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Quantum well in a microcavity with injected squeezed vacuum
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A quantum well with a single exciton mode in a microcavity driven by squeezed vacuum is studied in the
low exciton density regime. By solving the quantum Langevin equations, we study the intensity, spectrum, and
intensity correlation function for the fluorescent light. An expression for theQ function of the field inside the
cavity is derived from the solutions of the quantum Langevin equations. Using theQ function, the intracavity
photon number distribution and the quadrature fluctuations for both the cavity and fluorescent fields are
studied. Several interesting and new effects due to squeezed vacuum are found.
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I. INTRODUCTION

With the development of semiconductor optical micr
cavities, there has been considerable interest in exci
cavity coupled systems@1,2#. These systems have reveal
some interesting phenomena that are similar to those
served in the interaction of a two-level atom with light@3–9#.
The exciton-cavity system gives rise to the so-called pol
tons, which are the normal modes of a coupled excit
photon system. The excitation spectrum of the compo
exciton-cavity system is characterized by two well-resolv
polariton resonances~or normal mode resonances! when g
.(ge ,gc), whereg is the dipole coupling between the exc
ton and the cavity mode, andge andgc are the exciton and
cavity mode damping rates, respectively. In this limit,
excitation of the cavity mode can lead to a coherent osc
tory energy exchange~or normal mode oscillation! between
the exciton and the cavity due to the vacuum Rabi osci
tions.

The vacuum Rabi oscillations in a coupled exciton-pho
system in semiconductor microcavity lasers have been
served by Weisbuchet al. @2#. Following this observation
extensive experimental and theoretical studies have been
ried out@10–17#. These studies have confirmed normal mo
splitting and oscillatory emission from exciton microcavitie
Theoretical investigations in the linear regime, where the
citons can be approximated as bosons, have been carrie
by Pauet al. @15#. Wanget al. @16# investigated the effects o
inhomogeneous broadening of excitons on normal mode
cillations in semiconductor microcavities using the coup
oscillator model. Their results show that inhomogeneo
broadening can drastically alter the coherent oscillatory
ergy exchange process even in regimes where normal m
splitting remains nearly unchanged.

In this paper, we study the excitonic system in a mic
cavity where the cavity is driven by squeezed vacuum.
outline of the system is shown in Fig. 1. A semiconduc
quantum well is embedded between two Bragg reflect
mirrors. One of these mirrors acts as an input port throu
which light in a squeezed vacuum state is injected into
cavity. We include dissipation of both the cavity and excit
modes. In Sec. II, we derive the quantum Langevin equati
for the exciton and cavity modes. We solve these equa
for the case in which the damping constants are equal. Th
results are used in Sec. III to study the effects of initial cav
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photon number as well as squeezed-vacuum photon num
on the intensity, spectrum, and the second-order inten
correlation of the fluorescent light. In Sec. IV, we obtain t
Q-distribution function and use it to study the intracavi
photon number distribution and squeezing of the cav
mode and the fluorescent light. We summarize the princ
results of the paper in Sec. V.

II. QUANTUM LANGEVIN EQUATION

We consider a semiconductor quantum well~QW! in the
linear excitation regime where the density of excitons
small so that exciton-exciton interaction can be ignored. T
excitons can then be approximated as a dilute boson gas@18#.
In this approximation, the microscopic Hamiltonian in th
interaction picture describing the exciton-cavity system
given by @17,19#

ĤI5\Dvb̂†b̂1 i\g~ â†b̂2âb̂†!

1âĜc
†1â†Ĝc1b̂Ĝe

†1b̂†Ĝe . ~1!

The Hamiltonian of Eq.~1! is written in the rotating-wave
approximation and in the dipole approximation. Hereâ and
b̂ are the annihilation operators for the cavity and excit
modes, respectively, in a frame rotating at frequen
vc , Ĝc (Ĝe) is the reservoir operator responsible for cav
field ~exciton! damping,g is the coupling constant characte
izing the strength of interaction between the exciton and
cavity field, and detuningDv5(ve2vc), whereve andvc
are the frequencies of the exciton and cavity modes, res
tively. Normally, the exciton and cavity modes are coupled
a continuum of thermal reservoir modes. This leads to th

FIG. 1. An outline of the physical system.
©2003 The American Physical Society18-1
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dissipation. Here, we shall consider the case in which
cavity mode is damped by a broadband squeezed vacu
Then the interaction Hamiltonian of Eq.~1! leads to the fol-
lowing quantum Langevin equations for the field and exci
operators:

dâ

dt
52

gc

2
â1gb̂1F̂c~ t !, ~2!

db̂

dt
52S ge

2
1 iDv D b̂2gâ1F̂e~ t !. ~3!

