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Universality of decoherence for macroscopic quantum superpositions
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We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which
that process is much faster than any competing one generated by the Hamitigpjahthe isolated system.
This interaction-dominated decoherence limit is of importance for the emergence of classical behavior in the
macroscopic domain, since it will always be the relevant regime for large enough separations between the
superposed wave packets. The usual golden-rule treatment then does not apply, but we can employ a short-time
expansion for the free motion while keeping the interactityy in full. We thus reveal decoherence as a
universal short-time phenomenon largely independent of the character of the system as well as the bath and of
the basis the superimposed states are taken from. Simple analytical expressions for the decoherence time scales
are obtained in the limit in which decoherence is even faster than any time scale emerging from the reservoir
HamiltonianH .
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I. INTRODUCTION tor p(t) starts out as the projectei(0)=|)(| and then, for
suitable coupling to the environmetgee beloy, decoheres
to the mixture [c;|%@1)(pa|+|col?l@2)(@a|, with the
Interferences from quantum superpositions of wave packweights|c;|? still as in the initial superposition, on a time
ets representing, say, the translational motion of a body, bescalery..while the subsequent relaxation of that mixture has
come more and more difficult to observe as the body bea much longer characteristic timg,,. The smallness of the
comes more massive and the superposed states are matktoherence timey.. is manifest in its proportionality to a
more distinct. Eventually, when the separation of wave packpower of Planck’s constant and inverse proportionality to a
ets is increased towards macroscopic magnitfteswhich ~ power of the “distance’d between the superposed packets,
latter case we shall speak of “macroscopic superpositipns”
classical behavior, i.e., loss of the ability to interfere, h# ith
emerges. Somehow, along the way from microscopic to mac- Tdec™ v with  ,v=>0. (1.9
roscopic superpositions, the quantum capability of a particle
to show up “here” and “there” simultaneously escapes de-
tectability. We may interpret that power law as assigning a quantum
Two reasons are known for the elusiveness of macroscale of reference:*/” to the distancel such that the de-
scopic superpositions. One of these even has a classical wageherence timery.. becomes vanishingly small whehas-
analog. To explain it, let us imagine a plane wave wile =~ sumes classical magnitude. On the other hand, the character-
Broglie or classicalwavelength\ traversing a spatial struc- istic times for temporal changes of probabilities or other
ture of linear dimensiom which splits the wave into partial observables capable of a well defined classical limit remain
ones. The parametard then determines the resolvability of finite in the formal limitZ—0. As a consequence, a given
interference effects. For instance, in a double-slit experimengnvironment may have so weak an influence that probability
an incoming plane wave gives rise to an outgoing interferrelaxation is hard to follow because afiss being very large,
ence pattern of angular apertuxéd. The latter angle be- while giving rise to unresolvably small lifetimes.. to co-
comes exceedingly small when is the de Broglie wave- herences between sufficiently far apart wave packets.
length of a macroscopic body. A variety of experimental studies of decoherence have
The second reason for the notorious absence of quantulreen undertake8—7], all of them involving weakly coupled
superpositions from the macroscopic domain, called environenvironments(“reservoirs” or “heat baths’) and wave-
ment induced decoherengg,2], is of dissipative origin and packet separations of but modest magnitudes: the accelera-
is the one of concern to us here. Decoherence is, for micraion of decoherence over dissipation was not at all extreme,
scopic bodies, just a facet of dissipation caused by interadghe time scale ratiorge/ 74iss NOt €ven down to 107 yet.
tions with many-freedom surroundings. However, if two suf-Moreover, dissipation was sufficiently weak in all these ex-
ficiently distinct wave packetbp,),|¢,) are brought to an periments for the decoherence time to exceed the time scales
initial superposition)=cy|¢1)+C,|@,), the density opera- 75, characteristic of the free motion of the system isolated

A. Environment induced decoherence
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from the environment. In that limit, a lot of free motion takes i.e., decoherence is fast even on environmental time scales.
place during decoherence, and therefore the latter process that case, simple expressions of universal character, inde-
becomes rather system specific in its characteristics. A unpendent of the details of environmental dynamics, are ob-
fied treatment can, however, be based on the very fact thained.
the environmental influence is weak and thus allows for per- As soon as we drop limif1.4) yet retain limit(1.3), we
turbative treatment by the golden rule. find more complicated decoherence dynamics, the temporal
To illustrate decoherence in the golden-rule limifs;  decay now being governed by the details of the time evolu-
< T4e< Tgiss» ONE Often considers a harmonic oscillator of tion of environmental correlations.
massM and frequency) and a bath in thermal equilibrium. It would be highly desirable to experimentally observe the
If the interaction Hamiltonian is the product of two coupling crossover from the golden-rule limit to the interaction-
agents, one for the syste(@) and the other for the battBy, dominated limit(1.3), and further to the extreme limit where
i.e., Hin=QB, and if two superposed wave packets are dis-both limits(1.3) and(1.4) are satisfied. As already mentioned
tinguished by the coupling agef in terms of the distance above, the experiments done thus far pertain to the golden-
d=]01— 02| = |{1|Q| 1) —(®2| Q| )|, the golden rule is rule limit where the separation exponentakes on the value
easily seen to yield the decoherence and dissipation times,2. We shall present some discussion of the crossover condi-
tion in Paper Il of this serief8]. A quantitative treatment of
1 (q-ap? (= /1 that crossover itself will havé@) to be nonperturbativ(dikg
= #I dt<—{~B(t),B}> cosQt, ours and in contrast to the golden ruénd (i) have to avoid
e h? o \2 even the short-time approximation with respect to free mo-
tion whose simplicity we will take profit of in the present
. . paper. In Paper Il of this seri¢8], we treat the crossover in
if dt<|—[§(t) B]> sinOt (1.2) guestion for an exactly solvable model where both the sys-
MQJo " \% ' ’ tem and the bath consist of harmonic oscillators.
The above remark about interaction-dominated decoher-
whereB(t) =e"red/"Be~Hred/ refers to free time evolution €nce showing greater universality than its golden-rule coun-

of the bath; note that the dissipation time involves the reiérpart deserves some qualification. If both limiis3) and
sponse functior((i/ﬁ)[ﬁ(t),B]) and the decoherence time (1.4) are satisfied, of the three parts of the Hamiltonian of the

e . . ~ . composite systemH =Hg st H, s+ Hiy, the generators of
the equilibrium correlation function(3{B(t),B}), with g motion,HsysandHre:yglayrtefuta?ninor role in compari-

{-,-} and[-,-] denoting anticommutator and commutator, son, tg the interaction paH,, . As a consequence, it is not of
respectively, and - - -) thermal equilibrium average. Inter- ., ,ch importance whether the “body” under study is an os-
estingly, the golden-rule decoherence time obeys the poW&fjjator, a large angular momentum or some other few-
law (1.1), while the dissipation time is independent of feeqoms system. All we require is the possibility of super-
Planck’s constant and of the distante _ posing wave packets with large separatioms large in
our p”nc'pa_l goal in the present paper is to contrast th&elation to microscopic quantum scales. Similarly, it does not
golden-rule limit 75s< 74e¢< 7qiss With the opposite case i matter whether the reservoir is composed of harmonic oscil-

