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Two roles of relativistic spin operators
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Operators that are associated with several important quantities, such as angular momentum, play a double
role: they are both generators of the symmetry group and ‘‘observables.’’ The analysis of different splittings of
angular momentum into ‘‘spin’’ and ‘‘orbital’’ parts reveals the difference between these two roles. We also
discuss a relation of different choices of spin observables to the violation of Bell inequalities.
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Spin degrees of freedom appear in a variety of appli
tions in quantum information theory and foundations
quantum mechanics@1,2#, and usually are analyzed nonrel
tivistically. In a relativistic domain an observable of choice
the helicity S•p, which is well defined for particles with
sharp momentum~for beams in accelerators typical spread
energy ratios are about 1023–1024 @5#!. Nevertheless, there
is also an interest in spin operators in general@6–10#.

In this paper, we consider two standard spin operators
massive spin-12 particles, the rest-frame spin and the Dir
spin operatorS that is associated with the spin of movin
particles as seen by a stationary observer@3#. These two
quantities can serve as prototypes~or building blocks! for
various alternative ‘‘spin operators’’ that appear in the lite
ture @7,8#.

Spin and many other operators play a double role: t
are symmetry generators and at the same time are ‘‘obs
ables’’ in a sense of von Neumann measurement theory
most cases, both in classical and quantum physics, the
no need to distinguish between these two roles, a not
exception being Koopmanian formulation of classical m
chanics, where the generators of symmetries and observa
are represented by different operators@1,11#.

We begin from a review of necessary concepts a
present a list of properties that an operator should satisf
order to be called ‘‘spin.’’ Then we show that even ifS is a
discrete-degrees-of-freedom part of the generator of rotat
it is impossible to construct one-particle Hilbert-space ope
tor that gives the same statistics and satisfies the spin op
tor requirements. This is similar to the analysis of van E
and Nienhuis of splitting angular-momentum operator
electromagnetic field into spin and orbital parts. They sh
that both are measurable quantities, but neither of them
isfies commutation relations of the angular-momentum
erator@9#. Finally, we discuss how a choice of the spin o
erator affects a degree of violation of the Bell-typ
inequalities.

For the sake of simplicity, we consider only states with
well-defined momentum. A nonzero spread in moment
has important consequences for quantum information the
but is irrelevant for our present subject and is described e
where@12#. We set\5c51.

Following Wigner@13# the Hilbert space is
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H5C2
^ L2

„R3,dm~p!…, dm~p!5
1

~2p!3

d3p

~2p0!
, ~1!

wherep05Am21p2. The generators of the Poincare´ group
are represented by

Pm5pm, ~2a!

K52 ip0
“p2

p3S

m1p0
, ~2b!

J52 ip3“p1S, ~2c!

where the angular momentum is split into orbital and s
parts, respectively. We label basis statesus,p&. Pure state of
definite momentum and arbitrary spin will be labeled
( b

a)up&.
Lorentz transformationL, ym5Ln

mxn, induces a unitary
transformation of states. In particular,

U~L!us,p&5(
j

Djs@W~L,p!#uj,Lp&, ~3!

whereDjs are the matrix elements of a unitary operatorD
which corresponds to a Wigner rotationW(L,p). The
Wigner rotation itself is given by

W~L,p!ªLLp
21LLp , ~4!

whereLp is a standard pure boost that takes a standard
mentumkR5(m,0,0,0) to a given momentump. Explicit for-
mulas ofLp are given, e.g., in Refs.@4,14#.

It is well known @4# that for a pure rotationR the three-
dimensional Wigner rotation matrix is the rotation itself,

W~R,p!5R, ;p5„E~p!,p…. ~5!

As a result, Wigner’s spin operators are nothing else
halves of Pauli matrices~tensored with the identity ofL2).

A useful corollary of Eqs.~3! and~4! is a property of the
rest-frame spin. If an initial state~in the rest frame! is

uC&5aU12 ,kRL 1bU2 1

2
,kRL , ~6!

with uau21ubu251, then a pure boostL leads to
©2003 The American Physical Society02-1
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U~L!uC&5S a

b D uLkR&. ~7!

A Pauli-Lubanski vector is an important quantity that is co
structed from the group generators@14#,

w%5
1

2
elmn%PlMmn, ~8a!

w052P•J, w5P0J1P3K , ~8b!

whereM125J3,M015K1, etc. In particular, it helps in split-
ting spin out of the angular momentum,

S5
1

m S w2
w0P

P01m
D . ~9!

For a particle with definite four-momentump, this formula
just says that the components of a spin operator are t
spacelike components of the Pauli-Lubanski operator at
rest frame,

Sk5~Lp
21w!k . ~10!

We take three following properties as defining a natural re
tivistic extension of the spin observable.

~1! The triple of operatorsS reduces in the rest frame to
nonrelativistic expressionwR /m.

~2! It is a three-vector

@Jj ,Sk#5 i e jklSl . ~11!

~3! It satisfies spin commutation relation

@Sj ,Sk#5 i e jklSl . ~12!

