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Quantum well in a microcavity with injected squeezed vacuum
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A quantum well with a single exciton mode in a microcavity driven by squeezed vacuum is studied in the
low exciton density regime. By solving the quantum Langevin equations, we study the intensity, spectrum, and
intensity correlation function for the fluorescent light. An expression forQHanction of the field inside the
cavity is derived from the solutions of the quantum Langevin equations. Usin@ fhaction, the intracavity
photon number distribution and the quadrature fluctuations for both the cavity and fluorescent fields are
studied. Several interesting and new effects due to squeezed vacuum are found.
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I. INTRODUCTION photon number as well as squeezed-vacuum photon number
on the intensity, spectrum, and the second-order intensity
With the development of semiconductor optical micro- correlation of the fluorescent light. In Sec. IV, we obtain the
cavities, there has been considerable interest in excitorfR-distribution function and use it to study the intracavity
cavity coupled systemfL,2]. These systems have revealed Photon number distribution and squeezing of the cavity
some interesting phenomena that are similar to those opnode and the fluorescent light. We summarize the principal
served in the interaction of a two-level atom with liget-9).  results of the paper in Sec. V.
The exciton-cavity system gives rise to the so-called polari-
tons, which are the normal modes of a coupled exciton- II. QUANTUM LANGEVIN EQUATION
photon system. The excitation spectrum of the composite . . .
exciton-cavity system is characterized by two well-resolvedIin We consider a semiconductor quantum welW) in the

polariton resonancefor normal mode resonancesheng Ty BEACE S ST TR MR, RS L
>(7ve,7vc), Whereg is the dipole coupling between the exci- 9 )

ton and the cavity mode, ang, and v, are the exciton and excitons can then be approximated as a dilute bosohl@hs

cavity mode damping rates, respectively. In this limit, an.ln this approximation, the microscopic Hamiltonian in the

excitation of the cavity mode can lead to a coherent oscillaln.teraCtion picture describing the exciton-cavity system is
tory energy exchangér normal mode oscillationbetween given by[17.19
:irger];a.xcnon and the cavity due to the vacuum Rabi oscilla- f,=hAwb'B+ikg(ah—ab)

The v_acuum_Rabi oscillati_ons in a coupled exciton-photon + afIJr art .+ Bf“g+ bIT.. (1)
system in semiconductor microcavity lasers have been ob-
se:ved. by WeiS.bUC'ﬂit i'ﬂ'- [j]thOI|()twinlg tth(ijs_ ok;]serv&gtion, The Hamiltonian of Eq(1) is written in the rotating-wave
extensive experimental and theoretical studies have been car: A . . Lo -
ried out[10—-17. These studies have confirmed normal mod:g{pproxmatlon-a.nd.m the dipole apprommatpn. Harand.
splitting and oscillatory emission from exciton microcavities. P @€ the annihilation operators for the cavity and exciton
Theoretical investigations in the linear regime, where the exMdes, respectively, in a frame rotating at frequency
citons can be approximated as bosons, have been carried out, I'c (I'e) is the reservoir operator responsible for cavity
by Pauet al.[15]. Wanget al.[16] investigated the effects of field (exciton damping,g is the coupling constant character-
inhomogeneous broadening of excitons on normal mode oszing the strength of interaction between the exciton and the
cillations in semiconductor microcavities using the coupledcavity field, and detuning w = (w.— w¢), wherew, andw,
oscillator model. Their results show that inhomogeneougre the frequencies of the exciton and cavity modes, respec-
broadening can drastically alter the coherent oscillatory entively. Normally, the exciton and cavity modes are coupled to
ergy exchange process even in regimes where normal modecontinuum of thermal reservoir modes. This leads to their
splitting remains nearly unchanged.

