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Secondary bifurcations and transverse standing-wave patterns in anisotropic microcavity laser
close to the first laser threshold
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Institute of Physics, Academy of Sciences of Belarus, Scaryna Prospekt 70, 220072 Minsk, Belarus
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It is well known that in a laser—in the limit of an infinite extent of the transverse aperture—traveling tilted
waves are excited at the laser threshold for positive detuning between the frequency of the gain maximum of
the active medium and the cavity frequency@Phys. Rev. A45, 8129~1992!#. However, a transverse standing
wave is unstable. In this paper, it is shown that in anisotropic lasers there can be a chain of secondary
bifurcations very close to threshold, which stabilizes the standing wave and then destabilizes it again through
a supercritical Hopf bifurcation. The parameter dependence of these bifurcations is discussed. The investiga-
tions are motivated by interest in pattern formation in vertical-cavity surface-emitting lasers in which the
rotational symmetry is broken due to the dependence of the reflectance of the Bragg reflectors on the polar-
ization vector of the field. The applicability of the results to other class-B lasers is discussed.
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I. INTRODUCTION

Since their appearance@1#, vertical-cavity surface-
emitting lasers~VCSELs! have attracted a great deal of a
tention because of many new properties, such as the s
size of the cavity, the possibility of single longitudinal mod
operation, polarization isotropy, low threshold, and so on@2#.

In the past few years, VCSELs with a large transve
aperture were created, providing an increase of output po
@3#. However, it is known that with increasing transver
size, higher-order transverse modes might be genera
making the output inhomogeneous and filamented. The sh
of the resulting pattern depends strongly on the device s
For a comparatively small size, the transverse structur
strongly determined by the transverse boundary conditio
The main method of theoretical investigation of such str
tures is a decomposition into transverse modes of the em
cavity, which are defined mainly by the boundary conditio
@4#. When the size of the aperture is increased, the struc
of the transverse pattern is determined by nonlinear inte
tions of transverse Fourier modes~tilted waves! of the laser
field @5–7#. First experimental studies of such VCSELs sho
that—for rather homogeneous pumping—transverse stan
waves often appear near the first laser threshold in both r
angular@8# and circular devices@9#.

An often used theoretical approach to describe pattern
mation is to decompose the field into transverse Fourier
monics that have the formA(t,z)exp(ikxx1ikyy) @where xt
5(x,y) is a coordinate in the transverse plane andkt
5(kx ,ky) is a transverse wave vector#. Under certain condi-
tions, a limited family of ‘‘critical’’ Fourier modes has the
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lowest threshold of generation, and it is possible to fi
order-parameter equations for these Fourier modes, des
ing their spatially temporal evolution on slow scales@10,11#.
The simplest theory, using the above-mentioned decomp
tion, is based on the Maxwell-Bloch equations for two-lev
media and the field, averaged over the whole cavity. It p
dicts the stability of a traveling transverse wave~TW! at the
laser threshold, whereas a standing wave~SW! is unstable
for both class-A @10# and class-B @11# lasers. However, for
semiconductor lasers, TWs appear also to be unstable
respect to long-wavelength transverse perturbations du
phase-amplitude coupling governed by the so-calleda fac-
tor. This leads to spatiotemporal chaos@12#, since all critical
spatial Fourier modes are destabilized. The family of su
modes forms a circle in two-dimensional~2D! transverse
Fourier space, because the threshold depends only onuktu2

5kx
21ky

2 @11,12#. In contrast, in a VCSEL the rotationa
symmetry is broken due to the properties of the Bragg refl
tors enclosing the cavity@13#. In this case, only two tilted
waves with certain wave vectorskth5(kxth ,kyth) and 2kth
appear at the laser threshold.

In this paper, we obtain the appropriate order-parame
equations under conditions of symmetry breaking inkt
5(kx ,ky) space. For the very close vicinity of threshol
these order-parameter equations constitute a system
Ginsburg-Landau~GL! equations describing the comple
amplitudes of two excited modes. Using these equations,
show that a SW is unstable at the very threshold, where
TW might be either stable or unstable with respect to spa
long-wavelength perturbations. Its stability depends on tha
factor. If the TW is unstable, irregular spatiotemporal d
namics of the amplitude of the TW is obtained. This situati
coincides with the one analyzed in@11,12#.

However, the system of GL equations of any order is d
generate because it possesses an additional symmetry, w
is not present in the original equations@14#. We show here
©2003 The American Physical Society13-1
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that, if the influence of dynamics of the spatial variations
the carrier population is taken into account, this additio
symmetry disappears, giving rise to the following seque
of secondary bifurcations with increasing value of the pu
parameter: destabilization of TW, stabilization of SW, Ho
bifurcation of SW. The last bifurcation results in a strip
pattern, in which the amplitudes of the constituent mod
oscillate in time.

