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Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear
polarization rotation
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We investigate theoretically the mode-locking properties of an erbium-doped birefringent fiber laser in a
unidirectional cavity containing an optical isolator. The mode-locking is achieved through nonlinear polariza-
tion rotation. The approach is based on a master equation which takes explicitly into account the angles
between the eigen axis of the fiber at each side of the polarizer. The stability conditions of both the stationary
and localized solutions are determined. This allows to establish a stability diagram versus the angles which
gives the domains where the laser operates in continuous, mode-locked or unstable regime. The model also
allows to calculate the pulse duration together with the pulse energy as a function of the orientation of the eigen
axis of the fiber with respect to the polarizer.
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[. INTRODUCTION of the polarizing isolator §, and #_). The configuration
studied involves two half-wave plates, instead of polarization
Additive pulse mode-locking through nonlinear polariza- controllers(cf. Fig. 1). This particular case is more conve-
tion rotation has been successfully used to obtain stable selfient than the general one because it has only two degrees of
mode-locking in rare-earth doped fiber lasgts3]. The ex- freedom(one orientation angle for each phase platstead
perimental configuration consists in a unidirectional ringof four. Inits final form, the model reduces to a master equa-
Ca\/ity Containing a po|arizer p|aced between two p0|ariza_ti0n similar to that derived by Haus except that the coeffi-

tion controllers. The basic principle responsible for theCi€nts explicitly depend on the orientation angles of the eigen
mode-locking is the following. The polarization state of a3XIS of the fiber at each side of the polarizer. Our model has

been successfully used in the case of a passively mode-

pulse evolves nonlinearly along a birefringent fiber due to ; .
the combined effects of self-phase and cross-phase modul ycked ytterblum-doped double-clad fiber .Ia$9]. Inc_ieed,
epending ond, and #_, the model predicts continuous,

tion [4] induced on the two orthogonal polarization compo- . . .
[4] g b b mode-lock or unstable operating regime. The resulting theo-

nents, both resulting from optical Kerr effect. A polarization . S o )
controller is adjusted at the exit of the fiber in such a wayretlcal. stability diagram is in very goo_d agreement W'th. the
that th larizing isolator lets th tral int tof th experimental ong8]. The ytterbium fiber laser operating

at the polarizing 1soiator 'ets the central intense part o round 1.05um belongs to the positive group-velocity dis-
pulse pass but blocks the low-intensity pulse wings. Dependsq i case. Since our master equation has given good re-
ing on the orientation of the polarization controllers, stable,

; - X . > sults in this case, it is of importance to investigate the case of
and passive mode-locking can be achieved. This technique ‘Plfegative group-velocity dispersion.

generation of ultrashort pulses can be used either for positive The aim of this paper is to investigate theoretically the
and negative group-velocity dispersion and has been olnode-locking properties of an erbium-doped fiber laser op-
served using a great variety of rare earth such as erbiumgrating at 1.55m. The mode-locking is achieved through
neodymium, or ytterbium. Several theoretical approaches t@onlinear polarization rotation in a unidirectional ring cavity

this problem have been proposed. Among them, we can citeontaining a polarizer placed between two half-wave plates.
the model developed by Haus and co-workigs7] which

consists in writing a phenomenological scalar equation as- A2 A2
suming that all effects per pass are small. The model takes Isolator

into account the group-velocity dispersi¢B8VD), the opti- H H
cal Kerr nonlinearity and a gain medium. It does not include

any birefringence of the fiber neither any polarization con-
troller. However, it allows to describe the mode-locking
properties of the laser. Its main advantage is that it is rela-
tively simple and a major drawback is that it does not allow
to investigate the operating regime of the laser as a function
of the position of the polarization controllers. Indeed, differ-
ent regimes can be experimentally obtained such as continu-
ous, Q-switch, mode-lock or unstable]. In a recent paper
[9], we have proposed a more general model which takes
into account the group-velocity dispersion, the optical Kerr
nonlinearity, a gain medium, the birefringence of the fiber, FIG. 1. Schematic representation of the unidirectional
and the orientation of the eigen axis of the fiber at each sideng cavity.

