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Secondary bifurcations and transverse standing-wave patterns in anisotropic microcavity lasers
close to the first laser threshold
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It is well known that in a laser—in the limit of an infinite extent of the transverse aperture—traveling tilted
waves are excited at the laser threshold for positive detuning between the frequency of the gain maximum of
the active medium and the cavity frequeri@hys. Rev. A45, 8129(1992]. However, a transverse standing
wave is unstable. In this paper, it is shown that in anisotropic lasers there can be a chain of secondary
bifurcations very close to threshold, which stabilizes the standing wave and then destabilizes it again through
a supercritical Hopf bifurcation. The parameter dependence of these bifurcations is discussed. The investiga-
tions are motivated by interest in pattern formation in vertical-cavity surface-emitting lasers in which the
rotational symmetry is broken due to the dependence of the reflectance of the Bragg reflectors on the polar-
ization vector of the field. The applicability of the results to other cBdasers is discussed.
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I. INTRODUCTION lowest threshold of generation, and it is possible to find
order-parameter equations for these Fourier modes, describ-
Since their appearancgl], vertical-cavity surface- ing their spatially temporal evolution on slow scalé§,11].
emitting laserSVCSEL9 have attracted a great deal of at- The simplest theory, using the above-mentioned decomposi-
tention because of many new properties, such as the smaibn, is based on the Maxwell-Bloch equations for two-level
size of the cavity, the possibility of single longitudinal mode media and the field, averaged over the whole cavity. It pre-
operation, polarization isotropy, low threshold, and sd2jn  dicts the stability of a traveling transverse wa\&V) at the
In the past few years, VCSELs with a large transversdaser threshold, whereas a standing w&8#V) is unstable
aperture were created, providing an increase of output powedor both classA [10] and classB [11] lasers. However, for
[3]. However, it is known that with increasing transversesemiconductor lasers, TWs appear also to be unstable with
size, higher-order transverse modes might be generatetkspect to long-wavelength transverse perturbations due to
making the output inhomogeneous and filamented. The shagghase-amplitude coupling governed by the so-callefhc-
of the resulting pattern depends strongly on the device sizeor. This leads to spatiotemporal chdd£], since all critical
For a comparatively small size, the transverse structure ispatial Fourier modes are destabilized. The family of such
strongly determined by the transverse boundary conditiongsnodes forms a circle in two-dimension&D) transverse
The main method of theoretical investigation of such strucFourier space, because the threshold depends on|k.fn
tures is a decomposition into transverse modes of the empty k>2(+ k§ [11,12. In contrast, in a VCSEL the rotational
cavity, which are defined mainly by the boundary conditionssymmetry is broken due to the properties of the Bragg reflec-
[4]. When the size of the aperture is increased, the structungrs enclosing the cavity13]. In this case, only two tilted
of the transverse pattern is determined by nonlinear interaGvaves with certain wave vectoksn= (K, Kym) and — ke,
tions of transverse Fourier modégted waves of the laser appear at the laser threshold.
field [5—7]. First experimental studies of such VCSELs show In this paper, we obtain the appropriate order-parameter
that—for rather homogeneous pumping—transverse standingquations under conditions of symmetry breaking kin
waves often appear near the first laser threshold in both rect= (k, k) space. For the very close vicinity of threshold,
angular[8] and circular devicef9]. these order-parameter equations constitute a system of
An often used theoretical approach to describe pattern forGinsburg-Landau(GL) equations describing the complex
mation is to decompose the field into transverse Fourier hammplitudes of two excited modes. Using these equations, we
monics that have the form(t,z)exp(k,x+ikyy) [wherex show that a SW is unstable at the very threshold, whereas a
=(x,y) is a coordinate in the transverse plane and TW might be either stable or unstable with respect to spatial
=(ky,ky) is a transverse wave veciotUnder certain condi- long-wavelength perturbations. Its stability depends oruthe
tions, a limited family of “critical” Fourier modes has the factor. If the TW is unstable, irregular spatiotemporal dy-
namics of the amplitude of the TW is obtained. This situation
coincides with the one analyzed fih1,12.

