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Bose-Einstein condensates in optical lattices: Band-gap structure and solitons
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We analyze the existence and stability of spatially extenddch-type and localized states of a Bose-
Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a
periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and non-
linear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and
analyze their stability in different band gaps, for both repulsive and attractive atomic interactions.
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[. INTRODUCTION riodic modesof the condensate in a lattice. These periodic
modes possess different symmetry, and provide a generaliza-

Trapping of neutral atoms in optical latticEs] provides  tion of both the Bloch modes in the theory of linear pt'eriodi_c.
an effective and powerful means for controlling the proper-Systems and of the extended states of a condensate in a finite

ties of Bose-Einstein condensat@ECS, as confirmed by a  ©Ptical lattice with a confining potentiall8]. We demon-
number of the recent experimentsee, e.g., Refg2—8)) strate that the matter-wave spectrum for such periodic BEC

. . . . states has a band-gap structure, which survives in the pres-
Couplllng bgtween the BEC. droiplets localized in weakly N ence of the mean-field nonlinearity in the GP equation.
teracting minima of a standing light wave creates a reconfig- We also find different types of condensate states which

urable matter-wave structure that_ can be eas_ily manipulategannot exist in the linear limit. These aspatially localized
by varying the strength of the periodic potential and its well,,hjinear modewf the condensate which exist in the band
spacing. , gaps of the matter-wave spectrum and, therefore, they should
Many properties of such arrays of the BEC droplets camye calledgap solitons The existence of the matter-wave gap
be understood, within the framework of the mean-field apsglitons was first suggested in the framework of the coupled-
proach, by employing the tight-binding approximation bor- mode theory13], in analogy to optical gap solitons in Bragg
rowed from solid-state physid9—-11]. Being based on the gratings. Remarkably, gap solitons—spatially localized
assumption of strong localization of the condensate wavatomic wave packets—may exist even in a condensate with
functions in the individual potential wells of the lattice, the repulsive interatomic interaction$13]. Their experimental
tight-binding approximation and the resulting discrete latticedemonstration, however, remains a challenge. Here, we
models provide a limited description of the BEC dynamics inpresent a comprehensive theory of the structure and linear
an optical lattice. An alternative reduction of the continuousstability analysis ofdifferent families of gap solitonsith
system to the discrete vector lattice involves employing aespect to variations in the lattice parameters and effective
complete set of on-site Wannier stafég], and is more gen- nonlinearity defined by the number of atoms in the conden-
eral than a tight-binding approximation. However, it is to besate. We discuss the key scenarios of instability of spatially
clarified whether such a reduction can provide predictions otocalized modes in optical lattices and the physical mecha-
the dynamics and stability of a BEC in a periodic potentialnism for creating different multiple states of the BEC drop-
more readily than the full mean-field model. A more ad-lets.
equate analysis of both periodic and localized modes of the We would like to emphasize that many of the effects de-
continuous Gross-PitaevskiGP) equation with a periodic scribed here in the framework of the GP equation with a
lattice potential is still missing. Some of the recent studies operiodic potential, such as the mode stability and the exis-
the GP mode[13-16 point towards interesting features of tence of the localized modes in different band gaps, cannot
the BEC dynamics that should be observed beyond the afpe obtained in the framework of the tight-binding approxi-
plicability of discrete models. mation since the coherent and spectral properties of these
The main purpose of this paper is to analyze the structurewo models are different. This latter issue is similar to the
and stability of the stationary states of a condensate in aBEC dynamics in a double-well potential where a rigorous
optical lattice, the so-called nonlinear modgs/], in the  coupled-mode wave theory should be based on the analysis
framework of a continuous mean-field model. This approaclof nonlinear modes of the entire structure, rather than con-
allows us to consider more general types of stationary statedensate wave functions of isolated well9].
and BEC dynamics without many of the restrictions of the The paper is organized as follows. In Sec. Il, we present
discrete models. We solve the continuous one-dimensionaur model and reduce it to the one-dimensional GP equation,
(1D) GP equation numerically and describe families of sta-under the assumption of a cigar-shaped condensate. Section
tionary states, which possess different spatial structure anidl includes the analysis of both linear and nonlinear matter-
stability properties. wave spectra in an optical lattice. We revisit the structure of
First, we find spatially extended stationargnlinear pe- the band-gap spectrum for the Bloch-like modes of the non-
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interacting condensate, and extend this concept to the noi?d+2d—r2d=0. Taking the ground-state solution,
linear case, demonstrating the existence of the nonlineap(r)=C exp(-r%2), whereC?= 1/ is found from the nor-
Bloch-like modes and the nonlinearity-dependent band-gagalization conditionﬁx|d>|2dydz: 1, and integrating Eq.
structure of the matter-wave spectrum in optical lattices. The1) over the transverse coordinate, we derive an effective

