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Generalization of the geometric phase to completely positive maps
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We generalize the notion of relative phase to completely positive~CP! maps with known unitary represen-
tation, based on interferometry. Parallel transport conditions that define the geometric phase for such maps are
introduced. The interference effect is embodied in a set of interference patterns defined by flipping the envi-
ronment state in one of the two paths. We show for the qubit that this structure gives rise to interesting
additional information about the geometry of the evolution defined by the CP map.
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Berry’s @1# discovery of a geometric phase accompany
cyclic adiabatic evolution has triggered an immense inte
in holonomy effects in quantum mechanics and has led
many generalizations. The restriction of adiabaticity was
moved by Aharonov and Anandan@2#, who pointed out that
the geometric phase is due to the curvature of the projec
Hilbert space. It was extended to noncyclic evolution
Samuel and Bhandari@3# ~see also Ref.@4#!, based on Pan
charatnam’s@5# work on interference of classical light i
distinct states of polarization. Another development of g
metric phase was initiated by Uhlmann@6#, who introduced
this notion to mixed quantal states. More recently, anot
mixed state geometric phase in the particular case of uni
evolution was discovered in the context of interferome
@7#.

The geometric phase has shown to be useful in the con
of quantum computing as a tool to achieve fault toleran
@8#. For practical implementations of geometric quantu
computing, it is important to understand the behavior of
geometric phase in the presence of decoherence. For this
generalize in this Rapid Communication the idea in Ref.@7#
to completely positive~CP! maps, i.e., we define the relativ
~Pancharatnam! phase and introduce a notion of paral
transport with concomitant geometric phase for such ma
These generalized concepts reduces to that of Ref.@7# in the
case of unitary evolutions.

Let us first consider a Mach-Zehnder interferometer w
a variable relative U~1! phasex in one of the interferomete
beams~the reference beam! and assume that the interferin
particles carry an additional internal degree of freedom, s
as spin or polarization, in a pure stateuk&. The other beam
~the target beam! is exposed to the unitary operatorUi ,
yielding the output interference patternI}11ncos(x2a),
which is completely determined by the complex quantity

neia5^kuUi uk&. ~1!
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Thus, by varyingx, the relative phasea and visibility n can
be distinguished experimentally. We note thata is a shift in
the maximum of the interference pattern, a fact that mo
vated Pancharatnam@5# to define it as the relative phase b
tween the internal statesuk& andUi uk& of the two beams.

Pancharatnam’s analysis was generalized in Ref.@7# to
mixed states undergoing unitary evolution as follows. A
sume that the incoming particle is in a mixed internal st
r5(k51

N wkuk&^ku, whereN is the dimension of the interna
Hilbert space. Each pure componentuk& of this mixture con-
tributes an interference profile given by^kuUi uk&5nke

iak

weighted by its probability wk yielding I 5(kwkI k}1
1(kwknkcos@x2ak#. Noting that Tr(Uir)5(wk^kuUi uk&,
this can also be written asI}11uTr(Uir)ucos@x
2argTr(Uir)#. The key result is that the interference fringe
produced by varying the phasex, is shifted by a
5argTr(Uir) and that this shift reduces to Pancharatnam
original prescription for pure states. These two facts are
central properties fora being a natural generalization of Pa
charatnam’s relative phase to mixed states undergoing
tary evolution. Furthermore, it is clear that the quantity th
extends that of Eq.~1! to mixed states is

neia5Tr~Uir!, ~2!

with visibility n5uTr(Uir)u.
Nonunitary evolution of a quantal state may be conv

niently modeled by appending an environment in a pure s
that we designateu0e&, i.e.,

%5r ^ u0e&^0eu, ~3!

and letting the combined state evolve unitarily as%→%8
5Uie%Uie

† with given Uie . The evolved density matrix o
the internal part is obtained by tracing over this environm
yielding
©2003 The American Physical Society01-1
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r85Tre%85(
m

mmrmm
† , ~4!

where the Kraus operators aremm5^meuUieu0e& @9# in terms
of an orthonormal basis$ume&%, m50, . . . ,K21>N, of the
K-dimensional Hilbert space of the environment. This mapL
is completely positive, i.e., it takes density operators i
density operators, and all trivial extensionsI ^ L likewise.
Conversely, any CP map has a Kraus representation of
form Eq. ~4!.

Using Eq. ~2!, the interference pattern for the incomin
state in Eq.~3!, evolved withUie in the target beam, is de
scribed by

n0eia05Trie@Uie%#5Tri@m0r#, ~5!

where we have used̂0eume&5d0m . The quantitya0 is a
natural definition of relative phase as it shifts the maxim
of the interference pattern and reduces to the phase defin
Ref. @7# for unitarily evolving mixed states.