*Email address: nloiko@dragon.bas-net.by; FA%375 172 However, the system of GL equations of any order is de-
840879. generate because it possesses an additional symmetry, which
TFAX: +49-251-83-33513. is not present in the original equatiofis4]. We show here
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that, if the influence of dynamics of the spatial variations ofthe gain spectrum from the cavity resonangajetermines a
the carrier population is taken into account, this additionalinewidth of the gain, and (k;) will be described in the next
symmetry disappears, giving rise to the following sequencgaragraph

of secondary bifurcations with increasing value of the pump The propagation operator

parameter: destabilization of TW, stabilization of SW, Hopf

. F
bifurcation of SW. The last bifurcation results in a stripe Fi—Fi(k)=Ti(k)Ri(kpexdiQ (k) 7]

pattern, in which the amplitudes of the constituent modes ) . o )

oscillate in time. is calculated in paraxial approximation and includes the re-

This paper is organized as follows. In the second sectiorf/ection from the Bragg reflectdr;(k,), the propagation in
we give the basic equations describing a laser with transverdge spacer layefT;(k,) ~exp(Lik;/k), and an additional
anisotropy. Analysis of the GL equations is presented in Sedhase shift expQ(k;) 7;]. 7; is the time the light needs to
lIl. It is followed by equations describing spatial variations pass through pait of the resonator. This phase shift arises
of the carrier population due to two-spatial-mode interactiorbecause the frequency of the lasing field will in general differ
(which we call “the two-mode approximation”in Sec. IV. ~ from the carrier frequency assumed in taking the slowly

In the final section, we discuss the main results and point outarying envelope approximation by a frequency skiftk;)
possible prospects of this work. for the modek, [13,15. Q(k,) is evaluated from the thresh-

old condition(see[13,15]). It turns out that it almost coin-
cides with the resonant frequency of each Fourier component
Il. THE BASIC EQUATIONS k. in the empty cavity. q y P
In the following, we will consider a model for a single- The complex reflection coefficients of the Bragg reflectors
longitudinal mode microcavity laser filled with an active me- are evaluated by matrix propagation methods and are given
dium with a Lorentzian line shape. Specifically, the modelin detail elsewherg25,26. It is important to note that the
was introduced if13,15 as a model for a VCSEL taking polarizations of the field are mixed during the reflection, and
into account anisotropy ik, space. The analysis is based ontherefore the reflection operator constitutes a matrix,

a system of partial differential equations describing the be- RMW(k,) Rk,
havior of the complex field profile(t,x,y) and population R (k)= ! t ! t _ (3)
inversion profiled(t,x,y). e(t,x,y) is slowly varying in time PTYIR® (k) RP(ky)

since a carrier wave of the form explwot—ikgz) was split Under th . f 2 sindl larizati d h
off (wq longitudinal resonance of cavitk, corresponding nder the assumption of a single polarization mode we have

wave numbex Real devices emit usually at threshold in aRi(kt):Ri(ll)(kt)-.The degree of mixing depends not only
linearly polarized mode with a well-defined polarization due®n the angle of incidence of the light component onto the
to small gain and loss anisotropies caused by dichroism anffagg mirror(which is proportional tdk[), but also on the
birefringence[16-19. The preference for a defined linear angle between the polarization vector and the transverse
polarization state close to threshold was recently confirmed/@ve vector. Hence it depends on the directiorkaf This

also in large aperture devicf8,9]. Hence only one polariza- anisotropy of the Bragg reflector is shown in Figéa)land

tion component of the field is taken into account, for sim-1(b) for anx-polarized field. , ,
plicity. Under these assumptions we hdi8,15 As a consequence of this symmetry breaking, also the first
laser threshold will depend on the transverse wave vector

[see Figs. @c) and Xd)], whereas in an isotropic laser a
whole ring of wave vectors with a defined value|kf,| (and
arbitrary angleé becomes linearly unstable at threshold, if the
d=—d+pu—Im[(i—a)e* L(de)], 2 detuning of the peak of the gain spectrum from the cavity
resonanced= wy— w, is positive[5-7]. Specifically, it was
shown earlier by some of the authors that the lowest thresh-

wherex is the field decay rate. All the operatdrs G, andZ old belongs to exactly two transverse Fourier modes of the
are functions irk, space. Thus, for example, for any function _ 9 ) y
field, characterized by transverse wave vectkys and

f(x;), we haveL(f(Xt))=[Fl(!-(kt)f(f)(kt))]_(xt), where  _ (13,15 [see Figs. ) and 1d)].
[FEx)) (ko) =JZ.f(x)exp(ik:-x;) dk.dk, is the Fou-
rier transform and?F ! is the inverse one. lll. GINSBURG-LANDAU EQUATIONS

