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This work treats four-wave mixing4AWM) in Bose-Einstein condensatéBEC), focusing on the nonlinear
phase mismatch, maximum output, and optimal input combination. We show that the nonlinear phase mismatch
decreases the 4WM efficiency. It was found that the 4WM efficiency depends on both the coupling coefficient
(i.e., the product of the total number of atoms, the scattering length, and the overlap jraegrahe ratios
among the three initial input beams. The 4WM efficiency increases with the increase of the coupling coefficient
when it is small, then saturates, and finally decreases at high coupling coefficient due to both pump depletion
and phase-modulation effects. A maximum output efficiency of about 50% in our case is predicted. In order to
get the maximum output, the two pump beams should have equal amplitude and the probe beam should be as
small as possible. In addition, a large coupling coefficientr/2), which is determined by the ratio of the
probe beam to the total input, is required. On the other hand, when the coupling coefficient is fixed, a
maximum output for this case can be obtained by optimizing the input ratios among the three input beams.
Other ratio combinations will decrease the 4WM efficiency.

DOI: 10.1103/PhysRevA.67.013603 PACS nuntber03.75.Kk, 42.65.Hw

I. INTRODUCTION Research on 4WM of matter waves benefits a lot from
nonlinear optics because of the similarities between the
A recent spectacular experimefit] demonstrated four- equations that govern each system. As is well known, both
wave mixing(4WM) of matter waves in Bose-Einstein con- equations include a self-phase-modulation term, three cross-
densatesBEC). This important experiment opens up a new phase-modulation terms, and a wave-mixing term
area in the study of BEC, and has triggered a flurry of theof2-6,19,2Q. In optical 4WM, it was shown in the undepleted
retical activity [2—13]. Very recently, Ketterle’s group re- pump case that the unequal pump intensities introduce a
ported new experimental results on 4WM with BEEGY. A phase mismatch in the wave-mixing tefd®]. Two of the
gain as high as 20 in atomic 4WM was obtained in theirauthors also have shown that self- and cross-phase-
experiment. As a matter of fact, Goldste#n al. [15] pro- modulation effects do lead to nonlinear phase mismatch and
posed the idea of phase conjugation of matter waves. Howinfluence the 4WM efficiency and phase-conjugation fidelity
ever, theoretical investigation of the 4WM of matter waves isin optical 4WM|[20,21]. Therefore, we expect that nonlinear
still one of the main areas of interest in nonlinear atomicphase mismatch also plays an important role in atomic
optics[2-11,16-18 AWM. Trippenbachet al. [2] mentioned that the self-and
Trippenbachet al. presented the 4WM theory of matter cross-phase-modulation effects will lower the 4WM output,
waves in BEC[16]. Then they[2] developed a three- but they did not focus on the consequent nonlinear phase
dimensional quantum-mechanical description for 4WM inmismatch and its influence on the 4WM efficiency.
Bose-Einstein condensates using the time-dependent Gross-In this work, the self- and cross-phase-modulation in-
Pitaevskii equation. Goldsteiet al. [3] demonstrated that a duced nonlinear phase mismatch in atomic 4WM and its in-
trapped condensate could be used as a phase-conjugate nfitence on the 4WM efficiency are studied. The maximum
ror for a weak atomic beam. They also presented an exaciutput and the optimal initial inputs for atomic 4WM are
quantum-mechanical analysis of collinear 4WM in a multi- investigated. Section Il describes our physical model and
component BEC consisting of sodium atoms in fhel  gives out the necessary formalism. In Sec. lll, several aspects
ground stat¢4]. In addition, many others works, such as the of atomic 4WM will be discussed. In Sec. Il A, we discuss
instabilities, self-oscillation$5], and fluctuation[6] of the  the nonlinear phase mismatch and its influence on the 4WM
number of atoms in BEC wave packets in atomic 4WM, haveefficiency. In Sec. Ill B, we discuss the coupling coefficient
been studied. dependence of the 4WM efficiency. In Secs. Il C and 111 D,
the maximum 4WM output and optimal initial conditions for
atomic 4WM are investigated. Finally, in Sec. IV we present

*Corresponding author. a summary and conclusion. We believe this work is useful
Email address: giguang.yang@hamptonu.ed(office) or  for directing the practical atomic 4WM experiment. The re-
ggyang@hotmail.conthoms. sults presented here are also valid for optical 4WM.
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FIG. 1. Schematic of the system used for 4WM. The four matter

waves interact with each other in the range eff<L. The two
forward (the two backwaripropagating waves are distinguished by
their internal state.

