PHYSICAL REVIEW A 67, 014102 (2003
Two roles of relativistic spin operators
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Operators that are associated with several important quantities, such as angular momentum, play a double
role: they are both generators of the symmetry group and “observables.” The analysis of different splittings of
angular momentum into “spin” and “orbital” parts reveals the difference between these two roles. We also
discuss a relation of different choices of spin observables to the violation of Bell inequalities.
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Spin degrees of freedom appear in a variety of applica- 1 d¥
tions in quantum information theory and foundations of H=C22L%R3,du(p)), du(p)= s (D
guantum mechanidd,2], and usually are analyzed nonrela- (2m)* (2p°)

tivistically. In a relativistic domain an observable of choice is
the helicity S-p, which is well defined for particles with
sharp momentunffor beams in accelerators typical spread to
energy ratios are about 18-104 [5]). Nevertheless, there pr=pH (2a)
is also an interest in spin operators in gen¢6at10]. '
In this paper, we consider two standard spin operators for

wherep®=J/m?+ p?. The generators of the Poincageoup
are represented by

X X . . . ) pXxS
massive spirny particles, the rest-frame spin and the Dirac K= —|pOVp— — (2b)
spin operator?, that is associated with the spin of moving m+p
particles as seen by a stationary obser@&r These two )
quantities can serve as prototyp@s building blocks for J=—ipXV,+§ (20)
various alternative “spin operators” that appear in the litera- . L . .
ture [7,8]. where the angular momentum is split into orbital and spin

Spin and many other operators play a double role: the)par_ts_, respectively. We label I_Jasis Std&SJ): Pure state of
are symmetry generators and at the same time are uobser\(}i_eflnlte momentum and arbitrary spin will be labeled as
ables” in a sense of von Neumann measurement theory. 1ha)[P)- ) oy .
most cases, both in classical and quantum physics, there is Lorentz transformation\, y*=A{x", induces a unitary
no need to distinguish between these two roles, a notabféansformation of states. In particular,
exception being Koopmanian formulation of classical me-
chanics, where the generators of symmetries and observables U(A)|o,p)= E Dl W(A,p)]|&,AP), 3
are represented by different operatfitsl1]. 3

We begin from a review of necessary concepts and _ ]
present a list of properties that an operator should satisfy iWhereD,, are the matrix elements of a unitary operaibr
order to be called “spin.” Then we show that everdifisa ~ Which corresponds to a Wigner rotatioW/(A,p). The
discrete-degrees-of-freedom part of the generator of rotatiofVigner rotation itself is given by
it is impossible to construct one-particle Hilbert-space opera- "
tor that gives the same statistics and satisfies the spin opera- W(A,p):=L\pAL,, )

tor requirements. This is similar to the analysis of van EnlﬂNhereLp is a standard pure boost that takes a standard mo-
and Nienhuis of splitting angular-momentum operator of _ . e
electromagnetic field into spin and orbital parts. They showrnentumkR (m,0,0,0) o a given momentum Explicit for

that both are measurable quantities, but neither of them Sartyula.s ofL, are given, e.g., in Ref$4,14] .
o ; ) It is well known[4] that for a pure rotatiorR the three-
isfies commutation relations of the angular-momentum op-,. . : . . o

. i . : dimensional Wigner rotation matrix is the rotation itself,
erator[9]. Finally, we discuss how a choice of the spin op-
erator affects a degree of violation of the Bell-type W(R,p)=R, Vp=(E(p),p). ®)
inequalities.

For the sake of simplicity, we consider only_ states with aAs a result, Wigner’s spin operators are nothing else but
well-defined momentum. A nonzero spread in momentunhalves of Pauli matriceftensored with the identity df?).
has important consequences for quantum information theory A useful corollary of Eqs(3) and(4) is a property of the
but is irrelevant for our present subject and is described elsgest-frame spin. If an initial statén the rest framgis
where[12]. We seth=c=1.

Following Wigner[13] the Hilbert space is W)
=

1 1
E-kR +/8_§1kR , (6)
*Electronic address: terno@physics.technion.ac.il with |a|?+]|B|?=1, then a pure boost leads to
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@ where
U(A)I*I'>=( )|AkR>- @
B _ J d
Lim=i| p' o —p"——], (15a
A Pauli-Lubanski vector is an important quantity that is con- IPm Ip
structed from the group generatddst], P i
1 Lomzipoﬁ—, =0y (15
— A v pm
WQ—EE)\/“,QP MAY, (8a)