This paper is organized as follows. In the second sect
we give the basic equations describing a laser with transv
anisotropy. Analysis of the GL equations is presented in S
III. It is followed by equations describing spatial variation
of the carrier population due to two-spatial-mode interact
~which we call ‘‘the two-mode approximation’’! in Sec. IV.
In the final section, we discuss the main results and point
possible prospects of this work.

II. THE BASIC EQUATIONS

In the following, we will consider a model for a single
longitudinal mode microcavity laser filled with an active m
dium with a Lorentzian line shape. Specifically, the mod
was introduced in@13,15# as a model for a VCSEL taking
into account anisotropy inkt space. The analysis is based
a system of partial differential equations describing the
havior of the complex field profilee(t,x,y) and population
inversion profiled(t,x,y). e(t,x,y) is slowly varying in time
since a carrier wave of the form exp(2iv0t2ik0z) was split
off (v0 longitudinal resonance of cavity,k0 corresponding
wave number!. Real devices emit usually at threshold in
linearly polarized mode with a well-defined polarization d
to small gain and loss anisotropies caused by dichroism
birefringence@16–19#. The preference for a defined linea
polarization state close to threshold was recently confirm
also in large aperture devices@8,9#. Hence only one polariza
tion component of the field is taken into account, for si
plicity. Under these assumptions we have@13,15#

ė52L̂e1Ĝ~de!, ~1!

ḋ52d1m2Im@~ i 2a!e* L̂~de!#, ~2!

wherek is the field decay rate. All the operatorsL̂, Ĝ, andL̂
are functions inkt space. Thus, for example, for any functio
f (xt), we haveL̂„f (xt)…5@F̂21(L(kt)F̂( f )(kt))#(xt), where

@F̂„f (xt)…#(kt)5*2`
` f (xt)exp(2ikt•xt) dkxdky is the Fou-

rier transform andF̂21 is the inverse one.
The operator L̂5k(F̂L /FL01 ia) describes dif-

fraction and losses in the cavity. It contains the operat
of the field propagation through the bottom (F̂1) and the
top (F̂2) parts of the cavity @ F̂L512F̂1F̂2 and FL0
5F(kt50)]. The modal gain is described by th
operatorĜ5k(11 ia)(F̂G /FG0)L̂ @whereF̂G511F̂11F̂2

1F̂1F̂2 and FG05FG(kt50)]. The operator L̂→
F

L(kt)
51/$11@d2V(kt)#2/g2% describes the Lorentzian profile o
the gain line~hered5vg2vc is the detuning of the peak o
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the gain spectrum from the cavity resonance,g determines a
linewidth of the gain, andV(kt) will be described in the nex
paragraph!.

The propagation operator

F̂ i→
F

Fi~kt!5Ti~kt!Ri~kt!exp@ iV~kt!t i #

is calculated in paraxial approximation and includes the
flection from the Bragg reflectorRi(kt), the propagation in
the spacer layerTi(kt);exp(iLikt /k), and an additional
phase shift exp@iV(kt)t i #. t i is the time the light needs to
pass through parti of the resonator. This phase shift aris
because the frequency of the lasing field will in general dif
from the carrier frequency assumed in taking the slow
varying envelope approximation by a frequency shiftV(kt)
for the modekt @13,15#. V(kt) is evaluated from the thresh
old condition~see@13,15#!. It turns out that it almost coin-
cides with the resonant frequency of each Fourier compon
kt in the empty cavity.

The complex reflection coefficients of the Bragg reflecto
are evaluated by matrix propagation methods and are g
in detail elsewhere@25,26#. It is important to note that the
polarizations of the field are mixed during the reflection, a
therefore the reflection operator constitutes a matrix,

Ri~kt!5S Ri
(11)~kt! Ri

(12)~kt!

Ri
(21)~kt! Ri

(22)~kt!
D . ~3!

Under the assumption of a single polarization mode we h
Ri(kt)5Ri

(11)(kt). The degree of mixing depends not on
on the angle of incidence of the light component onto
Bragg mirror~which is proportional touktu), but also on the
angle between the polarization vector and the transve
wave vector. Hence it depends on the direction ofkt . This
anisotropy of the Bragg reflector is shown in Figs. 1~a! and
1~b! for an x-polarized field.

As a consequence of this symmetry breaking, also the
laser threshold will depend on the transverse wave ve
@see Figs. 1~c! and 1~d!#, whereas in an isotropic laser
whole ring of wave vectors with a defined value ofukthu ~and
arbitrary angle! becomes linearly unstable at threshold, if t
detuning of the peak of the gain spectrum from the cav
resonance,d5vg2vc , is positive@5–7#. Specifically, it was
shown earlier by some of the authors that the lowest thre
old belongs to exactly two transverse Fourier modes of
field, characterized by transverse wave vectorskth and
2kth @13,15# @see Figs. 1~c! and 1~d!#.

