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Models for optical solitons in the two-cycle regime
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We derive model equations for optical pulse propagation in a medium described by a two-level Hamiltonian,
without the use of the slowly varying envelope approximation. Assuming that the resonance frequency of the
two-level atoms is either well above or well below the inverse of the characteristic duration of the pulse, we
reduce the propagation problem to a modified Korteweg—de Vries or a sine-Gordon equation. We exhibit
analytical solutions of these equations which are rather close in shape and spectrum to pulses in the two-cycle
regime produced experimentally, which shows that soliton-type propagation of the latter can be envisaged.
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[. INTRODUCTION equation. The two-soliton solution is very close to the experi-
mentally observed two-cycle pulses. In Sec. IV we investi-
Recent advances in dispersion managing now allow thg@ate the short-wave approximation. The resulting model is
generation of ultrashort optical pulses containing few oscilformally equivalent to that describing the self-induced trans-
lations directly from a laser source. Two-cycle pulses havédarency. It can be reduced to the sine-Gordon equation.
been recently reported in mode-locked Ti-sapphire lasers ufgdain, the two-soliton solution is comparable with the ex-
ing double-chirped mirrorL—3]. Because the pulse duration Perimental observatior{S].
becomes close to the optical period, a question of interest is
to know if few cycle pulses can generate optical solitons in Il. MODEL
nonlinear media. The usual description of short-pulses propa- ) ) ) ) )
gation in nonlinear optics is made using the nonlinear Schro N this section we derive the starting equations for further
dinger (NLS) equation which is derived using the slowly ana_ly5|s. The me_dlum is treated using the den_5|ty-matr|x for-
varying envelope approximation. However, for ultrashortMalism and the field using the Maxwell equations.
pulses considered in this paper the slowly varying envelope We consider an homogeneous medium, in which the dy-
approximation is not valid anymore. This situation, and theh@mics of each atom is described by a two-level Hamiltonian
corresponding one in the spatial domain, called nonparaxial,
have already given rise to several studies. An approach con- wa O
sists in adding corrective terms to the NLS mop#l This 0 wp’
high-order perturbation approach still involves the slowly
varying envelope approximation, and requires cumbersom@ more realistic description should take into account an ar-
and difficult computations. The approach of R allows  bitrary number of atomic levels. Indeed, we consider wave
one to determine the ray trajectories in a very rigorous wayfrequencies far from the resonance line of the medium, and
without any use of the paraxial approximation. However, itin this situation all transitions should be taken into account.
still makes use of the slowly varying envelope approxima-But we intend here to suggest a different approach to the
tion in the time domain, and therefore can hardly be genereescription of ultrashort optical pulses. Therefore we restrict
alized to the problem under consideration in this paper. It ighe study to a very simple and rather academic model.
preferable to leave completely the concept of envelope. In- The atomic dipolar electric momentum is assumed to be
deed, it is not adapted when a pulse is composed of a feyjong thex axis. It is thus described by the operatar
optical cycles. The aim of this paper is to demonstrate that.
other approximations can be envisaged and can also lead to
completely integrable equations, and support solitons. The
basic principle of our work is that a soliton can propagate
only when the absorption is weak; therefore its characteristic
frequency must be far away from the absorption range of the
material. If it is far below, a long-wave approximation can be The polarization densiﬂ}3 is related to the density matrix
performed. On the other hand, if it is far above, it will be athrough
short-wave approximation. Both approaches are used in this
paper leading to completely integrable systems. It is orga- |5:Ntr(p,&), 3)
nized as follows. In Sec. Il we develop the model that is
based on a nonabsorbing homogeneous and isotropic two- . . N
level medium. A semiclassical approach is used leading tgvhereN IS tbe number of atoms per unit volume. This
the well-known Maxwell-Bloch equations. The long-wave reduces tadPe,. )
approximation is investigated in Sec. Ill. In this case the The electric fieldE is governed by the Maxwell equa-
model reduces to a modified Korteweg—de VrigsKdV)  tions. In the absence of magnetic effects, and assuming that

H0:ﬁ< (1)

UEy, whereéx is the unitary vector along the axis and

oﬂ)

o @

M:

1050-2947/2003/61)/0138048)/$20.00 67 013804-1 ©2003 The American Physical Society