A double infinity of plane-wave positive-energy solutions of
Wo=—P-J, w=POJ+PxK, (8  the Dirac eqlﬂationjfunction_suff’z) and ui~ 2 that are pro-
portional toe™ 'P¥) is a basis of this space. Basis vectors of
whereM =33 M%=K?!, etc. In particular, it helps in split- Wigner and Dirac Hilbert spaces are related[ ]
ting spin out of the angular momentum,

wop

PO+ m

1 1
— (=12) | —
2,p>, Up 4:»’ 2,p>. (16)

p
S=—|w (9

m

) U124

A discrete part ofs*” (31/2=S% etc) is a Dirac spin op-

. . . . erator. In standard or Weyl representations, it looks like
For a particle with definite four-momentup) this formula

just says that the components of a spin operator are three o 0
spacelike components of the Pauli-Lubanski operator at the =0 .
rest frame, o

17

Se=(L:w) (10 It is possible to say that different propositions for spin op-
p ke erators are different ways to split However, a momentum-

We take three following properties as defining a natural relad€pendent Foldy-Wouthuysen transformation take® the
tivistic extension of the spin observable. spinor representation db [3,14]. Hence, we see that the

(1) The triple of operator$ reduces in the rest frame to a difference is essentially in a covariant treatment.
nonrelativistic expressiowg/m. A field operator is constructed with the help of plane-

(2) It is a three-vector wave solutions of Dirac equatio8,4,14,

[J;.Sd=i€wS - (11) dx)= 2 du(p)(e* Pusb! +e " Puta,,),
o=i2-112 prap P
(3) It satisfies spin commutation relation (18
(S, Sd=li€juS - (120 wherev, are negative-energy plane-wave solutions of Dirac
_ _ equation.
A simple lemma(the proof can be found in Reff14]) shows Using field transformation properties it is a standard ex-

that this operator is unique, under one technical assumptiorycise to get the following expression for Dirac spin operator
Lemma 1The only triple of operator$§ that satisfies the [15]:
above assumptions, and in addition is a linear combination of
the operatorsv¥, is given by Eq.(9). S [ doei o 2k
To discuss Dirac spin operators we need more elements of 2= AT b0, (19)
field-theoretical formalism. States of definite spin and mo-
mentum are created from the vacuum by creation operatorghere :: designates a normal ordering. Wigner spin is given
|(r,p>=é£p|0>, while antiparticles are created tﬁip. we by
use the following normalization convention: 1

S==> o fd,u(p)(éT a,+b" b,y).  (20)
(o,pl&,a)=(2m)3(2p%) 8,6 (p—q). (13 29t L
Field operators are usually written with Dirac spinors. A Hil- opy interpretation ofS and$ as observables is based on the
bert space and unitary representation on it can be construct%mysis of one-particle states with well-defined momentum

frqm the bispinorial rgpresentation of the Poin'cgreup. To. and an arbitrary spin, such W>=(§)|D>E¢|p>- A corre-
th|§ end we take positive-energy solutions of D|re}c equat|on%ponding Dirac spinor for this state islfp:auf)l’z)
which form a subspace of the space of all four-componen (-172)

spinor functions ¥ =¥*(p), \=1,...,4. A Lorentz- +'[2JP ' tati | f Wi . tor is iust
invariant inner product becomes positive definite and the nrnlet)i(\?ie; arlont ;/rarl:]e OX r|gniernsp|n operator Is just a
subspace of positive-energy solutions becomes a HilpefiONretativistic rest-irame expressio

space. The generators in this representation are (\If|é|\lf) o

— L _yut=
Pr=pH, JH'=LP+ S, (14) Sy e @)
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The transformation properties of momentum eigenstates Edpolds and the summation is understood over the repeated
(7), Lemma 1, and the fact that Wigner spin operator com-ndices. As a result, we establish the following lemma.

mutes with the Hamiltonian lead to the associatiorSefith Lemma 2A necessary and sufficient condition for a triple
a conserved quantity rest-frame spin. of probability distributions on spig- states with the expec-
Dirac spinX, is associated with the spin of a moving par- tation valuess=(s;,s,,s;) to be derived from a triple of
ticle. A quantity matrices that satisfy spin commutation relations is
<\If|i|\1}> 3 gj(Pm)gk(pn)emnp: Ejklgl(pp)a (29
P= =y v, (22) ,
(W|w) 4E(p) where the three statgs, are the pure states with Bloch vec-

torsx, y, andz, respectively.

9 we apply this technique to a relativistic spin. Six states

are taken to be spin parts of zero-momentum states. Consider

them in a frame where they have a momentuym
=p(ny,ny,n,). Expectation values of® in that frame are

calculated according to E¢22). For p, we get

is interpreted as an expectation value of the spin of a movin
particle with momentunp [3]. It reduces to its nonrelativis-
tic value forp—0 and particle’s helicity can be calculated
with either of the operators.

