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Entanglement of two-mode Bose-Einstein condensates
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We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates—a pair
of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that
the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the
subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic
constituents are physically inaccessible and, thus, the degree of entanglement between individual particles,
unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in
the condensed state. We calculate the entanglement between the two modes for the exact ground state of the
two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
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[. INTRODUCTION ibility of the bosons within the condensatgks,17. We ar-
gue that a more physically relevant interpretation is to de-
In recent times, entanglement has been regarded asc@mpose the system into a bipartite system of the two modes.
physical resource, which can be utilized to perform numer-This idea is analogous to that of van Eril8] concerning the
ous tasks in quantum computatiph]. This means that the €ntanglement of electromagnetic-field modes, as opposed to
creation and manipulation of entangled states is of significarfh€ photons themselves. Since entanglement in bipartite sys-
interest in quantum information and computation. On theems is well understood, the entanglement between the
other hand, the study of the entanglement characteristics drodes of the system can be simply calculated. We demon-
various condensed-matter systems has been proposed to pférate that, while the states created in RéB] are indeed
vide new insights into quantum many-particle Systemsentangled, the entanglement has a different character.
[2-8]. As a further extension, we consider another two-mode
One extensively studied condensed-matter sy§@a12  system, the atom-molecule BEQ9—-26. This systems has
is that of a pair of tunnel-coupled Bose-Einstein condensateattracted significant interest since the entangled state is com-
(BEC's). In the simplest model system, bosons are restricte@fised of two chemically distinct components. We show that
to occupy one of twanodes each of which is a BEC. A the entanglement between the atomic and molecular modes
dynamical scheme for engineering many-particle entanglecan be calculated analogously to the entanglement between
ment between the particles in such a system has been préie two modes of the tunnel-coupled BEC's.
posed by Micheliet al. [13]. However, since there is pres-
ently no definitive measure for entanglement between three Il. THE SYSTEMS
or more subsystems, the amount of entanglement in the out- The situation where a lar ber of int tina b
put state is not analyzed quantitatively. Instead, this schemg ; ge number of Interacting bosons
re restricted to occupy the same two-dimensional single-

aims to create states of a canonical form, whose entangle- ~ . X .
ment content is based upon its inseparability. particle Hilbert space is known as tllesephson effecthe

As argued in Ref[14], entanglement is only meaningful Josephson effect can be described as eighxézrnal where

for multipartite systems whose Hilbert space can be viewei.he two single-particle states, or modes, are separated spa-

as a tensor product of two or more subspaces correspondi iglly, or internal in which the two modes differ by some

to physical subsystems of the system. As always, what ons ernal quantum number. Both the internal and external Jo-

regards as an entangled state is, to some extent, a matterso?p.hson effects can be described by the canonical Hamil-
how this decomposition of the system into subsystems i%onlan[g]

performed. One person’s entangled state is not the same as_ g = _ “ o E) min i

another’s if they identify the subsystems differently. En- HJ=§(NA—NB)2—7(NA—NB)—E(a;&a3+ agaA),
tanglement can be said to be relative to the system decom- )
position[15].

_ Inthe case of a bimodal Bose-Einstein condensate invegy, o e 31 31 denote the single-particle creation operators in
tigated in Refs[12,13, the entangled subsystems were iden- . o aga
tified as the individual atoms in the condensate, and a matf’® o modes & and B), respectively, andNa=asaa,
ematical measure of the multipartite entanglement proposedNs=atag are the corresponding boson number operators.
By this measure certain states of the condensate were showine parametef; is the single-atom tunneling amplitude

to be entangled. We argue here that the decomposition of the the difference in the chemical potential between the wells,
system in Ref[13] into subsystems made up of individual and K corresponds to the atom-atom interaction. Here, we
bosons is not physically realizable, due to the indistinguishenly consideiK>0, corresponding to a repulsive interaction
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between atoms. The total particle numiber+ Ng is a con- 1
served quantity and is set to the constant valuéf we add E(|0®m>+|1®m>)- (7)
the constant term

