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Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear
polarization rotation

M. Salhi, H. Leblond, and F. Sanchez
Laboratoire POMA, UMR 6136, Universite´ d’Angers, 2 Boulevard Lavoisier, 49000 Angers, France

~Received 19 June 2002; published 9 January 2003!

We investigate theoretically the mode-locking properties of an erbium-doped birefringent fiber laser in a
unidirectional cavity containing an optical isolator. The mode-locking is achieved through nonlinear polariza-
tion rotation. The approach is based on a master equation which takes explicitly into account the angles
between the eigen axis of the fiber at each side of the polarizer. The stability conditions of both the stationary
and localized solutions are determined. This allows to establish a stability diagram versus the angles which
gives the domains where the laser operates in continuous, mode-locked or unstable regime. The model also
allows to calculate the pulse duration together with the pulse energy as a function of the orientation of the eigen
axis of the fiber with respect to the polarizer.

DOI: 10.1103/PhysRevA.67.013802 PACS number~s!: 42.55.Wd
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I. INTRODUCTION

Additive pulse mode-locking through nonlinear polariz
tion rotation has been successfully used to obtain stable
mode-locking in rare-earth doped fiber lasers@1–3#. The ex-
perimental configuration consists in a unidirectional ri
cavity containing a polarizer placed between two polari
tion controllers. The basic principle responsible for t
mode-locking is the following. The polarization state of
pulse evolves nonlinearly along a birefringent fiber due
the combined effects of self-phase and cross-phase mod
tion @4# induced on the two orthogonal polarization comp
nents, both resulting from optical Kerr effect. A polarizatio
controller is adjusted at the exit of the fiber in such a w
that the polarizing isolator lets the central intense part of
pulse pass but blocks the low-intensity pulse wings. Depe
ing on the orientation of the polarization controllers, sta
and passive mode-locking can be achieved. This techniqu
generation of ultrashort pulses can be used either for pos
and negative group-velocity dispersion and has been
served using a great variety of rare earth such as erb
neodymium, or ytterbium. Several theoretical approache
this problem have been proposed. Among them, we can
the model developed by Haus and co-workers@5–7# which
consists in writing a phenomenological scalar equation
suming that all effects per pass are small. The model ta
into account the group-velocity dispersion~GVD!, the opti-
cal Kerr nonlinearity and a gain medium. It does not inclu
any birefringence of the fiber neither any polarization co
troller. However, it allows to describe the mode-lockin
properties of the laser. Its main advantage is that it is re
tively simple and a major drawback is that it does not all
to investigate the operating regime of the laser as a func
of the position of the polarization controllers. Indeed, diffe
ent regimes can be experimentally obtained such as con
ous,Q-switch, mode-lock or unstable@8#. In a recent paper
@9#, we have proposed a more general model which ta
into account the group-velocity dispersion, the optical K
nonlinearity, a gain medium, the birefringence of the fib
and the orientation of the eigen axis of the fiber at each s
1050-2947/2003/67~1!/013802~7!/$20.00 67 0138
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of the polarizing isolator (u1 and u2). The configuration
studied involves two half-wave plates, instead of polarizat
controllers~cf. Fig. 1!. This particular case is more conve
nient than the general one because it has only two degree
freedom~one orientation angle for each phase plate! instead
of four. In its final form, the model reduces to a master eq
tion similar to that derived by Haus except that the coe
cients explicitly depend on the orientation angles of the eig
axis of the fiber at each side of the polarizer. Our model
been successfully used in the case of a passively mo
locked ytterbium-doped double-clad fiber laser@9#. Indeed,
depending onu1 and u2 , the model predicts continuous
mode-lock or unstable operating regime. The resulting th
retical stability diagram is in very good agreement with t
experimental one@8#. The ytterbium fiber laser operatin
around 1.05mm belongs to the positive group-velocity dis
persion case. Since our master equation has given goo
sults in this case, it is of importance to investigate the cas
negative group-velocity dispersion.