In this paper, we study the excitonic system in a micro- Qw
cavity where the cavity is driven by squeezed vacuum. An Mirror
outline of the system is shown in Fig. 1. A semiconductor
guantum well is embedded between two Bragg reflecting
mirrors. One of these mirrors acts as an input port through
which light in a squeezed vacuum state is injected into the
cavity. We include dissipation of both the cavity and exciton
modes. In Sec. I, we derive the quantum Langevin equations

Mirror

Pump

\
\ 4

for the exciton and cavity modes. We solve these equation h Cavity
for the case in which the damping constants are equal. These
results are used in Sec. Il to study the effects of initial cavity FIG. 1. An outline of the physical system.
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dissipation. Here, we shall consider the case in which thérequencies of the exciton and the cavity modes are equal.
cavity mode is damped by a broadband squeezed vacuurihen by introducing the transformations

Then the interaction Hamiltonian of E¢L) leads to the fol-

lowing quantum Langevin equations for the field and exciton

operators: X=a+ib, Y=a-ib, 7
da__ Yer s gbrEyn 2
dt 2 g e we obtain two uncoupled equations f§randY,
db Ye . ~ ~ o a N
a:— ?-FIA(U b—ga+Fe(t). (3) dX v R R R
G- |3 X R +iFun], ®
Here v. and vy, are the damping rates for the cavity and
exciton modes, anB . andF, are the noise operators for the
cavity and exciton modes, respectively. Equati(®)sand(3) dv
are similar to those obtained by Patal.[15]. They solved = (Z—ig ?J’_[l’ic(t)_”&e(t)]' (9)
these equations by neglecting the noise terms. In the present dt 2

case, we are interested in studying the system when the cav-
ity mode is damped by a squeezed vacuum. In this case, the

noise terms are essential and must be retained. Noise opera@!ving these equations and using the inverse of transforma-
tors for both the exciton and photon modes have zero meation (7), we obtain the following solutions faa andb:
(F(t))=0=(F4(t)). For the cavity mode damped by a
broadband squeezed vacuum centered about the cavity mode,
the noise operators have the following correlati : - - A t .
P g 028 a(t)=A1(t)a(0)+A2(t)b(O)+f A(t—t"F(t")dt’

0
(Fe(OF{t))=7e(Ne+1)a(t—t"), t
o +f Ay(t—t")Fo(t)dt, (10)
(FUOFL()=yeNes(t—t"), 0

(F(OF (1)) =yMd(t—t"), ) ) ) t )
b(t)=A1(t)b(0)—Az(t)a(0)+f Ai(t—t")F(t")dt’
(FLOFIt))=yMES(t—t'). (4) 0

t
Here N, is the mean photon number of the squeezed reser- —f Ay (t—t")F(t")dt, (11)
voir and M. is a parameter related to the phase correlations 0
of the squeezed reservoiN. and M. are related to the
squeezing parameterby

where
N.=sint(r), M =e'%sinh(r)coskr). (5)
For the exciton noise operator we have A (t)=e "2codgt) and A,(t)=e "Zsin(gt). (12)
E BT — ,

(Fe()Fe(t"))=ye(Ne+1)a(t—t), Equations(10) and (11) are the basic equations that will be

used to study the properties of fluorescent and intracavity
<|A:l(t)|ee(t')>= yNgS(t—t), photon statistics.
(Fe(hFe(t))=(FLtIFL(t")=0. (6) Ill. CORRELATIONS OF THE FLUORESCENT LIGHT

All the odd-order correlations vanish and even-order corre- We now study the mean intensitgxciton numbeyr and
lations can be expressed in terms of second-order correldbe spectrum of the fluorescent light. We note that the scat-
tions. Ne is the mean number of thermal phonons in thetered field at timet and distance in the radiation zone is
exciton bath. proportional to the exciton operator at the retarded tivtee

To gain insight into the dynamical behavior of the system,—r/c). Thus the fluorescent light correlations provide infor-
we consider the special case when the damping rates and theation about the exciton correlation function.