Here gc and ge are the damping rates for the cavity an
exciton modes, andF̂c andF̂e are the noise operators for th
cavity and exciton modes, respectively. Equations~2! and~3!
are similar to those obtained by Pauet al. @15#. They solved
these equations by neglecting the noise terms. In the pre
case, we are interested in studying the system when the
ity mode is damped by a squeezed vacuum. In this case
noise terms are essential and must be retained. Noise o
tors for both the exciton and photon modes have zero m

^F̂c(t)&505^F̂e(t)&. For the cavity mode damped by
broadband squeezed vacuum centered about the cavity m
the noise operators have the following correlations@20#:

^F̂c~ t !F̂c
†~ t8!&5gc~Nc11!d~ t2t8!,

^F̂c
†~ t !F̂c~ t8!&5gcNcd~ t2t8!,

^F̂c~ t !F̂c~ t8!&5gcMcd~ t2t8!,

^F̂c
†~ t !F̂c

†~ t8!&5gcMc* d~ t2t8!. ~4!

Here Nc is the mean photon number of the squeezed re
voir andMc is a parameter related to the phase correlati
of the squeezed reservoir.Nc and Mc are related to the
squeezing parameterr by

Nc5sinh2~r !, Mc5eiusinh~r !cosh~r !. ~5!

For the exciton noise operator we have

^F̂e~ t !F̂e
†~ t8!&5ge~Ne11!d~ t2t8!,

^F̂e
†~ t !F̂e~ t8!&5geNed~ t2t8!,

^F̂e~ t !F̂e~ t8!&5^F̂e
†~ t !F̂e

†~ t8!&50. ~6!

All the odd-order correlations vanish and even-order co
lations can be expressed in terms of second-order cor
tions. Ne is the mean number of thermal phonons in t
exciton bath.

To gain insight into the dynamical behavior of the syste
we consider the special case when the damping rates an
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frequencies of the exciton and the cavity modes are eq
Then by introducing the transformations

X̂5â1 i b̂, Ŷ5â2 i b̂, ~7!

we obtain two uncoupled equations forX̂ and Ŷ,

dX̂

dt
52S g

2
1 ig D X̂1@ F̂c~ t !1 i F̂ e~ t !#, ~8!

dŶ

dt
52S g

2
2 ig D Ŷ1@ F̂c~ t !2 i F̂ e~ t !#. ~9!

Solving these equations and using the inverse of transfor
tion ~7!, we obtain the following solutions forâ and b̂:

â~ t !5A1~ t !â~0!1A2~ t !b̂~0!1E
0

t

A1~ t2t8!F̂c~ t8!dt8

1E
0

t

A2~ t2t8!F̂e~ t8!dt8, ~10!

b̂~ t !5A1~ t !b̂~0!2A2~ t !â~0!1E
0

t

A1~ t2t8!F̂e~ t8!dt8

2E
0

t

A2~ t2t8!F̂c~ t8!dt8, ~11!

where

A1~ t !5e2gt/2cos~gt! and A2~ t !5e2gt/2sin~gt!. ~12!

Equations~10! and ~11! are the basic equations that will b
used to study the properties of fluorescent and intraca
photon statistics.

III. CORRELATIONS OF THE FLUORESCENT LIGHT

We now study the mean intensity~exciton number! and
the spectrum of the fluorescent light. We note that the s
tered field at timet and distancer in the radiation zone is
proportional to the exciton operator at the retarded timeb̂(t
2r /c). Thus the fluorescent light correlations provide info
mation about the exciton correlation function.
8-2
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A. Amplitude correlation and intensity

To study the mean intensity and spectrum of fluorescent light, we calculate the two-time exciton correlation f

^b̂†(t)b̂(t1t)& by using Eq.~11! and its complex conjugate,

^b̂†~ t !b̂~ t1t!&5K FA1* ~ t !b̂†~0!2A2* ~ t !â†~0!1E
0

t

A1* ~ t2t8!F̂e
†~ t8!dt82E

0

t

A2* ~ t2t8!F̂c
†~ t8!dt8G

3FA1~ t1t!b̂~0!2A2~ t1t!â~0!1E
0

t1t

A1~ t1t2t9!F̂e~ t9!dt92E
0

t1t

A2~ t1t2t9!F̂c~ t9!dt9G L .