Erbium-doped fiber

980/1550 nm coupler

980 nm pump
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In relation with our previously published worl9], the s the birefringence parameter and is related toxtandy
change of the sign of the chromatic dispersion has strongefractive indexes through the relatidd=7(n,—n,)/\,
structural consequences. Indeed, in the present case, the axaere\ is the optical wavelengthy=2mn,/(NAcs¢) is the
plicit localized solutions of the master equation can be effecnonlinear coefficientn, (in m?/W) is the nonlinear index
tively stable. A stability condition has been determif@fl].  coefficient, andA.¢s (in m?) the effective core area of the
Therefore, we are able to predict not only the operating modéiber. A andB are the dielectric coefficients. In isotropic me-
of the laser, but also the pulse characteristics, which is imeia, A=2/3 andB=1/3[11]. The parametey is the saturated
possible in the case of positive GVD. The paper is organizedain coefficient(in m~') and g is the spectral gain band-
as follows. In Sec. Il, we briefly report the derivation of the width (in ps ). At first order the gain coefficient is fixed by
master equation describing the evolution of the amplitude ofhe fact that it compensates the losses.

the electric field for a large number of round trips in the ring  We report only the outline of the derivation of the master
cavity. The different regimes of the master equatistation-  equation[9]. First, we assume that the GV, , the nonlin-
ary solution and short pulse solutiowill be examined in ear coefficienty, the gain filteringo= g/} are small quan-
Sec. Il together with their stability. Results are convenientlytities (of ordere) with respect to the gaig and the birefrin-

summarized in a stability diagram in the plané.(6_)  genceK. This allows to solve the propagation problem using
which gives the regions of stable mode-locking, stable cong first-order perturbative approach, as

tinuous operation, and unstable regimes. Sec. IV is devoted

to the determination of both the pulse energy and the pulse - (g-iK)z B2\ ,
duration, thus, allowing to optimize the mode-locked laser. U(2)=u(0)e +e|z| p=—~]3ru(0)
e2gz_
The system under study is schematically represented in _
Fig. 1. It consists of a ring cavity formed by an erbium- R 0Kz )
doped fiber laser pumped at 980 nm through a multiplexer. +iyBu(0)°u(0) 2g+4iK © +0(=%),

The fiber is characterized by the following parameters:
lengthL=9 m, GVD B,=—0.002 p& m™%, nonlinear co- &)

. . _ 1 71 - .
efficient y=0.002W"m"", and birefringence K ;.4 2 analogous expression fdz). Just after the polar-

=0.1 m=. A polarizing isolator allows both to obtain @ ;¢ the field amplitude has a well-defined linear polarization
travelling-wave laser and to achieve a mode-lock regime fobarallel to the polarizing axis

a suitable orientation of the two half-wave plates which are
placed at both sides of the isolator. The phase plates allow to (u)

(4)

modify the orientation of the eigen axis of the fiber at each
side of the polarizer. In the following, we denote By and

0 the angles between the eigen axis of the fiber and thgye genote, thus, b, the amplitude at the beginning of the
passing axis of the polarizer, respectively, after and befor%th round trip. Thenf ., is computed as a function df,

the polarizer. : . ; : :
) . o . using the approximate propagation relatid85 to yield
The starting point of the derivation of the master equation g PP propag @85 to y
iB2

are the equations giving the evolution of the two polarization ) _ )
p— 7) LQatfo+iPf|f| H

cosé.,
n-

v sing,

components in a gain medium with Kerr nonlinearity and  f,+1=8e%{ Qf,+e
GVD. In the framework of the eigen axis of the birefringent
fiber moving at the group-velocity, the pulse envelope evo- +0(&?), (5)

lution is described by the following systef8,9,11]:

with
id,u—Ku— %0t2u+ y(ulul?+ Au|v|?+ Bv?u*) Q=cog#,—0_)cosKL—icog 0, +6_)sinKL, (6)
and
. 1,
=|g(l+ —dr |u, ) e20L 1 A—1
“g =y Q+ sin 20, [sin( 0., + 6_)cosKL
29 2
; B2 2 2 2
|82v+KU—7&tv+y(v|v| +Av|u|?+Buv*) —isin(6, — 6_)sinKL]
ol 14 1 2 @ B e(29+4iK)L _ ¢
=ig —d; |v, T ; KL T~
wg 5 sin26.|sinf,cosf_e 29+ 4K
: o (29-4iK)L_ 1
where g; denotes the partial derivative operai@id;. The + cosd.sing eiKLe @
parametelB, (in ps/m) is the GVD coefficientK (in m™%) A 29— 4iK
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B is the transmission coefficient of the polarizer. polarization, the losses due to the polarizer, and the linear
The threshold gain valug, is determined by the require- gain. The value and the sign &f depend on the angles,
ment that the amplitudé, attains some steady state over aand_ .
large number of round trips, which implies thét,, |
=|f,|. At leading order:° this gives Ill. SOME EXPLICIT SOLUTIONS
OF THE CGL EQUATION

-1 . . .
QOZZM(,BZ[COS?‘( 0. —6_)—sin26,sin20_sirfKL]). In this section, we are interested in finding some particu-
(8) lar solutions of the CGL equation and to study their stability.