1

GR
Tdiss

which decoherence is the fastest process by far, lators (such as modes of electromagnetic or elastic waves
atoms or other entities; what counts is that the reservoir has
Tdec< Tsys: Tdiss» (1.3 many degrees of freedom effective M., i.e., for Hiy

=QB in its coupling agenB; we shall assumBinN:lBi
irrespective of the relative size ofg,s and 7giss. That  with N, the number of reservoir freedoms, large.
interaction-dominated limiprevails for sufficiently far apart It is appropriate to admit that in one other respect the
wave packets and, in particular, for the decoherence of trulynteraction-dominated limit is no more but rather even a bit
macroscopic superpositions; it may, therefore, be seen as rgkss universal than the golden-rule one. Obviously, the sys-
evant for the emergence of classical behavior in the macrogm coupling agenf in H;,=QB is distinguished over
scopic world and for the difficulties in experimentally push- gther system observables not showing up in the interaction.
ing quantum coherent_ dynamics into _the Macroscopiqzs we shall see, the coupling age@tis most effective in
domain. Moreover, the limif1.3) must assign much more gecohering superpositions of wave packets with large sepa-
univergal propertie; to de'cohgrence since it allows no Ofations |{¢1|Q|¢1) — (@2 Q|@,)| and considerably less ef-
“very little” free motion during times of the orderge.. We  factive if the distinction of the packets is one with respect to
shall, in fact, see that the interaction-dominated lifdit3) some other observabl not commuting with the coupling
yields decoherence times independent of the f6(®) that  agentQ. In fact, packets far apart i® will turn out to de-
may act on the isolated body. The decoherence times to hgyhere with a Gaussian decay of suitable indicators, like
met with will involve different exponentg, v in expression exfd —(/79,)2], and that decay is captured already in zeroth

(1.1) than the golden-rule onegx of Eq. (1.2). order in Hget Hyes; in that zeroth order, however, wave
_ Foramajor part of the paper we not only base our analypackets distinguished by but not by Q would appear as
sis on limit (1.3), but furthermore assume retaining their relative coherence. Such latter packets are in
fact also decohered bM;,,=QB, but in general in a non-
Tdec< Tres: (1.4  Gaussian manner, like exp(t/74e9"] with n>2 and a de-
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coherence timege. which differs fromr3,. in the exponents and a macroscopic pointer involves superpositions of macro-
w,v but still is of quantum character due o> 0; to capture ~ scopically distinct pointer states, Haake anak@wski[18]

that latter decoherence, a “little bit” of free motion must be have employed the oscillator model and its exact solution to
accounted for in a systematic manner, as will be explained ilmrgue that the superposition in question decoheres in the
Sec. Ill below. On the other hand, decoherence fully symdimit 74.:<75,. More recently, discussing decoherence dur-
metric inQ andP would result from an interaction involving ing a measurement process, the importance of that early-time
both of these observables as coupling agents towards diffelimit has also been realized by Mozyrsky and Privman; in a
ent reservoirsH; ;= QB;+ PB,, as described in Sec. V and later preprint Privman applies their approach to spin deco-
previously pointed out in a first report on this projé@f. herencg19].

The decay in terms of exponentials of powgrgust men- We emphasize that our results apply to decoherence of a
tioned arises when decoherence outruns both dissipation affiglly coherent initial superposition of two macroscopically
the decay of bath correlations, i.e., when both lin{its3) distinct states, and thus to an initial product of a pure system
and(1.4) are satisfied. When only dissipation is cut short butand arbitrary environment state. The only restriction on the
bath correlation decay remains effective, such that l{ini3) latter is the applicability of the central limit theorem for an
is respected but not limitl.4), the qualitative picture of the additive quantity comprising many degrees of freedom of the
above discussion does not change, yet the precise tempomhvironment(see Sec. Ill for detai)s
course of decoherence involves the full time dependence of The influence of initial correlations between system and
the bath correlation function and can no longer be written agnvironment on decoherence was investigated by Romero
an exponential of a power of tin{®]; Sec. VI of the present and PaZz16] using preparation function techniques and the
paper is devoted to that case. harmonic-oscillator model. Their results indicate that such

In Sec. VII, we treat decoherence of superpositions ofcorrelations may lead to a different temporal decay of the
angular-momentum coherent states, with one compodgnt, then less pronounced initial coherence. The second part of
of an angular momenturhacting as coupling agent. In anal- their work is devoted to a preparation resulting from a pro-
ogy to our findings for superpositions of states distinguishedection onto a pure superposition of distinct system states.
by P and Q, we shall be led to most rapid decoherence forThat choice leads to a factorized state of system and envi-
pairs of states with differing mean values of the couplingfonment, as in our work. Romero and Paz choose, however,
agent and slowest decoherence for pairs of states with coifilot to investigate the corresponding early-time regime which
ciding mean values for all system observables coupled to thBécomes relevant for more and more macroscopic initial dis-

coupling agent by the evolution generatedHbys; “rapid” tance petween th(_a superposed states. The simplicity of this
and “slow” will again be quantified by the exponenis v in early-time regime is exploited here to liberate the discussion
the power law(1.1). from oscillator models and thus demonstrate a large degree