K . . These states are also knownragparticle cat (n-cap states,
g(NA-i- Ng)?, (2)  in honor of Schrdinger’s quantum superposition of states
cat state. For systems with three or more subsystems, while
the first term in the Hamiltoniafl) becomes most definitely entangled, we cannot say whether the cat

states argnaximally entangled. Since there is no definitive

K oo) <, measure for arbitrary multipartite entanglement, there is no
7 (Na+Np), (3 clear notion of the structure of the maximally entangled sates
in such systems.
as we expect for repulsivewave scattering. Thed-dimensional analog of the two-dimensional qubit is
This Hamiltonian(1) is in fact a two-site version of the referred to as thqudit For qudits, represented by the set of
Bose-Hubbard model which describes bosonic particles witistates{|i)}, wherei=0, ... d—1, a cat state would be
repulsive interactions, hopping through a potential lattice
[27,28. In the Bose-Hubbard model, instead of two modes, 1
there is an infinite lattice of potential wellsr mode$ with EQOOH |(d=1)(d—1))). )
coherent single-atom tunneling between nearest-neighbor

mogessi.milar condensed-matter svstem where there is th By the standard measure of entanglement for bipartite sys-
y ?ems(the entropy of entanglemenmthich is discussed in Sec.

cqupllr_lg of two BEC modes is that OT atom-mole_cule Bose-lv) this is not the maximally entangled state. While si&@e
Einstein condensate. In such a situation there exists COherei@tentangled a maximally entangled state is of the form

coupling between atomic and molecular BEC's, respectively,
which constitute the two modes of the system. The simplest d-1
Hamiltonian, recently studied by Vardit al. [29], which i > lii). 9
describes the atom-molecule BEC takes the form Jd =0

While cat states are the canonical maximally entangled states
for systems consisting of two qubits, for higher dimensions
and number of subsystems, the maximally entangled states
wherea’ andb' denote the creation operators for the atomiccorrespond to uniform distributions over the tensor product
and molecular modes, respectively. is a measure of the basis.

strength of the matrix elements for creation and destruction In Ref. [13], to determine the structure of the canonical
of molecules ands is the molecular binding energy in the entangled states, the system described by the Hamilt¢hjan
absence of coupling. The total atom numbisg,,=n, Was decomposed inthl subsystems consisting of the indi-
+2h,, where n,=a'a, n,=b'D, commutes with the vidual bosons, each with an internal degree of freedom de-

Hamiltonian, so is a constant of the motion. Both Hamilto-scrlbecj by a two-dimensional Hilbert space spanned by the

nians(1) and (4) have recently been shown by Zhet al. tv_vo states|A) and |.B>' In this descri_ption, the system is
[30,31] to be exactly solvable in the context of the aIgebraiCY'ewed as a collection oN single-qubit subsystem_s. These
Bethe ansatz. internal deg.regs qf freedom can pe _used to define a two-
mode description just as the polarization degree of freedom
of the electromagnetic field defines individual modes. In this

case, the annihilation and creation operators, appearing in

For qubits—two-dimensional systems represented by theEd. (1), refer to single-particle states distinguished by an
states 0) and|1)—the canonical maximally entangled state internal degree of freedom rather than spatially localized

o= 282+ (a%a%h+ 53d) @
AM 2 2 ’

IIl. MANY-PARTICLE ENTANGLEMENT

is the Einstein-Podolsky-Rosen-BoHiEPR) pair, single-particle states discussed in this paper. However, this
does not change our point of view regarding the lack of
1 physical significance of entanglement at the level of single

E(|00>+|11>)' (5  atoms. In Ref[13] it was argued that the maximally en-

tangled state in this case is thecat state, which is a coher-
ent superposition state of all particles in modeand all

also known as a Bell state, in reference to the inequalities’ " . X >
particles in modeB, i.e.,

established by Bell32]. The tripartite analogue of this state
is the Greenberger-Horne-Zeilinger-Merm(i@Hz) state

1
1 E<|A®N>+IB®“>). (10)
E(|ooo>+|111>), (6)
While it cannotbe said that this is the maximally entangled
while the correspondingtpartite state is given by state, it does indeed have some entanglement.
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However, there is a problem with this choice of subsystenhave occupation numbers of zero and one, so are spanned by
partitioning. By the nature of Bose-Einstein condensationthe state$0) and|1). Consider the state
bosons within a condensate anédistinguishableAt no point
can one make a physical measurement of the state of an 1
individual particle in the condensate. For entanglement to E

exist between two systems the individual systems have to be
Clearly, with respect to the partition into modes, this single-

distinguishable. While it is easy to imagine quantum mea-
surements sensitive to individual particles, such Operat'onBarticle state is entangled which implies we have entangle-
ment with only a single particle. Analogous single-particle

