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Entanglement of two-mode Bose-Einstein condensates

Andrew P. Hines, Ross H. McKenzie, and Gerard J. Milburn
Centre for Quantum Computer Technology, Department of Physics, The University of Queensland,

St. Lucia, Queensland QLD 4072, Australia
~Received 19 September 2002; published 24 January 2003!

We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates—a pair
of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that
the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the
subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic
constituents are physically inaccessible and, thus, the degree of entanglement between individual particles,
unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in
the condensed state. We calculate the entanglement between the two modes for the exact ground state of the
two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.
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I. INTRODUCTION

In recent times, entanglement has been regarded
physical resource, which can be utilized to perform num
ous tasks in quantum computation@1#. This means that the
creation and manipulation of entangled states is of signific
interest in quantum information and computation. On
other hand, the study of the entanglement characteristic
various condensed-matter systems has been proposed to
vide new insights into quantum many-particle syste
@2–8#.

One extensively studied condensed-matter system@9–12#
is that of a pair of tunnel-coupled Bose-Einstein condens
~BEC’s!. In the simplest model system, bosons are restric
to occupy one of twomodes, each of which is a BEC. A
dynamical scheme for engineering many-particle entan
ment between the particles in such a system has been
posed by Micheliet al. @13#. However, since there is pres
ently no definitive measure for entanglement between th
or more subsystems, the amount of entanglement in the
put state is not analyzed quantitatively. Instead, this sch
aims to create states of a canonical form, whose entan
ment content is based upon its inseparability.

As argued in Ref.@14#, entanglement is only meaningfu
for multipartite systems whose Hilbert space can be view
as a tensor product of two or more subspaces correspon
to physical subsystems of the system. As always, what
regards as an entangled state is, to some extent, a mat
how this decomposition of the system into subsystems
performed. One person’s entangled state is not the sam
another’s if they identify the subsystems differently. E
tanglement can be said to be relative to the system dec
position @15#.

In the case of a bimodal Bose-Einstein condensate in
tigated in Refs.@12,13#, the entangled subsystems were ide
tified as the individual atoms in the condensate, and a m
ematical measure of the multipartite entanglement propo
By this measure certain states of the condensate were sh
to be entangled. We argue here that the decomposition o
system in Ref.@13# into subsystems made up of individu
bosons is not physically realizable, due to the indistingui
1050-2947/2003/67~1!/013609~10!/$20.00 67 0136
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ibility of the bosons within the condensates@16,17#. We ar-
gue that a more physically relevant interpretation is to
compose the system into a bipartite system of the two mo
This idea is analogous to that of van Enk@18# concerning the
entanglement of electromagnetic-field modes, as oppose
the photons themselves. Since entanglement in bipartite
tems is well understood, the entanglement between
modes of the system can be simply calculated. We dem
strate that, while the states created in Ref.@13# are indeed
entangled, the entanglement has a different character.

As a further extension, we consider another two-mo
system, the atom-molecule BEC@19–26#. This systems has
attracted significant interest since the entangled state is c
prised of two chemically distinct components. We show th
the entanglement between the atomic and molecular mo
can be calculated analogously to the entanglement betw
the two modes of the tunnel-coupled BEC’s.

II. THE SYSTEMS

The situation where a large number of interacting bos
are restricted to occupy the same two-dimensional sin
particle Hilbert space is known as theJosephson effect. The
Josephson effect can be described as eitherexternal, where
the two single-particle states, or modes, are separated
tially, or internal in which the two modes differ by som
internal quantum number. Both the internal and external
sephson effects can be described by the canonical Ha
tonian @9#

ĤJ5
K

8
~N̂A2N̂B!22

Dm

2
~N̂A2N̂B!2

EJ

2
~ âA

† âB1âB
† âA!,

~1!

whereâA
† ,âB

† denote the single-particle creation operators

the two modes (A and B), respectively, andN̂A5âA
† âA ,

N̂B5âB
† âB are the corresponding boson number operato

The parameterEJ is the single-atom tunneling amplitude,Dm
is the difference in the chemical potential between the we
and K corresponds to the atom-atom interaction. Here,
only considerK.0, corresponding to a repulsive interactio
©2003 The American Physical Society09-1
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HINES, MCKENZIE, AND MILBURN PHYSICAL REVIEW A 67, 013609 ~2003!
between atoms. The total particle numberN̂A1N̂B is a con-
served quantity and is set to the constant valueN. If we add
the constant term