Il. MODEL

In our atomic 4WM system that we consider here, there
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are four separate matter waves that can be distinguished by

their propagation direction and internal stf¢ as shown in

Fig. 1. For simplicity, we assume the matter beams can be

described by plane waves. Then the total wave function can

be written in the form

O=[D(X,y)DP1:(z,t) + D,(X,y)D, f(Z,t)]ei(kZ_“’t)
F[D1(X,Y) D 1(Z,) + Do(X,Y)Pop(z,1)]e KT,
)

wherek is the wave vector; k?/2m= », andm s the atomic
mass. For convenience, we cdll; the forward pump beam,
®,,, the backward pump bean®,; the probe beam, and
®,,, the signal beam.

The matter waves are governed by the coupled Gross-

Pitaevskii nonlinear Schdinger equation$5],

ID,
at

hZ
- EV2+V1+ N7 (91| D 1| ?+ 0y D|?) | Py
2

and similarly for®, with 1< 2, whereV,(x,y) is the trans-
verse potentialN is the total number of atoms in the con-

densate, and; is the scattering strength that is related to the

corresponding s-wave
=4ha; /m.
Substituting Eq.(1) into Eq. (2) and using the slowly

scattering lengtha; by g;

Py . m
peai 01| D 1p| %+ 201 | D12+ gy P 4|
Doy D1 D3
+gX|(I)2b|2+gX ) 1b (4)
1b
dP,; . m
9z :lH[gzm)zf|2+292|q)2b|2+gx|q)1f|2
ORTTOPS O
+gx|q)lb|2+gx ) 2f (5)
2%
D,y m
Tz_lﬁ[92|®2b|2+292|q>2f|2+gx|q)lf|2
ORRGPRT
+9x|®1b|2+9x—¢ 2bs (6)
2b
with
ngNgjﬂj:NngdXd)’|¢’j(X,y)|4, =12,
ngNQMXZNgJ dXdMq)l(ny)|2|(I)2(va)|2- (7)

The overlap integraly is obviously determined by the
radius of the condensaf8].

The first term on the right-hand side of each of the cou-
pling equations describes the self-phase-modulation effect.
The last term is a source term of 4WM that either creates or
destroys atoms in the wave packet being propagated. The
other terms account for cross-phase modulation. The self-
and cross-phase-modulation terms do not lead to pafiitle
tensity in nonlinear optigsexchange between the four beams
directly. However, as two of the authors demonstrated in
nonlinear optic$20,21], these terms do change the phases of
the four beams, leading to phase mismatch in the 4WM pro-
cess and a decrease of the 4WM efficiency.

For the sake of clarity, we decompose the field into a real
amplitude and phase by the definition @f ,= p]-’uei‘PiM.
Substituting it in Eqs(3)—(6), one can find out readily that
the nonlinear phase mismatch of the 4WM terms is given

varying envelope approximation, i.e., the spatial envelopeQY A¢(2111(0).121(0).125(L),9)= @2 1+ @15 @11~ ¢2p,

of these beams vary slowly over a de Broglie wavelengt

one can obtain the following coupling equations for the

steady-state cagé]:

IP ¢

m
TZI 7K 91|¢1f|2+291|q)1b|2+gx|q)2f|2

CDZ fq)lbq);b
+gx|®2b|2+gx¢—lf ©)

1f»

hwherelL is the length of the interaction region as given in

Fig. 1.
For simplicity, we investigate the case gf=0,=0y
=g so that the coupling equations become

dpys _ dplb __ dpy ¢ __ dpap
dz dz dz dz
2mg ]
= 7k VPitP21P1bP2p SINAR), (8
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dA_"D = — m_g Pob—P1it P2i— P 0.10 | —— With phase modulation _
dz hk 2b i 2f 1b LT S T without phase modulation
n \/plfpleZb_ \/PZfPle2b+ \/Plfpzfplb ﬁe oos b -
P2t Paf P2b g S
© N
c 006 N\ .
. /w) cosAe) . © £
P1b g
kS L i
Equation (8) indicates clearly that the nonlinear phase g oot
mismatch A¢ does affect the 4WM process. The phase- =
matching condition can be satisfied only if the nonlinear § oo | J
phase mismatch is negligible, for exampleo~— /2, as &
we pointed out in Ref20]. Combining Eqs(8) and(9), one
can get %0 0z 0s  0e o5 1o

