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We generalize the notion of relative phase to completely posi@® maps with known unitary represen-
tation, based on interferometry. Parallel transport conditions that define the geometric phase for such maps are
introduced. The interference effect is embodied in a set of interference patterns defined by flipping the envi-
ronment state in one of the two paths. We show for the qubit that this structure gives rise to interesting
additional information about the geometry of the evolution defined by the CP map.
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Berry's[1] discovery of a geometric phase accompanyingThus, by varyingy, the relative phase and visibility » can
cyclic adiabatic evolution has triggered an immense interedbe distinguished experimentally. We note thats a shift in
in holonomy effects in quantum mechanics and has led tehe maximum of the interference pattern, a fact that moti-
many generalizations. The restriction of adiabaticity was revated Pancharatnafb] to define it as the relative phase be-
moved by Aharonov and Anand48], who pointed out that tween the internal staték) and U;|k) of the two beams.
the geometric phase is due to the curvature of the projective Pancharatnam’s analysis was generalized in R&f.to
Hilbert space. It was extended to noncyclic evolution bymixed states undergoing unitary evolution as follows. As-
Samuel and BhandafB] (see also Refl4]), based on Pan- sume that the incoming particle is in a mixed internal state
charatnam's[5] work on interference of classical light in p=3_,w,|k)(k|, whereN is the dimension of the internal
distinct states of polarization. Another development of geoHilbert space. Each pure componékit of this mixture con-
metric phase was initiated by Uhlmaf@], who introduced tributes an interference profile given Hk|U;|k)= e %
this notion to mixed quantal states. More recently, anothefyeighted by its probabilityw, yielding |=3,w,l o1

mixed state geometric phase in the particular case of unitary 3, w, v,co§ y—aJ. Noting that Tr{U;p)=Sw,(k|U; k),
evolution was discovered in the context of interferometrythis can also be written aslocl+|Tr(U;p)|cogy

[7]. —argTr(U;p)]. The key result is that the interference fringes,
The geometric phase has shown to be useful in the contedroduced by varying the phasg, is shifted by a

of quantum computing as a tool to achieve fault tolerance- argTr(U;p) and that this shift reduces to Pancharatnam’s

[8]. For practical implementations of geometric quantumgyiginal prescription for pure states. These two facts are the

computing, it is important to understand the behavior of thecentral properties fow being a natural generalization of Pan-

geometric phase in the presence of decoherence. For this, WRaratnam'’s relative phase to mixed states undergoing uni-

generalize in this Rapid Communication the idea in R€f.  tary evolution. Furthermore, it is clear that the quantity that

to completely positivéCP) maps, i.e., we define the relative extends that of Eq(1) to mixed states is
(Pancharatnajnphase and introduce a notion of parallel

transport with concomitant geometric phase for such maps. vel*=Tr(U,p), 2)
These generalized concepts reduces to that of[Réfn the
case of unitary evolutions. with visibility »v=|Tr(U;p)|.

Let us first consider a Mach-Zehnder interferometer with  Nonunitary evolution of a quantal state may be conve-
a variable relative u) phase)( in one of the interferometer niently modeled by appending an environment in a pure state
beams(the reference beanand assume that the interfering that we designaté0,), i.e.,
particles carry an additional internal degree of freedom, such
as spin or polarization, in a pure state. The other beam 0=p®]0)(04, (3)
(the target beainis exposed to the unitary operattl;,

yielding the output interference pattetncl+wvcosy—a),  and letting the combined state evolve unitarily @s-o’

which is completely determined by the complex quantity =y, ouU!, with given U;,. The evolved density matrix of
. the internal part is obtained by tracing over this environment
ve'*=(k|U;|Kk). (1) yielding
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A for eachu=1,... K—1. The set{v,e'“s}, u=0,... K
U. > —1, contains maximal information about the interference ef-
fect associated with the CP map, by measuring on the system
Y alone. For unitarily evolving mixed states one obtains
p®|0>(0| ~ F = &g, » due to orthogonality of the environmental states, and
0.1, the surviving interference pattern E¢) reduces to that of

Ref. [7].

FIG. 1. Interferometer for determining complete interference in-  The results above can be derived by considering purifica-
formation. tions. We may lifto in Eq. (3) to a purified staté¥) by
attaching an ancilla according to

'=Tree' =2, m,pmj, (4)
’ o [9)=3 k)0 ka) ®

where the Kraus operators are,=(ue|U;e|Og) [9] in terms

of an orthonormal basif ue)}, =0, ... K—1=N, of the  with {|k,)} a basis in an auxiliary Hilbert space of dimension
K-dimensional Hilbert space of the environment. This map at least as large as that of the internal Hilbert space. This
is completely positive, i.e., it takes density operators intostate is mapped by the operatdis=U;.®1, and F=I;
density operators, and all trivial extensions A likewise. ~ ®Fq_., ®I4 in the target and reference beam, respectively,
Conversely, any CP map has a Kraus representation of thee.,

form Eq. (4).