K

8
~N̂A1N̂B!2, ~2!

the first term in the Hamiltonian~1! becomes

K

4
~N̂A

21N̂B
2 !, ~3!

as we expect for repulsives-wave scattering.
This Hamiltonian~1! is in fact a two-site version of the

Bose-Hubbard model which describes bosonic particles w
repulsive interactions, hopping through a potential latt
@27,28#. In the Bose-Hubbard model, instead of two mod
there is an infinite lattice of potential wells~or modes! with
coherent single-atom tunneling between nearest-neigh
modes.

A similar condensed-matter system where there is
coupling of two BEC modes is that of atom-molecule Bos
Einstein condensate. In such a situation there exists cohe
coupling between atomic and molecular BEC’s, respectiv
which constitute the two modes of the system. The simp
Hamiltonian, recently studied by Vardiet al. @29#, which
describes the atom-molecule BEC takes the form

ĤAM5
d

2
â†â1

V

2
~ â†â†b̂1b̂†ââ!, ~4!

whereâ† andb̂† denote the creation operators for the atom
and molecular modes, respectively.V is a measure of the
strength of the matrix elements for creation and destruc
of molecules andd is the molecular binding energy in th
absence of coupling. The total atom numberN̂atm5n̂a

12n̂b , where n̂a5â†â, n̂b5b̂†b̂, commutes with the
Hamiltonian, so is a constant of the motion. Both Hamil
nians ~1! and ~4! have recently been shown by Zhouet al.
@30,31# to be exactly solvable in the context of the algebr
Bethe ansatz.

III. MANY-PARTICLE ENTANGLEMENT

For qubits—two-dimensional systems represented by
statesu0& and u1&—the canonical maximally entangled sta
is the Einstein-Podolsky-Rosen-Bohm~EPR! pair,

1

A2
~ u00&1u11&), ~5!

also known as a Bell state, in reference to the inequali
established by Bell@32#. The tripartite analogue of this stat
is the Greenberger-Horne-Zeilinger-Mermin~GHZ! state

1

A2
~ u000&1u111&), ~6!

while the correspondingm-partite state is given by
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1

A2
~ u0^ m&1u1^ m&). ~7!

These states are also known asm-particle cat (m-cat! states,
in honor of Schro¨dinger’s quantum superposition of stat
cat state. For systems with three or more subsystems, w
most definitely entangled, we cannot say whether the
states aremaximallyentangled. Since there is no definitiv
measure for arbitrary multipartite entanglement, there is
clear notion of the structure of the maximally entangled sa
in such systems.

Thed-dimensional analog of the two-dimensional qubit
referred to as thequdit. For qudits, represented by the set
states$u i &%, wherei 50, . . . ,d21, a cat state would be

1

A2
„u00&1u~d21!~d21!&…. ~8!

By the standard measure of entanglement for bipartite s
tems~theentropy of entanglementwhich is discussed in Sec
IV ! this is not the maximally entangled state. While state~8!
is entangled, a maximally entangled state is of the form

1

Ad
(
i 50

d21

u i i &. ~9!

While cat states are the canonical maximally entangled st
for systems consisting of two qubits, for higher dimensio
and number of subsystems, the maximally entangled st
correspond to uniform distributions over the tensor prod
basis.

In Ref. @13#, to determine the structure of the canonic
entangled states, the system described by the Hamiltonia~1!
was decomposed intoN subsystems consisting of the ind
vidual bosons, each with an internal degree of freedom
scribed by a two-dimensional Hilbert space spanned by
two statesuA& and uB&. In this description, the system i
viewed as a collection ofN single-qubit subsystems. Thes
internal degrees of freedom can be used to define a t
mode description just as the polarization degree of freed
of the electromagnetic field defines individual modes. In t
case, the annihilation and creation operators, appearin
Eq. ~1!, refer to single-particle states distinguished by
internal degree of freedom rather than spatially localiz
single-particle states discussed in this paper. However,
does not change our point of view regarding the lack
physical significance of entanglement at the level of sin
atoms. In Ref.@13# it was argued that the maximally en
tangled state in this case is theN-cat state, which is a coher
ent superposition state of all particles in modeA and all
particles in modeB, i.e.,

1

A2
~ uA^ N&1uB^ N&). ~10!