(10)[1)+[1)]0)).

could not be realized in the laboratof¥6]. While one can

first remove individual particle_s from the condensate in Orderentanglement has been generated optically and used in a

to measure them, the resulting state of the condensate :

thereby changed, and it is unclear how the results of suchﬁjamum teleportation proto_c[334]. . . .

measurements w’ould reveal the multiatom entangled state The state of eac;h mode is characterized by its occupation

the condensate prior to the removal of the measured pa?]_fumber. Beca_usbl is constant, a general state of the system

ticles. This implies that the decomposition into individual W> can be written in term of the Fock states by

boson subsystems is not physically realizable and while one N

can still write the Hilbert space of the system as a tensor |y)= 2, caln)|N—n), (11)

product of the Hilbert spaces of individual bosons, this is not n=0

an appropriate description for realizable measurements upon

the condensate. In other words, the system of coupled BECWherec,, are complex coefficients, i.en,bosons in mode\

is best viewed as a bipartite entangled system rather than #8plies there aréN—n bosons in modé.

a collection ofN single-particle subsystems. The standard measure of entanglement of pure states of
Of course, there is nothing to stop us framculatingthe  bipartite systems is thentropy of entanglemenwhich is the

entanglement between indistinguishable particles accordingon Neumann entropy of the reduced density operator of

to some measure. However, entanglement is a physical ré&ither of the subsysten85,36. The reduced density opera-

source that enables useful tasks in quantum communicatid@r of a subsystem is found byacing outthe other sub-

and computation. In all such tasks it is necessary that theystem via thepartial trace. If p is the density operator de-

entangled subsystems be distinguishable at some point in ti§€ribing some state of a bipartite system, the reduced density

protocols. For systems described by the Josephson Hamipperator for subsyster is defined by

tonian (1) it cannot be said that there pghysically useful

entanglement between each individual boson when they exist pa=Trg(p), (12)

in condensate. ) )
where Tg is the partial trace over subsystdnThe entropy

of entanglement is then given by

E(pa)=—Tr[pa log(pa)] (13

IV. ENTANGLEMENT BETWEEN THE TWO MODES

Since the individual bosons are not physically accessible,
distinguishable subsystems of the pair of tunnel-coupled
BEC's described by Eq.l), we need to consider other pos- = —Z A log(N\y), (14
sible decompositions into subsystems if we are to investigate K

entanglement characteristics in this system. While we cannot

measure which mode of the coupled BEC's a specific particld/here the logarithm is taken in base 2, qng} are the set of
is in, the occupation number of a given mode is a physicafigenvalues of the reduced density operafor The value of

observable. The two modes, be they spatially separated, & V&ries between 0, for separable product states, to a maxi-
differing in some internal quantum number, are clearly dis-mum of logd (whered is the dimension of the Hilbert space
tinguishable subsystems. We can thus view the pair off the subsysteinfor maximally entangled states corre-
coupled BEC's as a bipartite system of the two modes. It i$Ponding to a completely mixed density operator.
relatively simple to investigate the entanglement between the 1h€ entropy of entanglement can be calculated from the
modes since there is a unique measure of entanglement fpduced densﬂy oper_ator of either of the sub_systems without
two-component systems. Since the modes are distinguishableSs 0f generality. This follows from th&chmidt decompo-
the entanglement between them is accessible and, thus, pg:uon of pure states, WhICh demonstrates that the eigenvalues
tentially useful for some quantum information or communi- ©f the reduced density operators of the two subsystems are
cation protocol. This had been demonstrated by Dunningharifléntical (p. 109 of Ref.[35]). _
et al. [33], who have proposed a scheme for entanglement Schmidt decompositiofror any pure statfy) of a bipar-
swapping involving two pairs of tunnel-coupled BEC’s. This fite composite system there exist orthonormal stgitesfor
is used to concentrate the entanglement between two modedibsystemA and orthonormal stateig) for subsystemB

