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Models for optical solitons in the two-cycle regime

H. Leblond and F. Sanchez
Laboratoire POMA, UMR 6136, Universite´ d’Angers, 2 Boulevard Lavoisier, 49000 Angers, France

~Received 18 July 2002; published 23 January 2003!

We derive model equations for optical pulse propagation in a medium described by a two-level Hamiltonian,
without the use of the slowly varying envelope approximation. Assuming that the resonance frequency of the
two-level atoms is either well above or well below the inverse of the characteristic duration of the pulse, we
reduce the propagation problem to a modified Korteweg–de Vries or a sine-Gordon equation. We exhibit
analytical solutions of these equations which are rather close in shape and spectrum to pulses in the two-cycle
regime produced experimentally, which shows that soliton-type propagation of the latter can be envisaged.
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I. INTRODUCTION

Recent advances in dispersion managing now allow
generation of ultrashort optical pulses containing few os
lations directly from a laser source. Two-cycle pulses ha
been recently reported in mode-locked Ti-sapphire lasers
ing double-chirped mirrors@1–3#. Because the pulse duratio
becomes close to the optical period, a question of intere
to know if few cycle pulses can generate optical solitons
nonlinear media. The usual description of short-pulses pro
gation in nonlinear optics is made using the nonlinear Sch¨-
dinger ~NLS! equation which is derived using the slow
varying envelope approximation. However, for ultrash
pulses considered in this paper the slowly varying envel
approximation is not valid anymore. This situation, and
corresponding one in the spatial domain, called nonpara
have already given rise to several studies. An approach
sists in adding corrective terms to the NLS model@4#. This
high-order perturbation approach still involves the slow
varying envelope approximation, and requires cumberso
and difficult computations. The approach of Ref.@5# allows
one to determine the ray trajectories in a very rigorous w
without any use of the paraxial approximation. However
still makes use of the slowly varying envelope approxim
tion in the time domain, and therefore can hardly be gen
alized to the problem under consideration in this paper. I
preferable to leave completely the concept of envelope.
deed, it is not adapted when a pulse is composed of a
optical cycles. The aim of this paper is to demonstrate t
other approximations can be envisaged and can also lea
completely integrable equations, and support solitons.
basic principle of our work is that a soliton can propag
only when the absorption is weak; therefore its characteri
frequency must be far away from the absorption range of
material. If it is far below, a long-wave approximation can
performed. On the other hand, if it is far above, it will be
short-wave approximation. Both approaches are used in
paper leading to completely integrable systems. It is or
nized as follows. In Sec. II we develop the model that
based on a nonabsorbing homogeneous and isotropic
level medium. A semiclassical approach is used leading
the well-known Maxwell-Bloch equations. The long-wav
approximation is investigated in Sec. III. In this case t
model reduces to a modified Korteweg–de Vries~mKdV!
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equation. The two-soliton solution is very close to the expe
mentally observed two-cycle pulses. In Sec. IV we inves
gate the short-wave approximation. The resulting mode
formally equivalent to that describing the self-induced tra
parency. It can be reduced to the sine-Gordon equat
Again, the two-soliton solution is comparable with the e
perimental observations@3#.

II. MODEL

In this section we derive the starting equations for furth
analysis. The medium is treated using the density-matrix
malism and the field using the Maxwell equations.

We consider an homogeneous medium, in which the
namics of each atom is described by a two-level Hamilton

H05\S va 0

0 vb
D . ~1!

A more realistic description should take into account an
bitrary number of atomic levels. Indeed, we consider wa
frequencies far from the resonance line of the medium,
in this situation all transitions should be taken into accou
But we intend here to suggest a different approach to
description of ultrashort optical pulses. Therefore we rest
the study to a very simple and rather academic model.

The atomic dipolar electric momentum is assumed to
along thex axis. It is thus described by the operatormW

5meW x , whereeW x is the unitary vector along thex axis and

m5S 0 m

m* 0 D . ~2!

The polarization densityPW is related to the density matrixr
through

PW 5N tr~rmW !, ~3!

whereN is the number of atoms per unit volume. ThusPW

reduces toPeW x .
The electric fieldEW is governed by the Maxwell equa

tions. In the absence of magnetic effects, and assuming
©2003 The American Physical Society04-1
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the wave is a plane wave propagating along thez axis, po-
larized along thex axis,EW 5EeW x , they reduce to

]z
2E5

1

c2
] t

2~E14pP!. ~4!

c is the light velocity in vacuum. We denote by] t the de-
rivative operator (]/]t) with regard to the time variablet,
and so on.