study of the BEC gap solitons in different band gaps is sumpne-dimensional GP equation in the dimensionless variables,
marized in Sec. IV, where we also present our results on the

stability of gap solitons, for both repulsive and attractive

atomic interactions. Section V concludes with a summary oy 1%y

and further perspectives. i—=— 5 — +V(X) ¢+ ogip|¥?¢, 2
ot 2 (9X2

IIl. MODEL

We consider the macroscopic dynamics of a BEC loadedvhered;p=2|aJ/a,, and the coefficientr=sgnfas) = =1
onto an elongated optical lattice, similar to those created in gharacterizes the type of the s-wave interactions. Due to the
number of experimentgsee, e.g., Ref§1—3]). The conden- Weak magnetic confinement kdirection, it is possible to
sate dynamics is described by the three-dimensional GPmit the term? from the effective potential, thus, assuming

equation, that the 1D lattice potentialV(x)=V,sir?(Kx) is uniform
and is not affected by the presence of the additional confin-
A 4 h? ) ) ing potential. Furthermore, it is convenient to reduce the pa-
'ﬁﬁ: B ﬁv VXY, + TP v, rameter space of the modgle., effectively seg,p,=1) by

rescaling the wave function ag— y\/gip. In physical

whereWV (X,Y,Z;T) is the wave function of the cigar-shaped terms, it means that the peak density of the condensate is
condensate, X(,Z) are the directions of strong transverse used to characterize the effective mean-field nonlinearity.
confinement, ani is the direction of the lattice. The com- The model(2) can describe the BEC in a one-dimensional
bined potential of the optical lattice and magnetic trapoptical lattice over a wide range of experimental parameters,
V(X,Y,Z) can be written as,V(X,R?)=Egsir’(mX/d)  such as lattice depth, well spacing, and the effective nonlin-
+(1/2)M(w2X%+ 0> R?), whereR?=Y?+Z72, E, is the well  earity. Indeed, Eq.(2) is invariant with respect to the
depth of the optical lattice] is the characteristic lattice con- following  scaling  transformation:  {K,Vq,x,t,}
stant, andw; are trapping frequencies in the corresponding—{K/7,Vo! 7%, x5,tn? ¥l n}, where 5 is a dimensionless
directions. The parametdr=4m#2a,/m characterizes the constant. However, a significant point of difference between
s-wave scattering of atoms in the condensate which introthe lattice in our model and those in experimdits3] is the
duces an effective nonlinearity in the mean-field equation; ibsence of an additional confining potentialg., gravity or
is positive for repulsive interactions and negative for attrac-magnetic trapping
tive interactions. We determine the experimentally relevant range of dimen-

Measuring time in units ofs] *, the spatial variables in Sionless parameters for our model by taking the cas¥érib
units of the transverse harmonic-oscillator lengdy  atoms, which setsn=1.44x10"* kg anda,=5.3 nm. The

=(h/mw,)Y2 the wave function amplitude in units of characteristic lattice constadtis determined by the angle

8.63/2, and the potential in units dfw, , we obtain the fol- between the intersecting laser beams forming the lattice and,

lowing dimensionless GP equation: in the current experiments, can be varied in the range
0.4-1.6um [6,7]. The lattice depthE, scales linearly with
v 1_, ) ) the light intensity, and varies between zero aBg®*
==~ 5 VoV + g0l V7|0, (1) ~20E,ec, WhereE,..=%2mw2/(2md?) is the lattice recoil en-

ergy [6,7]. Taking the transverse frequency as ~2m
where t=Tw, , (x,r)=(X,R)/a,, and gsp=4m(as/ay). x 107 Hz [3,4], we obtain the following regions of the model
The potential now takes the fornV(x,r?)=V,siri(Kx) Pparameters: 2K<8 and 4.510'<Vg¥<7.0x10, re-
+(1/2)(Q%x%+r?), where Vo=Eq/(fw,), and K spectively. In what follows, for the sake of computational
:ﬂ-aold. The ratio of the confinement Strengths for the convenience, we will make use of the Scaling properties of
magnetic trapQ=w,/w, varies from 10' [3-5,20 to  the model and use two different sets of the parameters:
112 [6-8]. =0.1Vy~0.1 (y=5), andK=0.4Vy~1.0 (= 20).