013818-2



QUANTUM WELL IN A MICROCAVITY WITH INJECTED . . . PHYSICAL REVIEW A 67, 013818 (2003

A. Amplitude correlation and intensity

To study the mean intensity and spectrum of fluorescent light, we calculate the two-time exciton correlation function
(bT(t)b(t+ 7)) by using Eq.(11) and its complex conjugate,

(6*(t)6(t+T)>=<{A’{(t)B*(O)—A’§(t):§ﬁ(0)+JtA’;(t—t’)l‘:g(t’)olt’—ft ’2‘(t—t’)l32(t’)dt’}
0 0

~ N t+7

X Al(t+r)b(0)—A2(t+T)a(O)+J

0

N t+7 N
Ay (t+7—t") E (1) dt" — f A (t+ T—t")Fc(t")dt”D .
0

(13

We recall that the field and the exciton modes at the initial time are uncorrelated with the reservoirs at a later time and the
reservoir noise operators are uncorrelated so that

(a(0)F (1)) =(a(0))(F(1)),
(b(0)F (1)) =(b(0))(Fe(1)),

(Fe(t)Fo(t))y=(Fe(t"))(Fo(D)), (14)

where we have used the fact that the noise operators have zero[l(ri%_zén)>=0=<lfe(t)>]. Assuming that initially the
exciton mode is in a number stdte,) and the cavity mode is in a stdt¢) (=2 C,|n), where|n) is a number stajewe can

write the state of the exciton-photon coupled system at the initial timgPg®))=|n.,¢). Then using two-time noise
correlations given in Eqg4)—(6), we find that the field amplitude correlation function given in EL) leads to

e y7l2

(b'(0b(t+7))= [{27°Ne+4g%(Ne+Ne)}coggr) — 2yg(Ne— No)sin(gr) + e~ "{2(y*+4g?)

2(y*+4g?)
X[necog gt)cogg(t+ 7))+ nsin(gt)sin(g(t+ 7))]—[(Ne+ Ng) (v +4g?)cog g7) + 2(Ne— N;)
X codg(2t+ 7)) —2yg(Ne— Ne)sin(g(2t+ 7)) 1}, (15

whereFe andn are the initial mean exciton and photon numbers, respectively. FronilBgwe obtain the mean exciton
number to be

(bT(H)b(t))= ;({ZJ’ZN@L 4g%(Ng+No)t+e~ "{2(y?+4g?)[necoS(gt) + nsirP(gt) ] — [ (Ne+ No) (12 + 4g?)
2(y*+49%)
+9%(Ne—Nc)cog 2gt) — 2yg(Ne— No)sin(2gt) 1}). (16)

Since the fluorescent intensity is proportional to the mean exciton nuﬁﬁﬁ(ar)ﬁ(t)), in what follows we will refer to
(bT(t)b(t)) as the fluorescent intensity.

Equations(15) and(16) show that the two-time exciton correlation function and the mean intensity of the fluorescent light
depend only on the reservoir mean photon nunihelout not on the phase paramelég . This means that if squeezed vacuum
is replaced by a thermal reservoir at a finite temperature, the photon number and spectrum of the fluorescent light will have the
same behavior as described by E(i5) and (16), with N being interpreted as the mean number of thermal quanta in the
reservoir.

In the limit t—o, we obtain the steady-state value of the two-time exciton correlation function,

—y7l2

ot ~ _

[{7*Ne+29%(Ne+Nc)}coggr) — yg(Ne—No)sin(gn) ], 17
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and the fluorescent intensity

1.6 (@) A

(bT(t)b(t)) =;WN +29%(Ne+No) 1.
SSs (y2+4gz) e e C

(18 0.8

At low temperatures, for which the number of the thermal
phonons is negligibleN.=0), Eg.(16) leads to

N N 1 < * *
(BH(OB(V) = 7, 7 @ Nete (7 +497) V6l ®)