~13!

We recall that the field and the exciton modes at the initial time are uncorrelated with the reservoirs at a later time
reservoir noise operators are uncorrelated so that

^â~0!F̂c~ t !&5^â~0!&^F̂c~ t !&,

^b̂~0!F̂e~ t !&5^b̂~0!&^F̂e~ t !&,

^F̂e~ t8!F̂c~ t !&5^F̂e~ t8!&^F̂c~ t !&, ~14!

where we have used the fact that the noise operators have zero mean@^F̂c(t)&505^F̂e(t)&#. Assuming that initially the
exciton mode is in a number stateune& and the cavity mode is in a stateuf& (5SCnun&, whereun& is a number state!, we can
write the state of the exciton-photon coupled system at the initial time asuC(0)&5une ,f&. Then using two-time noise
correlations given in Eqs.~4!–~6!, we find that the field amplitude correlation function given in Eq.~13! leads to

^b̂†~ t !b̂~ t1t!&5
e2gt/2

2~g214g2!
†$2g2Ne14g2~Ne1Nc!%cos~gt!22gg~Ne2Nc!sin~gt!1e2gt$2~g214g2!

3@ n̄ecos~gt!cos„g~ t1t!…1n̄sin~gt!sin„g~ t1t!…#2@~Ne1Nc!~g214g2!cos~gt!1g2~Ne2Nc!

3cos„g~2t1t!…22gg~Ne2Nc!sin„g~2t1t!…#%‡, ~15!

where n̄e and n̄ are the initial mean exciton and photon numbers, respectively. From Eq.~15! we obtain the mean exciton
number to be

^b̂†~ t !b̂~ t !&5
1

2~g214g2!
„$2g2Ne14g2~Ne1Nc!%1e2gt$2~g214g2!@ n̄ecos2~gt!1n̄sin2~gt!#2@~Ne1Nc!~g214g2!

1g2~Ne2Nc!cos~2gt!22gg~Ne2Nc!sin~2gt!#%…. ~16!

Since the fluorescent intensity is proportional to the mean exciton number^b̂†(t)b̂(t)&, in what follows we will refer to

^b̂†(t)b̂(t)& as the fluorescent intensity.
Equations~15! and~16! show that the two-time exciton correlation function and the mean intensity of the fluorescen

depend only on the reservoir mean photon numberNc but not on the phase parameterMc . This means that if squeezed vacuu
is replaced by a thermal reservoir at a finite temperature, the photon number and spectrum of the fluorescent light will
same behavior as described by Eqs.~15! and ~16!, with Nc being interpreted as the mean number of thermal quanta in
reservoir.

In the limit t→`, we obtain the steady-state value of the two-time exciton correlation function,

^b̂†~ t !b̂~ t1t!&ss5
e2gt/2

~g214g2!
@$g2Ne12g2~Ne1Nc!%cos~gt!2gg~Ne2Nc!sin~gt!#, ~17!
013818-3
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and the fluorescent intensity

^b̂†~ t !b̂~ t !&ss5
1

~g214g2!
@g2Ne12g2~Ne1Nc!#.

~18!

At low temperatures, for which the number of the therm
phonons is negligible (Ne50), Eq. ~16! leads to

^b̂†~ t !b̂~ t !&5
1

~g214g2!
„2g2Nc1e2gt$~g214g2!

3@ n̄ecos2~gt!1n̄sin2~gt!#

2Nc@2g21g2sin2~gt!

12ggsin~gt!cos~gt!#%…. ~19!