III. GINSBURG-LANDAU EQUATIONS

In the following, we are deriving a system of two couple
equations, describing the behavior of these two field mod
However, we have to remember that the neglect of the
namics of the carrier density—and hence the applicability
these equations—is limited to a very tiny range of pum
levels above threshold due to the stiffness of the clasB
laser equations@11#.

To obtain the equations by a weakly nonlinear analysis
multiple-scale expansion method is used@10#. We introduce
slow scales in space and time by
3-2
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t→AeT11eT21•••,

~x,y!→Ae~X1 ,Y1!1e~X2 ,Y2!1•••, ~4!

where e5m2m th is the deviation of the pump paramet
from its threshold valuem th . It should be noted that the
scaling factors for both coordinatesx and y are the same
because of the anisotropy of the system, whereas in the
of isotropic mirrors a scaling like (x,y)→(AeX1 ,eY1)
1(eX2 ,e2Y2)1••• is selected. This situation is quite ge
eral for anisotropic systems@20#.

To simplify the operatorsL̂,Ĝ,L̂, we note that near
threshold the field has the form

e~ t,xt!5e(1)~ t,xt!exp~ ikt•xt!1e(2)~ t,xt!exp~2 ikt•xt!,

where the amplitudese(1), e(2) are slowly varying functions
in space and time. Then we decompose the operatorÂ

5L̂, Ĝ or L̂ into two parts, each acting on the correspond
amplitude of the field,

Â@e(1)~ t,xt!exp~ ikt•xt!1e(2)~ t,xt!exp~2 ikt•xt!#

5exp~ ikt•xt!@Â(1)e(1)~ t,xt!#

1exp~2 ikt•xt!@Â(2)e(2)~ t,xt!#. ~5!

Becausee(1), e(2) are slowly varying in space, the corre
sponding Fourier imageẽ(6)(t,kt)5F̂e(6)(t,xt) is a wave

FIG. 1. The dependence of the reflection of a Bragg reflec
uR(kt)u @~a!,~b!# and threshold currentm th @~c!,~d!# on kt5(kx ,ky)
for an x-polarized field.~b! is a cross section of~a! with kx50
~solid line! andky50 ~dashed line!. ~d! is a cross section of~c! with
kx50 ~solid line! and ky50 ~dashed line!. Values of kx ,ky are
given in arbitrary units. Parameters area53, k5285.1, d
50.99g, and g51011s21; the other parameters of the cavity an
the Bragg mirrors are taken from@9#. m th(kt) is normalized such
that m th(0)51.
01381
se
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packet localized nearkt50. Therefore, we can decompos
the operatorsÂ, which are functions inkt space, into series
nearq50 @q56(kt2kth)#,

Â(6)→
F

A(6)~q!'~Aa
(6)1Ab

(6)( i )qi1Ag
(6)( i j )qiqj !

→
F 21S Aa

(6)2 iAb
(6)( i ) ]

]xi
2Ag

(6)( i j ) ]2

]xi]xj
D , ~6!

with coefficientsAa
(6) ,Ab

(6)( i ) ,Ag
(6)( i j ) defined as

Aa
(6)5A~6kth!, ~7!

Ab
(6)( i )5

]A~6kth!

]ki
, ~8!

Ag
(6)( i j )5

1

2

]2A~6kth!

]ki]kj
, ~9!

and the Einstein summation rule in Eq.~6! is assumed over
repeated indexesi 5(1,2) ~here we identify q1 ,q2 with
qx ,qy andx1 ,x2 with x,y to simplify the expressions!. In Eq.
~9!, we can restrict the expansion to derivatives up to
second order ofqi because of the anisotropy of the syste
@20#. In the case of isotropic mirrors, the derivatives inqy are
zero up to the fourth order, and hence higher derivatives t
second order need to be taken into account. In this sense
case of anisotropic Bragg mirrors is more simple to tr
analytically than the isotropic case. In addition, it is know
that the reflection operatorRi(kt) is invariant under
inversion kt→2kt , and the same can be said about t
transition operatorTi(kt). Therefore, Aa

(1)5Aa
(2)[Aa ,

Ab
(1)( i )52Ab

(2)( i )[Ab
( i ) , andAg

(1)( i j )5Ag
(2)( i j )[Ag

( i j ) .
Applying Eqs.~4!–~9! to Eqs.~1! and~2!, and comparing

coefficients of equal degrees ofe, we will obtain a system of
two coupled complex Ginsburg-Landau equations,

S 2
]

]t
1(

i 51

2

ai
(6) ]

]xi
1(

i 51
j , i

2

ai j
(6) ]2

]xi]xj
1a0

(6)

1pNL2
~e(6),e(7)!1pNL4

~e(6),e(7)!D e(6)50,

~10!