X [ngcof(gt) + nsiré(gt)]
—Nc[2g2+ y?sir?(gt) 038
+2ygsin(gt)coggt) ]}). (19

Figure 2 shows the intensity as a function of time as pre-
dicted by Eq(19) for initially one exciton in the microcavity 0'00
(ne=1). Figure Za) shows the dependence of fluorescent yt
intensity on the initial mean photon number in the cavity
when squeezed vacuum is abseNt€0). In this case, Eq. FIG. 2. Intensity of the fluorescent light as a function of scaled
(19) reduces tc(E)T(t)B(t»:e’ yt[COSZ(gt) +Hsin2(gt)]. In all time yt f_or g/ y=6.5. (a) is for different initial mean cavity photon
three cases =0, 0.5, and 2, we observe oscillations in the "umbem andN¢=0, and(b) is for different values of the squeez-
mean photon number at frequengy These oscillations are N9 Parameter andn=0.
due to an exchange of energy between the cavity and exciton ) )
modes. The amplitude of the oscillations depends on thét<7/9). the effect of the squeezed vacuum on the intensity
mean photon number of the cavity mode at the initial timelS Negligible. As time increases, the squeezed vacuum effec-
and it decreases with time due to cavity damping. An inter{ively increases the mean fluorescence intensity in an oscil-

esting behavior of the mean photon number is obtained wheldtory manner. In the steady state, the intensity approaches a
the initial mean photoﬁ= 1. In this case, oscillations com- value proportional to the mean photon number of the

pletely disappear and the mean fluorescent intensity showssql"e{':‘Zed vacuum.
pure exponential decdyb(t)b(t))=e~"']. This is because

in the absence of dissipatiofa’(t)a(t)+b'(t)b(t)] is a o _
constant of motion for zero detuning. Then whenever the The spectrum of the fluorescent light in the steady state is
initial mean numbers of excitons and photons are eqﬁ@l ( given by

=n), we have (b'(t)b(t))=(a'(t)a(t)) and therefore 1 o

(b'(t)b(t)) must be a constant. Inclusion of damping then S(w)=— RE{ fo exfliwr]

causes(b'(t)b(t)) to decay exponentially. Fon<1, the

intensity always lies below this curve and for- 1, intensity X (BT()D(t+ 7))ed 7
always lies above this curve. Thus this curve limits the maxi-

mum (for n<1) and minimum(for n>1) values of the in-

tensity for cases witm# 1.
The intensity of the transmitted light from a single GaAs

/r=0 .
1 2

3 4

B. Spectrum

/ (bT(1)b(1))ss. (20

Substituting the result of Eq$17) and (18) in Eq. (20), we
obtain the spectrum for the fluorescent light to be

guantum well embedded in a distributed Bragg reflector mi- 21 4024 42)+ 20 A02— A2
crocavity has been measured by Jacobsbal. [13] when S(w)= 2_7’ (Y497 407+ Fy"+4g"— 407 ,
the cavity is initially in vacuum state and a single exciton is ™ (Y +49°— 407 %+ 16y°w?

in the quantum well. This experimental measurement is in (21)

excellent agreement with the theoretical predictions based on

the coupled harmonic-oscillator model for the exciton-Where

photon system. Our results for the fluorescent intensity show 5

a qualitatively similar behavior to that of the transmitted in- _ 29°(Nc—Ne)

tensity. Y*Net+29%(Ne+Ne)
Figure Zb) shows the dependence of fluorescent intensity

on the squeezing parameterwhen there are no photons Note that the frequency here should be interpreted as

inside the cavity initially anah,=1. For short time intervals —w.. Because of the normalization in E(RO), the area

(22
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FIG. 3. Spectrum of the fluorescent light as a function of cou-

pling strengthg/y and frequencyw/y for No=0. FIG. 4. Second-order intensity correlatigf®(7) of the fluo-

rescent light as a function ofr with g/ y=>5 for different values of
under the curve for the spectrum is 1. The spectrum given bthe squeezing parameterg®(0)=1 indicates bunching of pho-
Eqg. (21) is independent of the phase parametgy. This  tons.
indicates again that replacing squeezed vacuum by a thermal

reservoir will not affect the form of the spectrum. bT ()bt (t+ M bB(t+ 1 b(t
At low temperatures, one can neglect the number of ther- g®)( 7-)=< ® (A T)A ( 27) (D)ss (24)
mal phonons il,~0). In this limit, the spectrum of the fluo- (bT(t)b(t))3
rescent light in the steady state takes a simpler form and is )
independent o, as well, Using the steady-state solution,
1 4y(v*+4g> - vt v AP
S(w)== Y Ag) . (@23 B(t)es= f e (20 cogg(t—t)) Fo(t')
T (Y +49° - 40?)?+ 16y%w? -
Figure 3 shows a three-dimensional plot of the spectrum for —sin(g(t—t’))lA:C(t’)]dt’, (25