H. LEBLOND AND F. SANCHEZ PHYSICAL REVIEW A67, 013804 (2003

the wave is a plane wave propagating along zlexis, po-  period, say about 1 fs. Thus we assume that the resonance
larized along thex axis, E=Ee,, they reduce to frequency() is large with regard to optical frequencies. In
order to obtain soliton-type propagation, nonlinearity must
1 balance dispersion, thus the two effects must arise simulta-
JE= —25&2(5‘*'477':’)- (4 neously in the propagation. This involves a small amplitude
¢ approximation. Further, we can speak of a soliton only if the
pulse shape is kept on a large propagation distance. There-
7 ) ) ; fore we use the reductive perturbation method as defined in
rivative operator ¢/4t) with regard to the time variable Ref.[6]. We expand the electric field, the polarization den-

and so on. sity P, and the density-matriy as power series of a small
The coupling between the atoms and the electric field is Y y p P

taken into account by a coupling energy term in the totalparameters as
HamiltonianH, that reads

c is the light velocity in vacuum. We denote Iy the de-

E=D &"E,, P=2 &"P,, p=208“pn,
n=

H=Ho— uE. (5) =1 n=1
’ (11
The density-matrix evolution equatiofSchralinger equa- ) ,
tion) is written as and introduce the slow variables
. _ z
idp=[H,p]+R, (6) T=¢ t—v), (=g (12

whereR is some phenomenological relaxation term. The set
of equationg4)—(6) is sometimes called the Maxwell-Bloch Expansion(11) gives an account of the small amplitude ap-
equations, although this name denotes more often a reductigaroximation. The retarded time variabiedescribes the pulse
of it. shape, propagating at spe¥din a first approximation. Its
Setting order of magnitudes gives an account of the long-wave
approximation, so that the pulse duratigp has the same
L , , , M order of magnitude at /. The propagation distance is as-
v=ct,  P'=4mP,  p'=4mNicp,  u'= fic’ sumed to be very long with regard to the pulse lengij;
(7)  therefore it will have the same order of magnitudetgs",
wheren=2. The value oh is determined by the distance at
_Mo W = ab ®) which dispersion effects occur. According to the general
fic’ ab— ¢ theory of the derivation of KdV-type equatiofi], it is n
=3. The{ variable of order? describes thus long-distance
allows one to replace the constagisN, 7, and 47 in sys-  propagation. The physical values of the relaxation timgs

H H 0
H = —. H(,)_ 0 ’ a,b

tems(3)—(6) by 1. We denote the components @by andr, are in the picosecond range, or even slower, thus very
large with regard to the pulse duratidp. Therefore we
Pa Pt write
P=1 J ©
Pt Po ~
>
_i P
and so on, and bf)=w,— », the resonance frequency of T2 for j=b andt. (13
the atom.
The relaxation is expressed as The Schrdinger equation(6) at orders? is satisfied by
/ L the following value ofpy, which represents a steady state in
_ .| Pp7b Pt which all atoms are in their fundamental state
R=ik| , (10)
—pilme —polTp

. (14

a 0
where 7, and 7, are the relaxation times for the populations Po= ( 0 0
and for the coherences, respectively. We show below that,
according to the fact that relaxation occurs very slowly withNotice that, according to the change of variab(@s the
regard to optical oscillations, the relaxation teRncould be  trace trp) of the density matrix is not 1 but=4wN#c.

omitted. Then the Schidinger equatior(6) at ordere? yields
I1l. LONG-WAVE APPROXIMATION pa
Plt:ﬁEla (19

A. A modified Korteweg—de Vries equation

Let us first consider the situation where the wave duratiorso that
ty is long with regard to the periotd=2=/Q (recall that 5
Q= w,— w,) that corresponds to the resonance frequency of p.— 2|pl*a (16)
the two-level atoms. We assume thgtis about one optical Vo v
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The Maxwell equatior{4) at ordere? gives the value of the
velocity

2| pl*a
Q

(-1/2)
) : 17

V=(1+
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1
i9,6-5 ko02E+ yE £?=0, (24)

wheref is the envelope amplitude of the wave electric field,

k, is the group velocity dispersion, andis related toy
through

in accordance with the limit of the dispersion relation as the

frequencyw tends to zero.