Figure 2 shows the intensity as a function of time as p
dicted by Eq.~19! for initially one exciton in the microcavity
(n̄e51). Figure 2~a! shows the dependence of fluoresce
intensity on the initial mean photon number in the cav
when squeezed vacuum is absent (Nc50). In this case, Eq.
~19! reduces tô b̂†(t)b̂(t)&5e2gt@cos2(gt)1n̄sin2(gt)#. In all
three casesn̄50, 0.5, and 2, we observe oscillations in t
mean photon number at frequencyg. These oscillations are
due to an exchange of energy between the cavity and exc
modes. The amplitude of the oscillations depends on
mean photon number of the cavity mode at the initial tim
and it decreases with time due to cavity damping. An int
esting behavior of the mean photon number is obtained w
the initial mean photonn̄51. In this case, oscillations com
pletely disappear and the mean fluorescent intensity sh
pure exponential decay@^b̂†(t)b̂(t)&5e2gt#. This is because
in the absence of dissipation,@ â†(t)â(t)1b̂†(t)b̂(t)# is a
constant of motion for zero detuning. Then whenever
initial mean numbers of excitons and photons are equaln̄e

5n̄), we have ^b̂†(t)b̂(t)&5^â†(t)â(t)& and therefore

^b̂†(t)b̂(t)& must be a constant. Inclusion of damping th
causes^b̂†(t)b̂(t)& to decay exponentially. Forn̄,1, the
intensity always lies below this curve and forn̄.1, intensity
always lies above this curve. Thus this curve limits the ma
mum ~for n̄,1) and minimum~for n̄.1) values of the in-
tensity for cases withn̄Þ1.

The intensity of the transmitted light from a single GaA
quantum well embedded in a distributed Bragg reflector
crocavity has been measured by Jacobsonet al. @13# when
the cavity is initially in vacuum state and a single exciton
in the quantum well. This experimental measurement is
excellent agreement with the theoretical predictions base
the coupled harmonic-oscillator model for the excito
photon system. Our results for the fluorescent intensity sh
a qualitatively similar behavior to that of the transmitted
tensity.

Figure 2~b! shows the dependence of fluorescent inten
on the squeezing parameterr when there are no photon
inside the cavity initially andn̄e51. For short time intervals
01381
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(t,p/g), the effect of the squeezed vacuum on the intens
is negligible. As time increases, the squeezed vacuum ef
tively increases the mean fluorescence intensity in an os
latory manner. In the steady state, the intensity approach
value proportional to the mean photon number of t
squeezed vacuum.

B. Spectrum

The spectrum of the fluorescent light in the steady stat
given by

S~v!5
1

p
ReF E

0

`

exp@ ivt#

3^b̂†~ t !b̂~ t1t!&ssdtG Y ^b̂†~ t !b̂~ t !&ss. ~20!

Substituting the result of Eqs.~17! and ~18! in Eq. ~20!, we
obtain the spectrum for the fluorescent light to be

S~v!5
2g

p F ~g214g214v2!1F~g214g224v2!

~g214g224v2!2116g2v2 G ,

~21!

where

F5
2g2~Nc2Ne!

g2Ne12g2~Nc1Ne!
. ~22!

Note that the frequencyv here should be interpreted asv
2vc . Because of the normalization in Eq.~20!, the area

FIG. 2. Intensity of the fluorescent light as a function of sca
time gt for g/g56.5. ~a! is for different initial mean cavity photon

numbern̄ andNc50, and~b! is for different values of the squeez

ing parameterr and n̄50.
8-4
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under the curve for the spectrum is 1. The spectrum given
Eq. ~21! is independent of the phase parameterMc . This
indicates again that replacing squeezed vacuum by a the
reservoir will not affect the form of the spectrum.

At low temperatures, one can neglect the number of th
mal phonons (Ne'0). In this limit, the spectrum of the fluo
rescent light in the steady state takes a simpler form an
independent ofNc as well,

S~v!5
1

p

4g~g214g2!

~g214g224v2!2116g2v2
. ~23!