Ne=0. In the weak-coupling limitd/y<1), there is only a

single peak at zero resonance frequency. In the strongn Eq.(24), and the Gaussian property of the noise terms
coupling limit (g/y>1), the spectrum shows two peaks lo- A A . A A A .

cated symmetrically atv=*+g about w=0. Both peaks (FT(t;)FT(t,)F(t3)F(ts))=(FT(t)FT(t,))(F(t3)F(ty))
have the same width, which depends on the exciton and pho-

ton decay rates and the strength of the coupling between +(FT(t) F(ta) WFT(t,)F(ty))
them. For strong coupling, the full width at half maxima is ~ . ~ ~

Aw=7y\1+2(y/4g)2. The two-peak structure in the spec- +(FT(t)F(t))(FT(t) F(ts)),
trum can be explained in terms of the dressed-state picture of (26)

the exciton-field system. Energy levels in different submani-

folds of the dressed states picture for the exciton-field Systepgether with the statistical independence of the noise opera-

are equally spaceid7]. Thus several of the transitions from tors for the photon and the exciton damping, we obtain the
one submanifold to the adjacent submanifold are degeneratgecond-order intensity correlation to be

resulting in only two peaks in the spectrum. Recall that the

dressed levels for the atom-field system in different submani- @) e
folds are not equally spaced. In that case, an increase in g7 =1+ [No(72+292) + 292N, ]2
excitation shows additional peaks in the emission spectrum. ey g g
We find that in the weak-field limit, the spectrum broad- X (|M¢|?[2g°coggT)+ ygsin(gT)]?
ens ad\, increases. This is because with an increasddn 5 5 ,
thermal dissipation of excitons increases. In the strong-field +{Ne[ (y“+2g°)coggT) — ygsin(g7)]
limit, on the other hand, the peaks are off resonanee ( 2 ; 2
# we) and the effect of an increase N on the spectrum is Nl 2g7cosg) + ygsin(g)1}"). @)
negligible. This function is shown in Fig. 4, where we have plotted

its form at low temperatures where the thermal phonon num-
ber is negligible N.=0) for several values of the squeezing
The second-order intensity correlation function is theparameter. In all cases, we find oscillations at frequency
probability of detecting a photon at tinte- 7 given that one  equal to the photon-exciton coupling constgnitVe note that
photon was detected at timeFor the fluorescent light, in the g®(0) is always greater than 1, indicating that the fluores-
steady state, it is given by cent light is always bunchel@1]. This can be explained by

C. Second-order intensity correlation function
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recalling the effect of the squeezed vacuum photons on thgon for the exciton and photon modes and study the statistics
number of excitons. Squeezed photons entering the cavityf the intracavity field. We also look at squeezing in the
can excite the exciton mode to a higher occupation numbefluorescent light.

Thus even if the quantum well starts from a single exciton A two-modeQ function is expressible in the forf22]

state initially, the probability of two or more excitons is not

zero. This allows emission of more than one photon simul- 1 o o

taneously resulting in bunching. This situation is different Q(“'IB):FJ d°A d7 @(N,7)

from that of a single two-level atom in a cavity, where the

atom cannot emit two photons simultaneously causing XexpA*a—\Na*+75*B—7nB*), (28
g®®(0) to vanish exhibiting antibunching in the fluorescent

light [21]. where\ and » are complex parameters anrdand 8 are

The effect of squeezed vacuum in the second-order intereomplex amplitudes corresponding to the operatoemdb.
sity correlation is reflected in the amplitude of the oscilla-The characteristic functiogh(\, %) is defined in the Heisen-
tions. At low squeezingg®)(7) oscillates with a large am- berg picture as
plitude which becomes smaller as we increase the degree of
squeezing. Note that unlike the intensig{?)(7) depends on (N, ) =T p(0)e N alg~mb)gha'Mgnd’ V7] (29)
parameterM. related to the phase correlations of the
squeezed reservoir. The second term in @) depends on In the steady state, Eq&l0) and(11) lead to
the ratio M. /N[ =coth()], which becomes very large for . "
small squeezing parameteiand decreases with an increase a(t):f Al(t—t’)lA:c(t’)dt’wa
in r. Thus the contribution of phase correlationgyt®(7) is —c
much stronger for smaller values of resulting in a larger (30)
amplitude of oscillations.