The coupling between the atoms and the electric field
taken into account by a coupling energy term in the to
HamiltonianH, that reads

H5H02mE. ~5!

The density-matrix evolution equation~Schrödinger equa-
tion! is written as

i\] tr5@H,r#1R, ~6!

whereR is some phenomenological relaxation term. The
of equations~4!–~6! is sometimes called the Maxwell-Bloc
equations, although this name denotes more often a redu
of it.

Setting

t85ct, P854pP, r854pN\cr, m85
m

\c
,

~7!

H85
H

\c
, H085

H0

\c
, va,b8 5

va,b

c
, ~8!

allows one to replace the constantsc, N, \, and 4p in sys-
tems~3!–~6! by 1. We denote the components ofr by

r5S ra r t

r t* rb
D , ~9!

and so on, and byV5vb2va the resonance frequency o
the atom.

The relaxation is expressed as

R5 i\S rb /tb 2r t /t t

2r t* /t t 2rb /tb
D , ~10!

wheretb andt t are the relaxation times for the populatio
and for the coherences, respectively. We show below t
according to the fact that relaxation occurs very slowly w
regard to optical oscillations, the relaxation termR could be
omitted.

III. LONG-WAVE APPROXIMATION

A. A modified Korteweg–de Vries equation

Let us first consider the situation where the wave durat
tw is long with regard to the periodt r52p/V ~recall that
V5vb2va) that corresponds to the resonance frequenc
the two-level atoms. We assume thattw is about one optica
01380
is
l

t

ion

t,

n

f

period, say about 1 fs. Thus we assume that the reson
frequencyV is large with regard to optical frequencies.
order to obtain soliton-type propagation, nonlinearity mu
balance dispersion, thus the two effects must arise simu
neously in the propagation. This involves a small amplitu
approximation. Further, we can speak of a soliton only if t
pulse shape is kept on a large propagation distance. Th
fore we use the reductive perturbation method as define
Ref. @6#. We expand the electric fieldE, the polarization den-
sity P, and the density-matrixr as power series of a sma
parameter« as

E5 (
n>1

«nEn , P5 (
n>1

«nPn , r5 (
n>0

«nrn ,

~11!

and introduce the slow variables

t5«S t2
z

VD , z5«3z. ~12!

Expansion~11! gives an account of the small amplitude a
proximation. The retarded time variablet describes the pulse
shape, propagating at speedV in a first approximation. Its
order of magnitude« gives an account of the long-wav
approximation, so that the pulse durationtw has the same
order of magnitude ast r /«. The propagation distance is a
sumed to be very long with regard to the pulse lengthctw ;
therefore it will have the same order of magnitude asctr /«n,
wheren>2. The value ofn is determined by the distance a
which dispersion effects occur. According to the gene
theory of the derivation of KdV-type equations@6#, it is n
53. Thez variable of order«3 describes thus long-distanc
propagation. The physical values of the relaxation timestb
andt t are in the picosecond range, or even slower, thus v
large with regard to the pulse durationtw . Therefore we
write

t j5
t̂ j

«2
for j 5b and t. ~13!

The Schro¨dinger equation~6! at order«0 is satisfied by
the following value ofr0, which represents a steady state
which all atoms are in their fundamental statea:

r05S a 0

0 0D . ~14!

Notice that, according to the change of variables~7!, the
trace tr(r) of the density matrix is not 1 buta54pN\c.
Then the Schro¨dinger equation~6! at order«1 yields

r1t5
ma

V
E1 , ~15!

so that

P15
2umu2a

V
E1 . ~16!
4-2
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The Maxwell equation~4! at order«3 gives the value of the
velocity

V5S 11
2umu2a

V D (21/2)

, ~17!

in accordance with the limit of the dispersion relation as
frequencyv tends to zero.

The Schro¨dinger equation~6! at order «2 yields r1a
5r1b50 and

r2t5
ma

V
E22

ima

V2
]tE1 . ~18!

Then

P25
2umu2a

V
E2 , ~19!

and the Maxwell equation~4! at order«4 is automatically
satisfied.

The Schro¨dinger equation~6! at order«3 gives

r2b52r2a5
umu2a

V2
E1

2 ~20!

and

r3t5
ma

V
E32

ima

V2
]tE22

ma

V3
]t

2E12
2mumu2a

V3
E1

3

2
ima

V2t t

E1 . ~21!