While it cannotbe said that this is the maximally entangle
state, it does indeed have some entanglement.
9-2
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However, there is a problem with this choice of subsyst
partitioning. By the nature of Bose-Einstein condensati
bosons within a condensate areindistinguishable. At no point
can one make a physical measurement of the state o
individual particle in the condensate. For entanglemen
exist between two systems the individual systems have to
distinguishable. While it is easy to imagine quantum m
surements sensitive to individual particles, such operati
could not be realized in the laboratory@16#. While one can
first remove individual particles from the condensate in or
to measure them, the resulting state of the condensa
thereby changed, and it is unclear how the results of s
measurements would reveal the multiatom entangled sta
the condensate prior to the removal of the measured
ticles. This implies that the decomposition into individu
boson subsystems is not physically realizable and while
can still write the Hilbert space of the system as a ten
product of the Hilbert spaces of individual bosons, this is
an appropriate description for realizable measurements u
the condensate. In other words, the system of coupled BE
is best viewed as a bipartite entangled system rather tha
a collection ofN single-particle subsystems.

Of course, there is nothing to stop us fromcalculatingthe
entanglement between indistinguishable particles accor
to some measure. However, entanglement is a physica
source that enables useful tasks in quantum communica
and computation. In all such tasks it is necessary that
entangled subsystems be distinguishable at some point in
protocols. For systems described by the Josephson Ha
tonian ~1! it cannot be said that there isphysically useful
entanglement between each individual boson when they e
in condensate.

IV. ENTANGLEMENT BETWEEN THE TWO MODES

Since the individual bosons are not physically accessi
distinguishable subsystems of the pair of tunnel-coup
BEC’s described by Eq.~1!, we need to consider other po
sible decompositions into subsystems if we are to investig
entanglement characteristics in this system. While we can
measure which mode of the coupled BEC’s a specific part
is in, the occupation number of a given mode is a phys
observable. The two modes, be they spatially separated
differing in some internal quantum number, are clearly d
tinguishable subsystems. We can thus view the pair
coupled BEC’s as a bipartite system of the two modes. I
relatively simple to investigate the entanglement between
modes since there is a unique measure of entanglemen
two-component systems. Since the modes are distinguish
the entanglement between them is accessible and, thus
tentially useful for some quantum information or commu
cation protocol. This had been demonstrated by Dunningh
et al. @33#, who have proposed a scheme for entanglem
swapping involving two pairs of tunnel-coupled BEC’s. Th
is used to concentrate the entanglement between two mo

In this interpretation, while the entanglement involv
many particles it is actually between the modes of the s
tem. To illustrate this, consider the situation where we h
just one particle in the system. In this scenario the modes
01360
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have occupation numbers of zero and one, so are spanne
the statesu0& and u1&. Consider the state

1

A2
~ u0&u1&1u1&u0&).

Clearly, with respect to the partition into modes, this sing
particle state is entangled which implies we have entan
ment with only a single particle. Analogous single-partic
entanglement has been generated optically and used
quantum teleportation protocol@34#.

The state of each mode is characterized by its occupa
number. BecauseN is constant, a general state of the syste
uc& can be written in term of the Fock states by

uc&5 (
n50

N

cnun&uN2n&, ~11!

wherecn are complex coefficients, i.e.,n bosons in modeA
implies there areN2n bosons in modeB.

The standard measure of entanglement of pure state
bipartite systems is theentropy of entanglement, which is the
von Neumann entropy of the reduced density operator
either of the subsystems@35,36#. The reduced density opera
tor of a subsystem is found bytracing out the other sub-
system via thepartial trace. If r is the density operator de
scribing some state of a bipartite system, the reduced den
operator for subsystemA is defined by

rA5TrB~r!, ~12!

where TrB is the partial trace over subsystemB. The entropy
of entanglement is then given by

E~rA!52Tr@rA log~rA!# ~13!