In this interpretation, while the entanglement involvesSuch that
many particles it is actually between the modes of the sys-
tem. To |IIusFrate_ this, consider the_snuatlon.where we have |¢>:2 Nlia)lis), (15)
just one particle in the system. In this scenario the modes can |
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where\; are non-negative, real numbers known as Schmidt
coefficients, satisfyingEiAiz=1. It is easy to see from the
Schmidt decomposition that the reduced density operators

for the two subsystems are, respectivgly= 3\ x){ial

andpg=3\?|ig)(ig|, which have identical eigenvalues.
Using the Fock basis, from E¢ll) the density operator

describing a general state of the system is given by

N

p=lo)pl= 3 cockIm)IN-mi(ni(N-n|. (16

Taking the partial trace with respect to mo8eields the
reduced density operator for mode

N

PA:TrB(p):mg . CmCh |my(n|(k|N—m)(N—n|k)

N
=n§O |cal2In)(n]. 17

From expressiofil7), we can see that the reduced density
operator in this case is diagonal in the Fock basis and th

eigenvalues are simply;=|c;|2. Thus, the entropy of en-

tanglement between the two modes of the coupled BEC's is

given by

N
E(p1)== 2 [eal? loglcy” (19

To determine the maximally entangled state, expressioﬁv

(18) can be optimized with respect ig=|c,|? by imposing
the normalization conditiol®)\_,|c,|?=1 with a Lagrange
multiplier x, i.e., we maximize

N

L=—nzo (X 100 X — X)) + . (19)
Differentiating with respect tx,, gives
JL 1
a—xn=,u—logxn—m=0, (20
which implies
Xp= 241N 2 (21)

for all n. From the normalization condition

1
=N V™
1
:>|Cn|:\/:, vn.
N+1
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gon
JN+1'

where 6, is some phase angle. This corresponds to a com-
pletely mixed density operator, as expected for a state with
maximal entanglement. Thus, we can express the canonical
maximally entangled statéNyes) for the system described

by the Josephson Hamiltonidh) as

Ch= (22)

1 N
Npmes=—— n)IN—n).
MES \/mnzo| >| >

(23)
From Eq.(18), the maximal entanglement is
Emax= % ! | = ! =log(N+1
ma 24 N 109 N 1) T 10 Ng ) TloaN T D
(24)

As mentioned previously, this is what is expected for the
maximum entanglement, since the dimension of the Hilbert
space of the individual modes M+1 (see p. 510 of Ref.
LBS]).

A. Entanglement of the ground state

As mentioned in Sec. Il, the systems consisting of a pair
of tunnel-coupled BEC's is the simplest system described by
the Bose-Hubbard model and corresponds to a lattice poten-
tial with just two sites. For the Bose-Hubbard model, in the
limit of an infinite lattice, there is a quantum phase transition
here the ground state changes from superfluid phase to the
Mott insulator phas¢27]. Such a transition from the Mott
insulator to superfluid phase was recently experimentally ob-
served by Greineet al. [37].

In the Mott insulator state, particles tend to be localized at
the individual lattice sites with no phase coherence across the
lattice, whereas in the the superfluid state, each atom is
spread over the entire lattice and there exists long-range
phase coherence across the lattice. This transition from the
Mott insulator to the superfluid state occurs as the ratio of the
coupling between lattice sites to the interaction strength in-
creases. As long-range coherences in quantum systems are
intrinsically linked to entanglement, it is of interest to quan-
tify the entanglement in the system in relation to this transi-
tion. Since there is no measure for the entanglement in sys-
tems consisting of three or more subsystems, the two-mode
system here is the only Bose-Hubbard model for which we
can currently give a complete description of the entangle-
ment.

Making the two modes identicdéby setting the bias) u
to 0), the Hamiltoniar(1) was diagonalized numerically for
increasing values coupling to interaction rafig/K and the
entanglement of the ground state was determined via Eq.
(17).