The Schrdinger equation(6) at order 2 yields p;,
=p1,=0 and
na iwa
p="q Ea— ?5751- (18)
Then
2| ul?a
p,— 21l (19

Q

and the Maxwell equatioit4) at ordere*
satisfied.
The Schrdinger equatior(6) at orders® gives

is automatically

IR

P2p="P2a=" 5~ Ef (20)
and
pa_ ipa pa ,_ 2plplfa_,
p3t:EE3_?(9TE2—_3§TE1_ RE E1
ipa
Y (21
Tt

The corresponding term of the polarization deng#yon-
tains a nonlinear term,

2ulPa oo Alul'a
Qz =17 Q 1

2|pl?a
o 2

Ps= (22

but the terms involving the relaxation do not appear. The

Maxwell equation at ordes® yields the following evolution
equation for the main electric-field amplitudg:

ViplPa , 2V|u|*a
(9§E1: 03 (97E1+ Q3

J,E3, (23)

which is an mKdV equation. Equatioi23) can be general-
ized as follows: a general derivation of KdV-type modélé
shows that the coefficient of the dispersive teffi; in this

6w
N )
Y=o X (25

n is the refractive index of the medium, is the wave pul-
sation. We drop the dispersion term, replagdy id,., and
notice that€ coincides with the real fiel&, at the long-wave
limit, to get

— 67
S x®a.E3. (26)

Equation(26) gives an expression of the nonlinear coeffi-
cient in the mKdV equatio23). The relevant component of
the third-order nonlinear susceptibility tensg® computed
from the above model iE3]

(3)

4N Qlul*
XXXXX(w’w’w’_w):— §_—

h3 ( 2)2 ' (27)
Taking the long-wave limitw—0 in Eq.(27), we check that
the expression of the nonlinear coefficient obtained from Eqg.
(26) holds in the present case. Thus we can write (28) as

JE 1 d3k e 6 ( )
(B1T 7 T3 =17 _Xxxx w,0,0,— 0
6 dw3 o nc =0

9,E3.
(28)

It can be reasonably conjectured that E2B) will still hold

in the more general case of an arbitrary number of atomic
levels, when the inverse of the characteristic pulse duration is
much smaller than any of the transition frequencies of the
atoms.

B. The two-soliton solution

The mKdV equation(23) is completely integrable by
means of the inverse scattering transfd@h The N-soliton
solution has been given by Hirofd0]. In order to write it
easily, we write the mKdV equatiof23) into the dimension-
less form

dzu+207ul+ d3u=0, (29)

whereu is a dimensionless electric field, aa@dand T are

equation must be (1/8fk/dw®. We check by direct compu- dimensionless space and time variables defined by
tation of the dispersion relation that it holds in the present

case. Another heuristic reasoning can relate the value of the
nonlinear coefficient of E¢(23) to the third-order nonlinear
susceptibilityy(®). It uses the NLS equation which describes

E - T
T

the evolution of a short-pulse envelope in the same mediuniThe characteristic electric field, space, and time are defined

The NLS equation is written as[8], 6.5.32

by
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Q - 1 L 1
=, 0:_7 = ,
|l Q alu|?V

8 2N (—1/2)
|pl ) 34

(31) V:C(l‘l'ﬁ—ﬂ

Then the quantities involved by dimensionless equat&g

in normalized units. Relation80)—(31) can be expressed in " ;
80 -(31) b re related to the quantities measured in the laboratory

a more convenient way as follows. Let us first choose a

reference time the pulse length (in physical unit$. The hrough
small perturbative parameter is then E —z 1 z
1 UZE, Z:T’ T:E<t_V)' (35
e=—. (32 i L .
tw(2 The soliton solution is written as
The characteristic electric fielfland propagation distana2 u=p sech , (36)
are
with
h hc?Q33
=, L=——, (33) n=pT—p°Z-v, (37)
tul 1l 47NV u|? _ ,
p andy being arbitrary parameters.
where the speel is The two-soliton solution is
|
_ 2 am 72
e771+e772+(w e_ e_ et 2
P1tP2/ \4p7  4p3
U= - , (38
e 2 e2772 pl_p2 4eznl+2772
I+ —5+————en 2+ — o
4p1  (P1tPp2) 4p; \P1t P2/ 16pip;
|
with tion. We introduce a small perturbative parametersuch
, that the resonance peridg=t, /s, wheret, has the same
7i=PT—P;Z~ v, (39  order of magnitude as the pulse duratign The perturba-