A small excess gaig;, such thatg=gy+¢e9;, is allowed. A. Stationary solution

g, is still free. Equation5) then becomes , , . .
The CGL equation admits the following nonzero station-

ary solution, i.e. with a constant modulus

. i .
foo1=€%(1+eg,L)f +e| p— %)Le‘%ffn .
F=Ae k-0, (14)
o PeY
ie
Q
. . L _ 1
wheree'” denotes the quantitge®"Q, which has a modu- O2==(D,|A|>+g,) (15)
lus one due to Eq(8). p
Since we are mainly interested in the evolution of the
amplitudef,, over a large number of round trips it is con- ~ and
venient to approximate the discrete Ef) by a continuous
one, to be satisfied by a functidrof some continuous vari-
ablez such thatf,=f(z=nL). This equation is

folfol2+0(e?), (99  where

k=f—;<Di|Alz+gl>—Dr|Alz- (16)

i0,f= Tlpf+i891f+8 In the particular cas€ =0, the above solution is a constant.

Its amplitude A, assumed to be real for sake of simplicity,
(10 and its wave vectok have the determined values

where \/_\g1
-p A=N7, (17

%-I—ip o2f + e Df|f|?,

D= —. (12)
QL and
At leading order, the solution of E@10) is D
r
f=Fe"t+0(e). (12) k=2, 91 (18)

The knowledge of the small correcti@\(¢) in Eq. (12) on  respectively. Notice that this solution exists onlyZifg; is

finite propagation distancesis equivalent to the knowledge negative.

of the evolution of the leading amplitude on very large In Ref.[9], in the case of the ytterbium laser, we have

propagation distances=1/e. This is proven using the mul- shown that the constant solution is stable wi2r:0 only.

tiscale expansion formalispd2], through the introduction of  Neither the solutior{14) nor the analysis of its stability de-

a slow variablef=ez. The long-distance evolution & is  pend on the sign of the chromatic dispersion. Thus, the above
result is valid here. Further, continuous laser emission occurs

&fF+(D,+iDi)F|F|2, (13) when th_e constant s_olution is sta_ble. The dqmain of cqntinu—
ous emission coincides, thus, with the regions whBrdas

) _ negative. The sign ab; as a function of the angle®(,6_)

where D, and D; are the real and imaginary parts 8. s drawn on Fig. 2. The study has been limited to the region

Recall that the “propagation distances™or { represent in  180°x 180° according to the periodicity of the solution. The

fact numbers of round trips. Equati¢h3) is the cubic com-  hatched domains in Fig. 2 correspond to the negative values

plex Ginzburg-LandadCGL) equation. Notice that Ed13)  of the nonlinear gairD; . Continuous laser emission occurs
is formally identical to the master equation proposed byin these domains.

Hauset al.[7]. However, the coefficients of E¢L3) explic-
itly depend on the orientation of the eigen axis of the fiber at
both sides of the polarizer. An essential feature is the arising
of an effective nonlinear gain or absorpti@h, that results In this section, we are interested in solutions of ELB)
from the combined effects of the nonlinear rotation of thedescribing short pulses, which we call localized solutions

B2

+ip

B. Localized solutions
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180 1 D Localized solution Cons;t:llllltﬁr(l)(:lnzero
0.5
0.(deg) s Unstable
D = D S
t Unstable
Stabl,
9 t : e X
0 1 2 )
Unknown stability ( Stable
0.3 ’
0 FIG. 3. Diagram showing the stability conditions of the constant

o 9'0 186 nonzero and localized solutions in the plafe D).