Figure 1 shows the results of this analysis for different
values of the total particle numbe\, Sincef; is the tunnel-
ing parameter, the larger its value the stronger the interaction

So a state with maximum entanglement will have coeffi-between the modes of the system. As such, it is intuitive that

cients

that for no coupling, the entanglement between the modes is
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FIG. 1. The variation of the entropy of entanglement of the
ground state for differing particle numbirand increasing coupling
to atom-atom interaction rati6; /K.

FIG. 3. The ratio of the entanglement of the bonding state to the
maximal entanglemenE(p . )/E, .y for increasing particle number
N.

zero and as the coupling increases, the entanglement betwegrr]\d it is easy to show that the ground state of such a Hamil-

the modes in the ground state increases. The entangleme&ﬁ1ian for a single particle is theondingstate
asymptotically approaches a constant value as the ratio

&3/K—0o0, which is illustrated more clearly in Fig. 2, which

shows the results foN=100. Now we consider the two |+)= i(aL+a§)|0>|O>, (27)
extreme parameter values. First =0, the ground state J2
will have an equal, fixed number atoms in each of the two
modes and is therefore the localized state, where|0)|0) is the vacuum state. So in the ground state for
K =0 each individual particle is in the bonding state and the
| r00) = ’ﬂ> ‘ﬂ> 25) state of the system is thHé-particle analogue of the bonding
loc/ =12 /12/" state
Clearly this state has zero entanglement. Kot 0, the _ 1 T, AT\N
Hamiltonian consists of just the tunneling term [94)= J2NNI (ax+25)"0)]0). (28)
& . This state is the two-site analogue of the superfluid phase,
Hun=—% (axas+agas) (26)  with each atom being spread over the two modes. From Eq.
(18), the corresponding entanglement for this state is
S O EN: 1 (N) 1 (N>
ol ] E(p+) 2 onln log Ninll (29
50 1 Thus for zero coupling, the ground state is the localized
5 g state(25) which has no entanglement. As soon as the cou-
& 4 1 pling begins to increase, the entanglement between the
w modes increases rapidly, as the occupation number of the
3 1 modes is no longer exact and fluctuations in the phase de-
crease. As the tunneling amplitude continues to increase, the
2 . entanglement asymptotically approaches a maximum value,
o ﬂ:)‘(’i'r':l’a“y entangled given by expressiofi29), which corresponds to the bonding
1 - - - bonding | state. In this state, the occupation number fluctuations are
large, resulting in phase coherence between the modes which
0 is characterized by the high entanglement.

0 2 e /K S0 80 100 Figure 3 shows that the maximum entanglement in the
J ground state is much less than the maximal entanglement of
FIG. 2. The variation of the entropy of entanglement of thethe system, lod{+1).
ground state for increasing coupling to atom-atom interaction ratio However, it appears the ratio of the entanglement of the
&;/K for N=100. two states remains finite &¢— .
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B. Comparison of entanglement In this way the tunnel-coupled pair of BEC’'s system is
The dynamical schemes developed in R@f3] aim to analogous to an angular momentum model with total angular
create states of the forin the Fock basis momentumj =N/2. The Hamiltoniar(1) (with Ax=0) can,

thus, be rewritten as

, Hy=x32-0QJ,, (35)

X (D)= 1 /IN+D\|N—D N N—D\|[N+D
| cat( )>_ E 2 2 2 2
(300 where we neglect constant energy shifis=K/2 and Q
=¢€;. This Hamiltonian(35) is slightly different from that
whereD=N,—Ng. It was argued that the amount of en- defined in Ref[13] (and Ref,[10]). In these references, the
tanglement in the statg80) is characterized by the distance j_ term, which corresponds to the tunneling term, was added

Dh.'lzoth:DO_tSe s;atel\:s s_eparapleland thuEs nf(; entqngle ther than subtracteive assume only positive parameter
whiie olrl o |I ca h')>hl's erc]]'un(/ja ent to .q( .) SO.”'S values. However, this does not change the eigenstates of the
maximally entangledwhich in this decomposition is still an system, but does reverse their order in terms of energies, i.e.,

ljncf(_)r_re_:ct a;cssrl:mpndn However,hsw(;ce mot|vz_it_|on fforhthe the ground state in the addition case is the highest excited
efinition of these states was the decomposition of the SySsiaiq iy the subtraction case. This means that the results for
tem into individual particle subsystems, these states wil he dynamics from Ref{13] can still be applied to Hamil-
have different entanglement characteristics when analyzefg)nian (35) by using a different initial state, as we will dis-
with the BEC modes as the subsystems. From 8®) . << pelow