The corresponding term of the polarization densityP con-
tains a nonlinear term,

P35
2umu2a

V
E32

2umu2a

V2
]t

2E12
4umu4a

V3
E1

3 , ~22!

but the terms involving the relaxation do not appear. T
Maxwell equation at order«5 yields the following evolution
equation for the main electric-field amplitudeE1:

]zE15
Vumu2a

V3
]t

3E11
2Vumu4a

V3
]tE1

3 , ~23!

which is an mKdV equation. Equation~23! can be general-
ized as follows: a general derivation of KdV-type models@7#
shows that the coefficient of the dispersive term]t

3E1 in this
equation must be (1/6)d3k/dv3. We check by direct compu
tation of the dispersion relation that it holds in the pres
case. Another heuristic reasoning can relate the value of
nonlinear coefficient of Eq.~23! to the third-order nonlinea
susceptibilityx (3). It uses the NLS equation which describ
the evolution of a short-pulse envelope in the same medi
The NLS equation is written as~ @8#, 6.5.32!
01380
e
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i ]zE2
1

2
k2]t

2E1gEuEu250, ~24!

whereE is the envelope amplitude of the wave electric fie
k2 is the group velocity dispersion, andg is related tox (3)

through

g5
6vp

nc
x (3). ~25!

n is the refractive index of the medium,v is the wave pul-
sation. We drop the dispersion term, replacev by i ]t , and
notice thatE coincides with the real fieldE1 at the long-wave
limit, to get

]zE15
26p

nc
x (3)]tE1

3 . ~26!

Equation ~26! gives an expression of the nonlinear coef
cient in the mKdV equation~23!. The relevant component o
the third-order nonlinear susceptibility tensorx (3) computed
from the above model is@8#

xxxxx
(3) ~v,v,v,2v!52

4

3

N

\3

Vumu4

~v22V2!2
. ~27!

Taking the long-wave limitv→0 in Eq. ~27!, we check that
the expression of the nonlinear coefficient obtained from
~26! holds in the present case. Thus we can write Eq.~23! as

]zE15
1

6

d3k

dv3U
v50

]t
3E12

6p

nc
xxxxx

(3) ~v,v,v,2v!U
v50

]tE1
3 .

~28!

It can be reasonably conjectured that Eq.~28! will still hold
in the more general case of an arbitrary number of ato
levels, when the inverse of the characteristic pulse duratio
much smaller than any of the transition frequencies of
atoms.

B. The two-soliton solution

The mKdV equation~23! is completely integrable by
means of the inverse scattering transform@9#. TheN-soliton
solution has been given by Hirota@10#. In order to write it
easily, we write the mKdV equation~23! into the dimension-
less form

]Zu12]Tu31]T
3u50, ~29!

where u is a dimensionless electric field, andZ and T are
dimensionless space and time variables defined by

u5
E1

E0
, Z5

2z

L
, T5

t

T0
. ~30!

The characteristic electric field, space, and time are defi
by
4-3
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E05
V

umu
, T05

1

V
, L5

1

aumu2V
, ~31!

in normalized units. Relations~30!–~31! can be expressed i
a more convenient way as follows. Let us first choose
reference time the pulse lengthtw ~in physical units!. The
small perturbative parameter is then

«5
1

twV
. ~32!

The characteristic electric fieldE and propagation distanceL
are

E5
\

twumu
, L5

\c2V3tw
3

4pNVumu2
, ~33!

where the speedV is
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s

V5cS 11
8pumu2N

\V D (21/2)

. ~34!

Then the quantities involved by dimensionless equation~29!
are related to the quantities measured in the labora
through

u5
E

E , Z5
2z

L , T5
1

tw
S t2

z

VD . ~35!