While from Lemma 1 it is clear tha® does not define
spin operators on the one-particle Hilbert space, it is instruc-
tive to see how it fails to do so. En route we constrScta

. 1
one-particle Hilbert-space restriction &. To this end we S(p)=5 2 ——
derive a necessary and sufficient condition for three expec- 2 p*+m(miym?+ p?)
tation values to be derivable from the three operators that X(nxnzpz,nynzpz,mz+ n2p?+ mym2+p?),
satisfy spin commutation relations.
Consider six X 2 spin-density matrices with Bloch vec- (30

tors £z,xx, and+y. These density matrices are and analogous expressions for other states. FroniZgwe
1 see thatS is given by
10 2 2 -
_ - S=2 sK(p)a. (3D)
Pz ( 0 0) v Px | 1 ! |
2 2

NI~ N -
Nl = N| -

However, a simple calculation reveals that, e.g.,

etc. We are looking for three Hermitiarn<2 matricesS, the LS. &y (P #18(P), 32

expectation values of which on the above states are the premd the equality is recovered only in the nonrelativistic limit.

scribed numbers,(p)), It is not just a problem of combining three operators into
o three-vector. If we writer,= cos6, we find that the eigenval-
s(p)=tr(Sep)), k=1,2,3; =l==xx,xy,*z. (24 ues ofS, are

(23

VE?(p) +m?+ p?cos 26

V2E(p)

A triple of operatorsS;®1, 2 is a restriction ofX that oper-

) ) , , ates on the Fock spac&(H)=,S (H®") to the one-

whereay is an identity. Itis easy to see that particle space. In the process of restriction the essential
spin operator properties are lost, even if the resulting opera-

tr(pron)=din, n=123. (20 {ors are the legitimate observables, similarly to Fef.

_ If one requires fixed outcomes 3 they are possible to

Therefore,sy(p;) =sxo+ sk - If instead of spin statep; we  achieve at the price of introducing a two-outcome positive

take their orthogonal complemengs | we see that alk,  operator-valued measurlOVM) [1,2]. The expectation

We decompose these matrices in terms of Pauli matrices,

- (33

)

Sk: ng() SknOn » (25)

=0, so valuesp implies that the probabilities of the outcomes:
are
Se=20 sdp)ar- 27 L
Pic (p)=5[1225(py)]. (34

We want these operators to satisfy spin commutation rela-
tions[S;,Sc]=1i€jqS . Therefore, Using the operators, we can construct projectof8, on

L o the one-particle Hilbert space, which correspond to projec-

Si(pm)Sk(pn)[Tm,Tn]=2i€j1SI(pp) ) (28)  tors P; on the Fock space. They are
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1
Py =5(1£25)). (35)
By a simple inspection we find that, e.g.,
P, P, #0, (36)

and the orthogonality is recovered only in the linpit-0.
Since P, >0 and Py +P, =1 we indeed have a two-
outcome POVM.

From these results we learn that being a representation %
a symmetry generator does not necessarily imply that this

PHYSICAL REVIEW A7, 014102 (2003

erators generates spin commutation relations. In particular,
the operatorsA; have to satisfyA’=1 and A;A,+AA,
=0, and operator8; are similarly constrained. Hence, de-
fining Az:=—(i1/2)[ A1,A,] one indeed reproduces commuta-
tion relations of Pauli matrices.

Now assume that these operators are realizefl; a2a,
-8, etc., whereg; is a unit vector. Then Eq33) shows that
generically there will be less than maximal violations of the
inequalities.
Czachor{7] considers a different spin operat&, which
a suitably normalized Pauli-Lubanski operater Then

operator is also an observable with “usual” properties. Wei =23+ S, SO

have two distinct representations of(8ualgebra on the
spin+ Fock spaceS and Y. However, only one of them

preserves defining commutation relations when restricted to

the one-particle Hilbert space.

A=2 .S=2a(a,p)-S, (37)

Ta+1 m)( )
—a ——|(a-n)n
p° p°

Now let us consider a relation of different spin operatorswhere S is the Wigner spin operator and=p/|p|. The

to the maximal violation of Bell inequalitidsl,2]. Consider
the Clauser-Horn¢16] version of Bell inequalities, where
two pairs of operators describe pairs of possible tests (
and A, for the first particle,B; and B, for the secong In

each test, two possible outcomes are conventionally labeled

“+”and “ —.” Probabilities of these outcomes, e.g., for the
first particle, are given as expectations=tr(E; p), where
positive operatorsE;” form a two-outcome POVME;"
+E; =1. The four operatord,;, B; are defined similarly to
Eqg. (36). In particular,A;=2E;—1, and the absence of a
factor 1 is conventional.

It was shown by Summers and Werrjdi7] that the in-

equalities are maximally violated only if each couple of op-

length of the auxiliary vectow is

V(p-a)?+m?
p°

|al (39)

so we see that genericall&i2=a/21<1. This provides a
simple explanation of the lower than maximal Einstein-
Podolsky-Rosen correlations reported in Réf] (and, ac-
cordingly, weak or no violations of Bell-type inequalities
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