Using Eq.(2), the interference pattern for the incoming
state in Eq.(3), evolved withU;. in the target beam, is de- |\Ptar>:; \/W_k[Uie|ki>|Oe>]|ka>'
scribed by

Vo€ “0=Trie[Uje@ 1= Tr[mop], (5 |W o) = Ek VWil k[ Fo— .. 0a)]Kq). 9)

where we have use(0c|ue)= 5y, . The quantityag is a o
natural definition of relative phase as it shifts the maximumTheir inner product becomes
of the interference pattern and reduces to the phase defined in
Ref.[7] for unitarily evolving mixed states. _ ) t ) ,
Since phase information has leaked from the system part, (Ve Vi % Wikkil{OelFo, - s Urel Ol ki)
the interference information contained in E§) is only par-
tial. The remain_ing part may b_e uncoyered by flipping the :E Wk<ki|mM|ki>:Tri(m,uP) (10)
state of the environment associated with the reference beam K
to an orthogonal statfue#0.) (Fig. 1) [12]. This transfor-
mation may be represented by the operator in agreement with Eqg5) and (7).
. To illustrate the above, let us consider the depolarization
U (0 0 ex 0

channel[10] acting on a qubit in the initial state=3 (I +r
0 1 00

®1i®@Fo ..,  (6)  .g), wherer=(x,y,z) is the Bloch vector with the length

Ir|=1, o=(0y,0y,0,) are the standard Pauli matrices, and
where the first matrix in each term represents the spatial pattiS the 2<2 unit matrix. We will model this with the Kraus
and the operatoF,__,_flips [0g) t0 |ue#0g). Figure 2 operators

shows the equivalent quantum network. The interference pat- _ _
tern is determined by Me=y1-p I, m=yp/3 oy,

®Ujet+

v, =Trie[ Uiep|0e Ol F . 1= Triel Uiepl Oc) el M2=VP/3 oy, Ms=Vpf3 o (v
=Tri[m,p] 7) that mapp—p’'=3(1+r’- o). Here,m;, m,, andm; corre-

spond to bit flip, both bit and phase flip, and phase flip,
respectivelyp is the probability that one of these errors oc-

o> H X H curs and it determines the shrinking factpr'|/|r|=(1
| —4p/3) of the Bloch vector. Exposing the depolarization
p channel to one of the interferometer beams, the interference
U pattern is determined by E) as
0> ie
—F

-, — voe'“o=Tr,(pmy)=V1—p. (12)

FIG. 2. Quantum network for interferometry of a state undergo-This quantity is real and positive so thap=0, thus the
ing a CP map. channel only reduces the visibility by the factgl—p. If
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the state of the environment is flipped to any of the other Let us clarify this point for a qubit, where we may write
|ne)'s the interference pattern E() is determined by u,=e" 108 "andhﬂ—a +b,- 0. Itis possible to evaluate
Eq. (7) for p=3(1+r- 0) yleldlng

. p .
v, %=Tr(pm,)= \/; M s (13 v,€e'%=(a,+r-b,)cosd,+(rxe,)-b,sing,

. —i(e,-b,ta,r-e,)sing,,. 18
wherer ,=x,y,z for ©=1,2,3, respectively. These are also (- byt a,r-8,)sind, (18
real and positive so that,=0. The only effect is a nonva- Now, with r=rn the density operator is unaffected by the
nishing visibility proport|0nal to the probability amplitude changeu L—U,e ~i7u" 7 as the additional part commutes
\Vp/3 associated with the corresponding error. The absence gfith p. However, the interference pattern is determined by
phase shifts can be understood from the fact that the dep@his new unitarity and therefore changes according to
larization channel only shrinks the length of the Bloch vec-

tor. . _ . . cosaﬂ—>co§9ﬂ= cosé,cosy,—e,-nsing,siny,,
Another illustration of the general formalism above is

provided by the amplitude damping chanriél], which e,sin 0M—>EﬂsinT9M=ncoseﬂsinyﬂﬁteﬂsinaﬂcosm

models, e.g., the decay of an atom from one of its excited _ _

states to its ground state by emitting a photon. It may be +e,Xnsing,siny,,, 19

described by the Kraus operators

whereu e~ 7" 7 =g 0y
Ji-p The phase ambigwty can be removed by introducing a
2 (I=02), notion of parallel transport and concomitant geometric
phases for a continuou@ime) parametrization of the CP
map. For each interference pattern, tgarallel transport

m1:7p(o'x+ ioy), (14)  conditions read

1
m0=§(|+0'2)+

wherep is the decay probability. When no photon has been <k|uM(t)uM(t)|k)—O, k=1...N, (20

emitted in the reference beam the interference pattern is dggnere

we have decomposedm, (t)=h,(t)u(t
termined by P RO =h,(0)u,(t)

=hM(t)vﬂﬁM£t) with v,=u,(0) completely specified by
, 1 the channelu,(0)=1, and we have assumég,(0)=6,0.
voe! 0=Tri(pmp) = 5 (1+y1-p+21-V1-p]), These conditions naturally extend those in Etp) of Ref.
(15) [7] to the case of CP maps. They are sufficient and necessary
to arrive at a unique notion of geometric phase in the context
which is real and positive so thaty,=0, and only the vis- 0f single-particle interferometry. The set of these geometric

ibility v, is affected anisotropically by the channel. On thephases fop=0, . .. K—1 provides the complete geometric
other hand, if a photon has been emitted in the referencpicture of the CP map in interferometry, given the unitary
beam, we obtain representation.