Ay(t—t")F(t))dt,

B(t):ﬁwAl(t—t')ﬁe(t')o|t'—ft

Ay(t—t")F(t))dt’.
IV. THE Q FUNCTION AND INTRACAVITY PHOTON °
NUMBER DISTRIBUTION (31)

In Sec. I, we have derived time evolution of the operatorsSubstitutinga(t) and b(t) in Eq. (29), using the Baker-
describing the exciton and photon modes. Using the steadyHausdorff identity, and averaging over the noise operators,
state solution of these operators, we can deriveQHenc-  we obtain the steady-state characteristic function to be

* * Gl *y 2 * 2 (1_G1) * 2 * 2
¢\ m)ss=exp —(GiNe+ DANT —[(1=GyNe+ 1] 77" + - [Mc A"+ M A T+ ———[Mc 7"+ M7 7]
—%(1—61)[%7\*77*+MZ>\77—NC(>\*71+>\71*)] , (32
where
29°+y°
1:W' (33
Y

Substituting Eq(32) into Eq.(28), and carrying out the integration, we can express the steady&fatection for zero phase
of the squeezed vacuunM( =M.) as

2 1 r * Y r_ _ * *
Qaf)= 5 =a=oxp| ~ 55| [2+ (¥~ 1IG.I(B+B)*+ 5 (- 1/(1-Gp)(B+*)(a+a”)

+[2+(e*—-1)(1-G + *2+L
[2+ (e —=1)( V(ata®)?|+ 7=

[2+<e*2f—1>Gl]<ﬁ—ﬂ*>2+g<1—el><e*2f—1)</a—ﬂ*>

X(a—a*)+[2+(e” 2 —1)(1-G))](a— a*)?

(34)

Here the constant&, andG_ are
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'}’2

4—92(1—G1)2(6i2r—1)2 : (39

GiZ% [4+2(e"*=1)(1=Gy) ]+ (e" ¥ = 1)[2+(e" = 1)(1-G) ]G, —

Equation(34) is the Q function for the coupled exciton-photon system. From this we can obtain the stead@dtatetion
describing the intracavity field by integrating with respecipto

Qc(a)= f d’8 Q(a,p). (36)
Using Eq.(34) in Eq. (36), we find
2 [{ 2 (a—a*)z 2 a+a*)2 @37
= X —
Qc(a) m[2+(e 2 —1)G,|[2+(e* —1)G,] € 2+(e ¥-1)G,| 2 2+(e¥-1)G, | 2
Similarly, we can show that th® function for the exciton mode is given by
B 2 2 ,B—B*)z
Qe m[2+ (e~ 1)(1-Gy][2+(e” ~1)(1-Gy)] exr{2+(ez’—l)(l—G1)( 2
2 B+pB*\2
- 38
2+(e¥-1)(1-Gy | 2 39

Q functions described by Eqd936) and (37) are two- for both the cavity field and the excitons approaches that for
dimensional Gaussian functions. In Fig. 5, we have plottec vacuum state which has equal width in thandy dimen-
Q.(a) andQ¢(B) as functions of the Cartesian coordinatessions. In the week-coupling limit, we still see a significant
defined by B=x;+iy; and a=x,+iy, in the strong- difference in width between the two-dimension in the case of
coupling limit for several different values of the squeezingthe cavity field, however in the case of excitons this differ-
parameterr. The results reveal that the two-dimensionalence is small.