The operator |A-.= K(|A:|_”:|_.o+ ia) describes dif- In the following, we are deriving a system of two coupled
fraction and losses in the cavity. It contains the operatorgquations, describing the behavior of these two field modes.
of the field propagation through the bottork,;) and the However, we have to remember that the neglect of the dy-
top (F,) parts of the cavity[F =1-F;F, and F, Nhamics of the carrier density—and hence the applicability of
=F(k,=0)]. The modal gain is described by the these equations—is limited to a very tiny range of pump

A CON(E A & _ 4B LF levels above threshold due to the stiffness of the diass-
opAerfi\torG =k(1l+ia)(Fg/Fgp) L [whereFg 1j‘ El+ Fs laser equation§l1].
+FiF> and Fgo=Fg(k=0)]. The operator £L—L(k) To obtain the equations by a weakly nonlinear analysis, a
= 141+[5—Q(k,)]% y?} describes the Lorentzian profile of multiple-scale expansion method is uga@]. We introduce
the gain line(here 5= wy— w, is the detuning of the peak of slow scales in space and time by

e=—Le+G(de), 1)

013813-2



SECONDARY BIFURCATIONS AND TRANSVERSE . .. PHYSICAL REVIEW A 67, 013813 (2003

55 o s packet localized neak;=0. Therefore, we can decompose
0.6 0.6 100-1RD) () the operatorg\, which are functions irk; space, into series
\ nearq=0[q= = (ky— k)],
2.08
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FIG. 1. The dependence of the reflection of a Bragg reflector, . . . . .
IR(k)| [(@),(b)] and threshold curreny, [(6),(d)] on k= (Ky ,k,) and the Einstein summation rule in E®) is assumed over

for an x-polarized field.(b) is a cross section ofa) with k,=0 repeatedd mdexe?‘t;(l’zt) (herel. Wteh Identlfyq.l'qzl Wéth
(solid ling) andk, =0 (dashed ling (d) is a cross section dt) with 0x,dy anaxy ,X; With X,y 1o simp |fy € eXpr,eSS_'or)S nEq.
k=0 (solid line) and k,=0 (dashed ling Values ofk, k, are (9), we can restrict the expansion tq derivatives up to the
given in arbitrary units. Parameters awe=3, x=285.1, & second order of); because of the anisotropy of the system

=0.99y, and y=10"s"%; the other parameters of the cavity and [20]. In the case of isotropic mirrors, the derivativesjjnare
the Bragg mirrors are taken frofi®]. u(k,) is normalized such ~ Zero up to the fourth order, and hence higher derivatives than

that u(0)=1. second order need to be taken into account. In this sense the
case of anisotropic Bragg mirrors is more simple to treat
t—\JeT,+ €Tyt - - -, analytically than the isotropic case. In addition, it is known
that the reflection operatoRi(k;) is invariant under
(X,¥) = Ve(X1, Y1) + €(Xp,Yo) + - - -, (4) inversion ky— —k;, and the same can be said about the

transition operatorT;(k;). Therefore, Af):AE[)EAa,
where e= pu— uy, is the deviation of the pump parameter AGD = — ALIO=AD “and ATHID = AT =ATD
from its threshold valueuy,. It should be noted that the Applying Egs.(4)—(9) to Egs.(1) and(2), and comparing
scaling factors for both coordinatesandy are the same coefficients of equal degrees ef we will obtain a system of
because of the anisotropy of the system, whereas in the casgo coupled complex Ginsburg-Landau equations,
of isotropic mirrors a scaling like x(y)— (\/eX,€Y;)