where

a0
(6)5mGa

(6)2La
(6) , ai

(6)52 i ~m thGb
(6)( i )2Lb

(6)( i )!,

ai j
(6)52m thGg

(6)( i j )1Lg
(6)( i j ) ,

and

m th5Re~La!/Re~Ga!

is the threshold pump level.

r
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The nonlinear parts of second orderpNL2
(a,b)

52mGaLa(uau212ubu2) and of fourth orderpNL4
(a,b)

5 1
2 mGaL a

2@2uau41(51 ia)ubu41(112 ia)uau2ubu2# de-
pend only on the modulus of their arguments. Hence, E
~10! have the important property of possessing a tw
parametric family of symmetries, corresponding to a ph
shift of each fielde1 ,e2 separately. It is easy to see that t
original system~1! and ~2! does not have such a symmetr
Another important point to note is that the termspNL2

and

pNL4
have different signs. The lowest-order nonlinear te

pNL2
restricts the growth of perturbations growing due to t

driving terma0
(6) term above threshold, whereas the seco

nonlinear termpNL4
destabilizes the system still more.

The system~10! has two families of solutions with con
stant amplitude. The first one is TW, with

ue7u250, ue6u25
b

2La
, ~11!

whereb512A2314m th /m, and the second is SW with

ue6u25ue7u25
b

6La
. ~12!

The characteristic polynomial describing the stability of E
~10! has four roots. Atq50 they determine the stability with
respect to perturbations with the same wave vector6kth .
Two of these have zero real parts for both SW and TW
lutions atq50. Close to threshold, the other two roots a
given up to the second order ofe by the expression

l1'2
Re~La!

2m th
e1

Re~La!

2m th
2

e2, ~13!
ic

,
ity
te

p
ne
th
-
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l2'2 1
2 Re~Ga!e1

Re~Ga!2a Im~Ga!

4m th
e2 ~14!

for the TW solution, and

l1'2 1
2 Re~Ga!e1

Re~Ga!

2m th
e2, ~15!

l2' 1
6 Re~Ga!e1

1

18

Im~Ga!a

m th
e2 ~16!

for the SW solution. The term that is of linear order ine
describes the behavior of the GL equations with the four
order termpNL4

omitted. If only this linear term is taken into
account, there are no secondary bifurcations above thresh
Including the more precise expression of ordere2, it is ob-
tained that TW loses its stability at the pointe'm th;1. It
worth noting that the validity of the expansion~4! is doubtful
for such a large value ofe. However, we will see below tha
this bifurcation occurs at a much smaller value of the pu
if the dynamics of carriers is taken into account.

The stability with respect to long-wavelength spatial p
turbations is determined by the two other roots, which
zero forq50. For smallq they are approximated by a qua
dratic form

Re~l!'(
i 51
j , i

2

f i j ~e!qiqj ,

wheref i j (e) are determined from an expansion of the ch
acteristic polynomial into a series ofe. In order to establish
the stability of the solutions of Eq.~10!, it is sufficient to
check the negative definiteness of this quadratic form. T
analysis shows that for TW solutions~11! the negative defi-
niteness condition leads to the following inequalities:
f11524 Re~Ga!2@Re~a11
1 Ga* !#e1O~e2!,0, ~17!

det~f i j ![f11f122f21f2252 Re~Ga!4$2Im~a22
1 !Im~Ga!@ Im~a22

1 !Im~Ga!12 Re~a22
1 !Re~Ga!#

116 Im~a11
1 !Im~Ga!Re~a12

1 Ga* !1Re~Ga!@16 Re~a11
1 !Re~a12

1 Ga* !2Re~Ga!Re~a22
1 !2#%e21O~e3!.0. ~18!
by

ith
n the

f

his
into
These conditions are met if the system is stable. For typ
parameters of the laser cavity and values ofa (uau,6), the
system of inequalities~17!,~18! reduces to a single condition
a.a0, wherea0 depends on the parameters of the cav
and usually is close to zero. For example, for the parame
used in@15#, a0'20.02. Therefore, the TW solution~11! is
absolutely stable at the threshold fora.a0, and unstable
with respect to long-wavelength perturbations fora,a0. In
the latter case, numerical simulations show that spatiotem
ral chaos appears in the amplitude of the nonzero compo
of Eq. ~11!, whereas the other mode remains zero. For
original system~1!,~2!, this instability corresponds to a cha
otic deformation of the TW.
al

rs

o-
nt
e

It is important to note that at thresholdGa5k(1
1 ia)G1aLa /G0a , whereG0a , G1a , andLa are real quan-
tities. The stability of TW and SW solutions, determined
Eqs.~13! and~14!, depends only ona2. This means that the
stability of the tilted wave with respect to perturbations w
the same or the opposite wave vector does not depend o
sign of thea factor.