Gaussian distribution function for the cavity field as well as

the exciton show an increasing width in tkeimension than A. Quadrature squeezing

in they dimension as the degree of squeezing increases. This . ' .
behav)i/or is more pronounce%l for theqcavity figeld than for the To study quadratuIe ﬂLAJCtUEAitIOHS,)Ne (_jeAfme AtWO Hermitian
exciton mode. This property of th@ function is a typical quqdrature_operatorblsz+p and b,=i(b"—b) for the
signature of the existence of quadrature squeefaly For ~ €Xciton. Usmg.theQ function in Eqg.(38), one can evaluate
zero squeezingr=0), we find that the distribution function the variances in these two quadratures as

2

<<A61>2>=1+492+y2[exp(2r>—1],
Ab,)%)=1— 29° 1— -2 (39
((Aby)%)= 4g2+y2[ exp(—2r)].

Similarly one can easily show that for the cavity mode the
variances in the two quadratures=a’+a and a,=i(a’
—a) are given by

2 2

29+

Aa;)?)=1+
<( l) > 4gz+y2

[exp(2r)—1],

A 20%+ 92
((Aay)?)=1— W[l—exq—zm]. (40)

FIG. 5. Q-distribution function withg/ y=5 for different values
of the squeezing parameter(a) for the fluorescent light antb) for ~ Equations(39) and(40) describe quantum fluctuations in the
the cavity mode. two quadratures of the excitons and the intracavity field.
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FIG. 7. Variance of the squeezed field quadratures of the cavity
mode (solid curve$ and the fluorescent light{dash curves
as a function of coupling strengtyi y for different squeezing para-
\g/},= 1 meterr.

A
o
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<{

reduction decreases as the coupling with the exciton mode
increases.
. , . , ) In Fig. 7, we plot quadrature variances as functions of
0'00 1 ) 3 coupling constang. For zero coupling, the exciton mode
does not show any squeezing as there is no interaction be-
r tween the exciton and the cavity mode. However, since the

FIG. 6. Variance of the squeezed quadrature as a function of th2Vity iS coupled to squeezed vacuum, we see squeezing in
injected field squeezing parametefor different coupling strength  the cavity mode. We observe that in the strong-coupligg (
g/ y for (a) the fluorescent light anb) the cavity mode. >1y) and large squeezing parameter(1) limit, both vari-

ances approach. Thus fluorescent light gains a 50% noise

reduction below the vacuum level while the cavity field loses
squeezing and approaches a 50% noise reduction.

We note that ((Aby)?), ((Aa;)?)>1 and ((Ab,)?),
<(Aéz)2><1 for nonzeror and g>0. Quadrature variance
below 1 indicates quadrature squeezing. The amount of B. Photon number distribution
squeezing in eaqh mode dep_end_s on the strength of coupling Next we consider the probability(n) that the cavity has
betwee_n the exciton and cavity field as Wel.l as the degr_ee_ Org photons in the steady state. This probability in terms of the
squeezing of the injected light. We have illustrated this in function is expressible 423,24

Figs. 6 and 7, where we plot the variance in the secontg2 '

qguadrature as a function ofandg. Figure a) shows that

the degree of squeezing in the exciton mode and therefore in
the fluorescent light increases with increased coupling be-
tween the exciton and cavity modes. For the cavity fi€id.
6(b)], on the other hand, although the amount of squeezingJsing the Q function of Eq.(37) and on performing the
increases with increasing the maximum achievable noise necessary differentiation, we obtain

(92n

P(V)= 1~ [Qaa)e ™ e . (4D

1 4+(e"-e ")?G,

P = —
" V[2+(e "= 1)G][2+(e” ~1)Gy] [2+(e7? =1)G,][2+(e* —1)G,]
[n] nl (e+e ") 2k
2
sz‘o 22 12(n-2Kk)! [ (e —e N[1-G,]| ' 42
where
B n/2 (for even n),

[n]= (n—1)/2 (forodd n). 43
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With the help of this distribution or th® function in Eq.(38), it can be shown that the mean intracavity photon number is
n.=G;N.. In terms of the mean photon number, the photon number distribution is expressible as