+(eX,,€%Y,) + - - - is selected. This situation is quite gen- 9 é o 7 22: - 2 -
i i - —+ ) — 4 . +ay"
eral for anisotropic systen{Qol. o gt~ a ax = ajj X0, aoy
To simplify the operatorsL,G,L, we note that near j<i

threshold the field has the form
' ) + (#) =)y (£) a(¥) ()=
e(t,x) = et x) explike- x) + €t ) expl — kX)), Pr,(€75, €70 ¥ P, (675,670 €720,
where the amplitudes'™), e(~) are slowly varying functions (10)
in space and time. Then we decompose the operaiors
A where

=L, G or £ into two parts, each acting on the corresponding

amplitude of the field, . . . . ) (i £\(i
af ) =pG L, Al = —i(uaGl - L),

AleM(t,x) explik- x,) + el (t,x) exp —ike-X)] . ) 1 ()00

~ aij_ = _MthG'y_ + L'y_ 1
=exp(iky- X)[AHDe™M)(t,x)]
A and
+exp(— ik x)[AT e (t,x)], ®)

(+) (-) . . Mth= RdLa)/RdGa)
Becausee' ™/, €7/ are slowly varying in space, the corre-
sponding Fourier image(*)(t,k,) = Fe(*)(t,x,) is a wave is the threshold pump level.
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The nonlinear parts of second ordepy(a,b) \ | R G +Re(Ga)—aIm(Ga) ) 14
=—uG,L,(|al*>+2|b|?) and of fourth orderpy.,(a,b) 2~ 2 REG,)e 7y e (14

=%#Galji[2|a|4+(5+ia)|b|4+(11—ia)|a|2|b|2] de- for the TW solution, and
pend only on the modulus of their arguments. Hence, Egs. '

(10) have the important property of possessing a two- . ReG,) ,

parametric family of symmetries, corresponding to a phase N~—3 Re(Ga)fJfo : (15
shift of each fielde, ,e_ separately. It is easy to see that the th

original system(1) and (2) does not have such a symmetry. L 1 ImGya ,

Another important point to note is that the terpyg_, and N~ § Re(Ga)fJFEM—mf (16)

pnL. have different signs. The lowest-order nonlinear term , i i )
4 for the SW solution. The term that is of linear order én

Pnu, restricts the growth of perturbations growing due 1o they g ines the behavior of the GL equations with the fourth-
driving termaf™) term above threshold, whereas the seconcbrder termpy,, omitted. If only this linear term is taken into

nonlinear termpy,, destabilizes the system still more. account, there are no secondary bifurcations above threshold.
The system(10) has two families of solutions with con- Including the more precise expression of or@ér it is ob-
stant amplitude. The first one is TW, with tained that TW loses its stability at the poiets puy,~1. It
worth noting that the validity of the expansiof) is doubtful
le<[2=0, |e.|?= B , (11) fo_r su_ch a Ie_lrge value of. However, we will see below that
* - 2L, this bifurcation occurs at a much smaller value of the pump
. ] if the dynamics of carriers is taken into account.
where=1——3+4up/u, and the second is SW with The stability with respect to long-wavelength spatial per-
turbations is determined by the two other roots, which are
le.|?=e;|?= B ] (12) zero forg=0. For smallq they are approximated by a qua-
6L, dratic form
The characteristic polynomial describing the stability of Eq. 2
(10) has four roots. Agj= 0 they determine the stability with Re()\)~2 ®ij(€)aiq;,
respect to perturbations with the same wave vectdr,. 'J:<,1

Two of these have zero real parts for both SW and TW so- ) .
lutions atg=0. Close to threshold, the other two roots are Where¢i;(e) are determined from an expansion of the char-

given up to the second order efby the expression acteristic polynomial into a series ef In order to establish
the stability of the solutions of Eq10), it is sufficient to

ReL,) ReL,) check the negative definiteness of this quadratic form. The
M~ - € (13)  analysis shows that for TW solutiori$1) the negative defi-
Hth 2y niteness condition leads to the following inequalities:
|
$11=—4 REG,)’[Re(a;;G})]e+O(e*) <O, 17

det( ¢ij) = 111~ b21620=2 REG )4~ Im(az,) Im(G,)[Im(a;,)Im(G,) +2 Reaz)Re(G,)
+161m(a;;)Im(G,)Rea,G*)+ReG,)[ 16 Rda;)Re(a,,G* ) — R G,)Re(a;,)? ]} 2+ O(€%)>0. (18