To simplify our analysis, we consider a cigar-shaped con- W(_e note th_at the number of atoms in the.condensate wave
densate in a strongly elongated trap10"!) and a quasi- function, NV, is now given by the expressiaN=N/g;p,
one-dimensional optical lattice in the direction of a weakWhere
confinement. Under these assumptions, the model can be re-
duced to a one-dimensional GP equation by assuming sepa-
rable solutions of the formy (r,x;t) =d(r)#(x;t). Due to N= J'w |l (x,1)|2dx @)
the tight confinement of the condensate in the transverse di- —w '
rection, we assume that the spatial structure of the function
®(r) is well described by a solution of the two-dimensional
radially symmetric quantum harmonic-oscillator problem,is an integral of motion for the modé®).
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Ill. BAND-GAP SPECTRUM OF MATTER WAVES 0.1
A. Linear Bloch modes 0.09f II g
Stationary states of the condensate in an infinite periodic o.08} 8
potential of an optical latticénonlinear modesare described airl |
by solutions of Eqg. (2) of the form: (x,t) '
= ¢p(x)exp(—iut), where i is the corresponding chemical 0.06 1
potentlal. The steady—stat_e wave functigifx) obeys the = 005 : T i
time-independen&P equation §
0.04 - H 4
1d%*p . 0.03} I 1
5 ~[VesiP(Kx) = ugl-old[’¢=0, (4 |
dx
0.02 4
where the lattice dept/y and wave numbeK are the ex- 0.01} 1
perimentally controlled parameters, and they both can be | ‘ ‘ , , ; , , , ,
varied in our model. 0 002 004 006 008 01 0.2 014 016 0.18 02
In the case of noninteracting condensate, which formally Vo

corresponds tar=0, Eq.(4) is linear in¢ and, as has been
shown in Ref[21], the Bloch-function formalism applies. In
this case Eq(4) can be written as the Mathieu’s equation

FIG. 1. Band-gap diagram for Bloch waves in the linear regime
(noninteracting BEC in an optical latticeShaded areas, bands of
bounded oscillatory solutions for the matter waves; numbered areas

2 (I and 11), the lowest two band gaps in the spectrum where some
—— —[2qcog2y)—plé=0 (5) solutions are unbounded and no periodic solutions exist. Solid lines,
dy2 band edges corresponding to periodic solutions. The dashed line

shows the particular valué,=0.1 used below.
where y=Kx, q=—V,/(2K?), and p=2(q+ u/K?). By
employing the Floquet-Bloch theorem, the condensate wav@he chemical potentials corresponding to such localized
function can be presented as a superpositioBloth waves  waves lie in the band gaps of the spectrum of the noninter-
) ) acting condensatémarked areas in Fig.)1
#(y)=b1P1(y)e™+b,Py(y)e ™, (6) The dashed line in Fig. 1 marks the value of the lattice
depth for which the the study of the gap modes presented

whereP, j(y) are periodic functions with the periogl, by2  pejow is conducted. We note that this value is greater than
are constants, andis the Floquet exponent. The structure of ya threshold valud/* = 11 that roughly marks the transition

all solutions to the Mathieu’s equation can be determined by .tveen the quasi-unboundedV€ V*) and strongly
Floguet theorythis text-book analysis can be found, e.g., in bounded Vo> V*) condensate wave functiosee also dis-
Ref.[22]). According to this theory, the spectrum of B&)  ¢,qqjon in Ref.[23]). The tight-binding or “fragmented”
consists of domaingbands of the (p,q) space in which on4ensate regime corresponda/ig>V*, where the bands
there exist only amplitude-bounded, 'oscillatory solutions.‘.co”apsen to discrete levels of the Wannier stafe].