The aim of this paper is to investigate theoretically t
mode-locking properties of an erbium-doped fiber laser
erating at 1.55mm. The mode-locking is achieved throug
nonlinear polarization rotation in a unidirectional ring cavi
containing a polarizer placed between two half-wave pla

FIG. 1. Schematic representation of the unidirection
ring cavity.
©2003 The American Physical Society02-1
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In relation with our previously published work@9#, the
change of the sign of the chromatic dispersion has str
structural consequences. Indeed, in the present case, th
plicit localized solutions of the master equation can be eff
tively stable. A stability condition has been determined@10#.
Therefore, we are able to predict not only the operating m
of the laser, but also the pulse characteristics, which is
possible in the case of positive GVD. The paper is organi
as follows. In Sec. II, we briefly report the derivation of th
master equation describing the evolution of the amplitude
the electric field for a large number of round trips in the ri
cavity. The different regimes of the master equation~station-
ary solution and short pulse solution! will be examined in
Sec. III together with their stability. Results are convenien
summarized in a stability diagram in the plane (u1 ,u2)
which gives the regions of stable mode-locking, stable c
tinuous operation, and unstable regimes. Sec. IV is devo
to the determination of both the pulse energy and the p
duration, thus, allowing to optimize the mode-locked lase

II. THE MASTER EQUATION

The system under study is schematically represente
Fig. 1. It consists of a ring cavity formed by an erbium
doped fiber laser pumped at 980 nm through a multiple
The fiber is characterized by the following paramete
length L59 m, GVD b2520.002 ps2 m21, nonlinear co-
efficient g50.002 W21 m21, and birefringence K
50.1 m21. A polarizing isolator allows both to obtain
travelling-wave laser and to achieve a mode-lock regime
a suitable orientation of the two half-wave plates which
placed at both sides of the isolator. The phase plates allo
modify the orientation of the eigen axis of the fiber at ea
side of the polarizer. In the following, we denote byu1 and
u2 the angles between the eigen axis of the fiber and
passing axis of the polarizer, respectively, after and be
the polarizer.

The starting point of the derivation of the master equat
are the equations giving the evolution of the two polarizat
components in a gain medium with Kerr nonlinearity a
GVD. In the framework of the eigen axis of the birefringe
fiber moving at the group-velocity, the pulse envelope e
lution is described by the following system@3,9,11#:

i ]zu2Ku2
b2

2
] t

2u1g~uuuu21Auuvu21Bv2u* !

5 igS 11
1

vg
2
] t

2D u, ~1!

i ]zv1Kv2
b2

2
] t

2v1g~vuvu21Avuuu21Bu2v* !

5 igS 11
1

vg
2
] t

2D v, ~2!

where ] t denotes the partial derivative operator]/] t. The
parameterb2 ~in ps2/m) is the GVD coefficient.K ~in m21)
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is the birefringence parameter and is related to thex and y
refractive indexes through the relationK5p(nx2ny)/l,
wherel is the optical wavelength.g52pn2 /(lAe f f) is the
nonlinear coefficient,n2 ~in m2/W) is the nonlinear index
coefficient, andAe f f ~in m2) the effective core area of th
fiber. A andB are the dielectric coefficients. In isotropic me
dia,A52/3 andB51/3 @11#. The parameterg is the saturated
gain coefficient~in m21) and vg is the spectral gain band
width ~in ps21). At first order the gain coefficient is fixed b
the fact that it compensates the losses.

We report only the outline of the derivation of the mas
equation@9#. First, we assume that the GVDb2 , the nonlin-
ear coefficientg, the gain filteringr5g/vg

2 are small quan-
tities ~of order«) with respect to the gaing and the birefrin-
genceK. This allows to solve the propagation problem usi
a first-order perturbative approach, as

u~z!5u~0!e(g2 iK )z1«FzS r2
ib2

2 D ] t
2u~0!

1 ig$u~0!uu~0!u21Au~0!uv~0!u2%
e2gz21

2g

1 igBṽ~0!2ũ~0!*
e(2g14iK )z21

2g14iK Ge(g2 iK )z1O~«2!,

~3!

and an analogous expression forv(z). Just after the polar-
izer, the field amplitude has a well-defined linear polarizat
parallel to the polarizing axis

S u

v D 5S cosu1

sinu1
D f n . ~4!

We denote, thus, byf n the amplitude at the beginning of th
nth round trip. Thenf n11 is computed as a function off n
using the approximate propagation relations~3!, to yield

f n115begLH Q fn1«F S r2
ib2

2 DLQ] t
2f n1 iP f nu f nu2G J

1O~«2!, ~5!

with

Q5cos~u12u2!cosKL2 icos~u11u2!sinKL, ~6!

and

P5gS e2gL21

2g FQ1
A21

2
sin 2u1@sin~u11u2!cosKL

2 isin~u12u2!sinKL#G
1

B

2
sin 2u1Fsinu1cosu2e2 iKL

e(2g14iK )L21

2g14iK

1cosu1sinu2eiKL
e(2g24iK )L21

2g24iK G D . ~7!
2-2
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b is the transmission coefficient of the polarizer.
The threshold gain valueg0 is determined by the require

ment that the amplitudef n attains some steady state over
large number of round trips, which implies thatu f n11u
5u f nu. At leading order«0 this gives

g05
21

2L
ln~b2@cos2~u12u2!2sin 2u1sin 2u2sin2KL# !.