The stability in the casea5a0, as well as in the case o
usual isotropic reflectors, is not described by Eqs.~17!,~18!,
because one or both of them become identical to zero. T
means that derivatives of higher order have to be taken
account in Eqs.~6!–~10!.
3-4
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IV. TWO-MODE APPROXIMATION

Because the GL equations take into account only the s
transverse carrier grating and do not include the dynamic
the carrier density, they cannot describe the system far ab
threshold. We recall that only the two field modes

e5e(1)exp~ ikth•xt!1e(2)exp~2 ikth•xt! ~19!

and the carrier modes

d5d(0)1d(s)sin~2kth•xt!1d(c)cos~2kth•xt!5d(0)

1d(1)exp~2ikth•xt!1d(2)exp~22ikth•xt! ~20!

were considered in the GL equations~10!. Taking into ac-
count the temporal evolution of these carrier modes, we
duce the original system to differential equations fore(1),
e(2), d(0), d(c), d(s) ~or d(1), d(2)). Becaused is a real
quantity,d(1), d(2) have to be complex conjugates and a
not independent.

After substitution of Eqs.~19!,~20! into Eqs.~1!,~2!, the
following set of equations is obtained:

ė(1)5~2La1Gad(0)!e(1)1Gad(1)e(2), ~21!

ė(2)5~2La1Gad(0)!e(2)1Gad(2)e(1), ~22!

ḋ(0)5m2d(0)2L ad(c)Re~e(2)e(1)* !

2L ad(s)Im~e(2)e(1)* !2Lad(0)~ ue(2)u21ue(1)u2!,

~23!

ḋ(c)52d(c)2 1
2 La@2d(c)~ ue(1)u21ue(2)u2!2ad(s)~ ue(1)u2

2ue(2)u2!#22d(0)LaRe~e(2)e(1)* !, ~24!

ḋ(s)52d(s)2 1
2 La@2d(s)~ ue(1)u21ue(2)u2!2ad(c)~ ue(2)u2

2ue(1)u2!#22d(0)LaIm~e(2)e(1)* !. ~25!

Because the carrier modesd( i ) are functions only of time,
this system does not describe the stability of SWs and T
with respect to long-wavelength perturbations. However
contains the stability with respect to temporal perturbatio
in the same set of modes.

Like Eq. ~10!, this system has two families of solution
The first is a TW,

d(c)5d(s)50,d(0)5m th , ~26!

ue(6)u25
m2d(0)

Lad(0)
, ue(7)u50. ~27!

These are two one-parametric families of solutions each
responding to a TW in a specific direction (1/2). In both
families, the free parameter is the phase of the field.

The system~21!–~25! also has a two-parametric family o
SW solutions withue(1)u5ue(2)u. One of these is
01381
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d(c)5
2@Re~La!2m Re~Ga!#

3 Re~Ga!
, d(s)50, ~28!

d(0)5
2 Re~La!1m Re~Ga!

3 Re~Ga!
, ~29!

e(1)5e(2)5Am Re~Ga!2Re~La!

3 Re~Ga!La
. ~30!

Here, the other members of this family can be obtained
either shifting the phase of the two fields by the same amo
f,

e(1)→e(1)exp~ if!, e(2)→e(2)exp~ if!, ~31!

or by phase shifts of opposite sign,

e(1)→e(1)exp~ if!, e(2)→e(2)exp~2 if!. ~32!

In the case of the first transformation~31!, all the variables
except f remain unchanged, whereas in the second c
~32!, they need to be changed appropriately. For exam

FIG. 2. The real parts of the roots of the characteristic poly
mial of the system~21!–~25! for TWs ~a! and SWs~b! in depen-
dence one, the excess of the pump parameter above the first la
threshold. Different roots are marked byl i , wherei 5127. Point
SN1 is the point of saddle-node bifurcation of TWs, SN2 corre-
sponds to a saddle-node bifurcation point of SWs, andH is the
Hopf bifurcation point of SWs. The parameter values are as in F
1. The value ofe is normalized to the threshold value of the pum
parameter.
3-5
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after rotation of the phase to an anglef5p/2 in Eq.~32!, we
obtaind(c)50, d(s)Þ0, in contrast to Eq.~28!.

Due to the existence of the above-mentioned families
solutions, the characteristic polynomial of the system~21!–
~25!, obtained by the stability analysis for both TW and S
solutions, has two zero rootsl1 ,l2. The real parts of all the
roots, including zero ones, are shown in Fig. 2. Note t
these roots~and therefore the system stability! do not depend
on the sign ofa. At a certain value of the pump paramete
the purely real eigenvalues (l5 ,l6 for both TW and SW
solutions andl3 ,l4 for SW solutions only!, which where
initially corresponding to the field and carrier modes, me
and give rise to a pair of complex conjugated roots.