The soliton solution is written as

u5p sech h, ~36!

with

h5pT2p3Z2g, ~37!

p andg being arbitrary parameters.
The two-soliton solution is
u5

eh11eh21S p12p2

p11p2
D 2S eh1

4p1
2

1
eh2

4p2
2D eh11h2

11
e2h1

4p1
2

1
2

~p11p2!2
eh11h21

e2h2

4p2
2

1S p12p2

p11p2
D 4 e2h112h2

16p1
2p2

2

, ~38!
-
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with

h j5pjT2pj
3Z2g j , ~39!

for j 51 and 2. The parametersp1 , p2 , g1, and g2 are
arbitrary. When they take real values, explicit solution~38!
describes the interaction of two localized bell-shaped pul
which are solitons. An example of this solution is drawn
Fig. 1, using the values of the parametersp153, p255,
g15g250. But expression~38! also describes the so-calle
higher-order solitons, which can be considered as a pai
solitons of the above kind linked together, and have often
oscillatory behavior. An example is given in Fig. 2. It us
the values of parametersp15114i , p25p1* , g152g2

5 ip/2. The corresponding spectrum is drawn in Fig.
These spectrum and pulse profile are comparable to the
perimental pulses given by Ref.@3#. It can thus be though
that the two-cycle pulses produced experimentally co
propagate as solitons in certain media, according to
mKdV model.

IV. SHORT-WAVE APPROXIMATION

A. A sine-Gordon equation

We now consider the situation in which the resonan
frequencyV of the atoms is below the optical frequencie
Then the characteristic pulse durationtw is very small with
regard tot r52p/V, thus we use a short-wave approxim
s,

of
n

.
x-

d
e

e
.

tion. We introduce a small perturbative parameter«, such
that the resonance periodt r5 t̂ r /«, where t̂ r has the same
order of magnitude as the pulse durationtw . The perturba-
tive parameter« is thus abouttw /t r . Consequently, the
HamiltonianH0 of the atom is replaced in the Schro¨dinger
equation~6! by

«Ĥ0 . ~40!

We introduce a retarded timet and a slow propagation vari
ablez such that

t5S t2
z

VD , z5«z. ~41!

The zero-order reference time is chosen to betw , thereforet
is not a slow variable. The definition of the variablez gives
account for long-distance propagation. Computation sho
that the dispersion effects arise at distances aboutctw /«,
from which follows the choice of the order of magnitude
z. The electric fieldE is expanded asE5(n>0«nEn , and so
on. The pulse durationtw is still assumed to be about 1 fs
corresponding to an optical pulse of a few cycles. The rel
ation timestb , t t are very long with regard totw . Since the
above scaling usestw as zero-order reference time, this ca
be expressed by setting
4-4
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t j5
t̂ j

«
for j 5b and t. ~42!

Notice that Eq.~42! differs formally from assumption~13!
written in the preceding section but represents the sa
physical hypothesis.

The above scaling can also be presented from ano
viewpoint, taking the characteristic time of the resonan
1/V as zero-order reference time, as follows. The relev
component of the third-order nonlinear susceptibility ten
x (3) computed from the above model is given by formu
~27!, wherev is the wave frequency~while V5vb2va is
the resonance frequency of the two-level system!. The short-
wave approximation corresponds tov→`. Thenxxxxx

(3) tends
to zero. Thus a linear behavior of the wave can be expe
in the short-wave approximation, except if the nonlinearity
very strong. The latter physical assumption can formally
expressed by assuming that the productmE is very large
with regard toV, according to

H5H01
1

«
mE, ~43!

FIG. 1. Two-soliton solution of the mKdV equation, using d
mensionless parameters.

FIG. 2. Second-order soliton solution of the mKdV equatio
using dimensionless parameters.
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where the small parameter« tends to zero. Then the shor
wave approximation can be sought using the expansions

r5(
j >0

« jr j , E5(
j >0

« jEj , P5(
j >0

« j Pj , ~44!

and variablesz andt such that

] t5
1

«
]t , ]z5

21

«V
]t1]z . ~45!

The definition of variables~45! is very close to the standar
short-wave approximation formalism developed, e.g.,
Refs.@11,12#. It is easily checked that the scalings~40!–~41!
and ~43!–~45! are equivalent. We refer to the former below

The Schro¨dinger equation~6! at order«0 yields

i ]tr0a52E0~mr0t* 2m* r0t!, ~46!

i ]tr0b51E0~mr0t* 2m* r0t!, ~47!

i ]tr0t52E0m~r0b2r0a!. ~48!

From Eqs.~46!–~47! we retrieve the normalization conditio
of the density matrix]ttr r50. We introduce the population
inversionw5r0b2r0a and get

r05S ~a2w!/2 imE t

E0w

2 im* E t

E0w ~a1w!/2
D ~49!

~as above, trr5a54pN\c due to the normalization!, and
the equation

]tw524umu2E0E t

E0w. ~50!