These conditions are met if the system is stable. For typical It is important to note that at threshol®,= (1
parameters of the laser cavity and valuesxofa|<6), the  +ia)G,,L,/Go,, WhereG,,, G;,, andL, are real quan-
system of inequalitie€l7),(18) reduces to a single condition, tities. The stability of TW and SW solutions, determined by
a>aq, Whereaq depends on the parameters of the cavityEqs_(13) and(14), depends only om?2. This means that the
and usually is close to zero. For example, for the parameterg ity of the tilted wave with respect to perturbations with

used in[15], @yg~ —0.02. Therefore, the TW solutidil) is .
absolutely stable at the threshold far>«g, and unstable the same or the opposite wave vector does not depend on the
sign of thea factor.

with respect to long-wavelength perturbations for aq. In a .
P g gt P o _ The stability in the caser=«,, as well as in the case of

the latter case, numerical simulations show that spatiotempo i ic ref : d ibed b 18
ral chaos appears in the amplitude of the nonzero componefgt@! isotropic reflectors, is not described by Hd),(18),

of Eq. (11), whereas the other mode remains zero. For thdecause one or both of them become identical to zero. This
original system(1),(2), this instability corresponds to a cha- M€ans that derivatives of higher order have to be taken into
otic deformation of the TW. account in Eqs(6)—(10).
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IV. TWO-MODE APPROXIMATION Re(A) (a)

A, A3
0.2 0.3 0.4 0.5 0.6 0.7

Because the GL equations take into account only the static
transverse carrier grating and do not include the dynamics o
the carrier density, they cannot describe the system far abov-0, 2}
threshold. We recall that only the two field modes

103 €

-0.4} As, Ag
e=eMexpiky- x,) + e exp — ik X;) (19  _-o.6f
and the carrier modes -0.8¢ A
_ g4 g (© ) -1 24,27
d=d'9+d®sin(2ky,- %) +d®coq 2k, %) =d o ————
+dMexp ik ) +dTexp —2iky %) (20)
were considered in the GL equatiofiH)). Taking into ac- Re (1))
count the temporal evolution of these carrier modes, we re- (b)

duce the original system to differential equations &t),
e™), d© d© d® (or dF), d(7)). Becaused is a real
quantity,d™), d(~) have to be complex conjugates and are -0.2}
not independent.

After substitution of Eqs(19),(20) into Egs.(1),(2), the -0.4¢
following set of equations is obtained: _0.6l

e=(-L,+G deM+G,dMe?),  (21) _o.8}

€)= (— L +G,d)eI+G,d e, (22 -1
FIG. 2. The real parts of the roots of the characteristic polyno-
d(O):M_d(O)_ﬁad(C)Re(e(*)e(H*) mial of the system(21)—(25) for TWs (a) and SWs(b) in depen-
o o o o dence one, the excess of the pump parameter above the first laser
— L ,d®Im(eeM*)— £ dO(|eD]2+|e()]?), threshold. Different roots are marked hy, wherei=1—7. Point

(23) SN, is the point of saddle-node bifurcation of TWs, SKorre-
sponds to a saddle-node bifurcation point of SWs, &his the
Hopf bifurcation point of SWs. The parameter values are as in Fig.

d©=—d© - 3L, —dO(|etD|?+[e)]?) — ad®(|eM)]? 1. The value ofe is normalized to the threshold value of the pump
—|e(‘)|2)]—2d(°)£aRe(e(‘)e(+)*), (24) parameter.
: - - 2[Re(L,)—nReEG,)]
d®=—g - %Ea[—d(s)(|e(*)|2+|e( )|2)—ad(c)(|e( )|2 d© = 3R4G.) . d®=0, (28)
—|etM]2)]-2dOL Im(e(elH)*), (25)
o 2RdL,)+uReG,)
_ ) . . d©= , (29
Because the carrier modd$’ are functions only of time, 3R4G,)
this system does not describe the stability of SWs and TWs
with respect to long-wavelength perturbations. However, it ) wReG,)—RelL,)
contains the stability with respect to temporal perturbations el=e"/= 3REG.)L (30)
in the same set of modes. alma

Like Eqg. (10), this system has two families of solution.