Figure 3 shows a three-dimensional plot of the spectrum
Ne50. In the weak-coupling limit (g/g!1), there is only a
single peak at zero resonance frequency. In the stro
coupling limit (g/g@1), the spectrum shows two peaks l
cated symmetrically atv56g about v50. Both peaks
have the same width, which depends on the exciton and p
ton decay rates and the strength of the coupling betw
them. For strong coupling, the full width at half maxima
Dv.gA112(g/4g)2. The two-peak structure in the spe
trum can be explained in terms of the dressed-state pictur
the exciton-field system. Energy levels in different subma
folds of the dressed states picture for the exciton-field sys
are equally spaced@17#. Thus several of the transitions from
one submanifold to the adjacent submanifold are degene
resulting in only two peaks in the spectrum. Recall that
dressed levels for the atom-field system in different subm
folds are not equally spaced. In that case, an increas
excitation shows additional peaks in the emission spectr

We find that in the weak-field limit, the spectrum broa
ens asNe increases. This is because with an increase inNe ,
thermal dissipation of excitons increases. In the strong-fi
limit, on the other hand, the peaks are off resonancev
Þve) and the effect of an increase ofNe on the spectrum is
negligible.

C. Second-order intensity correlation function

The second-order intensity correlation function is t
probability of detecting a photon at timet1t given that one
photon was detected at timet. For the fluorescent light, in the
steady state, it is given by

FIG. 3. Spectrum of the fluorescent light as a function of co
pling strengthg/g and frequencyv/g for Ne50.
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g(2)~t!5
^b̂†~ t !b̂†~ t1t!b̂~ t1t!b̂~ t !&ss

^b̂†~ t !b̂~ t !&ss
2

. ~24!

Using the steady-state solution,

b̂~ t !ss5E
2`

t

e2~g/2!(t2t8)@cos„g~ t2t8!… F̂e~ t8!

2sin„g~ t2t8!…F̂c~ t8!#dt8, ~25!

in Eq. ~24!, and the Gaussian property of the noise terms

^F̂†~ t1!F̂†~ t2!F̂~ t3!F̂~ t4!&5^F̂†~ t1!F̂†~ t2!&^F̂~ t3!F̂~ t4!&

1^F̂†~ t1!F̂~ t3!&^F̂†~ t2!F̂~ t4!&

1^F̂†~ t1!F̂~ t4!&^F̂†~ t2!F̂~ t3!&,

~26!

together with the statistical independence of the noise op
tors for the photon and the exciton damping, we obtain
second-order intensity correlation to be

g(2)~t!511
e2gt

@Ne~g212g2!12g2Nc#
2

3 „uMcu2@2g2cos~gt!1ggsin~gt!#2

1$Ne@~g212g2!cos~gt!2ggsin~gt!#

1Nc@2g2cos~gt!1ggsin~gt!#%2
…. ~27!

This function is shown in Fig. 4, where we have plott
its form at low temperatures where the thermal phonon nu
ber is negligible (Ne.0) for several values of the squeezin
parameterr. In all cases, we find oscillations at frequen
equal to the photon-exciton coupling constantg. We note that
g(2)(0) is always greater than 1, indicating that the fluore
cent light is always bunched@21#. This can be explained by

-
FIG. 4. Second-order intensity correlationg(2)(t) of the fluo-

rescent light as a function ofgt with g/g55 for different values of
the squeezing parameterr. g(2)(0)>1 indicates bunching of pho
tons.
8-5
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recalling the effect of the squeezed vacuum photons on
number of excitons. Squeezed photons entering the ca
can excite the exciton mode to a higher occupation num
Thus even if the quantum well starts from a single exci
state initially, the probability of two or more excitons is n
zero. This allows emission of more than one photon sim
taneously resulting in bunching. This situation is differe
from that of a single two-level atom in a cavity, where t
atom cannot emit two photons simultaneously caus
g(2)(0) to vanish exhibiting antibunching in the fluoresce
light @21#.

The effect of squeezed vacuum in the second-order in
sity correlation is reflected in the amplitude of the oscil
tions. At low squeezing,g(2)(t) oscillates with a large am
plitude which becomes smaller as we increase the degre
squeezing. Note that unlike the intensity,g(2)(t) depends on
parameter Mc related to the phase correlations of t
squeezed reservoir. The second term in Eq.~27! depends on
the ratio Mc /Nc@5coth(r)#, which becomes very large fo
small squeezing parameterr and decreases with an increa
in r. Thus the contribution of phase correlations tog(2)(t) is
much stronger for smaller values ofr, resulting in a larger
amplitude of oscillations.