of universality of decoherence.
_ In a series of papers, Ford, Lewis, and O’'ConrtELLO)
B. Related literature [17,20 also emphasize that the presence of initial correla-
Some words about related literature are in order. Interactions and deviations from a fully coherent initial system state
tion dominance is often invoked in studies of the measuremay lead to a different time scale governing the open-system
ment procesgsee, for instance, von Neumaft0]), where  dynamics. In Ref[20], they argue that two wave packets of
the coupling of the system to a pointer degree of freedom igvidths o and separatiom in Q space experience the time
the most relevant part for the dynamics, dfg|sis simply  scalerg o= a?/dv, wherev = kg T/m is a thermal velocity
neglected. The short-time limit of decoherence has been inwith ma typical mass; they point out that the latter time may
vestigated very early by Joos and Zeh who expand an erbe short compared to the golden-rule prediction for the de-
tanglement measure based on a Schmidt decomposition tbherence time and thus also question the golden-rule ap-
powers of the elapsed tinjé1] (see also the earlier work by proach to decoherence for more and more macroscopic Ssu-
Kubler and ZeH12]). Moreover, there are a number of ar- perpositions. In contrast to R420], and in line with recent
ticles on decoherence in the exactly solvable model of a hadecoherence experimerf$-5], however, we do not assume
monic oscillator coupled to a reservoir itself consisting ofthat the initial system state had time to equilibrate at the
harmonic oscillator§13—17. Decoherence dynamics may environmental temperaturé We assume that the coherent
then be studied on all time scales, as in Paper Il of this serieigitial state is created quasiinstantaneously, possibly
[8], including very early timeg§15-17. In none of these achieved by a projection onto a pure system state, as inves-
earlier works based on the oscillator model particular attentigated in the second part of Rdfl6]. The success of a
tion was paid to the investigation of decoherence in the limitmatter interferometric experiment as in Vien#d, strongly
of a more and more macroscopic initial separation of thedepends on that possibility to carefully velocity select the
superposed states, on which we focus here. As we will shovigeam. No interference fringes could be observed if one were
this limit is of astonishing simplicity, allowing us to reveal to use a thermal beam of buckyballs. Thus, we do not en-
decoherence to be largely independent of the detailed natumunter the time scaler, o in our analysis, yet nevertheless,
of the isolated system and bath dynamics and to obtaimve confirm that the speed of decoherence invalidates the
simple analytical expressions for the decoherence time scalgolden-rule approach rather easfsee also Paper Il of this
In a discussion of the quantum measurement processeries[8]). Interestingly, 7¢ o is independent of Planck’s
where an entangled state of a microscopic quantum systeoonstant as well as of the strength of any interackign. In
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fact, as Ford, Lewis, and O’Connell show in RE20], the " '
“attenuation factor” introduced by them as a measure of the
fate of coherence may decay on the time seq|g under the
unitary evolution of the isolated system. This is provided the |q1- q2I
initial system density operator has already experienced ¢ |
bath at temperatur€, such that in position representation it
has significant entries only along a diagonal band with a
width of the order of a thermal de Broglie wavelength. Thus,
the temporal behavior of the attenuation factor of Ford,
Lewis, and O’Connell is markedly different from the evolu-
tion of standard measures employed to stedyironment \/E \/E
induceddecoherence, based on entropy or purity of the sys-
tem statg 1,2]: these latter quantities remain constant under
unitary time evolution, as does our measure for coherence ! ,
the Hilbert-Schmidt norm of the off-diagonal part of the den- q, position q,
sity operator(see Sec. )l which is closely related to purity.

This qualitatively different behavior of the attenuation factor FIG. 1. Position-space density(q)|? for a coherent superpo-

of Ford, Lewis and O’Connell and our standard measure fosition of two Gaussian wave packets as envisaged in this paper. The
environment induced decoherence also explains why there tistance between the packets is assumed much larger than their
no agreement between these results even in those limitingdividual spread.

cases where it might be naively expected.

Finally, in a very recent preprint, Luf21] takes up initial with i =1,2. Needless to say;(q) and :(p) are Fourier

system-environment. correla'tions as W‘?”- I_n particular, I‘Utztransforms of one another. These packets are located in po-
allows for a composite density matrix differing from the one _. . . ! _ .
sition space at}; with (rms) uncertaintyAq= /o and in

for overall thermal equilibrium by a factor corresponding to . ! ' )
a superposition of two wave packets for the system. As omentum space g with uncertainty Ap=f/ 2\; the
gincertainty productAqAp=%/2 is the minimum one al-

result of such correlations, different early-time courses o 4 by th tainty princiole- t0 ch
decoherence when the system is a free and a harmonical| wed Dy the uncertainty principle, were we ,0 chooses a
bound particle are found in the Ford-Lewis-O’Connell at- assical quantity independent of Planck's constant, we
tenuation factor; at the same time, it is stated clearly tha\"’Ould coniront two extremely sqgeezed states W'th. t.he mo-
mentum much more sharply defined than the position; we

such a “nonuniversal” decay only concerns thermally al- i I . h ic situationcs. wh
lowed coherences, which do not extend beyond the thermd)!!l actually envisage the symmetric situatior<7, where

()2

de Broglie wavelength. bothAq andAp arex\%, like for coherent state22]. To
ensure good separation, we stipulate that eithegr<|q;
Il. SUPERPOSITIONS OF DISTINCT WAVE PACKETS —da| or Ap<<|p;—py| or both(see Fig. 1 Actually, inas-

much as we are interested in “macroscopic superpositions,”
We consider a single-freedom system for which the coorwe may assume at least one of the two distanfmps
dinateQ and momentuni obey the canonical commutation —q,|,|p;—p,| of classical magnitude, i.e., independent of
rule h.
Our choice of Gaussian packets is a matter of conve-
f nience; it will allow us to evaluate all subsequently encoun-
[P.Q]=~. (2.)  tered integrals analytically. The universal decoherence laws
to be established rest on sufficient separation of the two
The initial states we shall have to deal with are pure states ddackets, however, rather than on their specific form or their
the form of superpositions of two separate wave packets, minimum-uncertainty property.
The initial density operator corresponding to the state

y=cilen) +eal @), [eg|?+ (e /?=1. (2.2  (2.2)is a sum of four terms,

We may specify the individual packets in either the position

or momentum representation and choose, for the sake of con- 2 .
venience, the Gaussians Psys(o):iJZl Cin|@i><¢j|:iZj cicf pgyd0), (2.4
1 )
(alei)=ei(q)= 2—)1,49'pi(qfqi)/hef(qfqi)zmay two “diagonal” ones weighted by probabilitigs;|? and two
(2w off-diagonal  “interference  terms” pi(0)=|e1){e,|
o8 =p5,{0)" weighted by the “coherencest;c} andcj c,.
<p|¢,i>:;i(p): (2mo) e iPa; /ﬁe—a-(p—pi)zlhz' Inasmuc_h as quantum-mechanical time evolut|qn is repre-
(mh)Y? sented by linear operators each of the four terms in(Ed)

(2.3 has its own temporal successqx:}* pisjys(t). To show that
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interaction with an environment tends to destroy the interfer- e Ul = g i(Hsyst Hred Ui {j (1) = Uo(t)U(t)
ence terms before the diagonal terms change noticeably, we ’
~ t ~
U(t)=<exr{—iJ dt'Hi(t")/% ) ,
0
n

shall employ the norms
Nij(t):TrsySpisjys(t)Pisjys(t)T- (2.9 (3.5

. . . . Hin(t)=Ug(O HinUo(H) =Q(1)B(Y),
Clearly, if the system in question were isolated, these norms n 0 ne=o
would all remain time independerit;; (t) =1, since the uni- where (. - -), demands time ordering of the operator product
tary time evolution operators,{t)=e~""s¢/" would can-  (...). The norms in question thus read
cel under the trace operation. The time scale separation we

are after arises only QUe t(_) 'Fhe interaction with an en\(iron- Nij(t):TrSyJ)st(t)zjsiys(t)a
ment, and then only if the initial wave packets are suffi- (3.6)
ciently distinct. ~ii ~ o ~ :
Y LA =Tl (0p140)ped 0T (V).
IIl. INTERACTION-DOMINATED DECOHERENCE We are interested in the limiting case where decoherence,

o . ) i.e., the decay oNy,(t) is faster than any process arising in

a reservoir with many degrees of freedom and deal with &onsistently confirm this limit as relevant for large enough