The first is a TW, Here, the other members of this family can be obtained by

either shifting the phase of the two fields by the same amount

d©=d®=0dO= 4, , 26 @
4O eMoeMexpig), e —eDexpig), (31
lep=E_—_ " |e™)=0. 27) | o
L,d0) or by phase shifts of opposite sign,

These are two one-parametric families of solutions each cor- e seMexpig), e—elHexp—i¢). (32
responding to a TW in a specific directior-(—). In both
families, the free parameter is the phase of the field. In the case of the first transformati@B1), all the variables

The system(21)—(25) also has a two-parametric family of except ¢ remain unchanged, whereas in the second case
SW solutions withe(*)|=|e(7)|. One of these is (32), they need to be changed appropriately. For example,
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after rotation of the phase to an angle= 7/2 in Eq.(32), we lesl, [e-] (a)
obtaind®=0, d®=0, in contrast to Eq(28).
Due to the existence of the above-mentioned families of 0.04
solutions, the characteristic polynomial of the syst@h)—
(25), obtained by the stability analysis for both TW and SW 0.03
solutions, has two zero rooks; ,\,. The real parts of all the
roots, including zero ones, are shown in Fig. 2. Note that 0.02
these rootgand therefore the system stabi)iggo not depend
on the sign ofa. At a certain value of the pump parameter, 0.01
the purely real eigenvalues\{,\g for both TW and SW
solutions andiz,\4 for SW solutions only, which where 20 40 60 80 100t
initially corresponding to the field and carrier modes, merge
and give rise to a pair of complex conjugated roots. lesl, le-| (b)
In the case of TWSs, the real eigenvalug has the maxi- 0.08 .
mum growth ratgapart from the marginal ;,\,.) At some :
value of the pump it starts to increase and crosses the imagi- 4 46
nary axis at the saddle-node point SN his leads to desta-
bilization of the TW solution. 0.04
For the case of the SW solution, also the ragtis the ’
one determining the stability. It is initially larger than zero
and the SW solution is unstable. At some value of the pump ~ ©-02
parameter); decreases and crosses zero at the point SN
This implies a stabilization of the SW solution. It will be t
shown below that as a rulg(SN;) <e(SN,). 20 100130 200 250 300
Therefore, in the region between points,SthdH a situ- FIG. 3. The dynamics of the field amplitudes, corresponding to

ation is encountered, which is not predicted by the GL equathe wave traveling to the lefte{"), solid curve and to the right
tions (10): the TW is unstable, whereas the SW is stable(e'”), dotted curvgafter the Hopf bifurcation in SWs. The param-
Unfortunately, we cannot say anything definitely about thefter values are marked on Fig. 5 by a cir@ and rectangleb).
stability of SWs with respect to long-wavelength perturba-T'me is normalized tdl'; (relaxation time of carrieds The initial
tions from Eqgs.(21)—(25). However, numerical simulations conditions correspond to the laser being off.

of the full system(1) and(2) show that secondary bifurcation (21)~(25). The contrast of the averaged pattern appearing in

predicted by Eqs.21)—(25) indeed appears for any sign ef L .
(but a#0). In contrast, long-wavelength instabilities can fErgZ,a(olr)nand(Z) 's slightly less because of spatial degrees of

lead only to chaotic deformations of the basic regimes, de- The contrast tends to some value near zero, when the

scribed above. It is connected with the fact that the transfegime, shown in Fig. ®), appears.

verse Fourier spectrum of the solutions is limited to one or “The |oss of stability of TWs and the stabilization of SWs
two spots neartky,, and long-wavelength perturbations may appear also in quintic GL equations, though for a level
cannot be developed enough to completely destabilize thgf pumping, which is different from the more accurate value
system.

The next bifurcation of the system is a Hopf bifurcation of c
SWs, taking place at the poikt, because two complex con-
jugated roots\3 and\, cross the imaginary axis. Antiphase 0.
pulsations appear in the amplitudes of the field modrg.