A simple lemma~the proof can be found in Ref.@14#! shows
that this operator is unique, under one technical assump

Lemma 1.The only triple of operatorsS that satisfies the
above assumptions, and in addition is a linear combinatio
the operatorswm, is given by Eq.~9!.

To discuss Dirac spin operators we need more elemen
field-theoretical formalism. States of definite spin and m
mentum are created from the vacuum by creation opera
us,p&5âsp

† u0&, while antiparticles are created byb̂sp
† . We

use the following normalization convention:

^s,puj,q&5~2p!3~2p0!dsjd
(3)~p2q!. ~13!

Field operators are usually written with Dirac spinors. A H
bert space and unitary representation on it can be constru
from the bispinorial representation of the Poincare´ group. To
this end we take positive-energy solutions of Dirac equati
which form a subspace of the space of all four-compon
spinor functions C5Cl(p), l51, . . . ,4. A Lorentz-
invariant inner product becomes positive definite and
subspace of positive-energy solutions becomes a Hil
space. The generators in this representation are

Pm5pm, Jmn5Lmn1Smn, ~14!
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Llm5 i S pl
]

]pm
2pm

]

]pl
D , ~15a!

L0m5 ip0
]

]pm
, Smn5

i

4
@gm,gn#. ~15b!

A double infinity of plane-wave positive-energy solutions
the Dirac equation~functionsup

(1/2) andup
(21/2) that are pro-

portional toe2 ip•x) is a basis of this space. Basis vectors
Wigner and Dirac Hilbert spaces are related by@14#

up
(1/2)⇔U12 ,pL , up

(21/2)⇔U2 1

2
,pL . ~16!

A discrete part ofSmn (S1/2[S23, etc.! is a Dirac spin op-
erator. In standard or Weyl representations, it looks like

S5S s 0

0 s
D . ~17!

It is possible to say that different propositions for spin o
erators are different ways to splitJ. However, a momentum
dependent Foldy-Wouthuysen transformation takesS to the
spinor representation ofS @3,14#. Hence, we see that th
difference is essentially in a covariant treatment.

A field operator is constructed with the help of plan
wave solutions of Dirac equations@3,4,14#,

f̂~x!5 (
s51/2,21/2

E dm~p!~eix•pvp
sb̂sp

† 1e2 ix•pup
sâsp!,

~18!

wherevp
s are negative-energy plane-wave solutions of Dir

equation.
Using field transformation properties it is a standard e

ercise to get the following expression for Dirac spin opera
@15#:

Ŝ5::E d3xf̂†~x!
S

2
f̂~x!::, ~19!

where :: designates a normal ordering. Wigner spin is giv
by

Ŝ5
1

2 (
h,z

shzE dm~p!~ âhp
† âzp1b̂hp

† b̂sp!. ~20!

An interpretation ofŜ and Ŝ as observables is based on t
analysis of one-particle states with well-defined moment
and an arbitrary spin, such asuC&5( b

a)up&[cup&. A corre-
sponding Dirac spinor for this state isCp5aup

(1/2)

1bup
(21/2) .

An expectation value of Wigner spin operator is just
nonrelativistic rest-frame expression

s̄5
^CuŜuC&

^CuC&
5c†

s

2
c. ~21!
2-2
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The transformation properties of momentum eigenstates
~7!, Lemma 1, and the fact that Wigner spin operator co
mutes with the Hamiltonian lead to the association ofŜ with
a conserved quantity rest-frame spin.

Dirac spinS is associated with the spin of a moving pa
ticle. A quantity

s̄D5
^CuŜuC&

^CuC&
5Cp

† S

4E~p!
Cp ~22!

is interpreted as an expectation value of the spin of a mov
particle with momentump @3#. It reduces to its nonrelativis
tic value for p→0 and particle’s helicity can be calculate
with either of the operators.

While from Lemma 1 it is clear thatS does not define
spin operators on the one-particle Hilbert space, it is instr
tive to see how it fails to do so. En route we constructS, a

one-particle Hilbert-space restriction ofŜ. To this end we
derive a necessary and sufficient condition for three exp
tation values to be derivable from the three operators
satisfy spin commutation relations.

Consider six 232 spin-density matrices with Bloch vec
tors 6 ẑ,6 x̂, and6 ŷ. These density matrices are

rz5S 1 0

0 0D , rx5S 1

2

1

2

1

2

1

2

D , ry5S 1

2
2

i

2

i

2

1

2

D ,

~23!

etc. We are looking for three Hermitian 232 matricesSk the
expectation values of which on the above states are the
scribed numberss̄k(r l),

s̄k~r l !5tr~Skr l !, k51,2,3; 6 l 56x,6y,6z. ~24!

We decompose these matrices in terms of Pauli matrices

Sk5 (
n50

3

sknsn , ~25!

wheres0 is an identity. It is easy to see that

tr~r lsn!5d ln , n51,2,3. ~26!

Therefore,s̄k(r l)5sk01skl . If instead of spin statesr l we
take their orthogonal complementsr2 l we see that allsk0
50, so

Sk5(
l

s̄k~r l !s l . ~27!