The bands are separated by the regicgaps where un- The knowledge of a complete band-gap spectrum of the

bounded solutions exist. The band edges correspond 10 €xs5tter waves in an optical lattice provides us with important

actly periodic solutions. . clues on the existence and stability regions of different types
Figure 1 presents the band-gap diagram for the extendegs ec |ocalized states that may be excited in an optical

solutions of Eq(5) which describe noninteracting condensed|attice_ The frequently employed nearest-neighbor tight-

atoms in an optical lattice. The results are presented for thBinding approximation based on a discrete mddél, 11,24
parameter domain x(,Vo) relevant to our problem. The g jnferior to the analysis of the complete continuous model

shaded areas correspond to the regions where the FIoQugtinat it describes only onéhe firs) band surrounded by
exponent has a real pafvhich is an odd or even integer q semi-infinite gaps. The following sections aim to pro-
and, therefore, spatially oscillatingut not in general peri- ;4 ys with understanding of the details of the formation
odic) solutions to the linear model E¢4) exist. If\ has @ 44 stability of “gap modes’—the nonlinear localized states
nonvanishing imaginary part, the solutions do not oscillateyf the condensate in a lattice. Despite the recent advances in

(decay or grow exponentially witk); such solutions belong  he treatment of the continuous GP modglé,16,25, such
to the gaps separating the bands of oscillatory solutions. Thg, analysis is still missinf38].

first two gaps where unbounded solutions exist, numbered |
and Il in Fig. 1 are bordered by the band edges representing
the linear Bloch waves with periodicity of/2K and =/K,
respectively. The effect of interatomic interaction, described by the cu-
It is in these gaps of the linear spectrum that the nonlineabic nonlinearity in the mean-field GP equation, results in an
localization of matter waves in the form of gap solitons oc-effective shift of the chemical potential for the extended pe-
curs, and it is this localization that could enable the creationmiodic states, i.e., Bloch waves of BEC, on the band edges.
of solitons in the BEC with repulsive interatomic interaction. This leads to the corresponding shifts of the band-gap edges,

B. Nonlinear Bloch modes

013602-3



LOUIS et al. PHYSICAL REVIEW A 67, 013602 (2003

x10”
3
N
2
300 100 *F00 100
X X
0.10 1
0
| 0.01
H p
FIG. 3. Families of different gap solitons. The structure of the
modes corresponding to the marked points is shown in Figs. 4 and
5. Shaded areas show the linear Bloch-wave bands.
0.02 x10° in the nonlinear regime. The “in-phase” and “out-of-phase”

extended periodic states of the condensate corresponding to
the lower and upper edges of the lowest basee Fig. 2,
bottom panel represent a continuous-wave analogue to the
so-called “unstaggered” and “staggered” modes of the dis-
crete lattice model, respective[tl]. However, none of the
higher-order band modes can be described by the discrete
model, in the framework of the nearest-neighbor tight-
5 5 YRl binding approximation, and its validity is therefore restricted
100 x 100 -100 x 100 to the lowest band only.

0.2

FIG. 2. Middle: condensate populatishown as the number of
atomsN, defined by Eq(3), per lattice periodw/K] for the ex-
tended stationary states of a repulsive interactior Q) BEC in an A. Spatially localized modes

optical lattice atVo=0.1. The values ofu corresponding to the . . - .
linear band edges at,=0.1 are recovered in the limi—0 (cf. We have numerically found different families of spatially

Fig. 1, dashed line Top and bottom: dotted lines, structure of the localized BEC §tates ir_' an optical lattice, for both repulsive
lattice potential; and solid lines, spatial structure of the nonlinea@nd attractive interaction. Such states can be regarded as