Now, let us assume for simplicity that, andp diagonal-
ize in the same basigk)} for all t=0. In the cyclic case,

where for eactk we haveﬁM:|k>—>eiﬁf|k), Bt being the
corresponding cyclic pure state geometric phase, the interfer-
being dependent only upon they projection of the initial  ence pattern is given by

Bloch vector. Here, the visibi(ljigdecrease is proportional to

the decay probability amplitudgp and there is a shift in the o )

interference oscillations determined by the angle ofxhe V€ = 2 wikIh k) (Klv [k)e 2D
projection to thex axis. By checking whether or not there is

a photon in the reference beam it should be possible experwhere all(k|h,|k)=0 are real valued ds, is Hermitian and
mentally to distinguish the two interference patterns deterpositive.

vi€' 1 =Tr(pmy) = \/E(Xﬂ)’) (16)

mined by Eqs(15) and(16) by postselection. Let us use Eq(21) to compute the geometric phase for a
In the general case, it is convenient to make a polar degubit in the initial statgp=3 (1 +ro,) (r#0) exposed to the
composition ofm,,, such that depolarization channel with a unitary rotation added. Thus,

mo=h u (17 we replace the Kraus operatarg, in Eq. (11) by mMﬁ with
momme u being an SW(2) operator that fulfills the parallel transport

whereh,, is Hermitian and positive and,, is unitary. The ~conditions Eq.(20). Here,h,, is diagonal for all Kraus op-

action of eachm,, is uniquely defined up tdl phase factors erators, 01,v2,v3)=(0x,0y,0;), andu,=u for all . For

by the evolution of the system’s density operator. This amcyclic u, the interference patterns are determined by
biguity must be associated with the corresponding unitarity

u, as the Hermitian part is unique. voe'®o=\/1—p[cog Q/2) +irsin(Q/2)],
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€' ®1=0, Similarly, iv,u defines the solid angles—2¢, so that the

_ interference pattern is determined by
Vzellbzzo,

v2€'®3=\/p/3[rcog 0/2) +isin(Q/2)] (22) vyeP2=—j \/g
with Q the solid angle enclosed by the loop on the Bloch
\@e‘”(rcowﬂsin@).

1+r o 1-r = -
T(O||v2u|0>+T<1|lvzu|1>

sphere. The first interference pattern is precisely that ob- =
tained in Ref[7] modified by a visibility factory1—p. v,

and v, vanish since the corresponding errors involve bit ) o ) _
flips. Surprisingly, the pure phase flip in the last interference®dain, there is a nontrivial change in the appearanceiof
pattern introduces a nontrivia' Change in the appearance Of the IaSt eX-preSS|0n due to the faCt that th|S error alSO contains
This is due to the fact that this phase flip introduces an ad@ phase flip. _ o

ditional relative sign between the weights of the pure state 10 summarize, we have provided a generalization of the

interference patterns and is purely an effect of the decohefotion of relative phase to completely positive maps with
ence. known unitary representation, based on interferometry. We

have further introduced parallel transport conditions that de-
i ~ o fine the geometric phase for such maps. The interference
and vice versa. Any such fulfilling the p/r;lrallel ransport  effect is embodied in a set of interference patterns defined by
conditions Eq.(20) may be written ag!(m2leoseoceinen), flipping the environment state in one of the two particle
Here, only the errors containing bit flips produce a nonvanyeams We have shown in the qubit case that this structure
ishing interference effect that can be interpreted geometrigjyes rise to interesting additional information about the ge-
cally by noting that the S(2) error operatorsv, andivp are  gmetry of the evolution defined by the CP map. We hope that
themselves taking0)—|1) and|1)—[0) along geodesics  his work will trigger new experiments on geometric phases
intersecting the andx axes, respectively. Thuiy,u defines  for quantal systems exposed to environmental interactions.
a closed loop on the Bloch sphere that encloses the solid Note addedAfter completing this work, it has come to

(29)

We may also consider the case whergakes|0)—|1)

angle 2r—2¢, yielding our knowledge that Peixoto de Fagaal.[11] have arrived
1+ 1 at the interference pattern described by &j.in the context
o, . [PETC L~ L PE T of measurement theory.
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