We want these operators to satisfy spin commutation r
tions @Sj ,Sk#5 i e jklSl . Therefore,

s̄j~rm!s̄k~rn!@sm ,sn#52i e jkl s̄l~rp!sp ~28!
01410
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holds and the summation is understood over the repe
indices. As a result, we establish the following lemma.

Lemma 2.A necessary and sufficient condition for a trip
of probability distributions on spin-1

2 states with the expec
tation valuess̄5( s̄1 ,s̄2 ,s̄3) to be derived from a triple of
matrices that satisfy spin commutation relations is

s̄j~rm!s̄k~rn!emnp5e jkl s̄l~rp!, ~29!

where the three statesrp are the pure states with Bloch vec
tors x̂, ŷ, and ẑ, respectively.

We apply this technique to a relativistic spin. Six statesr
are taken to be spin parts of zero-momentum states. Cons
them in a frame where they have a momentump
5p(nx ,ny ,nz). Expectation values ofsD in that frame are
calculated according to Eq.~22!. For rz we get

s̄D~rz!5
1

2

1

p21m~m1Am21p2!

3~nxnzp
2,nynzp

2,m21nz
2p21mAm21p2!,

~30!

and analogous expressions for other states. From Eq.~27! we
see thatS is given by

Sk5(
l

s̄k
D~r l !s l . ~31!

However, a simple calculation reveals that, e.g.,

@Sx~p!,Sy~p!#Þ iSz~p!, ~32!

and the equality is recovered only in the nonrelativistic lim
It is not just a problem of combining three operators in
three-vector. If we writenz5cosu, we find that the eigenval-
ues ofSz are

s656
1

2

AE2~p!1m21p2cos 2u

A2E~p!
. ~33!

A triple of operatorsSj ^ 1L2 is a restriction ofŜ that oper-
ates on the Fock spaceF(H)5 % nS2(H ^ n) to the one-
particle spaceH. In the process of restriction the essent
spin operator properties are lost, even if the resulting ope
tors are the legitimate observables, similarly to Ref.@9#.

If one requires fixed outcomes6 1
2 they are possible to

achieve at the price of introducing a two-outcome posit
operator-valued measure~POVM! @1,2#. The expectation
value s̄k

D implies that the probabilities of the outcomes6 1
2

are

pk
6~r l !5

1

2
@162s̄k

D~r l !#. ~34!

Using the operatorsSk we can construct projectorsP k
6 on

the one-particle Hilbert space, which correspond to proj
tors P̂k

6 on the Fock space. They are
2-3
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P k
65

1

2
~162Sk!. ~35!

By a simple inspection we find that, e.g.,

P z
1P z

2Þ0, ~36!

and the orthogonality is recovered only in the limitp→0.
Since P k

6.0 and P k
11P k

251 we indeed have a two
outcome POVM.

From these results we learn that being a representatio
a symmetry generator does not necessarily imply that
operator is also an observable with ‘‘usual’’ properties. W
have two distinct representations of su~2! algebra on the

spin-12 Fock space,Ŝ and Ŝ. However, only one of them
preserves defining commutation relations when restricte
the one-particle Hilbert space.

Now let us consider a relation of different spin operato
to the maximal violation of Bell inequalities@1,2#. Consider
the Clauser-Horne@16# version of Bell inequalities, where
two pairs of operators describe pairs of possible testsA1
and A2 for the first particle,B1 and B2 for the second!. In
each test, two possible outcomes are conventionally lab
‘‘ 1 ’’ and ‘‘ 2. ’’ Probabilities of these outcomes, e.g., for th
first particle, are given as expectationspi

65tr(Ei
6r), where

positive operatorsEi
6 form a two-outcome POVM,Ei

1

1Ei
251. The four operatorsAi , Bi are defined similarly to

Eq. ~36!. In particular,A152Ei21, and the absence of
factor 1

2 is conventional.
It was shown by Summers and Werner@17# that the in-

equalities are maximally violated only if each couple of o
-

01410
of
is

to

s

ed

-

erators generates spin commutation relations. In particu
the operatorsAi have to satisfyAi

251 and A1A21A2A1

50, and operatorsBi are similarly constrained. Hence, de
fining A3ª2( i /2)@A1 ,A2# one indeed reproduces commut
tion relations of Pauli matrices.

Now assume that these operators are realized asAi52ai
•S, etc., whereai is a unit vector. Then Eq.~33! shows that
generically there will be less than maximal violations of t
inequalities.

Czachor@7# considers a different spin operator,S̃, which
is a suitably normalized Pauli-Lubanski operatorw. Then
Ai52ai•S̃, so

Ai52F m

p0
ai1S 12

m

p0D ~a•n!nG•S[2a~a,p!•S, ~37!

where S is the Wigner spin operator andn5p/upu. The
length of the auxiliary vectora is

uau5
A~p•a!21m2

p0
, ~38!

so we see that genericallyAi
25a21,1. This provides a

simple explanation of the lower than maximal Einste
Podolsky-Rosen correlations reported in Ref.@7# ~and, ac-
cordingly, weak or no violations of Bell-type inequalities!.
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