it is clear that forD=0 the state(30) is separable and |, the angular-momentum representation, states can be

thus unentangled. However, forD>1, we have expanded in terms of tha, cigenstates}j,m),, where — |
= —] - pJ yal
E(|Xcaf D)){Xca( D)) = 1—the amount of entanglement be =m=]. In this basis, there is no indication of the underlying

tween the modes is the same independent of the valub for o .

(>1). The initial state prepared for the dynamical scheme o ubs.ystem structure of the system. It Is interesting to note
Ref. [13] is the N-particle bonding staté28). According to hat in terms of the Fock basis, we have
expression(29), the entanglement between the modes in this 1j,m),=|N—2m)|N+2m).

state is actually greater than the entanglement in the final v

ideal output state, given by eXpreSSi@m) with D=N. This |mp||es that for any state

From this observation, it seems that the dynamical process

outlined in Ref.[13] destroy entanglement between the N

modes. To gain a better understanding of this dynamical pro- |g)=>, cqn)|N—n) (36)
cess with respect to the modal decomposition, we consider n=0
how the entanglement between the modes varies during the

N
evolution. =2 c,lj,n—N/2), (37
n=0

C. Dynamics of entanglement .
meaning that the entanglement between the modes can be

In studying the dynamics of the system of tunnel-coupledca|culated from the coefficients in the angular momentum
BEC’s, we express the the Hamiltoni@h) in the pseudo- pgsis.

angular-momentum representation, introduced in iRed], In Ref. [13], a semiclassical model of HamiltoniaB5)
used in Ref[13]. In this representation, we define the threeyas used to determine the optimal parameter values and time
angular-momentum operators scale to create states of the form of expresg@) with D
1 =N (|XcafN))), from the evolution of a given initial state.
jZZE(NB_ NA), (3D In the angular-momentum representation
XeaND) = = (15~ D)2+ 112502 @
N 1 ... aAtn ca =—=UlL=1)zT11:])2)-
JX=§(aLaB+ alan), (32) V2

From this analysis it was argued that using the critical
parameter ratio

O N
Jyzz(aLaB—agaA), (33
20
—N=1 (39
which have the canonical commutation relatignk ,J, ] X

=iJ, (and cyclic permutations The Casimir invariant is in the evolution of the initial state over timé,= In(8N)/xN

easily seen to be (where time is in units ofi), could create states of the form
of Eq. (38).
jz_N N+1 34 The initial state given in Ref[13] was the maximal
2\2 ' weight state ofjx. This corresponds to the bonding state,
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-10 0 32 .

o 05 1 15, 2

FIG. 4. The evolution of thd, distribution forj=10 (N=20) time
with 2Q/xN=1. Note that at time,~2.5376 the distribution is FIG. 5. The evolution of the entanglement. The dashed line

peaked at the two ehxtrem_a values, cor_resphond_lng to an aPPVO:f" shows the maximal entanglement, while the circle indicates the en-
mate cat state as shown in REE3]. Again, the time is in units o tanglement at time, (time in units of#).

h.

2.5 3 3.5 4

(28). For the Hamiltonian above, the similar results will be In term_s of modal entan_glement, the dynamical scheme
. . - - . L proposed in Ref[13] can still be used to create a close to

achieved using theninimal J, weight state which is maximally entangled state, over a shorter time period than

for the creation of the inaccessible many-particle entangled

T_ TN state.
(ax=ag)"[0)[0).  (40) It is of interest to note that the critical parameter r486)

is the same as that found by Milbuet al. [10] in regards to

1
|¢'(O)>:|JI_J>XE\/W

In other words, a transition in the dynamics from self-trapping to delocaliza-
I tion. For an initial condensate localized in one mode, when
| h(te))=e"Hazle|(0)) ~| Xcaf N)). (41)  2Q/xyN>1, the condensate distribution will remain local-

ized within the mode as it evolves. Fof)2yN<1, the evo-

Using this parameter ratio and the initial state, the dynamtution results in a delocalization of the condensate distribu-
ics were investigated by numerically integrating the Sehro tion between the two modes.
dinger equation in the eigenbasis Bf.