In the case of TWs, the real eigenvaluel3 has the maxi-
mum growth rate~apart from the marginall1 ,l2.! At some
value of the pump it starts to increase and crosses the im
nary axis at the saddle-node point SN1. This leads to desta
bilization of the TW solution.

For the case of the SW solution, also the rootl3 is the
one determining the stability. It is initially larger than ze
and the SW solution is unstable. At some value of the pu
parameter,l3 decreases and crosses zero at the point S2.
This implies a stabilization of the SW solution. It will b
shown below that as a rulee(SN1),e(SN2).

Therefore, in the region between points SN2 andH a situ-
ation is encountered, which is not predicted by the GL eq
tions ~10!: the TW is unstable, whereas the SW is stab
Unfortunately, we cannot say anything definitely about
stability of SWs with respect to long-wavelength perturb
tions from Eqs.~21!–~25!. However, numerical simulation
of the full system~1! and~2! show that secondary bifurcatio
predicted by Eqs.~21!–~25! indeed appears for any sign ofa
~but aÞ0). In contrast, long-wavelength instabilities ca
lead only to chaotic deformations of the basic regimes,
scribed above. It is connected with the fact that the tra
verse Fourier spectrum of the solutions is limited to one
two spots near6kth , and long-wavelength perturbation
cannot be developed enough to completely destabilize
system.

The next bifurcation of the system is a Hopf bifurcation
SWs, taking place at the pointH, because two complex con
jugated rootsl3 andl4 cross the imaginary axis. Antiphas
pulsations appear in the amplitudes of the field modes~Fig.
3!. Close to the secondary bifurcation threshold, the osc
tions are rather harmonic@Fig. 3~a!#. The modulation depth
of the oscillations increases with increasing pump curre
Further away from threshold and/or for high values of thea
factor, the temporal shape of the oscillations is highly anh
monic, resembling a switchinglike dynamics between sta
in which one or the other TW is dominating@Fig. 3~b!#.

In experiments, usually only time-averaged images
recorded. The pulsations in the TWs due to Hopf bifurcat
cause a decrease of the contrast of averaged SWs~Fig. 4!.
The results of simulations of the initial system~1! and ~2!
and the reduced one~21!–~25! shown in this figure show the
similarity of the dynamics of both systems. This proves ag
the main role of temporal instabilities predicted by Eq
01381
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~21!–~25!. The contrast of the averaged pattern appearing
Eqs.~1! and~2! is slightly less because of spatial degrees
freedom.

The contrast tends to some value near zero, when
regime, shown in Fig. 3~b!, appears.

The loss of stability of TWs and the stabilization of SW
may appear also in quintic GL equations, though for a le
of pumping, which is different from the more accurate val

FIG. 3. The dynamics of the field amplitudes, corresponding
the wave traveling to the left (e(2), solid curve! and to the right
(e(1), dotted curve! after the Hopf bifurcation in SWs. The param
eter values are marked on Fig. 5 by a circle~a! and rectangle~b!.
Time is normalized toT1 ~relaxation time of carriers!. The initial
conditions correspond to the laser being off.

FIG. 4. The dependence of the contrast,c5(uemaxu
2ueminu)/uemaxu, of the time-averaged pattern one, the excess of the
pump level above the first laser threshold. The solid curve is a re
of simulations of the system~21!–~25!, and the dotted one is a
result of simulations of the initial system~1! and ~2!. The param-
eters are the same as in Fig. 2.
3-6
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obtained from an analysis of Eqs.~21!–~25!. In contrast, the
Hopf bifurcation cannot appear in GL-like equations of a
order without spatial derivatives, because of the followi
reasoning. Without the spatial derivatives, Eq.~10! is invari-
ant with respect to separate phase shifts of each field. Du
this symmetry, the phase degrees of freedom can be rem
from the GL equations~10! resulting in two real equation
for the amplitudes ofe(6). Becauseue(1)u5ue(2)u for a SW
solution, the equations, linearized around the SW solut
are symmetric with respect to the replaceme
due(1)u↔due(2)u. Therefore, the linear evolution matrix o
this system is real and symmetric. It is known that the eig
values of such a matrix are real~in the present case th
dimension of the matrix is 232, and this fact can be easil
seen directly!. This excludes the possibility of a Hopf bifur
cation, since it requires complex eigenvalues. This symm
is broken by the last terms in equations~21!,~22!, containing
d(6). Therefore, the dynamics of the carrier spatial grati
created by the two counterpropagating waves and descr
by d(6), plays a fundamental role in the dynamics of t
system.