Since phase information has leaked from the system p
the interference information contained in Eq.~5! is only par-
tial. The remaining part may be uncovered by flipping t
state of the environment associated with the reference b
to an orthogonal stateumeÞ0e& ~Fig. 1! @12#. This transfor-
mation may be represented by the operator

U5S 0 0

0 1D ^ Uie1S eix 0

0 0D ^ 1i ^ F0e→me
, ~6!

where the first matrix in each term represents the spatial
and the operatorF0e→me

flips u0e& to umeÞ0e&. Figure 2
shows the equivalent quantum network. The interference
tern is determined by

nmeiam5Trie@Uieru0e&^0euF0e→me

† #5Trie@Uieru0e&^meu#

5Tri@mmr# ~7!

FIG. 1. Interferometer for determining complete interference
formation.

FIG. 2. Quantum network for interferometry of a state under
ing a CP map.
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for eachm51, . . . ,K21. The set$nmeiam%, m50, . . . ,K
21, contains maximal information about the interference
fect associated with the CP map, by measuring on the sys
alone. For unitarily evolving mixed states one obtainsnm
5d0m , due to orthogonality of the environmental states, a
the surviving interference pattern Eq.~5! reduces to that of
Ref. @7#.

The results above can be derived by considering purifi
tions. We may lift% in Eq. ~3! to a purified stateuC& by
attaching an ancilla according to

uC&5(
k

Awkuki&u0e&uka& ~8!

with $uka&% a basis in an auxiliary Hilbert space of dimensio
at least as large as that of the internal Hilbert space. T
state is mapped by the operatorsU5Uie^ I a and F5I i
^ F0e→me

^ I a in the target and reference beam, respective
i.e.,

uC tar&5(
k

Awk@Uieuki&u0e&] uka&,

uC ref&5(
k

Awkuki&@F0e→me
u0e&] uka&. ~9!

Their inner product becomes

^C refuC tar&5(
k

wk^ki u^0euF0e→me

† Uieu0e&uki&

5(
k

wk^ki ummuki&5Tri~mmr! ~10!

in agreement with Eqs.~5! and ~7!.
To illustrate the above, let us consider the depolarizat

channel@10# acting on a qubit in the initial stater5 1
2 (I 1r

•s), wherer5(x,y,z) is the Bloch vector with the length
uru<1, s5(sx ,sy ,sz) are the standard Pauli matrices, a
I is the 232 unit matrix. We will model this with the Kraus
operators

m05A12p I, m15Ap/3 sx ,

m25Ap/3 sy , m35Ap/3 sz ~11!

that mapr→r85 1
2 (I 1r8•s). Here,m1 , m2, andm3 corre-

spond to bit flip, both bit and phase flip, and phase fl
respectively.p is the probability that one of these errors o
curs and it determines the shrinking factorur8u/uru5(1
24p/3) of the Bloch vector. Exposing the depolarizatio
channel to one of the interferometer beams, the interfere
pattern is determined by Eq.~5! as

n0eia05Tri~rm0!5A12p. ~12!

This quantity is real and positive so thata050, thus the
channel only reduces the visibility by the factorA12p. If
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the state of the environment is flipped to any of the ot
ume& ’s the interference pattern Eq.~7! is determined by

nmeiam5Tri~rmm!5Ap

3
r m , ~13!

wherer m5x,y,z for m51,2,3, respectively. These are al
real and positive so thatam50. The only effect is a nonva
nishing visibility proportional to the probability amplitud
Ap/3 associated with the corresponding error. The absenc
phase shifts can be understood from the fact that the d
larization channel only shrinks the length of the Bloch ve
tor.

Another illustration of the general formalism above
provided by the amplitude damping channel@10#, which
models, e.g., the decay of an atom from one of its exc
states to its ground state by emitting a photon. It may
described by the Kraus operators

m05
1

2
~ I 1sz!1

A12p

2
~ I 2sz!,

m15
Ap

2
~sx1 isy!, ~14!

wherep is the decay probability. When no photon has be
emitted in the reference beam the interference pattern is
termined by

n0eia05Tri~rm0!5
1

2
~11A12p1z@12A12p# !,

~15!

which is real and positive so thata050, and only the vis-
ibility n0 is affected anisotropically by the channel. On t
other hand, if a photon has been emitted in the refere
beam, we obtain

n1eia15Tri~rm1!5
Ap

2
~x1 iy !, ~16!

being dependent only upon thex-y projection of the initial
Bloch vector. Here, the visibility decrease is proportional
the decay probability amplitudeAp and there is a shift in the
interference oscillations determined by the angle of thex-y
projection to thex axis. By checking whether or not there
a photon in the reference beam it should be possible exp
mentally to distinguish the two interference patterns de
mined by Eqs.~15! and ~16! by postselection.

In the general case, it is convenient to make a polar
composition ofmm , such that

mm5hmum , ~17!

wherehm is Hermitian and positive andum is unitary. The
action of eachmm is uniquely defined up toN phase factors
by the evolution of the system’s density operator. This a
biguity must be associated with the corresponding unita
um as the Hermitian part is unique.
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Let us clarify this point for a qubit, where we may writ
um5e2 iumem•s andhm5am1bm•s. It is possible to evaluate
Eq. ~7! for r5 1

2 (I 1r•s) yielding

nmeiam5~am1r•bm!cosum1~r3em!•bmsinum

2 i ~em•bm1amr•em!sinum . ~18!