tive parametere is thus aboutt,,/t,. Consequently, the
for j=1 and 2. The parameters;, p,, v;, and y, are  HamiltonianH, of the atom is replaced in the Schiinger
arbitrary. When they take real values, explicit soluti@3) equation(6) by
describes the interaction of two localized bell-shaped pulses, .
which are solitons. An example of this solution is drawn in eHy. (40
Fig. 1, using the values of the paramet@grs=3, p,=5,
v1=v,=0. But expressiori38) also describes the so-called ) ) ) )
higher-order solitons, which can be considered as a pair of/€ introduce a retarded timeand a slow propagation vari-
solitons of the above kind linked together, and have often aqble ¢ such that
oscillatory behavior. An example is given in Fig. 2. It uses
the values of parameters,=1+4i, p,=p;, y1=— 7>
=im/2. The corresponding spectrum is drawn in Fig. 3. T:(
These spectrum and pulse profile are comparable to the ex-
perimental pulses given by Rdf3]. It can thus be thought

that the two-cycle pulses produced experimentally couldrhe zero-order reference time is chosen td pethereforer
propagate as solitons in certain media, according to thg ot a slow variable. The definition of the varialilegives

mKdV model. account for long-distance propagation. Computation shows
that the dispersion effects arise at distances alobyte,
IV. SHORT-WAVE APPROXIMATION from which follows the choice of the order of magnitude of

{. The electric fielcE is expanded aE=2 - ,¢"E,,, and so
on. The pulse duratiot,, is still assumed to be about 1 fs,

We now consider the situation in which the resonancecorresponding to an optical pulse of a few cycles. The relax-
frequency() of the atoms is below the optical frequencies. ation timesr,,, 7, are very long with regard t, . Since the
Then the characteristic pulse duratigpis very small with  above scaling usety, as zero-order reference time, this can
regard tot, =27/}, thus we use a short-wave approxima- be expressed by setting

t—v), {=¢ez. (42

A. A sine-Gordon equation
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a)
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FIG. 3. (a) Pulse profile andb) spectrum, of the second-order
soliton solution of the mKdV equation of Fig. 2. Dimensionless

FIG. 1. Two-soliton solution of the mKdV equation, using di- parameters.

mensionless parameters.

o
== for j=b and t. (42)
t]

Notice that Eq.(42) differs formally from assumptioril3)

where the small parametertends to zero. Then the short-
wave approximation can be sought using the expansions

pZZ Sjpj7

E=D ¢, P=2 &P, 44
=0 =0 =0

written in the preceding section but represents the same

physical hypothesis.

The above scaling can also be presented from another
viewpoint, taking the characteristic time of the resonance
1/Q as zero-order reference time, as follows. The relevant

and variableg and 7 such that

1 -1
c?t=g(97, 5Z=—(9T+(9§

oV (45)

component of the third-order nonlinear susceptibility tensor o . .
¥® computed from the above model is given by formula The definition of variable¢45) is very close to the standard

(27), wherew is the wave frequenciwhile Q= w,— w, is
the resonance frequency of the two-level systethe short-
wave approximation correspondsde—-. Theny!3) tends

to zero. Thus a linear behavior of the wave can be expecte
in the short-wave approximation, except if the nonlinearity is
very strong. The latter physical assumption can formally be

expressed by assuming that the produdt is very large
with regard to(), according to

1
H=Ho+ ~uE,

(43

short-wave approximation formalism developed, e.g., in
Refs.[11,12. It is easily checked that the scalin@gt)—(41)
and (43)—(45) are equivalent. We refer to the former below.
d The Schrdinger equatior(6) at orders® yields

ianoa: - EO(/'Lpgt_lu’* pOt)! (46)
id.pop=+ EO(MP& — 1 por), (47)
19:p0t= —Eou(pob— Poa)- (48)

From Eqs.(46)—(47) we retrieve the normalization condition
of the density matrixd tr p=0. We introduce the population
inversionw= pg,— pga and get

(a—w)/2 iMJTEOW
po= T (49)
—i,u*j Eow (at+w)/2

(as above, tp=a=47NAc due to the normalizationand
the equation

a,W= —4|M|2on Eow. (50)

Then expressiori3) of the polarizationP yields Py=0,
and the Maxwell equatiofd) at orders® becomes trivial if

FIG. 2. Second-order soliton solution of the mKdV equation, the velocity is chosen a¢=1.

using dimensionless parameters.