0_(deg)
M=y — 2 24
FIG. 2. Stability diagram of the nonzero stationary solution in - d—R+Rd? (24)

the plane @, ,6_). Stability occurs in the hatched zone, and insta-

bility in the white domain. and
according to the mathematical terminology. In order to use 3d(1+4R?)
the results of Akhmedieet al. [10], we write the CGL Eq. N= 2(2R-D) ' (29

(13) in the normalized form

1 In the case of positive nonlinear gdihor D;, the stabil-
i9,4+ =2+ | y|?=ig p+iD ¢l y|>+iRa?y, (19) ity of this solution has been studied by Akhmedieval.
2 ' [10]. They found that the localized solutidi20) is stable
when the zero solution is unstable, thus, when the linear gain
where §=\|D|F, 7=t/\|Ba|, R=pl|By], and D= g s positive. Noticing thaM is real only if the quantities

—D; /D, . The normalized gain filtering parame®rand the  (q— R+ Rd?) andg, have same signs, the stability condition
normalized nonlinear gaiB are the main parameters of the pecomes

analysis. They are denoted Iyand e, respectively, in the

publications by Akhmediev and his co-workers. Numerical d—R+Rd>0. (26)
computation shows thd®, is always negative, so th&t and
D; have the same sign. This condition can be expressed as follows: in the pldRe (
Equation(19) admits an explicit localized solution which D), the solution is stable below the curve
can be written
5-b R3\/1+4R2—1 27
— 1+ida—iw = i I S —
lﬂ— a( T) ! e ! g, (20) S 4+ 18R2
where and unstable above this curve. When the nonlinear faor

. . D is negative, no such condition is known at this time. The
_ 3(1+2DR)—9(1+2DR)*+8(D - 2R) nonzero constant solution is stable in this case for a positive
= , (2D . : , ;

2(D—-2R) excess of linear gaig,, allowing to conclude to continuous
laser emission. However, a situation where bistability be-
and tween continuous and mode-locked emission occurs can be
envisaged. This means that the mode-locking will not be
—g;(1—d?+4Rd) self-starting. It will be considered in further study.

22
2(d—R+Rd) 22

C. Discussion

d represents the chirp parameter. The amplitude of the pulse Figure 3 summarizes the stability conditions of the solu-
writes tions in the planeR, D). The results are represented in the
plane @, ,6_) in Fig. 4. For this figure, we have taken the
a(r)=MNsech M), (23 values of the parameters given in Sec. Il and a spectral gain
bandwidth wq=15.7 ps?! corresponding toAA=30 nm
where [13]. The white regions correspond to stable pulses and then
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180 180 1 5
0+(deg) 0+(deg)
90 —
90 [
0L
| 0 90
0t : . 0.(deg)
0 90 180
0_(deg) FIG. 5. Evolution of the pulse energy in the plang. (0_). In

the hatched region the energy is above 10 pJ, in the gray region the
FIG. 4. Stability diagram exhibiting the operating regime of the €nergy is between 5 pJ and 10 pJ and in the black region the energy
laser in the planed, ,6_). In the gray region, the constant nonzero is below 5 pJ. In the white region, either the pulse are unstable, or
solution is stable and stability of the mode-locked solution is nottheir stability is not determined and continuous emission occurs, see
known. The white region corresponds to stable mode-locking. In théig. 4.
hatched domain, both solutions are unstable.
A. Pulse energy

to stable self-starting mode-locking because the stationary \ye first compute the energy as a function of the orienta-

sfolut_ion is unstable. In the gray domains the stationqry solUgon angles ¢, ,6_). At zero order, the saturated gain of the
tion is stable and the laser spontaneously operates in cw re5adium is

gime. However, because we do not have information about

the stability of the pulses in these regions, the laser also g’
could operate in mode-locking regime if a perturbation is o= (28)
applied. This point deserves further theoretical investigation. 1+ We

S

Finally, in the hatched regions, both the stationary and the
localized solutions are unstable. The laser is expected to op-
erate in chaotic or Q-switch regime. whereg’ is the unsaturated gaiiys the saturation energy,
At this stage, significant differences appear in comparisor@nd E the pulse energy. Relatiof28) allows to extract the
with the ytterbium lasef8,9]. Especially, the domains of pulse energy provided that the threshold gain vajgeis
self-starting mode-locking are considerably reduced. In addiknown. It has been computed in Sec. Il from the fact that the
tion, bistability between the continuous and the mode-locke@ain must compensate the losses, and is given by relejon
regime is not excluded in the present case, while no bistabilFor the numerical simulations, we takg=1.26 m ! and

ity was observed in the ytterbium-doped fiber laser. Ws=0.1 pJ. The results are presented in Fig. 5 which gives
the evolution ofE in the plane ¢, ,6_). We can notice that
IV. PULSE CHARACTERISTICS the energy strongly varies with, and #_ . The most ener-