52(
k

lk log~lk!, ~14!

where the logarithm is taken in base 2, and$lk% are the set of
eigenvalues of the reduced density operatorrA . The value of
E varies between 0, for separable product states, to a m
mum of logd ~whered is the dimension of the Hilbert spac
of the subsystem! for maximally entangled states corre
sponding to a completely mixed density operator.

The entropy of entanglement can be calculated from
reduced density operator of either of the subsystems with
loss of generality. This follows from theSchmidt decompo
sition of pure states, which demonstrates that the eigenva
of the reduced density operators of the two subsystems
identical ~p. 109 of Ref.@35#!.

Schmidt decomposition.For any pure stateuc& of a bipar-
tite composite system there exist orthonormal statesu i A& for
subsystemA and orthonormal statesu i B& for subsystemB
such that

uc&5(
i

l i u i A&u i B&, ~15!
9-3
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HINES, MCKENZIE, AND MILBURN PHYSICAL REVIEW A 67, 013609 ~2003!
wherel i are non-negative, real numbers known as Schm
coefficients, satisfying( il i

251. It is easy to see from the
Schmidt decomposition that the reduced density opera
for the two subsystems are, respectively,rA5( il i

2u i A&^ i Au
andrB5( il i

2u i B&^ i Bu, which have identical eigenvalues.
Using the Fock basis, from Eq.~11! the density operato

describing a general state of the system is given by

r5uc&^cu5 (
m,n50

N

cmcn* um&uN2m&^nu^N2nu. ~16!

Taking the partial trace with respect to modeB yields the
reduced density operator for modeA,

rA5TrB~r!5 (
m,n,k50

N

cmcn* um&^nu^kuN2m&^N2nuk&

5 (
n50

N

ucnu2un&^nu. ~17!

From expression~17!, we can see that the reduced dens
operator in this case is diagonal in the Fock basis and
eigenvalues are simplyl i5uci u2. Thus, the entropy of en
tanglement between the two modes of the coupled BEC
given by

E~r1!52 (
n50

N

ucnu2 logucnu2. ~18!

To determine the maximally entangled state, express
~18! can be optimized with respect toxn5ucnu2 by imposing
the normalization condition(n50

N ucnu251 with a Lagrange
multiplier m, i.e., we maximize

L52 (
n50

N

~xn log xn2mxn!1m. ~19!

Differentiating with respect toxn gives

]L

]xn
5m2 log xn2

1

ln 2
50, ~20!

which implies

xn52m21/ln 2 ~21!

for all n. From the normalization condition

xn5
1

N11
, ;n,

⇒ucnu5
1

AN11
, ;n.

So a state with maximum entanglement will have coe
cients
01360
t

rs

e

is

n

-

cn5
eiun

AN11
, ~22!

whereun is some phase angle. This corresponds to a co
pletely mixed density operator, as expected for a state w
maximal entanglement. Thus, we can express the canon
maximally entangled state,uNMES& for the system described
by the Josephson Hamiltonian~1! as

NMES5
1

AN11
(
n50

N

un&uN2n&. ~23!

From Eq.~18!, the maximal entanglement is

Emax52 (
n50

N
1

N11
logS 1

N11D52 logS 1

N11D5 log~N11!.

~24!

As mentioned previously, this is what is expected for t
maximum entanglement, since the dimension of the Hilb
space of the individual modes isN11 ~see p. 510 of Ref.
@35#!.

A. Entanglement of the ground state

As mentioned in Sec. II, the systems consisting of a p
of tunnel-coupled BEC’s is the simplest system described
the Bose-Hubbard model and corresponds to a lattice po
tial with just two sites. For the Bose-Hubbard model, in t
limit of an infinite lattice, there is a quantum phase transiti
where the ground state changes from superfluid phase to
Mott insulator phase@27#. Such a transition from the Mot
insulator to superfluid phase was recently experimentally
served by Greineret al. @37#.

In the Mott insulator state, particles tend to be localized
the individual lattice sites with no phase coherence across
lattice, whereas in the the superfluid state, each atom
spread over the entire lattice and there exists long-ra
phase coherence across the lattice. This transition from
Mott insulator to the superfluid state occurs as the ratio of
coupling between lattice sites to the interaction strength
creases. As long-range coherences in quantum system
intrinsically linked to entanglement, it is of interest to qua
tify the entanglement in the system in relation to this tran
tion. Since there is no measure for the entanglement in
tems consisting of three or more subsystems, the two-m
system here is the only Bose-Hubbard model for which
can currently give a complete description of the entang
ment.