Bloch waves at the marked points on the band edges. strongly localized soliton like modes created in band gaps of
the optical-lattice spectrum, and therefore, they should be
and the gaps can even close up for large densities of theompared with gap solitons found for other periodic systems
repulsive condensates. The nonlinearity-induced shift of théeyond the coupled-mode thedsee, e.g., Ref$28,29 and
bands can be described by the multiscale perturbation theomgferences thereinSeveral families of the lowest-order gap
developed for the Mathieu’s equation with cubic nonlinearitymodes and their spatial structure are presented in Figs. 3 —6
(4) and a shallow potentialMy<1) (see, e.g., Ref[26]).  for o=+1. The gap solitons exist in all band gaps, exclud-
Here, we study the extended periodic stationary states of thag the semiinfinite gap of the spectrum below the first band,
interacting condensates in the form abnlinear Bloch  which is analogous to the total internal reflection gap in op-
waves by solving Eq.(4) numerically with standard relax- tical Bragg gratings.
ation techniques. One of our main results is that each of the band gaps
In correspondence to the linear odd and even Bloch waveisicludes a branch of the lower-order fundamental gap modes
that satisfy Eq(5), the nonlinear Bloch waves display simi- possessing a single central peak. These fundamental local-
lar spatial structures, in which the droplets of the neighborized states, othe BEC dropletsare strongly localized near a
ing wells are out of phase or in phase with each oflsee  minimum of a potential well, as shown for the first two gaps
Fig. 2). The families corresponding to the two distinct sta-by the branche#\ andH in Fig. 3 and the corresponding
tionary states for different condensate densities are shown iprofiles in Figs. 4 and 5. Higher-order modes can be thought
Fig. 2 for the repulsive condensate<£ +1). The departure of asbound state®f several fundamental modes, including
of the nonlinear Bloch states from the linear liriékcovered the continuous counterparts of “twisted modes” of the dis-
at N—0) indicates the degree to which the mean-field non<rete mode[29] and multiple states of the localized modes
linearity affects the structure of the band gaps in the matterin nonlinear lattice$30].
wave spectrum. However large this departure is, the spatial In the first gap(see Fig. 4, we show only the lowest-
periodicity and symmetry of the linear Bloch waves corre-order bound states of tw¢statesB, D, F, andG) or three
sponding to different bandsee, e.g., Ref27]) is preserved (statesC and E) in-phase(statesD, E, and F) or out-of-

IV. MATTER-WAVE GAP SOLITONS
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FIG. 5. Spatial structure of the localized states in the second gap
corresponding to the marked families in Fig. 3.

state(see Fig. 3. The families of the higher order formed of
the same number of fundamental states are degeneréte in
for low densities; this degeneracy lifts for larger densities,
i.e., for larger mean-field nonlinearities. It is interesting to
note that, along with the fundamental and its bound states,
there exist higher-order localized modes and their corre-
sponding bound states thdb not have analoguem the
discrete lattice models. A representative md#e and its
out-of-phase bound state) are shown in Fig. 5.

FIG. 4. Spati.al structure of the Iocgl_izeql states in the first band  The spatially localized modes exist only in the gaps of the
gap corresponding to the marked families in Fig. 3. Bloch-wave spectrum. Closer to the band edges, the mode

structure changes dramatically. In particular, all the localized

phase(statesB, C, andG) fundamental modes. These can bemodes of BEC withrepulsive interactior(o=+1) develop
“even,” i.e., centered between potential weligatesB, C, D, extended “staggered” oscillating tails near the upper gap
and E) or “odd,” i.e., centered on the potential minima edges, as demonstrated for the fundamental mode and two of
(statesF andG). For low condensate densities, the numberits bound states in the second gdgg. 5, right column at
of atoms in the localized states that correspond to the bound=0.09). The spatial symmetry and periodicity of these
states of two or three fundamental modes are, correspondails corresponds to the Bloch-wave structure at the corre-
ingly, two or three times larger than that in a fundamentalsponding band edgesee Fig. 5, second columrinside the
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In this presentation, the modes describing the development
of instability have eithepurely imaginaryor complexeigen-
valuesp; in this latter case, the instability is calleah oscil-
latory instability. We solve the eigenvalue proble(8) for
the condensate localized states found numerically in the pre-
ceding section by standard finite-difference methods or as a
matrix eigenvalue problem with Fourier or polynomial inter-
polants for the differential operators.

It is well known from the theory of optical gap solitons in

FIG. 6. Spatial structure of the states in the second band, locahgnlinear Bragg gratings, that the linear stability analysis of
ized on the extended background and corresponding to the &ates gap solitons is not trivial and presents significant computa-
Aand(b) Biin Fig. 4. tional difficulties[32—35. We have confirmed that the same

difficulties arise in the stability analysis of matter-wave gap

bands, these localized statéso examples are shown in Fig. solitons. The reason for this is the occurence of weak oscil-
6) exist as the modes on an extended, oscillating backgroungtory instabilities of gap solitons, which are associated with
with the structure of the corresponding Bloch wawe Figs.  poorly localized perturbation eigenfunctions. Detection of
6 and Zc)]. These states, localized on a background, argych instabilities for dinite continuous systemvhether by
analogous to the “antidark” optical gap solitons described infinjte-differences or pseudospectral methods, is highly sensi-
Ref.[31], and can, in principle, be observed experimentally.tive to the boundary conditions, the size of the spatial do-