getic pulses are obtained in the vicinity @°,0°) [equiva-
When the EXp"Cit localized solutiof20) of the CGL Eq. lent to (180°’180°)] and (90°,90°)_ In these regions, the
(13) is Stable, it works as an attractor in the sense that anﬁnergy is about 10 pJ This value is very close to the one
other solution goes close to it after a long enough propagaeported by Haust al. [6]. Our results show that the orien-
tion distanceor number of round trips Therefore the actual tation of the eigen axis of the fiber at each side of the polar-
laser pulse is expected to be correctly described in shape angbr must be performed carefully because it has a great im-

size by Eq.(20). portance on the resulting energy.
All quantities in the expression of the pulse are explicitly

known, excepted the excess of linear ggin The latter self
adjusts to a value yielding a steady state over numerous
round trips. This mechanism is determined by the saturation Another important characteristic of a mode-locked laser is
of the gain, which is not taken into account by the modelthe pulse duration. In the configuration investigated in this
developed above and by the master equati®). Introduc- paper, the pulse duration depends on the anghes, §_).

ing gain saturation as an external condition allows us to deThe pulse duration is calculated from relati®8). In nor-
termine completely the characteristics of the pulse. malized units, it writes

B. Pulse duration
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180 our model is about 90 fs. This lowest value depends on fiber
characteristics. In particular, the spectral gain bandwidth
takes a prominent part because it can directly limit the pulse
duration. BeyondAA =15 nm, the pulse duration does not
change whem\\ is varied. In this case, the limitation is due
to the GVD. BelowAX=15 nm, the pulse width increases
whenA\ decreases. The pulse duration is then limited by the
spectral gain bandwidth. In addition, we can notice that the
shortest pulses are obtained for the same values of the angles
6, and #_ which maximize the pulse energy. This result is
important because it means that both parametgusation
and energycan be optimized simultaneously.

0,(deg)

90 | [l

V. CONCLUSION

0! e ‘ We have derived a master equation that describes the
0 90 180 mode-locking properties of an erbium-doped birefringent fi-
0_(deg) ber laser in a unidirectional cavity containing an optical iso-
lator. The master equation is of CGL type, its coefficients
FIG. 6. Evolution of the pulse duration in the plane.(,6_).In  depend explicitly on the angles between the eigen axis of the
the hatched region the duration is above 1 ps, in the gray region iher at each side of the polarizer. Indeed, the mode-locking
is between 0.5 and 1 ps and in the black region below 0.5 ps. They achieved through nonlinear polarization rotation, which is
white region has the same meaning as in Fig. 5. taken into account in the model. The dependency of the laser
properties with regard to the angles is, thus, explicitly taken
- :i (29) into account by the master equation.
oM The CGL equations admits several explicit solutions,
among which two are of interest here: the nonzero constant
The expressiofi24) of M involves the excess gady, which  sejution and the localized one. Using the known stability
is not known.M can also be found through the computation conditions of these solutions, we have been able to predict
of the pulse energyE=[|F|dt. Integrating the square the operating mode of the laser as a function of the angles.

modulus of expressio(20), we find This yields a stability diagram versus the angles which gives
5 the domains where the laser operates in continuous, mode-
_2 WM N (30) locked or unstable regime.
| Dyl ' Furthermore, the explicit localized solution is expected to

describe the actual laser pulse. When gain saturation is taken
into account, the model therefore allows to compute the
pulse characteristics, especially its duration and its energy.
The results are given as functions of the orientation of the
o1 .IN2 eigen axis of the fiber with respect to the polarizer. A maxi-
to= 70| Bal = |'3,2| ' (31) mum energy of about 10 p_J, with a minimum duration of
g about 90 fs have been obtained. The domains of the angular
|Dr|(g_o_1 Ws parameters for which mode-locking occurs are small. The
regions of maximum energy in these domains coincide with
whereWs is in pJ. Fig. 6 shows the evolution gf versus the  the regions of minimum pulse duration. Optimization is ob-
anglesd, and 6_. Theoretical results show th&§ under-  tained this way in two small regions in each *8080 de-
goes large variations as, and #_ vary. Only small regions grees period of the angular parameters.
lead to ultrashort pulses. This is due to the fact that for these Additional theoretical work is needed to fully characterize
values of the angles the top of the pulse undergoes lowdhe stability of the pulses when the nonlinear gain is nega-
losses than the wings. The shortest pulse width predicted bive.

Since the energ¥ has been obtained using relatiof&s),
andN is explicitly given by Eq.(25), we obtain the expres-
sion of the pulse duratioty, (in p9
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