Hamiltonian of the structure separationgwith respect to position, or momentum, or bpth
between the wave packets. The short-time behavior thus
H=Hgyst Hest Hint.- (3.1 aimed at allows to approximate the interaction-picture evo-

lution operatorU(t) by expanding its logarithm as a power

We need not specify the Hamiltonidiy.s governing the free series in the timé. To find that expansion we start with the
motion of the environment; the Hamiltonian of the isolatedintéraction-picture Hamiltonian

single-freedom system is taken as the usual sum of a kinetic - . ) )

and a potential termt s, = P?/2M +V(Q); for the interac- QB(H)=(Q+M™"Pt=V'(Q)t*/2M +- - -)

tion Hamiltonian, however, we do assume a slightly restric- e

tive form involving only one of the two system observables, X (B+Bt+BtY2+- - ), 3.7

sayQ, as a coupling agent, . Lo . . .
yQ ping &g whereB = (i/#)[H,eB],B=(i/%)[H,ee,B]. Notice that this

short-time expansion is meaningful only if both conditions
Hine=QB, (3.2 (1.3 and(1.4) are satisfied. We shall drop the latter condition

in Sec. VI where we keep the full time dependencé(f).
with B some reservoir coupling agent which should involve A simple sequence of unitary transformations, described
all degrees of freedom of the reservoir in a way to be comin the Appendix, brings about the desired expansion as
mented on below. .
The simplest initial state to deal with has our single- G(t):e*(i/ﬁ){Q(Bt+Bt2/2)+PBtZ/ZM+-~-}, (3.9
freedom system prepared so as to be statistically independent
from the reservoir; the initial joint density operator then where the dots refer to cubic and higher-order terms in

takes the form of a product particular, the force-V’(Q) enters IrJ(t) only in ordert®.
We intend to evaluate the traceg[Lrin the Q representa-
p(0)=peyd 0)pred 0) 3.3 fion, whereQ|q)=q|qg) and, with an arbitrary state vector

[y, (ylPlay=ihaloq(ylay, (alPly)=—ihdloq(q|y).

. . - - We thus have
with pg,srepresenting the superposition of two distinct wave

packets as described in the preceding section. The initial den- ij "_ ij /
sity operator of the reservoir could but need not be the ther- (alpsydvla")=Do(t)(dlp5,{0la’) 39
mal equilibrium state with respect td s our precise de- \ith the decoherence factor
mand onp,.{0) will be given presently.
The reduced system density operator originating from any Do(t) =<e7(i/ﬁ)(qfq’)(Bt+ Btz/Z)f(&/ﬂq+ﬁ/&q’)Bt2/2M>;

one of the four term$;';y40) can now be written as (3.10
T Nt ] HU the angular brackets in the last member of the foregoing
Psyd ) =Treg Psyd 0)pred 0) €. (3.4 equation denote an average with respect to the initial state of
the reservoir.
In view of our intention to evaluate the normi; (t) defined At this point we need to specify the previously announced
in Eq. (2.5, it is advantageous to pass to the interactionstructure of the reservoir coupling agentadditively com-
picture and write the time evolution operator as prising a large numbeN of degrees of freedom,
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N The second and third exponentials in the foregoing quantity
Bzz B;. (3.1 Dé(t) are integral operators acting on the subsequent
= functions of the center-of-mass variablea as,
Moreover, we require the reservoir initial statgsto involve  respectively, etf (q)=f(q+A) and et (q)

those many degrees of freedom with sufficiently weak corre—:fdx(4777)—1lze(q—x)2/4rf(x), i.e., like shift and diffusion.
lations for the central limit theorem to hold fqr the statistical of course, apart from the change of variables just indicated
behavior of B as well as its time derivativ. To avoid Dé(t) is nothing but the square @fo(t) given in Eq.(3.12.
unnecessarily voluminous expressions in the sequel we alstfter inserting the initial state$2.3) and doing the three
stipulate vanishing initial means of these observabl®,  Gaussian integrals over,k,x we finally obtain the “coher-
=(B)=0. The exponentB=—(i/f)(q—q')(Bt+Bt?/2)  ence norm’Nyt) in its dependence on the tinteand the
—(9l9q+al9q")Bt3/2M in the reservoir expectation value separations|; — g, andp; — p, of the two wave packets i@

in Eq.(3.10 is thus assigned Gaussian statistics according tgpace and space,

(eB)=eW2(B%)  The decoherence factdB.10 then takes

the form Nio(t)={1+40(B2)t?/#2+O(t*)} 12
Do(t) = e—(q—q’)2<(Bt+ Bt2/2)2)/212 X exp{ — (qy— q2)2<82>t2/ﬁ2}
 @i(a=a")(3l9q+93q")((Bt+Bt2/2)Bt)/2M# X exp{— (g1~ 02) (p1— P2)(B?)t3/M#A 2}
X e\alda+alaq’ Y (B2 1em>, (3.12 X exp{— (p1— Pp2) % B3)t*/4M 242}
=P(t)EQ)EP(H)EP(1). (3.195

it may be worth noting that we could write three separate

exponentials, since the relative displacement and the center- ) o

of-mass momentum commutdg—q’,d/dq+alaq’]=0 For typographical reasons we have not indicated the correc-
! ’ i +1 i ;

We shall save a lot of space and gain better transparency BiPns <t"" * to the leading-order termts! in the three expo-

retaining, in each of the three exponentialsDgy(t), only nentials; they are independent of the separatipnsq, and

the respective leading-order terms in the titmét will be-  P1—P2; neither do these separations enter the prefactor

come clear further below that nothing of relevance for the/(1)- .

final result is thus lost. A similar calculation in tte basis We have thus established one of the central results of the

yields present paper and proceed to a critical appreciation.

i T\ — ij ’
<p|psy5(t)|p ) Dp(t)<p|psy5(0)|p ) IV. DISCUSSION OF INTERACTION-DOMINATED

(3.13 DECOHERENCE
D (t):e(a/ap+a/ap/)2<52>t2/2ei(p—p/)(a/ap+a/ap’)<52>t3/2Mﬁ
P A. Decoherence time scales
(n_n'\2/R2\+4 252
X @~ (PP BYTIBMAT, If the two wave packets in our superposition differ both in
i ) ) their center positions and momenta, the three exponentials in
Note that now we have retsamed o.nly tEt?) term inthe  the coherence normi;,(t) have the decay times
first exponential and th®(t°) term in the second exponen-

tial. A
The asymmetry betwee@ andP in the matrix elements Thec™ T =
(3.9, (3.12, and (3.13 arises from the distinction of the 91— 02| V(B%)
coordinateQ as the system coupling agent in the interaction
(3.2. By their asymmetric appearance these matrix elements M#%2 3
already suggest different temporal courses of decoherence TdQe’f;( > ) , (4.
for superpositions of wave packets macroscopically distin- (91— 02) (P2 = P2)[(B?)

guished inQ and inP; that difference will become yet easier

to discern once we have evaluated the nof®§). Upon AM 27,2 va
there inserting the matrix element3.9),(3.12, integrating Tgec: o
by parts, and changing integration variables to relative and (P1—P2)%(B?)

center-of-mass coordinate d@q—q’,a=%(q+q’), and

a/aa: olaq-+alag’ =9 we get All three of these decoherence times are quantum in char-

acter and tend to vanish in the formal classical lifit:0.