However, the strength of destabilization of the field due
its interaction with the carrier grating decreases with decre
ing value ofa. The corresponding values of the pump p
rameter at which these secondary bifurcations take place
to move towards infinity whena→0. The dependence of th
threshold values for all the bifurcations ona is shown in Fig.
5~a!. It is worth noting that the destabilization of TWs tak
place always at smaller values of pump than the stabiliza

FIG. 5. The dependence of the bifurcation thresholds~see Fig.
2! SN1 ~dashed curve!, SN2 ~solid curve!, andH ~bold solid curve!
on the modulus of thea factor ~a! and on the field decay ratek ~b!.
The excess of pump level above generation threshold is given
logarithmic scale.
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of SWs. In the region between these two bifurcations ther
switchinglike dynamics between the two TWs similar to t
one presented in Fig. 3~b!.

As discussed above for TW and SW solutions of the G
equations~10! @cf. also to Eqs.~13!–~16!#, the stability of the
solutions of Eqs.~21!–~25! does not depend on the sign o
the a factor, because Eqs.~21!–~25! include only the stabil-
ity of tilted waves with respect to perturbations with th
same or the opposite transverse wave vector.

For typical values of the field decay rate in VCSEL cav
ties (k'102), the threshold for the secondary bifurcations
very low, i.e., the secondary bifurcations appear very clos
the first laser threshold. This makes their experimental ob
vation very difficult. However, Fig. 5~b! shows that the
threshold for the secondary bifurcations grows with decre
ing k. Such a decrease ofk can be achieved experimental
either by increasing the reflectivity of the mirrors, or by i
creasing the length of the cavity.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the stability and s
ondary bifurcations of TW and SW solutions in the syste
~1!,~2! describing a laser with a transversely anisotropic c
ity. The spatio-temporal dynamics just above threshold w
studied by GL equations~10! for two transverse Fourie
modes of the field only. Further above threshold, the dyna
ics of the carriers needs to be taken into account yielding
system of Eqs.~21!–~25!.

The stability analysis of Eq.~10! shows that at the firs
laser threshold the SW is always unstable, whereas TW
be stable or unstable. It is unstable with respect to lo
wavelength transverse perturbations, if the linewidth e
hancement factora,a0, with a0Þ0. We can compare thes
results with the situation in an edge-emitting semiconduc
laser, which is extended only in one transverse dimens
Hence only two spatial field modes can appear at thresh
which makes the situation similar to the one in a tw
dimensional VCSEL with transverse anisotropy. Order p
rameter equations for edge-emitting lasers were propose
@12# and consist of a Swift-Hohenberg equation, coupled t
mean flow~CSH!. The CSH in@12# can be considered as
special case of Eqs.~1! and ~2! with L̂51, Ĝ5const(1
1 ia), Re(L11

(6)(11))50. Alsod is set to 1 in the third term of
the equation for carrier~2!. Thus, the analysis of GLE~10!
~with y50 for the 1D case! describes the phase instabilitie
near threshold in 1D edge emitters with a special choice
ai

6 . The boundary of instabilities for the 1D case is given
Eq. ~17! only, which leads to the conditiona050 for this
special case. This matches the results obtained earlier@12#.

If there is in addition some mechanism for a dispersion
the losses with respect tokt ~as in a VCSEL due to the
dependence of the reflection coefficient of the Bragg mirr
on the transverse wave number!, the value of]2R(kt)/]kxkx
is nonzero and therefore]2G(kt)/]kxkx is also nonzero and
depends ona. This leads to a dependence ofa11 on a, and
therefore to a small shift of the value ofa0 in Eq. ~17!.

The investigation of the temporal dynamics of Eqs.~21!–
~25! shows that ifaÞ0, a sequence of secondary bifurc

a
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tions appears in the system: destabilizing of TW, stabiliz
of SW, and, at last, destabilizing of this SW through a Ho
bifurcation. The last bifurcation causes antiphase pulsat
in the amplitude of the counterpropagating field compone

The key role in this sequence of bifurcations is played
the coupling between the field and the spatial grating indu
in the carrier distribution. The coupling depends on thea
factor, influencing the phase relations of the interactions
the field and the carrier grating. This mechanism is simila
the mechanism of the temporal instability arising in bidire
tional lasers under the creation of a longitudinal grating
population inversion@22,23#. In the case of a transverse
isotropic laser, the above-described bifurcations do not t
place because they are shadowed by strong phase inst
ties, which in this case are not hindered by the anisotrop
the Bragg mirror.

For aÞ0, these secondary bifurcations are the decis
ones and numerical simulations show that they appear in
pendently on the sign ofa, whereas the long-wavelengt
instabilities can lead to chaotic deformations of the solutio
predicted by Eqs.~21!–~25!. For very small excess of pum
above threshold of generation, these chaotic deformat
are described by Ginsburg-Landau equations~10!. In the lat-
ter case, chaos appears only fora,a0, in the amplitude of
c
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TWs, whereas the amplitude of the second mode rem
zero.