Figure 4 shows a plot of the evolution of the exdgt
distribution, P(m,t)=|(j,m|#(t))|2. This concurs with the V. THE ATOM-MOLECULE BEC
results of Ref[13], showing that at timé. the final state is The atom-molecule BEC described by Hamiltonidhis
approximately of the form of the cat state given in expres- similar system to that of the tunnel-coupled pair of BEC's.
sion (38). The corresponding entanglement between then neither system can we consider the individual particles
modes over the evolution is shown in Fig. 5. The state afthe individual atoms and moleculess separate, distin-
timet, is not an exact cat state, and as such the entanglemegtjishable subsystems but both consist of the coherent cou-
att. was found to be greater than the initial entanglementpjing of two distinct BEC's. In the atom-molecule BEC, the
This differs from our earlier observation that the entangle+wo modes of the system do not differ spatially or by some
ment in the initial state is destroyed. This would be true if theinterna| quantum number but are rather two Chemica"y dis-
state at timei; was exactly|Xco(N)) (38). tinct components. Nonetheless, the determination of the en-

However, from Fig. 5 it is easy to see that the maximumtanglement between the atomic and molecular modes is
entanglement is not reached at this critical time but someanalogous to the calculations above for the tunnel-coupled
what earlier, and at. the entanglement between the modes iSBEC’s.
in the region of a local minima. As we can see, in the early As before, the state of each mode is characterized by it's
stages of the evolution, the entanglement between the modggcupation number, however, in the case of the atom-
approaches the maximal entanglement of the system. Relgholecule BEC the set of Fock states spanning the Hilbert
ing this to Fig. 4, it is easy to see that the maximum en-space of the system depends upon whether the total number
tanglement is approached as the original peak in the proksf atomsN,,,, is even or odd. In the case of an eweg,,,, a
ability distribution flattens over the evolution, approaching ageneral statéy) of the system can be expanded as
completely even distribution, corresponding to the maxi-
mally entangled stat€23). As the evolution continues, the M
distribution begins to peak at the extremes and the entangle- IX)= 2 ds2n)|M —n) (42)
ment decreases. i=o '
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whereM = N, /2, while for N, odd, the general stafe)) T
can be expressed as

M o Av n |
(#)=3, dif2n+1)|M—n), 43 SRR e

where in this caseM = (Nyn—1)/2 and the{d,,} are com- __
plex coefficients defining the state. In analogy with expres-& 5
sion (17) for the reduced density operator for the tunnel-
coupled BEC's, the reduced density operator for a genera
state of the atom-molecule BEC is given by

147

M 05
po=2, [dof2M—n)(M—n] (49

20

o
8 / Q 40 O

where the partial trace has been taken with respect t0 the rig 6. The entropy of entanglement of the ground state of the
atomic mode andV is defined as above for even and odd 4tom.-molecule BEC for increasing values of the rafi) and

total atom numbeN,,. Thus the entropy of entanglement ziom numbenN
between the atomic and molecular modes is given by Eq.

(18), the same expression as for the tunnel-coupled BEC'§;5, Ag jndicated in Refl31], the threshold coupling for the
whereN, the total particle number, is replaced byas de- formation of a predominantly molecular BEC is/Q

fined above, i.e., ~1.4JNaim- In the limit of largeN,;,, the threshold for the
M molecular BEC is in fact a quantum phase transition. Figure
E(pp)=— > |d,|? log|d,|?. (45) 8 sho_vvs the comparative results for the average atomic oc-
n=0 cupation number, the coherence correlator and the entangle-
ment forN,;,=100. That the entanglement i®t maximal
at the quantum critical point is quite different to the behavior
of the transverse Ising model, studied in Rd{,38]. The

atm-

Since the dimension of the subspace of the modé#4, ithe
maximally entangled states, analogous to €9), are

M entanglement characteristics of the transverse Ising model
IMEven = 1 E |2n)|M —n), (46) are, of course, much more complicated, s_ince it consists of
JM+1 n=0 many distinguishable subsystems. In Héf| it was conjec-
tured that in the sense ehtanglement sharirgthow much
for N,y even, and two-party entanglement can be distributed amongst a given
" number of parties—the ground state was maximally en-
|N°dd _ E |20+ 1)[M—n) @7 tangled at the critical point. At the critical point the grou_nd—
ME IM+1 o ' state saturates the bounds of entanglement sharing. While the

for Naim 0dd and will have entanglement ldd-1).