— = — ) They may be considered ordered in their magnitudes by the
Nij :f dadkei’ (a+k/2)¢;(q—k/2)Dg(t) respective powers of Planck’s constai#3] 7%, 75,
_ L «h 2B h. =h'2 The distancedq,—q,| and |p,—p,| be-

X @i(q+ki2) ¢ (q—k/2), tween the two wave packets appear as referred to quantum

(3.149 scales and in those units tend to take on huge values if me-

2 (1 — o= KABAOK2 LIk (B3 IMA 102(B2)t44M2 . . oS
Da(t)=e (BOIA" kB e” (8% . soscopic or even macroscopic. At any rate, it is the smallness
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of the decoherence times for which macroscopic superposiHamiltonian Heyst Hres is not operative through the full
tions would have little chance to be detectable even if prepacycle of any free oscillation in either the single-freedom sys-
rable. tem or the reservoir, the character of such oscillations re-

Which of the three exponentials wins out in governing themains irrelevant for decoherence as a short-time phenom-
decoherence of macroscopically distinct packets depends ashon. It does not matter whether the single-freedom system
the distancesq;—q,| and |p;—p,|; obviously, different s a harmonic or anharmonic oscillator since, as already
cases arise, and these will be dealt with individually below.stressed before, the forceV’(Q) gets no chance to act;

It may be worth noting that the powers of Planck’s con-likewise, whether the bath consists of oscillatgssich as
stant as well as those of the distances differ from the onegittice vibrations, electromagnetic or gravitational wayes

more familiar from the golden-rule resutt.2). two-level atoms, or other elementary units is immaterial.
The insensitivity of interaction-dominated decoherence to
B. Universality and limits of validity the character of the oscillations generatedHays+ H s also

implies ignorance of whether the reservoir will, at larger
Inasmuch as our result for the decay of coherence be- . ;

i -times, impose underdamped or overdamped motion to the
tween the superposed wave packets is based on a short-time

expansion of thélogarithm of the time evolution operator sihgle-freedom system.

U(t), [cf. Egs. (3.5 and (3.9], we have to emphasize its
limit of validity. To appreciate that limit we must realize that
it is the free motion of the single-freedom system and the If the center positionsy;,q, of the superposed wave
reservoir which was treated as nearly ineffective during thepackets are classically distinct the decay of the interference
decoherence, while the interactith,, was kept in full; in termpéis(t) is governed by the first of the three exponentials,
particular, the first exponentigl®(t) in the coherence norm SQ(t):exp[—(UrdQegz], in the normN,,(t). We then en-
(3.19 can immediately be checked to arise from entirelycounter a Gaussian falloff on the time scafg,. The second
neglecting Hgy s+ Hos in EQ. (3.5 and thus takingU(t) and third exponentials are ftrivially ineffective f@r,=py;

=e Hint/h = g~1QBUA " ghoyldering the burden of th@(t?)  but even forlp;—p,| #0 and independent df they may be
terms in Eq. (3.8), which bring in Q:(i/ﬁ)[HsyS,Q] consider%d as pLacticaIIy constant in time since their life-
=P/M,B=(i/#)[H,esB] is necessary only in the casg ~ UMeS ngec"‘ﬁZ/g’.Tdec“ﬁl/2 are much larger t.ha”TdQec“ﬁ_-
=q,; note again that the potential eneryQ) is barred Equally me_ﬁe_cnve are the corrections of th|rd _and higher
from entering at all, to the order inaccepted. It follows that Order int within that first exponential, in our limit of large
our result(3.15) for the coherence norm is valid only in the distancesd;—dp|. This is because the whole exponent in
limit when the decoherence timégd.1) are much smaller £9(t) depends on the distance only through the common
than any of the time scales characteristic of the free motionfctor (@1 —d2)? the leadingt® term thus defines a scaling

C. Wave packets distinguished by the coupling ager®

of the single-freedom system as well as the reservoir, variable 7=t|q,— | such that higher-order corrections in-
volve t"=7"|q,—q,|" 2. For sufficiently large distances
Tdec< Tsys: Tres- (4.2 |g;—qs,|, the higher-order corrections would come into ef-

fect only for timest at which the leading Gaussian has al-
Just for the sake of illustration, if the single-freedom systenmready suppressed the coherence norm to rather uninterest-
were an oscillator, the relevant system time scale would béngly small values. For the same reason the prefa®(d},
the basic period of oscillation, while for the reservoir thewhich arises from the Gaussian integrals, cannot noticeably
shortest time scale is either the inverse of the highest fredeviate from its initial value unity during the lifetime of the
quency provided by the environmental degrees of freedom deading exponential.
the thermal time#i/kT. In Sec. VI, we discuss the more

general regime where no assumption is made about the relgy. wave packets distinguished by the conjugate momentur®

tive size of 74ec and 7ygs- . . N . hen, — d
The self-consistency conditio@.2) is fulfilled for suffi- An interesting situation arises whey=d, and |p; ,
p,| is of classical magnitude, i.e., independent of Planck’s

ciently large distances between the superposed wave packets; X ) L
it is hard, probably impossible, to violate for truly macro- constant, since then the first and second exponentials in the

scopic superpositions and that fact may be seen as the reas%ﬂqerer}ce norm- remain equal to unity at gll times.
for the absence of quantum interferences from the macrghteraction-dominated decoherence is t?us described by the
scopic world. We hasten to add that the condition is nothird exponentialN,,(t)=£E"(t)=e~("sed". Due to the dif-
fulfilled for the present-day experiments on decoherenceferent power of Planck’s constant imf,’ec, i.e., TgegTdQec
which all still operate in the situationes< 7,s< 74.c Where «# 2 we may say that under the influence of the positn
the golden rule applies. In order to distinguish the decoheras a coupling agent, momentum-space superpositions deco-
ence phenomena taking place in our short-time limit from thehere more slowly than position-space superpositions. It has
golden-rule-type decoherence processes thus far observed ivefact been known for quite some time that an interaction
speak of interaction-dominated decoherence in the limiH;;=QB decoheres superpositions of wave packets most
(4.2). rapidly if these packets are distinct in the eigenrepresentation
Within its range of applicability, our short-time result has of Q; Zurek [2] speaks of the “distinction of the pointer
a certain universal character. Inasmuch as the free-motiobasis;” we here see that distinction carrying over to the
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short-time limit of decoherence. Part of the importance ofreservoir” and the P reservoir” are independent and have
our result(3.15 lies in bringing to light the rapid decay of their own free-motion Hamiltonians such théte—=Hq
superpositions of packets not at all distinguished by the cou+Hp.

pling agentQ. As already mentioned before, the capability of To describe the decoherence of an initial superposition,
Hi=QB to decohere momentum-space superpositionsike Egs.(2.2) and (2.3 in the limit (4.2, we may again
would be overlooked if the action of the free-motion Hamil- employ the short-time expansion of tlil®garithm of the
tonian Hg s+ H,es Were dropped entirely, with overzealous interaction-picture propagator. In analogy to E(&5 and
appeal to the limit4.2) of interaction predominance. Clearly, (3.8) we have

our short-time expansion of theglogarithm of the

interaction-picture propagatdi(t) accounts, in the next-to- U(t)z(ex;{ —j ftdt’ﬁim(t’)/ﬁ )

leading order in the timg for just that much free motion as 0 .

necessary to let a pure-momentum superposition acquire a

bit of a Q component and thus to become visible and fall — o~ 1{(QBo+PBp)t+O(t%)}/1 (5.2
prey toH;,,=QB.