IV. THE Q FUNCTION AND INTRACAVITY PHOTON
NUMBER DISTRIBUTION

In Sec. II, we have derived time evolution of the operat
describing the exciton and photon modes. Using the stea
state solution of these operators, we can derive theQ func-
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tion for the exciton and photon modes and study the statis
of the intracavity field. We also look at squeezing in t
fluorescent light.

A two-modeQ function is expressible in the form@22#

Q~a,b!5
1

p4E d2l d2h f~l,h!

3exp~l* a2la* 1h* b2hb* !, ~28!

where l and h are complex parameters anda and b are
complex amplitudes corresponding to the operatorsâ andb̂.
The characteristic functionf(l,h) is defined in the Heisen
berg picture as

f~l,h!5Tr@r~0!e2l* a(t)e2h* b(t)ela†(t)ehb†(t)#. ~29!

In the steady state, Eqs.~10! and ~11! lead to

â~ t !5E
2`

t

A1~ t2t8!F̂c~ t8!dt81E
2`

t

A2~ t2t8!F̂e~ t8!dt8,

~30!

b̂~ t !5E
2`

t

A1~ t2t8!F̂e~ t8!dt82E
2`

t

A2~ t2t8!F̂c~ t8!dt8.

~31!

Substituting â(t) and b̂(t) in Eq. ~29!, using the Baker-
Hausdorff identity, and averaging over the noise operat
we obtain the steady-state characteristic function to be
f~l,h!ss5expH 2~G1Nc11!ll* 2@~12G1!Nc11#hh* 1
G1

2
@Mc* l21Mcl* 2#1

~12G1!

2
@Mc* h21Mch* 2#

2
g

2g
~12G1!@Mcl* h* 1Mc* lh2Nc~l* h1lh* !#J , ~32!

where

G15
2g21g2

4g21g2
. ~33!

Substituting Eq.~32! into Eq.~28!, and carrying out the integration, we can express the steady-stateQ function for zero phase
of the squeezed vacuum (Mc* 5Mc) as

Q~a,b!5
2

p2AG1G2

expH 2
1

4G1
F @21~e2r21!G1#~b1b* !21

g

g
~e2r21!~12G1!~b1b* !~a1a* !

1@21~e2r21!~12G1!#~a1a* !2G1
1

4G2
F @21~e22r21!G1#~b2b* !21

g

g
~12G1!~e22r21!~b2b* !

3~a2a* !1@21~e22r21!~12G1!#~a2a* !2G J . ~34!

Here the constantsG1 andG2 are
8-6
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G65
1

2 F @412~e62r21!~12G1!#1~e62r21!@21~e62r21!~12G1!#G12
g2

4g2
~12G1!2~e62r21!2G . ~35!

Equation~34! is theQ function for the coupled exciton-photon system. From this we can obtain the steady-stateQ function
describing the intracavity field by integrating with respect tob,

Qc~a!5E d2b Q~a,b!. ~36!

Using Eq.~34! in Eq. ~36!, we find

Qc~a!5
2

pA@21~e22r21!G1#@21~e2r21!G1#
expF 2

21~e22r21!G1
S a2a*

2 D 2

2
2

21~e2r21!G1
S a1a*

2 D 2G . ~37!

Similarly, we can show that theQ function for the exciton mode is given by

Qe~b!5
2

pA@21~e22r21!~12G1!#@21~e2r21!~12G1!#
expF 2

21~e22r21!~12G1!
S b2b*

2 D 2

2
2

21~e2r21!~12G1!
S b1b*

2 D 2G . ~38!
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Q functions described by Eqs.~36! and ~37! are two-
dimensional Gaussian functions. In Fig. 5, we have plot
Qc(a) andQe(b) as functions of the Cartesian coordinat
defined by b5x11 iy1 and a5x21 iy2 in the strong-
coupling limit for several different values of the squeezi
parameterr. The results reveal that the two-dimension
Gaussian distribution function for the cavity field as well
the exciton show an increasing width in thex dimension than
in they dimension as the degree of squeezing increases.
behavior is more pronounced for the cavity field than for
exciton mode. This property of theQ function is a typical
signature of the existence of quadrature squeezing@22#. For
zero squeezing (r 50), we find that the distribution function

FIG. 5. Q-distribution function withg/g55 for different values
of the squeezing parameterr, ~a! for the fluorescent light and~b! for
the cavity mode.
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for both the cavity field and the excitons approaches that
a vacuum state which has equal width in thex andy dimen-
sions. In the week-coupling limit, we still see a significa
difference in width between the two-dimension in the case
the cavity field, however in the case of excitons this diffe
ence is small.