Now, with r5rn the density operator is unaffected by th
changeum→ume2 igmn•s as the additional part commute
with r. However, the interference pattern is determined
this new unitarity and therefore changes according to

cosum→cosũm5cosumcosgm2em•nsinumsingm ,

emsinum→ẽmsinũm5ncosumsingm1emsinumcosgm

1em3nsinumsingm , ~19!

whereume2 igmn•s5e2 i ũmẽm•s.
The phase ambiguity can be removed by introducing

notion of parallel transport and concomitant geomet
phases for a continuous~time! parametrization of the CP
map. For each interference pattern, theN parallel transport
conditions read

^kuũm
† ~ t ! u̇̃m~ t !uk&50, k51, . . . ,N, ~20!

where we have decomposedmm(t)5hm(t)um(t)
5hm(t)vmũm(t) with vm5um(0) completely specified by
the channel,ũm(0)51, and we have assumedhm(0)5dm0.
These conditions naturally extend those in Eq.~13! of Ref.
@7# to the case of CP maps. They are sufficient and neces
to arrive at a unique notion of geometric phase in the con
of single-particle interferometry. The set of these geome
phases form50, . . . ,K21 provides the complete geometr
picture of the CP map in interferometry, given the unita
representation.

Now, let us assume for simplicity thathm andr diagonal-
ize in the same basis$uk&% for all t>0. In the cyclic case,

where for eachk we haveũm :uk&→eibk
m
uk&, bk

m being the
corresponding cyclic pure state geometric phase, the inte
ence pattern is given by

nmeiFm5(
k

wk^kuhmuk&^kuvmuk&eibk
(m)

, ~21!

where all^kuhmuk&>0 are real valued ashm is Hermitian and
positive.

Let us use Eq.~21! to compute the geometric phase for
qubit in the initial stater5 1

2 (I 1rsz) (rÞ0) exposed to the
depolarization channel with a unitary rotation added. Th
we replace the Kraus operatorsmm in Eq. ~11! by mmũ with
ũ being an SU~2! operator that fulfills the parallel transpo
conditions Eq.~20!. Here,hm is diagonal for all Kraus op-
erators, (v1 ,v2 ,v3)5(sx ,sy ,sz), andũm5ũ for all m. For
cyclic ũ, the interference patterns are determined by

n0eiF05A12p@cos~V/2!1 ir sin~V/2!#,
1-3
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n1eiF150,

n2eiF250,

n3eiF35Ap/3@rcos~V/2!1 isin~V/2!# ~22!

with V the solid angle enclosed by the loop on the Blo
sphere. The first interference pattern is precisely that
tained in Ref.@7# modified by a visibility factorA12p. n1
and n2 vanish since the corresponding errors involve
flips. Surprisingly, the pure phase flip in the last interferen
pattern introduces a nontrivial change in the appearancer.
This is due to the fact that this phase flip introduces an
ditional relative sign between the weights of the pure st
interference patterns and is purely an effect of the deco
ence.

We may also consider the case whereũ takesu0&→u1&
and vice versa. Any suchũ fulfilling the parallel transport
conditions Eq.~20! may be written ase2 i (p/2)[coswsx1sin wsy].
Here, only the errors containing bit flips produce a nonv
ishing interference effect that can be interpreted geome
cally by noting that the SU~2! error operatorsiv1 andiv2 are
themselves takingu0&→u1& and u1&→u0& along geodesics
intersecting they andx axes, respectively. Thus,iv1ũ defines
a closed loop on the Bloch sphere that encloses the s
angle 2p22w, yielding

n1eiF152 iAp

3F11r

2
^0u iv1ũu0&1

12r

2
^1u iv1ũu1&G

5Ap

3
e2 ip/2~cosw1 ir sinw!. ~23!
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Similarly, iv2ũ defines the solid angle 3p22w, so that the
interference pattern is determined by

n2eiF252 iAp

3F11r

2
^0u iv2ũu0&1

12r

2
^1u iv2ũu1&G

5Ap

3
e2 ip~rcosw1 isinw!. ~24!

Again, there is a nontrivial change in the appearance ofr in
the last expression due to the fact that this error also cont
a phase flip.

To summarize, we have provided a generalization of
notion of relative phase to completely positive maps w
known unitary representation, based on interferometry.
have further introduced parallel transport conditions that
fine the geometric phase for such maps. The interfere
effect is embodied in a set of interference patterns defined
flipping the environment state in one of the two partic
beams. We have shown in the qubit case that this struc
gives rise to interesting additional information about the g
ometry of the evolution defined by the CP map. We hope t
this work will trigger new experiments on geometric phas
for quantal systems exposed to environmental interaction

Note added.After completing this work, it has come to
our knowledge that Peixoto de Fariaet al. @11# have arrived
at the interference pattern described by Eq.~5! in the context
of measurement theory.
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