2k

Ne[ne(1+ NN (ngMc))?]" O n! M [N,
P(n)= ——————— —= (44)
[(14+ng)?NZ—(ng|M¢|)2" "2 k=0 22Kk12(n—2k)! | (1+Nng)NZ—ngM|?
|
whereN,; andM defined in Eq(5) are related to squeezing V. CONCLUSION

parameterr. The intracavity photon number distribution In conclusion we have studied the gquantum statistical
P(n) depends on the mean photon number of the intracavit ; T . d . ;
field as well as the amount of squeezing in the injected field! ropertles of the I|ght gm}tt_ed by a guantum well in a micro-
If thermal light is injected instead of squeezed light, we havec@Vity when the cavity is injected with squeezed vacuum. We

IM.|=0 and the photon number distribution reduces, as exhave solved the quantum Langevin equations for the coupled
pected, to field-exciton modes and constructed the associated

Q-distribution function. Using these equations, we have stud-
ied the intensity, field spectrum, second-order intensity cor-

P(n)= [n_c]n _ (45) relation, and field quadrature fluctuations for the fluorescent
[1+ nc]"+1 light. We have also studied quadrature fluctuations and pho-
ton number distribution for the intracavity field.
The distributionP(n) is shown in Figs. &) and 8b) in We find that the intensity of the fluorescent light from a

the weak- and strorg-coupling limits, respectively. In thequantum well exhibits oscillations and the frequency of os-
weak-coupling limit, n.=[(2g9%+ v?)/(49?>+ y*)IN.=N,, cillation depends on the strength of coupling between the
as one can see from Fig(&8, the photon number distribution cavity and exciton modes. The amplitude of the oscillations
shows even-odd oscillations with higher probability for andepends on the initial cavity mean photon number as well as
even number of photons than for an odd number of photonghe mean photon number of the injected squeezed vacuum.
In the strong-coupling limit, the intracavity mean photon The intensity shows an interesting feature when the initial
numbern,=0.5N;. For this case, we sel=ig. 8b)] that mean cavity photon number is equal to the mean number of
even-odd oscillations are damped out &ch) exhibits long  excitons and squeezed vacuum is turned off. Under these
tails as the squeezing parameténcreases. Increasingre-  conditions, the oscillations in the intensity of the fluorescent
sults in large values of squeezed vacuum mean photon nuniight are completely washed out and the fluorescent intensity
ber that lead to large cavity mean photon number. The longxhibits pure exponential decay. On the other hand, in the
tails in the photon number distribution are due to the largeyresence of the squeezed vacuum the intensity always shows
intensity fluctuation of the injected squeezed vacuum, whickyscillations and the amplitude of the oscillations reaches a
grows exponentially with increasing squeezing parameter steady-state value that is proportional to the strength of the
[9,25]. squeezed vacuum. The spectrum of the fluorescent light
shows normal mode splitting in the strong-coupling limit and

0.50 @) - the linewidths of the two normal modes fpr<2g are equal
(- r=129/y=0291 to the common damping rate of the field and exciton.
r=15,9/y=0.328 1 The second-order intensity correlation functigi?’(0) is

always greater than 1, indicating that the fluorescent light is
always bunched21]. This is because an exciton mode, un-
like a two-level atom, can emit two or more photons simul-
taneously. The second-order intensity correlation also shows
; oscillations at frequency equal to the coupling strength
050 \~— r=129/=5 (b) _ Thus these oscillations provide a measure of coupling
r=15g/=5 strength between the cavity and exciton modes. The ampli-
tude of these oscillations is larger for lower squeezing than
025 r=20,g/y=5 - that for higher squeezing.
We have found that th€ functions for the exciton and
the cavity modes are two-dimensional Gaussian functions
0.00 \ with a narrower width in one dimension than in the other.
0 3 6 9 This indicates the field quadratures for the cavity mode as
n well as for the fluorescent light are squeezed. The results for
FIG. 8. Photon number distribution for the cavity mode for dif- the quadrature fluctuations reveal that if the cavity is injected
ferent values of in (a) the weak-coupling limit andb) the strong- ~ with a perfectly squeezed light, a 50% noise reduction below
coupling limit. the vacuum level can be achieved in the fluorescent light and

0.25 r=2.0, g/y=0.076
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