A. Quadrature squeezing

To study quadrature fluctuations, we define two Hermit
quadrature operatorsb̂15b̂†1b̂ and b̂25 i (b̂†2b̂) for the
exciton. Using theQ function in Eq.~38!, one can evaluate
the variances in these two quadratures as

^~Db̂1!2&511
2g2

4g21g2
@exp~2r !21#,

^~Db̂2!2&512
2g2

4g21g2
@12exp~22r !#. ~39!

Similarly one can easily show that for the cavity mode t
variances in the two quadraturesâ15â†1â and â25 i (â†

2â) are given by

^~Dâ1!2&511
2g21g2

4g21g2
@exp~2r !21#,

^~Dâ2!2&512
2g21g2

4g21g2
@12exp~22r !#. ~40!

Equations~39! and~40! describe quantum fluctuations in th
two quadratures of the excitons and the intracavity fie
8-7
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We note that ^(Db̂1)2&, ^(Dâ1)2&.1 and ^(Db̂2)2&,
^(Dâ2)2&,1 for nonzeror and g.0. Quadrature variance
below 1 indicates quadrature squeezing. The amoun
squeezing in each mode depends on the strength of cou
between the exciton and cavity field as well as the degre
squeezing of the injected light. We have illustrated this
Figs. 6 and 7, where we plot the variance in the sec
quadrature as a function ofr and g. Figure 6~a! shows that
the degree of squeezing in the exciton mode and therefo
the fluorescent light increases with increased coupling
tween the exciton and cavity modes. For the cavity field@Fig.
6~b!#, on the other hand, although the amount of squeez
increases with increasingr, the maximum achievable nois

FIG. 6. Variance of the squeezed quadrature as a function o
injected field squeezing parameterr for different coupling strength
g/g for ~a! the fluorescent light and~b! the cavity mode.
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reduction decreases as the coupling with the exciton m
increases.

In Fig. 7, we plot quadrature variances as functions
coupling constantg. For zero coupling, the exciton mod
does not show any squeezing as there is no interaction
tween the exciton and the cavity mode. However, since
cavity is coupled to squeezed vacuum, we see squeezin
the cavity mode. We observe that in the strong-couplingg
@g) and large squeezing parameter (r @1) limit, both vari-
ances approach12 . Thus fluorescent light gains a 50% nois
reduction below the vacuum level while the cavity field los
squeezing and approaches a 50% noise reduction.

B. Photon number distribution

Next we consider the probabilityP(n) that the cavity has
n photons in the steady state. This probability in terms of
Q function is expressible as@23,24#

P~n!5
p

n!

]2n

]an]a* n
@Q~a,a* !e2aa* #ua5a* 50 . ~41!

Using the Q function of Eq. ~37! and on performing the
necessary differentiation, we obtain

he

FIG. 7. Variance of the squeezed field quadratures of the ca
mode ~solid curves! and the fluorescent light~dash curves!
as a function of coupling strengthg/g for different squeezing para
meterr.
P~n!5
1

A@21~e22r21!G1#@21~e2r21!G1#
F12

41~er2e2r !2G1

@21~e22r21!G1#@21~e2r21!G1#
G n

3 (
k50

[n]
n!

22k21k! 2~n22k!!
F ~er1e2r !

~er2e2r !@12G1#
G 2k

, ~42!

where

@n#5H n/2 ~ for even n!,

~n21!/2 ~ for odd n!.
~43!
8-8
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With the help of this distribution or theQ function in Eq.~38!, it can be shown that the mean intracavity photon numbe
n̄c5G1Nc . In terms of the mean photon number, the photon number distribution is expressible as

P~n!5
Nc@ n̄c~11n̄c!Nc

22~ n̄cuMcu!2#n

@~11n̄c!
2Nc

22~ n̄cuMcu!2#n11/2 (
k50

[n]
n!