Note that we need not go to higher than first ordet, isince

the presence of both reservoirs entails the appearance of both
the positionand the momentum in first order; no bit of free

. - motion must be invoked here to assist any underprivileged
The borderline between position-space and momentumyjstinction of the superposed wave packets. The central limit

When both|g; —q5| and|p;— p,| are nonzero and of classi-

E. Transition between position space and momentum-space
superpositions

cal magnitude(independent of#), the first exponential No(t) = exp{ — (t/ 78 2 expl — (t/ 7502},

£Q(t) with its Gaussian decay dominates the decoherence

process, as already emphasized above. Now imagine the mo- TdQec: hl|gr— s */<Bé>,

mentum distinction fixed and the distan¢g,—q,| de-

creased; eventually, the Iifetimr{,?e_c of the first exponential o= Hl|p1— sl \/@_ (5.3
will have grown to the magnitude of its competitors

5, Thee and then the dominance of the first exponential isThe remarks about limits of validity and universality of the

lost. The emancipation of the competing exponentials takepreceding section apply again, except for the simplification
place when, respectively3/r3.=0(%%~1 and7& /75,  that the presence of both reservoirs makes for symmetry be-
=0(4%~1; inserting the various decoherence times aciween the pair of observables. In particular, higher-order cor-
cording to Eq.(4.1), we see that both transitions concur at rections int are irrelevant if at least one of the two distances
|d1— 0|, |p1—p2| is of classical magnitude.
a1 —d2|?/[p1—po| =O(4), 4.3

. ] ) o VI. COMPETITION OF DECOHERENCE AND BATH
i.e., for classical magnitude of the momentum distinction at CORRELATION DECAY

|gy— 0, V7. Interestingly, then, the transition in question .
requires keeping all three exponentials in the coherence Thus far we have assumed that decoherence is by far the
norm (3.15) for a proper description. Actually, to obtain good fastest process, shorter even in duration than environmental

quantitative reliability it would be advisable to include the time scales such that the two conditiatis3) and(1.4) could
ordert? term in the prefactorP(t) as well, P(t)=[1  Dbe exploited. Of greater experimental relevance, however, is

+40(BI2H2+ O(t%) ] Y2~ exp(— 20(BI¥A?), since the the case in which limit1.3) is satisfied, while the bath cor-
position-space width of each of the superposed wave packefglation time scaler.s may be comparable with or even

was assumed ago %, i.e., as of the same order inas shorter than the decoherence time. To that important case we
the transitional distance, —da|. shall now generalize our above discussions.

The analysis of Sec. Il goes through unchanged up to the
short-time expansioii3.7), except that this very expansion
must now be confined to the free time evolution of the sys-

A single-freedom system may be coupled to two many-tem coupling agenQ(t)=Q+M Pt+- - -, while the time

freedom reservoirs with both the positighand the momen- dependence of the bath coupling agﬁ(}t) generated by the

tum P serving as system coupling agents, according to théree bath HamiltoniarH . must be kept in full,
interaction Hamiltoniari9]

V. SEVERAL RESERVOIRS AND COUPLING AGENTS

Hin()=Q(t)B()=(Q+- - -)B(t). (6.1

Actually, we shall simplify even further by retaining only the
The two separate reservoirs enter with the respective codowest-order term of the expansion of the system coupling
pling agentsBq,Bp; for these we assume the structure agent,Q(t)~Q, thus confining ourselves to treating the de-
(3.12), i.e.,, Bo=Z=iBq;i,Bp=ZiBp;, and vanishing means coherence of wave packets with different locationsQn
with respect to the initial state of the reservoirs. Th@ “ space.

Hin=QBg+ PBp. (5.1)
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The propagato(3.8) is now replaced by While we still observe the quadratic dependence of the
exponential suppression of coherence on the distdgce
—q’|, the precise time evolution of decoherence is governed
. (6.2 : . .
N by the symmetric part of the bath correlation function. No
system time scale is involved here, in contrast to the analo-
Proceeding in the very same fashion as in Sec. Ill we find thgous expressiofil.2) for exponential golden-rule decay. In

U(t)=

t ~
exp{—(i/h)[Qf dsB(s)+---
0

variant of Eq.(3.10, fact, Eq.(6.5 describes nonexponential decay fes«~, un-
y , y , less the Fourier transform af{B(t),B(0)}) (the spectral
(alpgdtla’)=Do(t)(alps,d0)la"), density, differs from zero at zero frequency. This is
. 6.3 seen by wiiting ftds/3ds'({B(s),B(s")})=rids(t—s)
Dqo(t)= < (exp(i/ﬁ)“q’f dSB(S)] ) X ({B(s),B(0)}), taking advantage of the stationarity of the
0 - Gaussian process. As», no rate of decay can be defined,

X decay will be presented for the exactly solvable harmonic-

> unlessf3ds({B(s),B(0)}) remains finite. Examples of such
+ oscillator model in Paper Il of this seri¢8].

t ~
exp{ —(i/ﬁ)(qudsB(s)}

Again, the large angular brackets denote an average with
respect to the initial state of the reservoir, and-( _ refers VII. ANGULAR-MOMENTUM DECOHERENCE
to antitime ordering, opposite in sense to () . .

As in Sec. Ill we now take advantage of the multicompo-
nent structure of the bath coupling ag@&tvhich allows to

regardB(t) as (an operator proces®f Gaussian statistics.
The reservoir average in E¢6.3) may then be evaluated
analytically (most straightforwardly by expanding all expo-

nentialg, Heys=QJ,, Hin=J,B. (7.0

|

To emphasize the universality of interaction-dominated
decoherencerye< 7sys, Tres, W€ here consider an angular-
momentum vectod whose three components obey the com-
mutation relationg J,,J,]=i%J,, etc., coupled to a reser-
voir. As the Hamiltonian we take

) The squared angular momentum is thus conserdéd,j(j

- +1), with the quantum numbegrcapable of taking on inte-
ger or half integer values; large valuesj @nable the angular

).

t ~
exr{(i/ﬁ)q’JOdsB(s)

momentum to near classical behavior.
Suitable wave packets are provided by coherent states