Making the two modes identical~by setting the bias,Dm
to 0), the Hamiltonian~1! was diagonalized numerically fo
increasing values coupling to interaction ratioEJ /K and the
entanglement of the ground state was determined via
~17!.

Figure 1 shows the results of this analysis for differe
values of the total particle number,N. SinceEJ is the tunnel-
ing parameter, the larger its value the stronger the interac
between the modes of the system. As such, it is intuitive t
that for no coupling, the entanglement between the mode
9-4
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ENTANGLEMENT OF TWO-MODE BOSE-EINSTEIN . . . PHYSICAL REVIEW A67, 013609 ~2003!
zero and as the coupling increases, the entanglement bet
the modes in the ground state increases. The entangle
asymptotically approaches a constant value as the r
EJ /K→`, which is illustrated more clearly in Fig. 2, whic
shows the results forN5100. Now we consider the two
extreme parameter values. First forEJ50, the ground state
will have an equal, fixed number atoms in each of the t
modes and is therefore the localized state,

uc loc&5UN2 L UN2 L . ~25!

Clearly this state has zero entanglement. ForK50, the
Hamiltonian consists of just the tunneling term

Htun52
EJ

2
~ âA

† âB1âB
† âB! ~26!

FIG. 1. The variation of the entropy of entanglement of t
ground state for differing particle numberN and increasing coupling
to atom-atom interaction ratioEJ /K.

FIG. 2. The variation of the entropy of entanglement of t
ground state for increasing coupling to atom-atom interaction r
EJ /K for N5100.
01360
een
ent
tio

o

and it is easy to show that the ground state of such a Ha
tonian for a single particle is thebondingstate

u1&5
1

A2
~aA

†1aB
† !u0&u0&, ~27!

whereu0&u0& is the vacuum state. So in the ground state
K50 each individual particle is in the bonding state and
state of the system is theN-particle analogue of the bondin
state

uc1&5
1

A2NN!
~aA

†1aB
† !Nu0&u0&. ~28!

This state is the two-site analogue of the superfluid pha
with each atom being spread over the two modes. From
~18!, the corresponding entanglement for this state is

E~r1!52 (
n50

N
1

2N S N

n D logF 1

2N S N

n D G . ~29!

Thus for zero coupling, the ground state is the localiz
state~25! which has no entanglement. As soon as the c
pling begins to increase, the entanglement between
modes increases rapidly, as the occupation number of
modes is no longer exact and fluctuations in the phase
crease. As the tunneling amplitude continues to increase
entanglement asymptotically approaches a maximum va
given by expression~29!, which corresponds to the bondin
state. In this state, the occupation number fluctuations
large, resulting in phase coherence between the modes w
is characterized by the high entanglement.

Figure 3 shows that the maximum entanglement in
ground state is much less than the maximal entanglemen
the system, log(N11).

However, it appears the ratio of the entanglement of
two states remains finite asN→`.

io

FIG. 3. The ratio of the entanglement of the bonding state to
maximal entanglement,E(r1)/Emax for increasing particle numbe
N.
9-5
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B. Comparison of entanglement

The dynamical schemes developed in Ref.@13# aim to
create states of the form~in the Fock basis!

uXcat~D !&5
1

A2
S UN1D

2 L UN2D

2 L 1UN2D

2 L UN1D

2 L D ,

~30!

where D5NA2NB . It was argued that the amount of e
tanglement in the state~30! is characterized by the distanc
D. For D50 the state is separable and thus not entang
while for D5N, uXcat(N)& is equivalent to Eq.~10! so is
maximally entangled~which in this decomposition is still an
incorrect assumption!. However, since motivation for the
definition of these states was the decomposition of the
tem into individual particle subsystems, these states
have different entanglement characteristics when analy
with the BEC modes as the subsystems. From Eq.~18!
it is clear that for D50 the state~30! is separable and
thus unentangled. However, forD.1, we have
E(uXcat(D)&^Xcat(D)u)51—the amount of entanglement b
tween the modes is the same independent of the value fD
(.1). The initial state prepared for the dynamical scheme
Ref. @13# is the N-particle bonding state~28!. According to
expression~29!, the entanglement between the modes in t
state is actually greater than the entanglement in the fi
ideal output state, given by expression~30! with D5N.
From this observation, it seems that the dynamical proc
outlined in Ref. @13# destroy entanglement between th
modes. To gain a better understanding of this dynamical p
cess with respect to the modal decomposition, we cons
how the entanglement between the modes varies during
evolution.