Then expression~3! of the polarizationP yields P050,
and the Maxwell equation~4! at order«0 becomes trivial if
the velocity is chosen asV51.

The Schro¨dinger equation~6! at order« is then written as
,

FIG. 3. ~a! Pulse profile and~b! spectrum, of the second-orde
soliton solution of the mKdV equation of Fig. 2. Dimensionle
parameters.
4-5
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i ]tr15@H0 ,r0#2@mE0 ,r1#2@mE1 ,r0#

1 i S r0b /tb 2r0t /t t

2r0t* /t t 2r0b /tb
D . ~51!

Definingw15r1b2r1a , the off-diagonal components of Eq
~51! yield

r1t5 i S V1
i

t t
D E t

r0t1 imE t

~E0w11E1w!, ~52!

so that the corresponding termP15m* r1t1mr1t* of the po-
larization is

P1522Vumu2E tE t

Ew. ~53!

Notice again that the relaxation does not appear in the
pression of the polarization at this order. The Maxwell eq
tion ~4! at order« then reduces to

]z]tE05Vumu2E0w. ~54!

Equations~50! and ~54! yield the sought system. If we set

p52 i umu2E t

E0w, ~55!

they reduce to

]zE05 iVp, ~56!

]tp52 i umu2E0w, ~57!

]tw524iE0p, ~58!

which coincide with the equations of the self-induced tra
parency, although the physical situation is quite different:
characteristic frequency 1/tw of the pulse is far above th
resonance frequencyV, while the self-induced transparenc
occurs when the optical field oscillates at the frequencyV.
The quantitiesE and w describe here the electric field an
population inversion themselves, and not amplitudes mo
lating a carrier with frequencyV. Notice thatE and w are
here real quantities, and not complex ones as in the cas
the self-induced transparency. Further,p is not the polariza-
tion density, but is proportional to itst derivative. Another
difference is the absence of a factor of 1/2 in the right-ha
side of Eq.~56!.

Since they explicitly involve the population inversio
model equations~56!–~58! cannot be generalized easily
more realistic situation in which an arbitrary number
atomic levels are taken into account. Recall that, accord
to the assumption made at the beginning of the section,
model is valid for a very strong nonlinearity only. In partic
lar, we assumed that the atomic dipolar momentumm has a
very large value. In a more realistic situation, it can be
pected that only the transition corresponding to the larg
value of the dipolar momentum will have a significant co
tribution. If several transitions correspond to large values
the dipolar momentum with the same order of magnitude,
01380
x-
-

-
e

u-

of

d

g
is

-
st
-
f
e

can expect that the short-wave approximation will yie
some more complicated asymptotic system involving
populations of each level concerned. The derivation of suc
model is left for further study.

B. The two-soliton solution

Using dimensionless variables defined by

Q5
E0

Er
, W5

w

wr
, T5

t

T0
, Z5

z

L
, ~59!

where the reference values satisfy

ErT0umu51 and wrLVT0umu252, ~60!

and settingh5*ZW, the system~50!,~54! reduces to

]Z]TQ52Q]Zh, ~61!

]Z]Th522Q]ZQ. ~62!

Equations~61!–~62! have been found to describe short ele
tromagnetic wave propagation in ferrites, using the sa
kind of short-wave approximation@11#.

The following change of dependant variables:

]Zh5A cosu, ~63!

]ZQ5A sinu ~64!

transforms Eqs.~61!,~62! into @11,13#

]TA50, ~65!

]Z]Tu52A sinu. ~66!

Since, according to Eq.~65!, A is a constant, Eq.~66! is the
sine-Gordon equation. Before we recall some properties
the latter, let us determine the physical meaning of the c
stantA in the present physical frame. Using relations~63!–
~64! and the definition ofh, we find that

A25 lim
T→`

@W21~]ZQ!2#. ~67!

SinceQ is the dimensionless wave electric field, it vanish
at infinity. Thus we can have a nonvanishing solution only
some initial population inversionwi5Wiwr is present. The
constant involved by Eq.~66! is thenA5Wi .

Using the variableẐ52WiZ, Eq.~66! reduces to the sine
Gordon equation

] Ẑ]Tu5sinu. ~68!

The quantities involved by Eq.~68! are related to the quan
tities measured in the laboratory through

Ẑ5
z

L̂
, T5

1

tw
S t2

z

cD , ~69!
4-6
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E5
Er

2 E Ẑ
sinu, w5wi cosu. ~70!

The electric field and propagation length scaling parame
are

Er5
\

umutw
, ~71!