22kk! 2~n22k!!
F uMcuNc

~11n̄c!Nc
22n̄cuMcu2G 2k

, ~44!
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whereNc andMc defined in Eq.~5! are related to squeezin
parameterr. The intracavity photon number distributio
P(n) depends on the mean photon number of the intraca
field as well as the amount of squeezing in the injected fie
If thermal light is injected instead of squeezed light, we ha
uMcu50 and the photon number distribution reduces, as
pected, to

P~n!5
@ n̄c#

n

@11n̄c#
n11

. ~45!

The distributionP(n) is shown in Figs. 8~a! and 8~b! in
the weak- and strong-coupling limits, respectively. In t
weak-coupling limit, n̄c5@(2g21g2)/(4g21g2)#Nc.Nc ,
as one can see from Fig. 8~a!, the photon number distribution
shows even-odd oscillations with higher probability for
even number of photons than for an odd number of photo
In the strong-coupling limit, the intracavity mean photo
number n̄c.0.5Nc . For this case, we see@Fig. 8~b!# that
even-odd oscillations are damped out andP(n) exhibits long
tails as the squeezing parameterr increases. Increasingr re-
sults in large values of squeezed vacuum mean photon n
ber that lead to large cavity mean photon number. The l
tails in the photon number distribution are due to the la
intensity fluctuation of the injected squeezed vacuum, wh
grows exponentially with increasing squeezing parametr
@9,25#.

FIG. 8. Photon number distribution for the cavity mode for d
ferent values ofr in ~a! the weak-coupling limit and~b! the strong-
coupling limit.
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V. CONCLUSION

In conclusion, we have studied the quantum statisti
properties of the light emitted by a quantum well in a micr
cavity when the cavity is injected with squeezed vacuum.
have solved the quantum Langevin equations for the coup
field-exciton modes and constructed the associa
Q-distribution function. Using these equations, we have st
ied the intensity, field spectrum, second-order intensity c
relation, and field quadrature fluctuations for the fluoresc
light. We have also studied quadrature fluctuations and p
ton number distribution for the intracavity field.

We find that the intensity of the fluorescent light from
quantum well exhibits oscillations and the frequency of o
cillation depends on the strength of coupling between
cavity and exciton modes. The amplitude of the oscillatio
depends on the initial cavity mean photon number as wel
the mean photon number of the injected squeezed vacu
The intensity shows an interesting feature when the ini
mean cavity photon number is equal to the mean numbe
excitons and squeezed vacuum is turned off. Under th
conditions, the oscillations in the intensity of the fluoresce
light are completely washed out and the fluorescent inten
exhibits pure exponential decay. On the other hand, in
presence of the squeezed vacuum the intensity always sh
oscillations and the amplitude of the oscillations reache
steady-state value that is proportional to the strength of
squeezed vacuum. The spectrum of the fluorescent l
shows normal mode splitting in the strong-coupling limit a
the linewidths of the two normal modes forg!2g are equal
to the common damping rate of the field and exciton.

The second-order intensity correlation functiong(2)(0) is
always greater than 1, indicating that the fluorescent ligh
always bunched@21#. This is because an exciton mode, u
like a two-level atom, can emit two or more photons sim
taneously. The second-order intensity correlation also sh
oscillations at frequency equal to the coupling strengthg.
Thus these oscillations provide a measure of coupl
strength between the cavity and exciton modes. The am
tude of these oscillations is larger for lower squeezing th
that for higher squeezing.

We have found that theQ functions for the exciton and
the cavity modes are two-dimensional Gaussian functi
with a narrower width in one dimension than in the oth
This indicates the field quadratures for the cavity mode
well as for the fluorescent light are squeezed. The results
the quadrature fluctuations reveal that if the cavity is injec
with a perfectly squeezed light, a 50% noise reduction be
the vacuum level can be achieved in the fluorescent light
8-9
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the cavity mode in the strong-coupling limit. Using theQ
function, we have also calculated the steady-state intraca
photon number distribution and the results have shown
P(n) exhibits a long tail for highly squeezed light due
large intensity fluctuations. In the weak-coupling limits, t
photon number distribution shows even-odd oscillations.
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