DECOHERENCE

To emphasize the universality of interaction-dominat
decoherencetdec!tsys,t res, we here consider an angula
momentum vectorJW whose three components obey the co
mutation relations@Jx ,Jy#5 i\Jz, etc., coupled to a reser
voir. As the Hamiltonian we take

Hsys5VJz , H int5JxB. ~7.1!

The squared angular momentum is thus conserved,J25 j ( j
11), with the quantum numberj capable of taking on inte-
ger or half integer values; large values ofj enable the angula
momentum to near classical behavior.

Suitable wave packets are provided by coherent st
@24#, which specify a direction for~the expectation value of!

JW in terms of two angles,u andf, with the minimal uncer-
tainty allowed by the commutation relations. We shall den
those states byu j ,u,f&[ua&, the latter shorthand droppin
the quantum numberj and introducing the complex ampli
tudea5eiftan(u/2). The whole complex plane is visited b
a as the ‘‘polar’’ angle ranges in 0<u<p and the ‘‘azi-
muthal’’ angle in 0<f,2p. ~We may speak of the mappin
of the surface of the unit sphere onto the complex plane;
sphere limj→`J2/(\ j )251 is the classical phase space.! The
coherent-state mean ofJW reads

^auJxua&5\ j
a1a*

11aa*
5\ j cosf sinu,

^auJyua&5\ j
i ~a* 2a!

11aa*
5\ j sinf sinu, ~7.2!

^auJzua&5\ j
12aa*

11aa*
5\ j cosu.

The coherent stateua& can be expressed in terms of eige
statesu j ,m& of J2 andJz @eigenvaluesj ( j 11) andm, respec-
tively# as
1-9
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ua&5~11aa* !2 jeaJ2 /\u j , j &

5~11aa* !2 j (
n50

2 j AS 2 j

n Danu j , j 2n&

[~11aa* !2 j uua&, ~7.3!

where J25Jx2 iJy . It will in fact be convenient to work
with the non-normalized Dirac ketuua& which is holomor-
phic in a and the corresponding antiholomorphic bra^auu.
The coherent stateua& itself is normalized aŝaua&51.

We now turn to a superposition of two coherent stat
u&5caua&1cbub&, which in the limit j @1 is a macroscopic
superposition, and inquire about the temporal fate of the
herence normNab(t)5Trsysrsys

ab(t)rsys
ba(t) with

rsys
ab~ t !5@~11aa* !~11bb* !#2 j

3Trres e2 iHt /\uua&^buur res~0!eiHt /\ ~7.4!

the temporal successor ofrab(0)5ua&^bu. Like in Sec. III,
we go to the interaction picture, where

H̃ int5B̃~ t !~Jx cosVt2Jy sinVt !

5JxB1~JxḂ2VJyB!t1~2V2JxB22VJyḂ1JxB̈!t2/2

1••• ~7.5!

gives rise to the propagator

Ũ~ t !5expH 2
i

\FBJxt2~ḂJx2BVJy!t2/21S 2V2JxB

22VJyḂ1JxB̈1
i

2\
@B,Ḃ#1 1

2 VJzB
2D t3/61•••G J ;

~7.6!

see the Appendix for the derivation of the foregoing sho
time expansion. Note that we have here included the th
order term of the expansion, for a reason that will beco
clear presently. When the propagatorŨ(t) acts on the holo-
morphic uua& we may use the identities

Jxuua&5
\

2 S 2 j a2~a221!
]

]a D uua&[X̂auua&,

Jyuua&5
\

2i S 2 j a2~a211!
]

]a D uua&[Ŷauua&, ~7.7!

Jzuua&5\S j 2a
]

]a D uua&[Ẑauua&

and their adjoints ^buuJx5X̂b* ^buu, etc., such that
U(t)uua&5U(t;a)uua& with U(t;a) differing from U(t)
only by the replacements~7.7!; similarly, ^buuU†(t)
5U†(t,b* )^buu with U†(t,b* ) obtained fromU†(t) by Jx
→Xb* , etc. We thus get
02210
,

o-

-
-

e

r̃sys
ab~ t !@~11aa* !~11bb* !# j

5TrresU~ t !uua&^buur res~0!U†~ t !

5TrresU
†~ t,b* !U~ t,auua&^buur res~0!

5^U†~ t,b* !U~ t,a!&uua&^buu. ~7.8!

To within a further correction of ordert4 we can merge the
two exponentials in the last member of the foregoing eq
tion by simply adding the exponents. We proceed to the
herence norm

Nab~ t !5@~11aa* !~11bb* !#22 j K expS 2 i H ~X̂a2X̂b* !

3@Bt1Ḃt2/21~B̈2V2B!t3/6#2~Ŷa2Ŷb* !