Position in the interaction range z (units of L)

P1t(2)p16(2) + p21(2) p2p(2) = pan(L) p2 ¢(L)
2\p11(2) p1p(2) p2 1(2) p2p(2)

cogAg)=

FIG. 2. The calculated 4WM signals in the interaction range
10) with and without considering the phase-modulation effect, where
the coupling coefficient ig=2.226. The three input beams satisfy
Substituting Eq(10) into Eq.(8), one can get the analyti- p{?=p5)=5p} .
cal solutions for the atomic density §5,22]

 4pu(0)pa(L)[p2 (0)F p1s(0)] (=09 2T N, 17)
P12 2 (O)p2 1(0) + p1o(0) IR Lo 2hk K

L-z
X sin? §effT), (1))  where( is called the coupling strength in nonlinear optics
[19]. However, in atomic 4WM{ becomes the coupling co-
7)= 0)— 0)+ 2), 12 efficient except a factor of 4 singd. =1 (the normalization
P11(2)=P11(0) = p16(0)+ P1o(2) (12 condition [3], therefore we will call it a coupling coefficient
p21(2)=pas(0)+p1p(0)—p1p(2), (13)  inthis paper to emphasize the difference from nonlinear op-
tics. In order to get these solutions, the boundary condition
P2n(Z) = pan(L) = p1n(2), (149 pi(L)=0 was used.
with
I1l. DISCUSSION
p=p1£(0) +p2¢(0) +pap(L), (195

A. Influence of nonlinear phase mismatch

L 0 0 i
geﬁ=§\/1—4p2b( ) [P21(0) n P16(0) . (16 One should notice that;,—0 whenz—L, therefore Eq.
p p p (10) becomes

z—L z—L
co§Ag(z—L)]= lim pai( )P 1b( ) _
Plb(Z—*L)—>02\/plf(ZHL)plb(Z_)L)pZ #(z—L)pap(z—L)

From a physical considerationp,,/dz must be negative at these terms, since the phase-modulation effect and the wave
z=L, as can be obtained from E), namely, sifpA¢p(L)]  mixing have the same physical origin as is seen in the cou-
<0. Therefore, the phase of the signal beam=at. is given  pling equations. On the other hand, two of the authors argued
by @1p(L)=—m/2+ @q;(L) + @2,(L) — @5 ¢(L). This rela- that the phase-modulation effect on the 4WM efficiency has
tionship is also true at otherpositions if the self- and cross- to be considered when the nonlinear phase mismatch is large
phase-modulation terms are neglected in the coupling equdi nonlinear optic§20]. In atomic 4WM, the same result,
tions[20]. This is the well-known result in nonlinear optics. i.e., that the phase-modulation effect decreases the 4WM sig-
It indicates that the phase-matching condition is satisfiedhal, is expected.

completely[19]. However, it is not reasonable to neglect Figure 2 shows the calculated signal amplitude divided by
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1.4 T v T T T T T 0.40 T v T . T . T
121 P {0)p,(0):p, (L)=1:1:1 4 P,(0):p,,(0):p,, (L)=1:1:1
ol T 1 0% — (=727 ]
or - {=4.051 TN ] e £=4.051
08 e (=1.973 . 080 {=1.973 T
0s [ T G=0736 ] - (=0.736
0.4 - ,’I \\ -1
N / \ : =
2 o2} J N E o
7] , N 2
o] [ ’ \ Q.
(5]
0 o2 04l . oeL  oe L
n 1 1 1 1 1 i 1 1 z
0 0.2L 0.4L 0.6L 0.8L L o ) ) ) )
z FIG. 4. Distribution of the 4WM signals in the interaction range

for a different coupling coefficient, where the three input beams

FIG. 3. Cosine values of the nonlinear phase mismatches in thﬁave equal amplitude

interaction range for a different coupling coefficient, where the

three input beams have equal amplitude. . .
P a P length needed to arrive at the maximum. Of course, the