C. Dynamics of entanglement

In studying the dynamics of the system of tunnel-coup
BEC’s, we express the the Hamiltonian~1! in the pseudo-
angular-momentum representation, introduced in Ref.@10#,
used in Ref.@13#. In this representation, we define the thr
angular-momentum operators

Ĵz5
1

2
~N̂B2N̂A!, ~31!

Ĵx5
1

2
~ âA

† âB1âB
† âA!, ~32!

Ĵy5
i

2
~ âA

† âB2âB
† âA!, ~33!

which have the canonical commutation relations@ Ĵx ,Ĵy#

5 i Ĵz ~and cyclic permutations!. The Casimir invariant is
easily seen to be

Ĵ25
N

2 S N

2
11D . ~34!
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In this way the tunnel-coupled pair of BEC’s system
analogous to an angular momentum model with total ang
momentumj 5N/2. The Hamiltonian~1! ~with Dm50) can,
thus, be rewritten as

ĤJ25x Ĵz
22V Ĵx , ~35!

where we neglect constant energy shifts,x5K/2 and V
5eJ . This Hamiltonian~35! is slightly different from that
defined in Ref.@13# ~and Ref.@10#!. In these references, th
Ĵx term, which corresponds to the tunneling term, was ad
rather than subtracted~we assume only positive paramet
values!. However, this does not change the eigenstates of
system, but does reverse their order in terms of energies,
the ground state in the addition case is the highest exc
state in the subtraction case. This means that the result
the dynamics from Ref.@13# can still be applied to Hamil-
tonian ~35! by using a different initial state, as we will dis
cuss below.

In the angular-momentum representation, states can
expanded in terms of theĴz eigenstates,u j ,m&z , where2 j
<m< j . In this basis, there is no indication of the underlyin
subsystem structure of the system. It is interesting to n
that in terms of the Fock basis, we have

u j ,m&z[uN22m&uN12m&.

This implies that for any state

uc&5 (
n50

N

cnun&uN2n& ~36!

5 (
n50

N

cnu j ,n2N/2&z ~37!

meaning that the entanglement between the modes ca
calculated from the coefficients in the angular moment
basis.

In Ref. @13#, a semiclassical model of Hamiltonian~35!
was used to determine the optimal parameter values and
scale to create states of the form of expression~30! with D
5N (uXcat(N)&), from the evolution of a given initial state
In the angular-momentum representation

uXcat~N!&5
1

A2
~ u j ,2 j &z1u j , j &z). ~38!

From this analysis it was argued that using the criti
parameter ratio

2V

xN
51 ~39!

in the evolution of the initial state over time,tc5 ln(8N)/xN
~where time is in units of\), could create states of the form
of Eq. ~38!.

The initial state given in Ref.@13# was the maximal
weight state ofĴx . This corresponds to the bonding sta
9-6
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~28!. For the Hamiltonian above, the similar results will b
achieved using theminimal Ĵx weight state which is

uc~0!&5u j ,2 j &x[
1

A2NN!
~aA

†2aB
† !Nu0&u0&. ~40!

In other words,

uc~ tc!&5e2 iĤ J2tcuc~0!&'uXcat~N!&. ~41!

Using this parameter ratio and the initial state, the dyna
ics were investigated by numerically integrating the Sch¨-
dinger equation in the eigenbasis ofJz .

Figure 4 shows a plot of the evolution of the exactJz
distribution,P(m,t)5uz^ j ,muc(t)&u2. This concurs with the
results of Ref.@13#, showing that at timetc the final state is
approximately of the form of the cat state given in expr
sion ~38!. The corresponding entanglement between
modes over the evolution is shown in Fig. 5. The state
time tc is not an exact cat state, and as such the entanglem
at tc was found to be greater than the initial entangleme
This differs from our earlier observation that the entang
ment in the initial state is destroyed. This would be true if t
state at timetc was exactlyuXcat(N)& ~38!.