~8!

A small excess gaing1, such thatg5g01«g1, is allowed.
g1 is still free. Equation~5! then becomes

f n115eic~11«g1L ! f n1«S r2
ib2

2 DLeic] t
2f n

1 i«
Peic

Q
f nu f nu21O~«2!, ~9!

whereeic denotes the quantitybeg0LQ, which has a modu-
lus one due to Eq.~8!.

Since we are mainly interested in the evolution of t
amplitudef n over a large number of round tripsn, it is con-
venient to approximate the discrete Eq.~9! by a continuous
one, to be satisfied by a functionf of some continuous vari
ablez, such thatf n5 f (z5nL). This equation is

i ]z f 5
2c

L
f 1 i«g1 f 1«S b2

2
1 ir D ] t

2f 1«Df u f u2,

~10!

where

D5
2P

QL
. ~11!

At leading order, the solution of Eq.~10! is

f 5Feicz/L1O~«!. ~12!

The knowledge of the small correctionO(«) in Eq. ~12! on
finite propagation distancesz is equivalent to the knowledg
of the evolution of the leading amplitudeF on very large
propagation distancesz}1/«. This is proven using the mul
tiscale expansion formalism@12#, through the introduction of
a slow variablez5«z. The long-distance evolution ofF is

i ]zF5 ig1F1S b2

2
1 ir D ] t

2F1~Dr1 iDi !FuFu2, ~13!

where Dr and Di are the real and imaginary parts ofD.
Recall that the ‘‘propagation distances’’z or z represent in
fact numbers of round trips. Equation~13! is the cubic com-
plex Ginzburg-Landau~CGL! equation. Notice that Eq.~13!
is formally identical to the master equation proposed
Hauset al. @7#. However, the coefficients of Eq.~13! explic-
itly depend on the orientation of the eigen axis of the fibe
both sides of the polarizer. An essential feature is the aris
of an effective nonlinear gain or absorptionDi , that results
from the combined effects of the nonlinear rotation of t
01380
y

t
g

polarization, the losses due to the polarizer, and the lin
gain. The value and the sign ofDi depend on the anglesu1

andu2 .

III. SOME EXPLICIT SOLUTIONS
OF THE CGL EQUATION

In this section, we are interested in finding some parti
lar solutions of the CGL equation and to study their stabili

A. Stationary solution

The CGL equation admits the following nonzero statio
ary solution, i.e. with a constant modulus

F5Aei (kz2Vt), ~14!

where

V25
1

r
~Di uAu21g1! ~15!

and

k5
b2

2r
~Di uAu21g1!2Dr uAu2. ~16!

In the particular caseV50, the above solution is a constan
Its amplitudeA, assumed to be real for sake of simplicit
and its wave vectork have the determined values

A5A2g1

Di
~17!

and

k5
Dr

Di
g1 , ~18!

respectively. Notice that this solution exists only ifDig1 is
negative.

In Ref. @9#, in the case of the ytterbium laser, we ha
shown that the constant solution is stable whenDi,0 only.
Neither the solution~14! nor the analysis of its stability de
pend on the sign of the chromatic dispersion. Thus, the ab
result is valid here. Further, continuous laser emission occ
when the constant solution is stable. The domain of conti
ous emission coincides, thus, with the regions whereDi is
negative. The sign ofDi as a function of the angles (u1,u2)
is drawn on Fig. 2. The study has been limited to the reg
180°3180° according to the periodicity of the solution. Th
hatched domains in Fig. 2 correspond to the negative va
of the nonlinear gainDi . Continuous laser emission occu
in these domains.

B. Localized solutions

In this section, we are interested in solutions of Eq.~13!
describing short pulses, which we call localized solutio
2-3
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according to the mathematical terminology. In order to u
the results of Akhmedievet al. @10#, we write the CGL Eq.
~13! in the normalized form

i ]zc1
1

2
]t

2c1cucu25 ig1c1 iDcucu21 iR]t
2c, ~19!

where c5AuDr uF, t5t/Aub2u, R5r/ub2u, and D5
2Di /Dr . The normalized gain filtering parameterR and the
normalized nonlinear gainD are the main parameters of th
analysis. They are denoted byb and «, respectively, in the
publications by Akhmediev and his co-workers. Numeric
computation shows thatDr is always negative, so thatD and
Di have the same sign.