maximum cannot be arrived at in the whole interaction range

the total input as a function of the position in the interactionwhen the coupling coefficient is small. The calculations in-
range. The solid line represents the result with the phasetficate that the maximum signal arrives when the absolute
modulation effect. The dashed line indicates the result Withva|ue of the cosine function of the nonlinear phase mismatch
out including the phase-modulation effect. The parameterg the maximum.
used in the calculation are given in the figure. CIearIy, with We also note that the nonlinear phase mismatch and the
the propagation of the signal beam in the interaction rangesorresponding 4WM signal not only depend on the coupling
the nonlinear phase mismatch decreases the 4WM efficiencyoefficient, but also on the ratios of the three initial input
thus the signal calculated with the phase-modulation effecitomic densities. For convenience, we define two ratios as
becomes smaller than that without including the phaser =, (0)/p andr,=p1¢(0)/[ p—p2 1(0)]. Figure 5 shows
modulation effect. ObViOUSly, the influence of the nonIinearthe nonlinear phase mismatch in the interaction range when
phase mismatch on the 4WM efficiency cannot be neglectedhe coupling coefficient is 2.111. The associated 4WM sig-
Therefore, all terms will be included in the fOIIOWing calcu- nals in the interaction range are shown in F|g 6. The param-
lations. eters used in the calculations are shown in the figures. Obvi-

It is worth noticing that the nonlinear phase mismatchoysly, the nonlinear phase mismatch and the 4WM output
varies with both the positioa in the interaction range and change significantly with the ratias, andr,, even though

the initial input atomic denSitieénpUt intensities in nonlin- the total input is f|Xed(the Coup”ng coefficient is f|Xed
ear optics. Consequently, the 4WM efficiency changes ac-

cording to the positiorz and the initial input atomic densi- 14 . . . : . ; ; .
ties. 12l {=2.11,1,=1/3 ]
Figure 3 shows the cosines of the nonlinear phase mis: I i
matches versus the positianin the interaction range. Here
we present the results for cases with different nonlinear cou-
pling coefficient{ but equal initial amplitudes for the three
input beams, i.e1:(0):p,(0):pop(L)=1:1:1. Theinitial
values az=L of the cosine functions are 0, as we mentioned g
above. With the propagation of the signal beam, they deviateg
from O due to phase-modulation effects. We notice that the
wave-mixing term as well as the self- and cross-phase-
modulation terms contribute to the phase changes of the fou
beams. In addition, the phases are coupled with the real am
plitudes. Thus, a complex relationship exists between the
nonlinear phase mismatch and the positmras shown in
Fig. 3. However, the amplitudes vary in a simple way with
the positionz in the interaction range. As is shown in Fig. 4,
the signal grows until a maximum is obtained, then it de- FIG. 5. Cosine values of the nonlinear phase mismatches in the
creases to zero. After that, the process will be repeated. Thgteraction range for a different input combination when the cou-
larger the coupling coefficient, the shorter the interactionpling coefficient is fixed.
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T " T " T - course, Fig. 7 shows that when the total atomic number and
025 |- (=211, r=1/3 g the scattering lengtlior the overlap integralare constant,
— r=0.1 ] the 4WM efficiency serves as a function of the overlap inte-
gral (or scattering length

0.20
C. Maximum output

As shown in Figs. 4 and 6, the signal in the interaction
range not only increases but also decreases with the interac-
tion length. Therefore, it is useful and possible to set the
initial input beam amplitudes and adjust the coupling coeffi-
cient (change the total atomic number, the scattering length,
or the overlap integrafto get the maximum signal output in
atomic 4WM. We discuss the conditions for maximum signal
output from the 4WM in this subsection. Then, in the follow-
0 o2l 04l . o06L  os8L L ing subsection, we give out the optimal conditions for atomic
4WM when the coupling coefficient is fixed.

The output signal can be obtained from Etfl) by setting
z=0. It reads

0.15

p.(2Vp

0.10

0.05

0.00

FIG. 6. The 4WM signals in the interaction range for different
input combinations when the coupling coefficient is fixed.

Therefore, it is very necessary to determine the ratjoand — /82— 160..(0 0)02 (L)Sird(2

r, to get the maximum output in the 4WM experiments fora  p,,(0)= B\ P1(0)p: f(SZ)sz( SN (2L er)

fixed coupling coefficient case. This will be discussed further 8p2p(L)COS (Ler) 18

in Sec. Il C. (18)
with

B. Atomic number dependence

=p2—4p, (0 L
Figure 7 shows the coupling coefficient dependence of the p=r P2 ((O)pa(L)