The Schrdinger equatior{6) at ordere is then written as
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id.p1=[Hg,pol—[1Eq,p1]1—[E1,po] can expect that the short-wave approximation will yield
some more complicated asymptotic system involving the

( pob/ T~ pot! Tt (51) populations of each level concerned. The derivation of such a
—ptlte —popl 7o) model is left for further study.
Defini_ngwl=plb—p1a, the off-diagonal components of Eq. B. The two-soliton solution
(51) yield Using dimensionless variables defined by
i T T
=i — i E W T
pu=i| O+ - j Poﬁ"l/«J (Eqwi+Egw), (52 =0 W= T=_  7— ¢ (59

Eri _Wri _Toy _El

so that the corresponding ter = u* p,+ up3; of the po- .
P g tefy =17 prt Py P where the reference values satisfy

larization is
;7 E Tolu|=1 and w,LQTolu|?=2, (60)
P,= —29|,u|2f J Ew. (53
and settingy=[?W, the systerm(50),(54) reduces to
Notice again that the relaxation does not appear in the ex- =20 61
pression of the polarization at this order. The Maxwell equa- 92070 =200z, (62)
tion (4) at ordere then reduces to

9;0,Eo= Q| u|?Eqw. (54) i )
Equations(61)—(62) have been found to describe short elec-
Equations(50) and (54) yield the sought system. If we set tromagnetic wave propagation in ferrites, using the same
kind of short-wave approximatiofil].

p= —i|M|2J EoW, (55) The following change of dependant variables:
dzn=Acosu, (63
they reduce to
. transforms Eqgs(61),(62) into [11,1
0.p=—i| u|Eqw, (57 Gs(61),(62) into [11,13
a,W=—4Egp, (58) drA=0, (65
which coincide with the equations of the self-induced trans- dzdru=2Asinu. (66)

parency, although the physical situation is quite different: the_ . . .
characteristic frequency t}y of the pulse is far above the SINC€ according to EGBS), Alis a constant, E66) is the

resonance frequend®, while the self-induced transparency Sr']”el'Gord?n equdatlon. _Beforr]e Wﬁ rgczalll some profpehrtles of
occurs when the optical field oscillates at the frequeficy "€ latter, let us determine the physical meaning of the con-

The quantitiesE andw describe here the electric field and St@NtA in the present physical frame. Using relatid6s)—
population inversion themselves, and not amplitudes modu(®4 and the definition of, we find that
lating a carrier with frequency). Notice thatE andw are

here real quantities, and not complex ones as in the case of

the self-induced transparency. Furthgiis not the polariza-

tion density, but is proportional to its derivative. Another  gjnce@ is the dimensionless wave electric field, it vanishes

difference is the absence of a factor of 1/2 in the right-handy infinity. Thus we can have a nonvanishing solution only if

side of Eq.(56). o . some initial population inversiow;=W,w, is present. The
Since they explicitly involve the population inversion, .gnstant involved by Eq(66) is thenA=W, .

model equationg56)—(58) cannot be generalized easily to . s .
more realistic situation in which an arbitrary number of &oLrst(;rrl]getgja\{;g:]ableZ—2WiZ, Eq.(66) reduces to the sine-

atomic levels are taken into account. Recall that, accordin
to the assumption made at the beginning of the section, this
model is valid for a very strong nonlinearity only. In particu-

lar, we assumed that the atomlc'd!polgr m_omepyumas a The guantities involved by Ed68) are related to the quan-

very large value. In a more realistic situation, it can be eX+iioo measured in the laboratory through

pected that only the transition corresponding to the largest

value of the dipolar momentum will have a significant con- . 1 .

tribution. If several transitions correspond to large values of Z==, T= —(t— _) , (69)
L

the dipolar momentum with the same order of magnitude, we ¢

AZ= lim [W2+ (9,0)2]. (67)

T—w

dzdtu=sinu. (68)

tw
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r(z.
E=—| sinu, w=w; cosu.

The electric field and propagation length scaling parameters,

are

(70

E,= f (71
I’_|/~L|twy
L= he (72)
Qt,47N|w|?w, ’

PHYSICAL REVIEW A 67, 013804 (2003

4

24

in which the initial population inversiow; and typical pulse
durationt,, are given. The small perturbative parameter
can be identified with()t,,, expressing the fact that, is
very small with regard to 1.