3). Close to the secondary bifurcation threshold, the oscilla- 0.
tions are rather harmonidig. 3(@]. The modulation depth

of the oscillations increases with increasing pump current. 0.
Further away from threshold and/or for high values of éhe

factor, the temporal shape of the oscillations is highly anhar- 0.
monic, resembling a switchinglike dynamics between states R N N
in which one or the other TW is dominatii&ig. 3b)]. ‘ ‘ - - €

In experiments, usually only time-averaged images are 0.02 0.04 0.06 0.08 0.1
recorded. The pulsations in the TWs due to Hopf bifurcation g, 4. The dependence of the contrast=(|ems
cause a decrease of the contrast of averaged WYs4).  —|e,.. |)/|emal, Of the time-averaged pattern enthe excess of the
The results of simulations of the initial systeit) and(2)  pump level above the first laser threshold. The solid curve is a result
and the reduced on@1)—(25) shown in this figure show the of simulations of the systeni21)—(25), and the dotted one is a
similarity of the dynamics of both systems. This proves againesult of simulations of the initial systefd) and (2). The param-
the main role of temporal instabilities predicted by Eqgs.eters are the same as in Fig. 2.
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logio (€) (a) of SWSs. In the region between these two bifurcations there is
“20 switchinglike dynamics between the two TWSs similar to the
L} one presented in Fig.(B).
-2.5} . As discussed above for TW and SW solutions of the GL
equationg10) [cf. also to Eqs(13)—(16)], the stability of the
-3l solutions of Eqs(21)—(25) does not depend on the sign of
the « factor, because Eq§21)—(25) include only the stabil-
_3.5 ity of tilted waves with respect to perturbations with the
same or the opposite transverse wave vector.

For typical values of the field decay rate in VCSEL cavi-
ties (k~10%), the threshold for the secondary bifurcations is
very low, i.e., the secondary bifurcations appear very close to

logyo (€) the first laser threshold. This makes their experimental obser-
J10 (b) vation very difficult. However, Fig. ®) shows that the
threshold for the secondary bifurcations grows with decreas-
-1.5 ing k. Such a decrease af can be achieved experimentally
either by increasing the reflectivity of the mirrors, or by in-
-2 \ creasing the length of the cavity.
2.3 A N V. DISCUSSION AND CONCLUSION
50 100 .1 250 300" In this paper, we have investigated the stability and sec-
35 I ondary bifurcations of TW and SW solutions in the system

(1),(2) describing a laser with a transversely anisotropic cav-

FIG. 5. The dependence of the bifurcation threshdéi= Fig. ity. T_he spatio-tempor_al dynamics just above threshold_were
2) SN, (dashed curve SN, (solid curve, andH (bold solid curve studied by GL_ equationgl0) for two transverse Fourier
on the modulus of ther factor (a) and on the field decay rate (b). mOdes of the _f'eld only. Further aboye threshold, the d}'nam'
The excess of pump level above generation threshold is given in &S Of the carriers needs to be taken into account yielding the
logarithmic scale. system of Eqs(21)—(25).

The stability analysis of Eq10) shows that at the first
laser threshold the SW is always unstable, whereas TW can
be stable or unstable. It is unstable with respect to long-
wavelength transverse perturbations, if the linewidth en-
hancement factor < ag, wWith ag# 0. We can compare these
8sults with the situation in an edge-emitting semiconductor
i%ser, which is extended only in one transverse dimension.
Hence only two spatial field modes can appear at threshold,

obtained from an analysis of EqR21)—(25). In contrast, the
Hopf bifurcation cannot appear in GL-like equations of any
order without spatial derivatives, because of the following
reasoning. Without the spatial derivatives, EX)) is invari-

ant with respect to separate phase shifts of each field. Due
this symmetry, the phase degrees of freedom can be remov

from the GL equation$10) resulting in two real equations . . ) o .
q $10 9 q which makes the situation similar to the one in a two-

for the amplitudes o&(*). Becausde!™)|=|e(”)| for a SW gi ol VCSEL with ) ord
solution, the equations, linearized around the SW solution®/Menstona with transverse anisotropy. Order pa-