Equation~19! admits an explicit localized solution whic
can be written

c5a~t!11 ide2 ivz, ~20!

where

d5
3~112DR!2A9~112DR!218~D22R!2

2~D22R!
, ~21!

and

v5
2g1~12d214Rd!

2~d2R1Rd2!
. ~22!

d represents the chirp parameter. The amplitude of the p
writes

a~t!5MN sech~Mt!, ~23!

where

FIG. 2. Stability diagram of the nonzero stationary solution
the plane (u1 ,u2). Stability occurs in the hatched zone, and ins
bility in the white domain.
01380
e
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M5A g1

d2R1Rd2
, ~24!

and

N5A3d~114R2!

2~2R2D !
. ~25!

In the case of positive nonlinear gainD or Di , the stabil-
ity of this solution has been studied by Akhmedievet al.
@10#. They found that the localized solution~20! is stable
when the zero solution is unstable, thus, when the linear g
g1 is positive. Noticing thatM is real only if the quantities
(d2R1Rd2) andg1 have same signs, the stability conditio
becomes

d2R1Rd2.0. ~26!

This condition can be expressed as follows: in the planeR,
D), the solution is stable below the curve

D5DS5R
3A114R221

4118R2
, ~27!

and unstable above this curve. When the nonlinear gainDi or
D is negative, no such condition is known at this time. T
nonzero constant solution is stable in this case for a posi
excess of linear gaing1, allowing to conclude to continuou
laser emission. However, a situation where bistability b
tween continuous and mode-locked emission occurs can
envisaged. This means that the mode-locking will not
self-starting. It will be considered in further study.

C. Discussion

Figure 3 summarizes the stability conditions of the so
tions in the plane (R, D). The results are represented in th
plane (u1 ,u2) in Fig. 4. For this figure, we have taken th
values of the parameters given in Sec. II and a spectral g
bandwidth vg515.7 ps21 corresponding toDl530 nm
@13#. The white regions correspond to stable pulses and t

-

FIG. 3. Diagram showing the stability conditions of the consta
nonzero and localized solutions in the plane (R, D).
2-4
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to stable self-starting mode-locking because the station
solution is unstable. In the gray domains the stationary s
tion is stable and the laser spontaneously operates in cw
gime. However, because we do not have information ab
the stability of the pulses in these regions, the laser a
could operate in mode-locking regime if a perturbation
applied. This point deserves further theoretical investigat
Finally, in the hatched regions, both the stationary and
localized solutions are unstable. The laser is expected to
erate in chaotic or Q-switch regime.

At this stage, significant differences appear in compari
with the ytterbium laser@8,9#. Especially, the domains o
self-starting mode-locking are considerably reduced. In ad
tion, bistability between the continuous and the mode-loc
regime is not excluded in the present case, while no bista
ity was observed in the ytterbium-doped fiber laser.

IV. PULSE CHARACTERISTICS

When the explicit localized solution~20! of the CGL Eq.
~13! is stable, it works as an attractor in the sense that
other solution goes close to it after a long enough propa
tion distance~or number of round trips!. Therefore the actua
laser pulse is expected to be correctly described in shape
size by Eq.~20!.

All quantities in the expression of the pulse are explici
known, excepted the excess of linear gaing1. The latter self
adjusts to a value yielding a steady state over numer
round trips. This mechanism is determined by the satura
of the gain, which is not taken into account by the mod
developed above and by the master equation~13!. Introduc-
ing gain saturation as an external condition allows us to
termine completely the characteristics of the pulse.

FIG. 4. Stability diagram exhibiting the operating regime of t
laser in the plane (u1 ,u2). In the gray region, the constant nonze
solution is stable and stability of the mode-locked solution is
known. The white region corresponds to stable mode-locking. In
hatched domain, both solutions are unstable.
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A. Pulse energy

We first compute the energy as a function of the orien
tion angles (u1 ,u2). At zero order, the saturated gain of th
medium is

g05
g8

11
E

WS

, ~28!

whereg8 is the unsaturated gain,WS the saturation energy
and E the pulse energy. Relation~28! allows to extract the
pulse energy provided that the threshold gain valueg0 is
known. It has been computed in Sec. II from the fact that
gain must compensate the losses, and is given by relation~8!.
For the numerical simulations, we takeg851.26 m21 and
WS50.1 pJ. The results are presented in Fig. 5 which gi
the evolution ofE in the plane (u1 ,u2). We can notice that
the energy strongly varies withu1 andu2 . The most ener-
getic pulses are obtained in the vicinity of(0°,0°) @equiva-
lent to (180°,180°)] and (90°,90°). In these regions, t
energy is about 10 pJ. This value is very close to the o
reported by Hauset al. @6#. Our results show that the orien
tation of the eigen axis of the fiber at each side of the po
izer must be performed carefully because it has a great
portance on the resulting energy.