4WM efficiency. In this calculation, we assume +4[p;¢(0) = p1¢(0)1pop(L)SIP(Ler). (19
p11(0):p21(0):pop(L)=1:1:1. As weexpected, when the
coupling coefficient is small, the signal increases with th
incree_lse of the poupling coefficien.t..With th(_a increase of the ~ ,  (0) &-— \/52—16rbrp(1—rb)3(1—rp)2 SIN?(24 o)
coupling coefficient, the 4WM efficiency will be saturated 7= = 8(1—ro)(1—r.)cos {un)
due to both the pump depletion and the nonlinear phase- P b P eff 20)
mismatch effects. When the coupling coefficient is very high,
the 4WM efficiency begins to decrease. If one increases thgith
coupling coefficient, the bistable and multistable results will
be obtained5,22]. Because the coupling coefficient is the £=1-4(1—rp)(1-rp)[r, COS(Ler)
product of the atomic number, the scattering length, and the +1 (1= p)SINP(Zer) 1. (21)
overlap integral, when the latter two are constants, Fig. 7 just
shows the 4WM efficiency versus the atomic number. Of One finds from Eqgs(20) and (21) that the 4WM effi-

ciency is dependent on three parameters;, r,, and .
' — v ' ' One should notice that the last parameter depends on the
0.80 - 1 other two and the coupling coefficiegtthrough Eq.(16).
Therefore, the 4WM efficiency is determined by both the
coupling coefficient and the ratios of the three input beams
to the total input.

eOne can rewrite Eq.18) by defining the 4WM efficiency

0.25

=
g oz In the case in whicln, andr, are fixed, when the condi-
3 tion:
5
2 o SIN(Ler) =1 (22)
N o0 is satisfied, the maximum of the 4WM efficiency is obtained
' as
0.05 max  _ 4rbrp(1_rb)2(1_rp) 23)
Mixed ratios (1— rb)2(2rp_ 1)2+ 2r,— rI:2) :
T T T T T s T This equation indicates that the maximum 4WM effi-
Coupling coefficient ciency is determined only by the ratiogandr,. Obviously,
FIG. 7. The 4WM efficiency vs the coupling coefficient for the whenr,, is fixed, it is necessary that the two pump waves
case in which the three input beams have equal amplitude. have an equal initial amplitude, i.e.,=0.5, to obtain the
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maximum output. It is readily apparent in E@3) that the  ciency of 50%, is completely different from the result for the
theoretical maximum output of the 4WM can be obtainedundepleted pump approximation cd8e19].
whenr,—0. That is, In order to get the 4WM described by E¢23) and(24),
one has to adjust the coupling coefficient to satisfy the con-
(1_rb)2ftﬁ0 dition sirf(Zss)=1. For a certain allocation of the three input
77maXZZ——fb T2 (24 beams, i.e.r, andr, are constants, the associated coupling

coefficient may be obtained by a combination of E{®5)
This result, which gives out the maximum 4WM effi- and(22),

2 2 2
omumal :z\/ (1-rp)%(2rp,— 1)+ 2rp—rj (25
fixed ratioes 2 N (1—rp)%(2r,—1)%+2r,—rp—4r(1—rp)(1—rp)

Clearly, the coupling coefficientoPimal . that is needed When the ratio of the probe to the totg} is fixed, a

for the maximum output is determined only by the ratigs ~maximum output can be obtained by setting- 3. The de-
andr,. On the other hand, this parameter relates with theviation ofr, from 0.5 decreases the 4WM output. Wheris
total input, the scattering length, and the overlap integral byixed, one can also find amn, to get the maximum output.
. 2 The required coupling coefficient for obtaining the maxi-
ggfgg‘igtm:TaNn. (26)  mum output for the fixed, andr, case is shown in Fig. 9.
One can find that a large coupling coeffici€nt7/2) is nec-
. - essary for the maximum 4WM efficiency. However, this con-
Therefore, one can satisfy the condition of B@5 by ition"can be satisfied easily. For example, the coupling co-
changing the total input, the scattering length, and/or thesicient must be 6.8 in order to get the maximum output
overlap integral. That means the maximum 4WM output forwhenrb=0.1 andr ,=0.5. The typical value of the scattering
a fixed allocation of the three input beams can be obtained bPéngth is 2.75 nm ”the wave vectorks-107, and the overlap
adjusting these parameters. However, if the coupling coeffil-ntegral is about,l{? m? [3]. Using thesé parameters, one
cient given. by Eq.(25)_ is exceeded, the output signal will can get the total number of.trapped atoms of UP, whi'ch
decrease, instead of Increase, .due to the F?ha.se'mc’du""lt'fg}smaller than that used in the first atomic 4WM experiment
effect. Of course, the signal will increase again, if the changzl]
of the coupling coefficient is large enough, because of the ™
sine function in Eq(20). However, the maximum output will
not increase, as is shown in E3). Therefore, Eq(25)
gives the smallest coupling coefficient to get the maximum As we have seen in Sec. IllC, the maximum output can
output for fixedr, andry. - . be obtained when the pump inputs are equal and the probe is
Figure 8 shows the AWM efficiency as a function rgf . very small. This requires a very large coupling coefficient, as
a.ndrp. As we mentioned above, the maxmun; AWM effi- we mentioned above. Because the coupling coefficient de-
ciency .Of _about S0% can pe o_btamed whep=5 andry, ._pends on the total atomic number, the scattering length, and
—0; this is shown clearly in Fig. 8. In order to reach this ye oyerjap integral, in principle one can adjust these param-
theoretical maximum 4WM efficiency,