The sine-Gordon equatio(68) is completely integrable
[13]. A N-soliton solution can be found using either the IST
or the Hirota method. As in Sec. I, we will consider here the

FIG. 4. Electric field evolution of the second-order soliton solu-

tion of the sine-Gordon equation, using dimensionless parameters.

V. CONCLUSION

two-soliton solution only, which i$13]

=2il r
u=2iln{ —J,

with

(kp—kp)?

(ky+kp)?

f=1+ien+ie”2— et e,

where

(73

(74

We have given two models that allow the description of
ultrashort optical pulses propagation in a medium described
by a two-level Hamiltonian, when the slowly varying enve-
lope approximation cannot be used. Using approximations
based on the hypothesis that the resonance frequency of the
medium is far from the field frequency, we derived com-
pletely integrable models. When the resonance frequency is
well above the inverse of the typical pulse width of about 1
fs, a long-wave approximation leads to an mKdV equation.
When in the contrary the resonance frequency is well below
the field frequency, a short-wave approximation leads to a
model formally identical to that describing self-induced
transparency, but in very different validity conditions. It can
be reduced to the sine-Gordon equation. The scaling param-

Z
n]:kJT+ k—J+’yJ

for j=1,2, (75)

ki, Ko, v1, andy, being arbitrary parameters. When they
take real values, formula§3)—(75) describe the interaction

of two solitons. The behavior is very close to that of the
typical two-soliton solution of the mKdV equation shown in
Fig. 1. As in the case of the long-wave approximation, the
two-soliton solution (73)—(75) is also able to describe
soliton-type propagation of a pulse in the two-cycle regime.
The corresponding analytic solution is a second-order soliton
or breather, which can be considered as two bounded soli-
tons, and is obtained using complex conjugate values of the
soliton parameterk; andk,. An example is given in Fig. 4,
with the values of parametells,=1+4i, k,=1—4i, v,
=v,=0. The pulse profile, with the corresponding popula-
tion inversion and spectrum are drawn in Fig. 5. The profile
and spectrum are comparable with the experimental observa-
tion of Ref.[3]. Notice again that an initial population inver-
sionw; # 0 is required. Total inversionw=1) is not neces-
sary but, as shows in expressi¢n2) of the propagation

reference lengtl, a small inversion reduces the soliton am-

a)

08

0.6

wiwi
A

b)

<)

A

100

50

0

>
0 0.4 038 12 d

FIG. 5. (a) Population inversion(b) pulse profile, andc) spec-

plitude and increases the propagation distance at which nomrum, of the second-order soliton solution of the sine-Gordon equa-
linear effects occur. tion of Fig. 4. Dimensionless parameters.
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eters for these approximations have been written down exmodels are relatively short and easy. Therefore, the applica-
plicitly. tion of the same approach to more realistic situations can be

Both the mKdV and the sine-Gordon equations are comseasonably envisaged. A generalization of the mKdV equa-
pletely integrable by means of the IST method and admition obtained in the long-wave approximation has been pro-
N-soliton solutions. The two-soliton solution is able to de-posed on heuristic grounds, and should be justified rigor-
scribe the propagation of a pulse in the two-cycle regimepusly. A generalization of the model obtained in the short-
very close in shape and spectrum to the pulses of this typerave approximation would require a special study. Last, in a
produced experimentally. It does not mean that the formulasore realistic model, it can be envisaged that some transition
of this paper describe the experimental results, because weequencies are well above the inverse of the characteristic
have considered a propagation problem, and experimentalulse duration, but that some other are below it. The treat-
results concern pulses generated directly at the laser outpuhent of such a situation will mix the above short-wave and
But we have shown that soliton-type propagation, with onlylong-wave approximations, it is left for further study. It can
periodic deformation of the pulse during the propagationbe expected that the result will depend strongly on the par-
may occur for such type of pulses, under adequate condiicular physical situation considered.
tions. In the short-wave approximation, these conditions in-
volve an initial population inversion, at I_east_a partial one. ACKNOWLEDGMENTS

Further, the study of a two-level Hamiltonian can be con-
sidered as an academic problem, showing the tractability of The authors thank M.A. MannéUniversitede Montpel-
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