However, from Fig. 5 it is easy to see that the maximu
entanglement is not reached at this critical time but som
what earlier, and attc the entanglement between the modes
in the region of a local minima. As we can see, in the ea
stages of the evolution, the entanglement between the m
approaches the maximal entanglement of the system. R
ing this to Fig. 4, it is easy to see that the maximum e
tanglement is approached as the original peak in the p
ability distribution flattens over the evolution, approaching
completely even distribution, corresponding to the ma
mally entangled state~23!. As the evolution continues, th
distribution begins to peak at the extremes and the entan
ment decreases.

FIG. 4. The evolution of theJz distribution for j 510 (N520)
with 2V/xN51. Note that at timetc'2.5376 the distribution is
peaked at the two extremem values, corresponding to an approx
mate cat state as shown in Ref.@13#. Again, the time is in units of
\.
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In terms of modal entanglement, the dynamical sche
proposed in Ref.@13# can still be used to create a close
maximally entangled state, over a shorter time period th
for the creation of the inaccessible many-particle entang
state.

It is of interest to note that the critical parameter ratio~39!
is the same as that found by Milburnet al. @10# in regards to
a transition in the dynamics from self-trapping to delocaliz
tion. For an initial condensate localized in one mode, wh
2V/xN.1, the condensate distribution will remain loca
ized within the mode as it evolves. For 2V/xN,1, the evo-
lution results in a delocalization of the condensate distri
tion between the two modes.

V. THE ATOM-MOLECULE BEC

The atom-molecule BEC described by Hamiltonian~4! is
a similar system to that of the tunnel-coupled pair of BEC
In neither system can we consider the individual partic
~the individual atoms and molecules! as separate, distin
guishable subsystems but both consist of the coherent
pling of two distinct BEC’s. In the atom-molecule BEC, th
two modes of the system do not differ spatially or by som
internal quantum number but are rather two chemically d
tinct components. Nonetheless, the determination of the
tanglement between the atomic and molecular modes
analogous to the calculations above for the tunnel-coup
BEC’s.

As before, the state of each mode is characterized by
occupation number, however, in the case of the ato
molecule BEC the set of Fock states spanning the Hilb
space of the system depends upon whether the total num
of atomsNatm is even or odd. In the case of an evenNatm , a
general stateux& of the system can be expanded as

ux&5 (
n50

M

dnu2n&uM2n&, ~42!

FIG. 5. The evolution of the entanglement. The dashed l
shows the maximal entanglement, while the circle indicates the
tanglement at timetc ~time in units of\!.
9-7
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whereM5Natm/2, while for Natm odd, the general stateuf&
can be expressed as

uf&5 (
n50

M

dnu2n11&uM2n&, ~43!

where in this case,M5(Natm21)/2 and the$dn% are com-
plex coefficients defining the state. In analogy with expr
sion ~17! for the reduced density operator for the tunn
coupled BEC’s, the reduced density operator for a gen
state of the atom-molecule BEC is given by

rb5 (
n50

M

udnu2uM2n&^M2nu, ~44!

where the partial trace has been taken with respect to
atomic mode andM is defined as above for even and o
total atom numberNatm . Thus the entropy of entangleme
between the atomic and molecular modes is given by
~18!, the same expression as for the tunnel-coupled BE
whereN, the total particle number, is replaced byM as de-
fined above, i.e.,

E~rb!52 (
n50

M

udnu2 logudnu2. ~45!

Since the dimension of the subspace of the modes isM, the
maximally entangled states, analogous to Eq.~23!, are

uM MES
even&5

1

AM11
(
n50

M

u2n&uM2n&, ~46!

for Natm even, and

uNMES
odd &5

1

AM11
(
n50

M

u2n11&uM2n&, ~47!

for Natm odd and will have entanglement log(M11).
Following the same numerical analysis as in Sec. IV

Fig. 6 shows the results for the variation in the entanglem
of the ground state of the atom-molecule BEC for differi
values of the ratio of the parameters,d/V and total number
of atomsNatm . To relate the entanglement structure of t
ground state shown in Fig. 6 to some physical properties
the system, we need to consider other properties of
ground state for increasing total atom number and param
ratio d/V. Zhouet al. @31# considered the two zero temper
ture correlationŝ n̂a&, the average atomic occupation num
ber, and thecoherence correlatoru5^â†â†b̂1b̂†ââ&. Fig-
ure 7 shows the results for the average atomic occupa
number and the coherence correlator for the same param
ranges used for the entanglement calculations.