Il orob dal i ﬁ_o_ne thas tohuse E_lvg_ryeters to satisfy the maximum output conditions. However, in
Small probe and a large coupling coetlicient, as sShown In Figsome practical cases, only a small coupling coefficient is

9. The latter cpndition means that a large total input and/or.@a"d_ Therefore, it is necessary and important to adjust the
large overlap integral are required if the scattering length is

fixed.

D. Optimal initial inputs

e
5

0.5 7T S 1000

. G 5

g 04 E" ‘ 3 100

° 0.3 1L 2

s S 10
0.2 I" i S

2 gl Q

= 0.1 ‘ Vit O 1

S AT 003,
0.00

FIG. 9. Optimal coupling coefficient to get the maximum 4WM

FIG. 8. Maximum 4WM efficiency vs the ratiag, andr . efficiency at different input beam ratiog andr .
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09 atoms is taken into account, the 4WM efficiency will de-

1 creasq7].
0.8 -/,\0,014
) IV. CONCLUSION

07 0.028

1 0.042 This work presented a detailed discussion of the nonlinear
06 phase mismatch, maximum output, and optimal initial inputs

for atomic 4WM in Bose-Einstein condensation. It was
found that the nonlinear phase mismatch decreases the 4WM
efficiency. In addition, the 4WM efficiency is determined by
both the coupling coefficient and the ratiog andr,,. De-
pending on the magnitude of the coupling coefficient, the
signal of the 4WM will increase, saturate, and decrease with
the increase of the coupling coefficient when the ratigs
andr, are constant. On the other hand, when the coupling
coefficient is fixed, the 4WM efficiency depends on the ra-
' 09 tios r, andr,, thus one can adjust these two parameters to
. get a maximum 4WM output.

The maximum 4WM efficiency of about 50% can be ob-
tained when the probe beam is very small and the two pump
beams have equal amplitude. However, a large coupling co-
three input beam amplitudes,(andr ;) to get a maximum efficient is required to get this maximum output.
output for the fixed coupling coefficient case. _ The ge_neral case is that the coupling c_oefﬂment is flxeq or

Figures 5 and 6 show that the nonlinear phase mismatci! @ certain range. Therefore, we also d|scyssed th_e_optlmal
and the 4WM output depend on the ratigsandr ,. There- initial inputs for the case in which the cogplmg coefficient is
fore, it is possible to find the optimal initial inputs to get the cOnstant. The resuilts show that the maximum output for this
maximum output for a fixed coupling coefficient system. Un-case can be obtained by properly distributing the three input

fortunately, we cannot get an analytical expression for th?€@ms. The maximum 4WM efficiency of 12.36% was ob-

: : ; ; . tained for{=1.
output signal as a simple function of the input beam ratios.
b g P P The results given in this work should help experimental-

Thus, one has to do a lot of calculations in order to find the biai ; . | h
optimal inputs. Figure 10 gives an example for the case ofStS 10 obtain a perfect 4WM experimental setup to get the

{=1. From the calculation, we find that a maximum 4WM maximum output.

efficiency of 12.36% can be obtained whem,;(0) ACKNOWLEDGMENT

=0.23, pyp(L)=0.346%, and p;;(0)=0.423p. The

AWM efficiency for other input combinations can be ob- The work at Hampton University was supported by
tained easily from the contours in Fig. 10. If the loss of ARLCDAAD 17-02-C-0107.

0.5

0.4

0.3

0.2 4

01

0.1

FIG. 10. Maximum 4WM efficiency vs the input beam ratigs
andr,, where the coupling coefficient &=1.
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