It should be noted that whereas usuallya,0 for semi-
conductors materials, it was suggested to be taken as pos
for quantum-well VCSEL in previous investigations@21# in
order to describe an overall guiding, appearing in this kind
lasers due to temperature effects@21#. Further work is needed
to investigate the combined action of carrier-induced a
guiding and carrier-induced guiding due to the compet
electronic and thermal nonlinearities.

It is obvious that the system~21!–~25! does not describe
all instabilities in the system. For example, recent wo
shows that even in the casea50 ~for CO2 laser! there can
be secondary bifurcations@24#, which leads to complex dy-
namical behavior by the excitation of many spatial mod
Therefore, additional investigations need to be carried out
a full characterization of the possible instabilities in the s
tem considered here.

ACKNOWLEDGMENT

I.V.B. is grateful to the Deutsche Forschungsgemeinsch
for the financial support of his visit to Mue¨nster.
,

s-

n-
nd

ys.

an,

nd

c.

J.
@1# K. Iga, F. Koyama, and S. Kinoshita, IEEE J. Quantum Ele
tron. 24, 1845~1988!.

@2# K.J. Ebeling, SUSSP Proc.50, 295 ~1998!.
@3# R. Michalzik, M. Grabherr, R. Ja¨ger, M. Miller, and K.J. Ebel-

ing, Proc. SPIE3419, 187 ~1998!.
@4# L.A. Lugiato, G.L. Oppo, J.R. Tredicce, L.M. Narducci, an

M.A. Pernugo, J. Opt. Soc. Am. B7, 1019~1990!.
@5# P.K. Jakobsen, J.V. Moloney, A.C. Newell, and R. Indik, Ph

Rev. A45, 8129~1992!.
@6# P.K. Jakobsen, J. Lega, Q. Feng, M. Staley, J.V. Moloney,

A.C. Newell, Phys. Rev. A49, 4189~1994!.
@7# J. Lega, P.K. Jakobsen, J.V. Moloney, and A.C. Newell, Ph

Rev. A49, 4201~1994!.
@8# S.P. Hegarty, G. Huyet, J.G. McInerney, and K.D. Choque

Phys. Rev. Lett.82, 1434~1999!.
@9# T. Ackemann, S. Barland, M. Cara, S. Balle, J.R. Tredicce,

Jyager, M. Grabherr, M. Miller, and J.K. Ebeling, J. Opt.
Quantum Semiclassical Opt.2, 406 ~2000!.

@10# A.C. Newell and J.V. Moloney,Nonlinear Optics~Addison-
Wesley, Reading, MA, 1992!.

@11# J. Lega, J.V. Moloney, and A.C. Newell, Physica D83, 478
~1995!.

@12# J.V. Moloney, J. Opt. B: Quantum Semiclassical Opt.1, 183
~1999!.

@13# N.A. Loiko and I.V. Babushkin, Kvant. Electron31, 221
~2000! @Quantum Electron.31, 221 ~2000!#.
-

.

d

.

,

.

@14# E.J. D’Angelo, E. Izaguirre, G.B. Mindlin, G. Huyet, L. Gil
and J.R. Tredicce, Phys. Rev. Lett.68, 3702~1992!.

@15# N.A. Loiko and I.V. Babushkin, J. Opt. B: Quantum Semicla
sical Opt.3, S241~2001!.

@16# K.D. Choquette, K.L. Lear, R.P. Schneider, Jr., R.E. Leibe
guth, J.J. Figiel, S.P. Kilcoyne, M. Hagerott-Crawford, a
J.C. Zolper, Proc. SPIE2382, 125 ~1995!.

@17# J. Martin-Regalado, J.L.A. Cilla, and J.J. Rocca, Appl. Ph
Lett. 70, 3350~1997!.

@18# M.P. van Exter, A.K. Jansen van Doorn, and J.P. Woerdm
Phys. Rev. A56, 845 ~1997!.

@19# A.K. Jansen van Doorn, M.P. van Exter, A.M. van der Lee, a
J.P. Woerdman, Phys. Rev. A55, 1473~1997!.

@20# M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@21# M. San Miguel, SUSSP Proc.50, 339 ~1998!.
@22# L.A. Kotomtseva, N.A. Loiko, and A.M. Samson, J. Opt. So

Am. B 2, 232 ~1985!.
@23# Y. I. Khanin, Principles of Laser Dynamics~Elsevier, Amster-

dam, 1995!.
@24# F. Encinas-Sanz, I. Leyva, and J.M. Guerra, Phys. Rev. A62,

043821~2000!.
@25# D.J. Babic, Yo. Dagli, N. Chung, and J.E. Bowers, IEEE

Quantum Electron.29, 1950~1993!.
@26# M. Born and E. Wolf,Principles of Optics~Pergamon, New

York, 1980!.
3-8