Following the same numerical analysis as in Sec. IV A
Fig. 6 shows the results for the variation in the entanglement
of the ground state of the atom-molecule BEC for differing
values of the ratio of the paramete®&() and total number
of atomsN,;,,. To relate the entanglement structure of the
ground state shown in Fig. 6 to some physical properties of
the system, we need to consider other properties of the
ground state for increasing total atom number and paramete
ratio §/(). Zhouet al. [31] considered the two zero tempera- ;
ture correlationgn,), the average atomic occupation num- 98
ber, and thecoherence correlatow=(a'a'b+b'aa). Fig- 3 '
ure 7 shows the results for the average atomic occupatior
number and the coherence correlator for the same parametc — _9 " g -
ranges used for the entanglement calculations. B 0 N

We should note that the results here using direct numeri- 5/Q atm
cal diagonalization of the Hamiltonian concur with the re-  F|G. 7. The average atomic occupation numirand the co-
sults found by Zhotet al. [31] utilizing the exact solution.  herence correlatofb) for the ground state of the atom-molecule

From Fig. 7a) it can be seen that the maximum entangle-BEC. Note that both the average atomic occupation number and the
ment in the ground state occurs, where the average atomi@herence correlator have been scaled using the total atom number
occupation is comparative to the average molecular occupa.

Z 034"
S
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viewed as between the individual bosons. A more physically
relevant description of this system is as a bipartite system,
where the subsystems are the two modes. Using this descrip-
tion we have analyzed quantitatively the entanglement be-
tween the two modes in the ground state of the coupled
BEC's and its relation to the Mott insulator to superfluid
phase transition. This idea was extended to consider the en-
tanglement between the atomic and molecular modes in an
atom-molecule BEC.

On top of this, we have demonstrated that the dynamical
scheme of Ref[13], argued to be viable with current state of
the art technology, can be used to create a highly entangled
state between the modes of the BEC system, over a smaller
time scale.

As mentioned earlier, the amount of entanglement de-
, , pends upon how the system is decomposed. In Sec. IV C, it
-1 0 q/2,1 2 3 4 was shown that the tunnel-coupled two-mode system can be
o/ (Q N ) viewed as a pseudo-angular-momentum system—a single
, , qudit In this description—viewing this solely as a single
FIG. 8. The average atomic occupation number, coherence Cofjudit—it appears that there is no entanglement present in the
relator, and the entanglement for the ground state of the ato System. Entanglement is only seen when the system is
molecule BEC, forNqy=100. All three properties have been viewed in terms of subsystems, in this case, the two modes.
scaled with respect to their maximum value so as to compare tth other words. the entanglerr;ent cannot be characterized
characteristics of these properties. ! : . .

when we neglect information about the underlying sub-
ystems and only consider properties of the system as a
hole.
A possible way to create entanglement between individual
sons in the tunnel-coupled system would be to engineer
me state within the condensate traps, then free the particles

0.9f

0.8f

0.7
0.6f
0.5
0.4F A
0.3f
0.2

0.1

L

ground-state entanglement is not maximal at the criticaP
point, the state is still strongly entangled. This would make"V
intuitive sense, given that the property responsible for th

long-range correlations in quantum phase transitions is ejgo

tanglement. The plots of the results for the entanglement an ; .
the coherence correlator share a common structure, howev Eg[:gg’?q foroexarrlﬁlez of this profcedufre apzﬁlled t% othe;
the maximum values occur for different parameter values, systems Once the bosons are free from the condensate

This could mean that there is possibly another correlatioﬁhey become distinct allowing entanglement to form between

that is more closely related to the entanglement between thtgem' Ho_vvevgr, while the bosons remain in condensgte they
atomic and molecular modes. are indistinguishable and cannot become entangled with each

other.

VI. CONCLUSION
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