3~Bt2/21Ḃt3/3!1~ Ẑa2Ẑb* !B2t3/121~X̂a
2

2X̂b*
2

!
i

\
@B,Ḃ#t3/12J D L ^exp~2 i $same with a

→b,b* →a* %!&@~11aa* !~11bb* !#2 j , ~7.9!

where we have encountered Trsysuua&^buub&^auu5@(1
1aa* )(11bb* )#2 j ; it is on this latter function of
a,a* ,b,b* that the various differential operators like]/]a
in the exponentials in Eq.~7.9! act. To leading order inj
these differentiations act as]/]a→2 j a* /(11aa* ), etc.,
whereupon the differential operatorsX̂a ,Ŷa ,Ẑa become re-
placed by realc numbers, in fact the coherent-state expec
tion values of Jx ,Jy ,Jz given in Eq. ~7.2!, X̂a

→^auJxua&/\, X̂b* →^buJxub&/\, etc. The two reservoir
meanŝ exp(•••)& in the foregoing expression for the cohe
ence norm thus become mutual complex conjugates and
controlled by the three distances

di5^auJi ua&2^buJi ub&, i 5x,y,z, ~7.10!

and even by the differences of the mean values ofJx
2 with

respect to the coherent statesua&,ub&. Confining ourselves to
the leading order inj we have

Nab~ t !5U K expS 2
i

\ H dx@Bt1Ḃt2/21~B̈2V2B!t3/6#

2dy~Bt2/21Ḃt3/3!1dzB
2t3/121~^auJxua&2

2^buJxub&2!
i

\
@B,Ḃ#t3/12J D L U2

, ~7.11!

and this can now be seen to imply a greater wealth of de
herence courses than previously encountered for a cano
pair of observables.

The system coupling agent,Jx in the interaction~7.1!,
again plays a distinguished role; it is most efficient in dec
hering a superpositioncaua&1cbub& if it has macroscopi-
cally distinct means in the two superposed coherent sta
macroscopic now meaningj @1. In that situation only the
single term linear in the timet needs to be kept in the expo
1-10
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nent of the coherence norm~7.11!. The Gaussian average fo
the bath coupling agent B then yields Nab(t)

5u^e2 idxBt/\&u25e2(t/tdec
x )2

with the decoherence time

tdec
x 5dxA^B2&/\5@^B2& j 2~cosfa sinua

2cosfb sinub!2#21/2 ~7.12!

in analogy withtdec
Q of Eq. ~4.1!.

The competing terms in the coherence norm can bec
effective only when the distancedx vanishes~or is of sub-
classical magnitude!. This happens in four distinct case
three of which come with cosfa5cosfb ,sinua5sinub : ~i!
b51/a* ⇔$fa5fb ,ua5p2ub% such that the two points
in the spherical phase space distinguished bya and b are
reflections of one another in the equatorial planeu5p/2; ~ii !
b5a* ⇔$fa52p2fb , ua5ub% whereupon the two
points are mutually opposite on the circular section of
spherical phase space with the planeu5ua5ub ; ~iii ! b
51/a⇔$fa52p2fb ,ua5p2ub% and then the two
points are mutual antipodes. A fourth case,~iv!, arises from
cosfa5sinub , cosfb5sinfa . At any rate, ifdx50 but dy
is of classical magnitude we may drop all terms of ordert3 in
the coherence norm and getNab(t)5u^e2 idyBVt2/2\&u2

5e2(t/tdec
y )4

with a decoherence time much larger thantdec
x ,

tdec
y 5~dy

2V2^B2&/4\2!21/4

5@ 1
4 j 2V2^B2&~sinfa sinua2sinfb sinub!2#21/4,

~7.13!

in analogy withtdec
P of Eq. ~4.1!. Such ‘‘protection of coher-

ence by symmetry’’ has been discussed previously in R
@25#, in the context of golden-rule-type decoherence.

Specific to the angular-momentum algebra is the poss
ity that bothdx anddy vanish butdzÞ0; this actually hap-
pens in case~i! above as well as in the subcase cos(fa
6ua)50 of case~iv!. We then get the coherence norm, af
doing a slightly different Gaussian integral, asNab(t)

5u^e(2 idzB
2t3/12\)&u25e2(t/tdec

z )6
; the pertinent time scale is

tdec
z 5~dz

2V2^B2&2/36\2!21/6

5@ 1
36 j 2V2^B2&2~cosua2cosub!2#21/6. ~7.14!

We refrain from a detailed discussion of the various tran
tional regimes that may arise whendx anddy are not strictly
zero but of subclassical magnitude, a discussion that wo
proceed much in analogy to the one in Sec. IV.

We would like to emphasize that the decoherence tim
tdec

x,y,z all obey the power law~1.1!, with 1/j as a dimension-
less representative of Planck’s constant; the exponents
to order the decoherence times in magnitude astdec

x !tdec
y

!tdec
z ; that ordering expresses decreasing power of the c

pling agentJx in decohering the respective superpositio
As usual, the coupling agent is most effective with respec
superpositions of states it ‘‘sees’’ as distinct in terms of
respective mean values; next come superpositions of s
02210
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distinct by the mean values ofJy since the free motion gen
erated byHsys5VJz rotatesJx into Jy ; finally, superposi-
tions of states distinguished only byJz undergo slowest de
coherence sinceJz enters the short-time expansion of th
propagator„exp@2i*0

t dt8Hint( t̃8)/\#…1 only in the third-order
term t3, due to the commutator@Jx ,Jy#5 i\Jz .