are symmetric with respect to the replacemen rameter equations for edge-emitting lasers were proposed in
sle)| 5 8e(7)|. Therefore, the linear evolution matrix of 12] and consist of a Swift-Hohenberg equation, coupled to a

this system is real and symmetric. It is known that the eigen[’nean flow(CSH. The CSH in[12] can be considered as a

values of such a matrix are reéh the present case the special case of Eqsl) and (2) with L=1, G=const(1
dimension of the matrix is 22, and this fact can be easily +ia), Re(L{;’™")=0. Alsodis setto 1 in the third term of
seen directly. This excludes the possibility of a Hopf bifur- the equation for carrief2). Thus, the analysis of GLELO)
cation, since it requires complex eigenvalues. This symmetrjwith y=0 for the 1D casedescribes the phase instabilities
is broken by the last terms in equatio(24),(22), containing  near threshold in 1D edge emitters with a special choice of
d(*). Therefore, the dynamics of the carrier spatial gratinga;” . The boundary of instabilities for the 1D case is given by
created by the two counterpropagating waves and describdgly. (17) only, which leads to the conditiony=0 for this
by d*), plays a fundamental role in the dynamics of thespecial case. This matches the results obtained eft@r
system. If there is in addition some mechanism for a dispersion of
However, the strength of destabilization of the field due tothe losses with respect t, (as in a VCSEL due to the
its interaction with the carrier grating decreases with decreasdependence of the reflection coefficient of the Bragg mirrors
ing value ofa. The corresponding values of the pump pa-on the transverse wave numpethe value ofd?R(k)/dk,Ky
rameter at which these secondary bifurcations take place terisl nonzero and therefor@G(k,)/dk.k, is also nonzero and
to move towards infinity whea— 0. The dependence of the depends orw. This leads to a dependenceayf; on «, and
threshold values for all the bifurcations anis shown in Fig.  therefore to a small shift of the value af, in Eq. (17).
5(a). It is worth noting that the destabilization of TWs takes  The investigation of the temporal dynamics of E(&l)—
place always at smaller values of pump than the stabilizatioi25) shows that ifa#0, a sequence of secondary bifurca-
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tions appears in the system: destabilizing of TW, stabilizingTWs, whereas the amplitude of the second mode remains

of SW, and, at last, destabilizing of this SW through a Hopfzero.

bifurcation. The last bifurcation causes antiphase pulsations |t should be noted that whereas usually<0 for semi-

in the amplitude of the counterpropagating field componentsgonductors materials, it was suggested to be taken as positive
The key role in this sequence of bifurcations is played byfor quantum-well VCSEL in previous investigatiof21] in

the coupling between the field and the spatial grating inducegder to describe an overall guiding, appearing in this kind of

in the carrier distribution. The coupling depends on the |asers due to temperature effef24]. Further work is needed

factor, influencing the phase relations of the interactions ofg investigate the combined action of carrier-induced anti-

the field and the carrier grating. This mechanism is similar tQuiding and carrier-induced guiding due to the competing

the mechanism of the temporal instability arising in bidirec-g|ectronic and thermal nonlinearities.

tional lasers under the creation of a longitudinal grating of |t js obvious that the systerf21)—(25) does not describe

population inversior{22,23. In the case of a transversely || instabilities in the system. For example, recent work

isotropic laser, the above-described bifurcations do not takghows that even in the case=0 (for CO, lase) there can

place because they are shadowed by strong phase instabije secondary bifurcatiorf€4], which leads to complex dy-

ties, which in this case are not hindered by the anisotropy ohamical behavior by the excitation of many spatial modes.

the Bragg mirror. Therefore, additional investigations need to be carried out for

For a#0, these secondary bifurcations are the decisivey fy|| characterization of the possible instabilities in the sys-
ones and numerical simulations show that they appear indgem considered here.

pendently on the sign of, whereas the long-wavelength
instabilities can lead to chaotic deformations of the solutions

predicted by Eqs(21)—(25). For very small excess of pump ACKNOWLEDGMENT
above threshold of generation, these chaotic deformations
are described by Ginsburg-Landau equati@®. In the lat- I.V.B. is grateful to the Deutsche Forschungsgemeinschaft

ter case, chaos appears only fox «g, in the amplitude of  for the financial support of his visit to Muster.
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