We should note that the results here using direct num
cal diagonalization of the Hamiltonian concur with the r
sults found by Zhouet al. @31# utilizing the exact solution.

From Fig. 7~a! it can be seen that the maximum entang
ment in the ground state occurs, where the average ato
occupation is comparative to the average molecular occu
01360
-
-
al

he

q.
s,

nt

of
e

ter

n
ter

i-

-
ic
a-

tion. As indicated in Ref.@31#, the threshold coupling for the
formation of a predominantly molecular BEC isd/V
'1.4ANatm. In the limit of largeNatm , the threshold for the
molecular BEC is in fact a quantum phase transition. Fig
8 shows the comparative results for the average atomic
cupation number, the coherence correlator and the entan
ment forNatm5100. That the entanglement isnot maximal
at the quantum critical point is quite different to the behav
of the transverse Ising model, studied in Refs.@2,38#. The
entanglement characteristics of the transverse Ising m
are, of course, much more complicated, since it consists
many distinguishable subsystems. In Ref.@2# it was conjec-
tured that in the sense ofentanglement sharing—how much
two-party entanglement can be distributed amongst a gi
number of parties—the ground state was maximally
tangled at the critical point. At the critical point the groun
state saturates the bounds of entanglement sharing. Whil

FIG. 6. The entropy of entanglement of the ground state of
atom-molecule BEC for increasing values of the ratiod/V and
atom numberNatm .

FIG. 7. The average atomic occupation number~a! and the co-
herence correlator~b! for the ground state of the atom-molecu
BEC. Note that both the average atomic occupation number and
coherence correlator have been scaled using the total atom nu
N.
9-8
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ground-state entanglement is not maximal at the crit
point, the state is still strongly entangled. This would ma
intuitive sense, given that the property responsible for
long-range correlations in quantum phase transitions is
tanglement. The plots of the results for the entanglement
the coherence correlator share a common structure, how
the maximum values occur for different parameter valu
This could mean that there is possibly another correla
that is more closely related to the entanglement between
atomic and molecular modes.

VI. CONCLUSION

We have argued here that in a system consisting of a
of tunnel-coupled BEC’s, the individual bosons within th
condensates cannot be viewed as distinguishable subsys
Subsequently entanglement in this system should not

FIG. 8. The average atomic occupation number, coherence
relator, and the entanglement for the ground state of the at
molecule BEC, forNatm5100. All three properties have bee
scaled with respect to their maximum value so as to compare
characteristics of these properties.
t-
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viewed as between the individual bosons. A more physica
relevant description of this system is as a bipartite syst
where the subsystems are the two modes. Using this des
tion we have analyzed quantitatively the entanglement
tween the two modes in the ground state of the coup
BEC’s and its relation to the Mott insulator to superflu
phase transition. This idea was extended to consider the
tanglement between the atomic and molecular modes in
atom-molecule BEC.

On top of this, we have demonstrated that the dynam
scheme of Ref.@13#, argued to be viable with current state
the art technology, can be used to create a highly entan
state between the modes of the BEC system, over a sm
time scale.

As mentioned earlier, the amount of entanglement
pends upon how the system is decomposed. In Sec. IV C
was shown that the tunnel-coupled two-mode system can
viewed as a pseudo-angular-momentum system—a si
qudit. In this description—viewing this solely as a sing
qudit—it appears that there is no entanglement present in
system. Entanglement is only seen when the system
viewed in terms of subsystems, in this case, the two mod
In other words, the entanglement cannot be character
when we neglect information about the underlying su
systems and only consider properties of the system a
whole.

A possible way to create entanglement between individ
bosons in the tunnel-coupled system would be to engin
some state within the condensate traps, then free the part
~see@39,40# for examples of this procedure applied to oth
BEC systems!. Once the bosons are free from the condens
they become distinct allowing entanglement to form betwe
them. However, while the bosons remain in condensate t
are indistinguishable and cannot become entangled with e
other.
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