The partial immunity to decoherence of superpositions
angular-momentum coherent states expressed in the ord
just discussed may be broken by reducing the symmetry
the dynamics. One way of achieving that is to generalize
free motion asHsys5VzJz1VyJy ; another is to allow for
more reservoirs@9#, e.g., according toH int5JxBx1JzBz .

Clearly, a larger set of observables like the generators
say, SU(n) with n53,4, . . . would give rise to a yet richer
decoherence scenario ifHsys andH int both linearly involved
different such generators.

VIII. CONCLUSIONS AND PERSPECTIVES

Quantum superpositions are fragile objects with respec
almost all environmental influences. In quantum mechan
‘‘openness’’ of a system is a more involved concept than
classical mechanics. Although good isolation from the en
ronment may allow damping to be hardly noticeable
quantities with a classical limit, coherences in a quant
system may be subjected to rapid decay. The underlying t
scale separation betweentdec and tdiss becomes ever more
drastic as the distance between the superposed states g
The decoherence time scale is shortened by a factor inv
ing the distance, measured in units of a quantum refere
‘‘length’’ and thus enormously big when it comes to meso
copic or even macroscopic scales. For more and more m
roscopic superpositions, the decoherence time scale eve
ally becomes the smallest time scale involved. It follows th
standard approaches to open-system dynamics, base
golden-rule-type assumptions fail to describe the rapid de
of such superpositions.

We have shown that a short-time expansion of the lo
rithm of the interaction propagator is the appropriate a
proach to decoherence in the limit of macroscopic super
sitions. Remarkably, decoherence dynamics in this limit
largely independent of the nature of the system and the b
No classical forces will have time to exert their influence
the very short decoherence time scale.

A remark about the use of a factorized initial condition
in order: Our results ignore the problem of how to actua
create macroscopic superpositions. We assume they
given and determine the ensuing dynamics. Clearly, un
laboratory conditions, it will take a certain time to prepa
such an initial state, time enough for decoherence to poss
be effective. Initial system-environment correlations are th
an important ingredient for the discussion of the decay
macroscopic superpositions, a problem that will be addres
in future work.

How far the creation of superpositions can be stretche
the macroscopic is a question of central importance not o
for quantum foundations but also for engineering in the fie
of quantum information. Our results suggest that for the
fascinating developments, environmental effects need to
1-11
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described with new theoretical input. Well established me
ods of open-system dynamics, historically developed with
eye to near-equilibrium behavior become questionable
the nonequilibrium dynamics of coherent phenomena
may well turn out to be too limited to meet the quantu
challenges of the future.
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APPENDIX: SHORT-TIME EXPANSION

To derive the expansions~3.8! and~7.6! of the interaction-
picture propagator we start with expanding the interact
Hamiltonian~3.7!,

H̃ int~ t !5H01H1t1H2t2/21O~ t3!. ~A1!

Separating the time-independent termH0 we write the
propagator

Ũ~ t !5expS 2 i E
0

t

dt8H̃ int~ t8!/\ D 5e2 iH 0t/\U1~ t !,

U1~ t !5S expF2 i E
0

t

dt8H1~ t8!/\G D
1

,

H1~ t !5eiH 0t/\@H1t1H2t2/21O~ t3!#e2 iH 0t/\

5H1t1
i

\
@H0 ,H1#t21H2t2/21O~ t3!. ~A2!
n
ca

er

.
et
e,

.
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Next, we split off the leading termH1t in H1(t),

U1~ t !5e2 iH 1t2/2\U2~ t !,

U2~ t !5S expF2 i E
0

t

dt8H2~ t8!/\G D
1

,

~A3!

H2~ t !5eiH 1t2/2\F S 2i

\
@H0 ,H1#1H2D t2/2Ge2 iH 1t2/2\

5S 2i

\
@H0 ,H1#1H2D t2/21O~ t3!,

⇒U2~ t !5e2 i (2i [H0 ,H1]/\1H2)t3/61O(t4).

When finally merging the three unitary facto
e2 iH 0t/\U1(t)U2(t) into a single exponential we encounter
correction of thet3 term due to

e2 iH 0t/\e2 iH 1t2/2\5e„2( i /2\)$H0t1H1t22( i /4\)[H0 ,H1] t31O(t4)%…,
~A4!

whereupon we get

Ũ~ t !5e„2( i /\)$H0t1H1t2/21(2H21( i /\)[H0 ,H1]) t3/121O(t4)%….
~A5!

The foregoing general identity yields Eq.~3.8!, since the
interaction Hamiltonian~3.7! implies H05QB and H1

5M 21PB1QḂ. For the angular-momentum case w
needed the third-order term in lnŨ(t) to reveal the quantum
acceleration of decoherence for the most obstinate supe
sitions of coherent states.
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