X

t
exp[ —(i/ﬁ)qfods"l‘a(s)
. . [24], which specify a direction fotthe expectation value pf
:exp{ —(1/h2)(q—q’)f dsf ds'[q(B(s)B(s")) J in terms of two angles§ and ¢, with the minimal uncer-
0 0 tainty allowed by the commutation relations. We shall denote
those states bj, 6, ¢)=|«a), the latter shorthand dropping
—q’(E(s’)E(s))]}. (6.4) the quantum numbgrand introducing the complex ampli-
tude a=e€'?tan(6/2). The whole complex plane is visited by
a as the “polar” angle ranges in 9 6<= and the “azi-
muthal” angle in 0< ¢<27. (We may speak of the mapping
of the surface of the unit sphere onto the complex plane; the
sphere lim_..J?/(#j)?=1 is the classical phase spacthe

For the superposition of wave packets with different posi-
tions studied here, this result is a generalization of Eq
(3.12, valid also for times long compared to environmental
correlation times. A short-time expansion of £§.4) recov- 2
ers Eq.(3.12. We had previously9] derived Eq.(6.4) for coherent-state mean dfreads
the special case of a reservoir of harmonic oscillators; here,

we can rejoice in the validity for general baths with effec- . ata
tively Gaussian coupling ageni (al3da)=1] 1+ aa*

All that remains to be done is to determine the coherence
norm Nq,(t) as in Sec. Ill. That task, now simplified inas-

much as the momentui is barred, yields (el @) =h] i(a* —a) i sing sing 72
y * ) -
o

*

=hj cos¢ siné,

—0,)2 [t s
le(t)=exp( — MJ dsf ds’({E(s),E(S’)})) ,
h2 o Jo —aa*
(6.5 (a|J|ay=1] Lo fij cosé.

with no restriction on the validity beyong < 75,s. Clearly,
the foregoing result generalizes the first factg}(t) in the The coherent stafer) can be expressed in terms of eigen-
coherence norni3.15 so as to allow for competition of de- statedj,m) of J2 andJ, [eigenvalueg(j+1) andm, respec-
coherence and bath correlation decay. tively] as
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|y =(1+ aa*) Je™-""j,j)
2 2j

=(1+aa*) 1Y a"j,j—n)
n=0 n

=(1+aa*) ||a), (7.3
whereJ_=J,—iJ,. It will in fact be convenient to work
with the non-normalized Dirac kdta) which is holomor-
phic in a and the corresponding antiholomorphic Kka|.
The coherent statgy) itself is normalized aga|a)=1.

PHYSICAL REVIEW A 67, 022101 (2003

PaO[(1+aa*)(1+BB*)]
=TreJ ()] @)(Bl|pred O)U (1)
=TreJT(t,8%)U(t,a||a)(B|pred O)
=(UT(t,B5)U(t,@))|la)(Bll.

To within a further correction of orde® we can merge the
two exponentials in the last member of the foregoing equa-
tion by simply adding the exponents. We proceed to the co-
herence norm

(7.9

We now turn to a superposition of two coherent states,

[)=c.la)+cg|B), which in the limitj>1 is a macroscopic

— —2j i YR,
superposition, and inquire about the temporal fate of the co-Nap(D)=[(1+ aa®)(1+BB")] J<ex;{ '((Xﬂ Xpge)

herence norN,, () = Tre,&a(t) p5e(t) with

YS! sys!

P =[(1+aa*)(1+pB*)]"!
X Trese M| a)(Bl|pred 00" (7.4)

the temporal successor pf,5(0)=|a)(B|. Like in Sec. IlI,
we go to the interaction picture, where

Fin=B(t)(J, cosQt—J, sint)

=J,B+(J,B—QJ,B)t+(—0%1,B—20J,B+J,B)t?2

gives rise to the propagator
~ i .
U(t)=exp[ — 7B (B~ BQJI)t2/2+| —Q2,B
: Lo :
—20J,B+3,B+ —-[B,B]+ 30J3,B%|t3/6+ - - - ] :

(7.6

X[Bt+Bt?/2+(B—Q2B)t3/6]— (Y, — Y 4)

X(Bt2/2+ Bt%/3) +(Z,— Zp» ) B?t%/12+ (X2,

—5(2*) ig[B,B]t3/12] ><exq —i{same with «

—B,B* = a*)[(1+aa*)(1+B8*)]%,

where we have encountered ¢fia)(B|B){(al|=[(1
+aa*)(1+BB*)]%; it is on this latter function of
a,a*,B,B* that the various differential operators likéd«

in the exponentials in Eq.7.9) act. To leading order in
these differentiations act adda—2ja*/(1+aa®), etc.,
whereupon the differential operatoxs,,Y,,,Z,, become re-
placed by reat numbers, in fact the coherent-state expecta-
tion values of J,,J,,J, given in Eq. (7.2, X,
—(a|d|a)t, Xge—(B|3B)/H%, etc. The two reservoir
means(exp(---)) in the foregoing expression for the coher-
ence norm thus become mutual complex conjugates and are
controlled by the three distances

di=(alJila)—(Bl3i|B),

(7.9

i=XY,z,

(7.10

see the Appendix for the derivation of the foregoing short- . )
time expansion. Note that we have here included the thirg@nd even by the differences of the mean valuespfvith
order term of the expansion, for a reason that will becomé€Spect to the coherent states, | ). Confining ourselves to

clear presently. When the propagataft) acts on the holo-
morphic||a) we may use the identities

R ) d a
slay= 3| 2ia— (@~ 1)~ [lay=1, ||,
R, 0 X
3lay= 5| 2ia—(+ 1) |[la)=Y.]la), (7.7

e =t - Il =2 )

and their adjoints (B||JX=5(B*</3 , etc., such that
Ut)|le)=U(t;a)||a) with U(t;e) differing from U(t)
only by the replacements(7.7); similarly, (B||UT(t)
=UT(t,B*)(B|| with UT(t,8*) obtained fromU™(t) by J,
— Xpx, etc. We thus get

the leading order if we have
i . ..
Nop(t)= < exp( - %[ d,[Bt+Bt?/2+ (B—Q?B)t%/6]
—dy(Bt?/2+Bt3/3)+ d,B%t3/12+ ((a|J,| a)?

2

, (7.1

—<BIJXIB>2)%[B,B]t3/12] )>

and this can now be seen to imply a greater wealth of deco-
herence courses than previously encountered for a canonical
pair of observables.

The system coupling agend, in the interaction(7.1),
again plays a distinguished role; it is most efficient in deco-
hering a superpositios,,|a)+c4|B) if it has macroscopi-
cally distinct means in the two superposed coherent states,
macroscopic now meaning>1. In that situation only the
single term linear in the timeneeds to be kept in the expo-
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nent of the coherence nor(@.11). The Gaussian average for distinct by the mean values df, since the free motion gen-
the bath coupling agentB then yields N,g(t) erated byHg = (J, rotatesJ, into J; finally, superposi-

= |<e—idet/ﬁ>|2:e—(t/réec)z with the decoherence time tions of states distinguished only By undergo slowest de-
coherence sincd, enters the short-time expansion of the
o= Oy ( B?>/ﬁ =[(B?)j%(cos¢,sinb, propagatolexd —ifhdt'Hi,(t')/%]), only in the third-order
) B termt3, due to the commutatdi, ,Jy]=i%AJ,.
—cosggsingp)?] 1 (7.12 The partial immunity to decoherence of superpositions of
. 0 angular-momentum coherent states expressed in the ordering
in analogy with7ge of Eq. (4.1). just discussed may be broken by reducing the symmetry of

The competing terms in the coherence norm can becomg@e dynamics. One way of achieving that is to generalize the
effective only when the distanad, vanishes(or is of sub-  free motion asH = Q,3,+Q,J,; another is to allow for
classical magnitude This happens in four distinct cases, more reservoir§9], e.g., according tdd ;= J,B,+J,B, .
three of which come with cog,=cosdyg,sind,=sinbp: (i) Clearly, a larger set of observables like the generators of,
B=1la* <{¢,=dp,0,=m— 0} such that the two points say, SUA) with n=3,4, . .. would give rise to a yet richer
in the spherical phase space distinguishedabgnd 8 are  decoherence scenariokifs,s andH;,; both linearly involved
reflections of one another in the equatorial plarew/2; (i) different such generators.