L̂5
\c

Vtw4pNumu2wi

, ~72!

in which the initial population inversionwi and typical pulse
duration tw are given. The small perturbative parameter«
can be identified withVtw , expressing the fact thattw is
very small with regard to 1/V.

The sine-Gordon equation~68! is completely integrable
@13#. A N-soliton solution can be found using either the IS
or the Hirota method. As in Sec. II, we will consider here t
two-soliton solution only, which is@13#

u52i lnS f *

f D , ~73!

with

f 511 ieh11 ieh22
~k12k2!2

~k11k2!2
eh11h2, ~74!

where

h j5kjT1
Z

kj
1g j for j 51,2, ~75!

k1 , k2 , g1, and g2 being arbitrary parameters. When the
take real values, formulas~73!–~75! describe the interaction
of two solitons. The behavior is very close to that of t
typical two-soliton solution of the mKdV equation shown
Fig. 1. As in the case of the long-wave approximation,
two-soliton solution ~73!–~75! is also able to describe
soliton-type propagation of a pulse in the two-cycle regim
The corresponding analytic solution is a second-order sol
or breather, which can be considered as two bounded
tons, and is obtained using complex conjugate values of
soliton parametersk1 andk2. An example is given in Fig. 4
with the values of parametersk15114i , k25124i , g1
5g250. The pulse profile, with the corresponding popu
tion inversion and spectrum are drawn in Fig. 5. The pro
and spectrum are comparable with the experimental obse
tion of Ref.@3#. Notice again that an initial population inve
sionwiÞ0 is required. Total inversion (wi51) is not neces-
sary but, as shows in expression~72! of the propagation
reference lengthL̂, a small inversion reduces the soliton am
plitude and increases the propagation distance at which
linear effects occur.
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V. CONCLUSION

We have given two models that allow the description
ultrashort optical pulses propagation in a medium descri
by a two-level Hamiltonian, when the slowly varying env
lope approximation cannot be used. Using approximati
based on the hypothesis that the resonance frequency o
medium is far from the field frequency, we derived com
pletely integrable models. When the resonance frequenc
well above the inverse of the typical pulse width of abou
fs, a long-wave approximation leads to an mKdV equati
When in the contrary the resonance frequency is well be
the field frequency, a short-wave approximation leads t
model formally identical to that describing self-induce
transparency, but in very different validity conditions. It ca
be reduced to the sine-Gordon equation. The scaling par

FIG. 4. Electric field evolution of the second-order soliton so
tion of the sine-Gordon equation, using dimensionless paramet

FIG. 5. ~a! Population inversion,~b! pulse profile, and~c! spec-
trum, of the second-order soliton solution of the sine-Gordon eq
tion of Fig. 4. Dimensionless parameters.
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H. LEBLOND AND F. SANCHEZ PHYSICAL REVIEW A67, 013804 ~2003!
eters for these approximations have been written down
plicitly.

Both the mKdV and the sine-Gordon equations are co
pletely integrable by means of the IST method and ad
N-soliton solutions. The two-soliton solution is able to d
scribe the propagation of a pulse in the two-cycle regim
very close in shape and spectrum to the pulses of this
produced experimentally. It does not mean that the formu
of this paper describe the experimental results, because
have considered a propagation problem, and experime
results concern pulses generated directly at the laser ou
But we have shown that soliton-type propagation, with o
periodic deformation of the pulse during the propagati
may occur for such type of pulses, under adequate co
tions. In the short-wave approximation, these conditions
volve an initial population inversion, at least a partial one

Further, the study of a two-level Hamiltonian can be co
sidered as an academic problem, showing the tractabilit
such an approach. A rather remarkable feature is that
computations involved by the derivation of the asympto
F
T.

.
d

.
nd

s
.
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models are relatively short and easy. Therefore, the app
tion of the same approach to more realistic situations can
reasonably envisaged. A generalization of the mKdV eq
tion obtained in the long-wave approximation has been p
posed on heuristic grounds, and should be justified rig
ously. A generalization of the model obtained in the sho
wave approximation would require a special study. Last, i
more realistic model, it can be envisaged that some transi
frequencies are well above the inverse of the character
pulse duration, but that some other are below it. The tre
ment of such a situation will mix the above short-wave a
long-wave approximations, it is left for further study. It ca
be expected that the result will depend strongly on the p
ticular physical situation considered.
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