B. Pulse duration

Another important characteristic of a mode-locked lase
the pulse duration. In the configuration investigated in t
paper, the pulse duration depends on the angles (u1 ,u2).
The pulse duration is calculated from relation~23!. In nor-
malized units, it writes

t
e

FIG. 5. Evolution of the pulse energy in the plane (u1 ,u2). In
the hatched region the energy is above 10 pJ, in the gray region
energy is between 5 pJ and 10 pJ and in the black region the en
is below 5 pJ. In the white region, either the pulse are unstable
their stability is not determined and continuous emission occurs,
Fig. 4.
2-5
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t05
1

M
. ~29!

The expression~24! of M involves the excess gaing1, which
is not known.M can also be found through the computati
of the pulse energyE5* uFu2dt. Integrating the square
modulus of expression~20!, we find

E5
2Aub2uMN2

uDr u
. ~30!

Since the energyE has been obtained using relations~28!,
andN is explicitly given by Eq.~25!, we obtain the expres
sion of the pulse durationt0 ~in ps!

t05t0Aub2u5
2ub2uN2

uDr uS g8

g0
21DWS

, ~31!

whereWS is in pJ. Fig. 6 shows the evolution oft0 versus the
anglesu1 and u2 . Theoretical results show thatt0 under-
goes large variations asu1 andu2 vary. Only small regions
lead to ultrashort pulses. This is due to the fact that for th
values of the angles the top of the pulse undergoes lo
losses than the wings. The shortest pulse width predicte

FIG. 6. Evolution of the pulse duration in the plane (u1 ,u2). In
the hatched region the duration is above 1 ps, in the gray regio
is between 0.5 and 1 ps and in the black region below 0.5 ps.
white region has the same meaning as in Fig. 5.
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our model is about 90 fs. This lowest value depends on fi
characteristics. In particular, the spectral gain bandwi
takes a prominent part because it can directly limit the pu
duration. BeyondDl.15 nm, the pulse duration does n
change whenDl is varied. In this case, the limitation is du
to the GVD. BelowDl.15 nm, the pulse width increase
whenDl decreases. The pulse duration is then limited by
spectral gain bandwidth. In addition, we can notice that
shortest pulses are obtained for the same values of the an
u1 andu2 which maximize the pulse energy. This result
important because it means that both parameters~duration
and energy! can be optimized simultaneously.

V. CONCLUSION

We have derived a master equation that describes
mode-locking properties of an erbium-doped birefringent
ber laser in a unidirectional cavity containing an optical is
lator. The master equation is of CGL type, its coefficien
depend explicitly on the angles between the eigen axis of
fiber at each side of the polarizer. Indeed, the mode-lock
is achieved through nonlinear polarization rotation, which
taken into account in the model. The dependency of the la
properties with regard to the angles is, thus, explicitly tak
into account by the master equation.

The CGL equations admits several explicit solution
among which two are of interest here: the nonzero cons
solution and the localized one. Using the known stabil
conditions of these solutions, we have been able to pre
the operating mode of the laser as a function of the ang
This yields a stability diagram versus the angles which gi
the domains where the laser operates in continuous, m
locked or unstable regime.

Furthermore, the explicit localized solution is expected
describe the actual laser pulse. When gain saturation is ta
into account, the model therefore allows to compute
pulse characteristics, especially its duration and its ene
The results are given as functions of the orientation of
eigen axis of the fiber with respect to the polarizer. A ma
mum energy of about 10 pJ, with a minimum duration
about 90 fs have been obtained. The domains of the ang
parameters for which mode-locking occurs are small. T
regions of maximum energy in these domains coincide w
the regions of minimum pulse duration. Optimization is o
tained this way in two small regions in each 1803180 de-
grees period of the angular parameters.

Additional theoretical work is needed to fully characteri
the stability of the pulses when the nonlinear gain is ne
tive.
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