B=a*={¢p,=27m— g, 0,=055 whereupon the two
points are mutually opposite on the circular section of the
spherical phase space with the plade 6,= 64, (i) 8
=la={¢,=2m—¢p,0,=m—0p; and then the two Quantum superpositions are fragile objects with respect to
points are mutual antipodes. A fourth cag), arises from  gimost all environmental influences. In quantum mechanics,
OS¢, =SiN b5, COSg=sin ¢, . At any rate, ifdy=0 butd,  «ppenness” of a system is a more involved concept than in
is of classical magnitude we may drop all terms of (z)mi‘ein classical mechanics. Although good isolation from the envi-
the coherence norm and geNl,s(t)=[(e~"B72)2  ronment may allow damping to be hardly noticeable for
— e~ (U'ed* With a decoherence time much larger thep,, ~ duantities with a classical limit, coherences in a quantum
system may be subjected to rapid decay. The underlying time

VIIl. CONCLUSIONS AND PERSPECTIVES

Téec:(d)2192<82>/4h2)_1/4 scale_ separation between,. and 745 becomes ever more
drastic as the distance between the superposed states grows.
=[%j292<82)(sin b SiNG,—singgsin aﬁ)z]*lf“, The decoherence time scale is shortened by a factor involv-
ing the distance, measured in units of a quantum reference
(7.13 “length” and thus enormously big when it comes to mesos-

copic or even macroscopic scales. For more and more mac-
froscopic superpositions, the decoherence time scale eventu-
ally becomes the smallest time scale involved. It follows that
standard approaches to open-system dynamics, based on
golden-rule-type assumptions fail to describe the rapid decay
of such superpositions.

" 91=0 of | h h h Her . We have s_hown that a short-time _expansion of t_he loga-
+6,)=0 of case(iv). We then get the coherence norm, after iy m of the interaction propagator is the appropriate ap-
doing a glgghtly different (63au33|an integral, #.5(t)  proach to decoherence in the limit of macroscopic superpo-
= |(elT1dBTA) 2= o~ (U74ed”; the pertinent time scale is  sitions. Remarkably, decoherence dynamics in this limit is
largely independent of the nature of the system and the bath.

in analogy withrf,’ec of Eg. (4.1). Such “protection of coher-
ence by symmetry” has been discussed previously in Re
[25], in the context of golden-rule-type decoherence.
Specific to the angular-momentum algebra is the possibil
ity that bothd, andd, vanish butd,# 0; this actually hap-
pens in casgi) above as well as in the subcase efs(

Thec= (02Q2%(B2)?/36#2) ~ 16 No classical forces will have time to exert their influence on
L 22 a2 916 the very short decoherence time scale.
=[36)°Q%(B*)“(cosf,—cosbp)"] . (7.14 A remark about the use of a factorized initial condition is

_ _ ) ) _ _in order: Our results ignore the problem of how to actually
We refrain from a detailed discussion of the various transireate macroscopic superpositions. We assume they are
tional regimes that may arise whelp andd, are not strictly  giyen and determine the ensuing dynamics. Clearly, under
zero but of sub_classical magnitude, a discussion that woul boratory conditions, it will take a certain time to prepare
proceed much in analogy to the one in Sec. IV. ~ such an initial state, time enough for decoherence to possibly
We would like to emphasize that the decoherence timege effective. Initial system-environment correlations are thus
T4eq. all obey the power lawl.1), with 1/j as a dimension-  an important ingredient for the discussion of the decay of
less representative of Planck’s constant; the exponents tefflacroscopic superpositions, a problem that will be addressed
to order the decoherence times in magnituderas<tle. in future work.
<74 that ordering expresses decreasing power of the cou- How far the creation of superpositions can be stretched to
pling agentJ, in decohering the respective superpositions.the macroscopic is a question of central importance not only
As usual, the coupling agent is most effective with respect tdor quantum foundations but also for engineering in the fields
superpositions of states it “sees” as distinct in terms of itsof quantum information. Our results suggest that for these
respective mean values; next come superpositions of statéascinating developments, environmental effects need to be
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described with new theoretical input. Well established methNext, we split off the leading terrhl 1t in Hy(t),
ods of open-system dynamics, historically developed with an

eye to near-equilibrium behavior become questionable for

the nonequilibrium dynamics of coherent phenomena and Ul(t):e—iHltZ/ZﬁUZ(t),

may well turn out to be too limited to meet the quantum

challenges of the future.
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t2/2| e~ 1H1t2%

=U,(t)= e i(2i[Ho Hyl/fi+Hp)t%/6+0(t%
APPENDIX: SHORT-TIME EXPANSION

To derive the expansior8.8) and(7.6) of the interaction-  When finally ‘merging ~the three unitary factors

picture propagator we start with expanding the interactior?iiHOWL_U1(t)U2(t3? into a single exponential we encounter a
Hamiltonian (3.7) correction of thet® term due to

ﬁmt(t)=H0+ H,t-+Ht2/2+0(t3). (A1) e Hot/ig=1H1t%/2h — o(~(i/2){Hot+Ht? = (i/4#)[Ho,H1]t>+ O(th)})

Separating the time-independent teridy, we write the (A4)

propagator
whereupon we get

U(t)=exp(—if;dt'ﬁim(t’)/h)=eiHo“ﬁul(t),

U(t)=e(~(IM)1{Hot+ H1t%/2+ (2Hp+ (i/h)[Ho H1]) 312+ O(th )

(A5)
t
Ul(t):(exr{—ifdt’Hl(t’)/ﬁ ) , _ _ o _
0 N The foregoing general identity yields E(.8), since the
interaction Hamiltonian(3.7) implies Hy,=QB and H;
Hq(t)=eMo"" [H, t+ H,t?/2+ O(t%)]Je Hot/ =M~'PB+QB. For the angular-momentum case we

. needed the third-order term in U{t) to reveal the quantum
' leration of decoherence for the most obstinate superpo-
=Hyt+ ~ 24 Hot?/2+O(t3). acce perp
Hyt ﬁ[HO’Hl]t Hot/2+0(1%).  (A2) sitions of coherent states.
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