For theattractive interatomic interactioic=—1), addi-  main, and, thus, to the periodicity of the system. In addition,
tionally to the gap modes described above, nonlinear locakhe discretization of the continuous system of the spatial ex-
ized modes and their bound states are found in the SemientL with M gr|d points has been shown to produce Spuri-
infinite gap, i.e., below the lowest edge of the first band ofpys unstable eigenvalues. In general, the convergence of the
the matter-wave SpeCtrU(Bee F|gS 1 and)ZThe modes of perturbation eigenva|ues q$_,|\/|/|_}_)m is exponentia”y
this type, shown in Fig. 7 are supported by the attractivesiow [32,33. The effective and accurate detection of oscilla-
interaction, and they are similar to conventional bright soIi—tory instabilities is possible fot.—cc, and the infinite do-
tons with exponentially decaying tails that have no nodes an¢hain boundary conditions can be simulated, for example, by
are weakly modulated by the lattice potential. For any fixedexpanding the wave functions in the basis of Bloch waves
value of the lattice amp“tude with gI’OWing chemical po- (Or genera”zed p|ane waves in Optica' Cd%,ga) The
tential, the localized modes approach the lower edge of thgccuracy of this method is limited by the number of Bloch

first band of the linear spectrum and develop oscillating tail§unctions in the expansion. Alternatively, the Evans function
with the structure defined by the structure of the lowest-ordemethod used, e.g., ifi28,29 is capable of treating exact

Bloch waves[cf. Fig. 2a)]. boundary conditions at the edges of the spatial domain.
One should bear in mind, however, that the stability re-
B. Stability of localized modes sults obtained for the infinite domain may not be confirmed

Stability of extended and localized modes in nonlinear®y the dynamical simulations of the time-dependent GP
systems is a very important issue, since only dynamicallfquat'on due_ to their es_sentlally finite spatial doma(ﬁsi).r. _
stable modes are likely to be generated and observed in e¥Stance, optical gap solitons found to be stable on an infinite
periments. To determine the stability properties of the localdomain can be unstable on a finite domga3]). The prob-
ized modes, we consider small perturbations to a solution g™ IS not only a numerical one since the physical extent of

the GP Eq.(2) in the form the optical lattices is always limited by the size of the exter-
nal trapping potential. Below, we present stability analysis
P(x,1) = p(x)e H 4 g[u(x) &P+ w* (x)e 1B e 1K, for a large but finite lattice without an external potential. The

7) virtue of this analysis is in its qualitative predictions with
regard to the types and scenarios of the instability that is
wheree <1, andé(x) is the steady-state localized nonlinear xhibited by the localized modes of the BEC in a 1D lattice.

mode. We linearize Eq2) around the localized solution and Quantitatively accurate, experimentally relevant calculations
obtain, to the first order i, the linear eigenvalue problem of both localized states and their stability should ideally treat

for the perturbation modes a finite lattice with the parabolic trapping potential.
A typical structure of the eigenvalue spectrum is pre-
sented in Fig. 8. Since the perturbation eigenfunctions are

% 2
Ly —o¢ (u) :,3( “) (8  sSupported by the periodic potential of the lattice, the full
op*? —Lo |\W w)’ spectrum of the eigenvalue problei®), i.e., the values of
(uxB), has the band-gap structure identical to that pre-
where sented in Fig. 1. The values ofit- 8) corresponding to the
“neutral” modes with3=0 are located in the gaps. In addi-
1 42 tion, for any fixedu, there may exist modes with+# 0 that
Lo== — —V(X)— 20| |2+ u. are localized inside the gaps of the continuous spectrum, the
2 dx? so-called “internal modes.” These linear gap modes exist
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FIG. 7. Top: the family diagram and bottom, spatial structure of
the lowest-order localized states of the attractive BBG-(~1) in ¢°“
the semi-infinite gap(a) far from, and(b) near the edge of the first o
band, foru=5x10"* and u=2.22< 102, respectively. .
due to the distributed “defect” in the lattice potential intro- ~** ooy

duced by the nonlinear localized states. As the chemical po- FIG. 9. Ton: le of th bet fth
tential grows, the internal modes of the localized states move > }no%%se;r?éntﬁs ;locﬁ_vrv?v%nsgﬁg eg Vgelzz d(?r:'et% aneoFs)(zirI-
towards the upper edges of the continuum basds Fig. 8 . o . 9 gt

. . i latory instability of the odd localized mode of the repulsive BEC
and generate an oscillatory instability through the resonanc

. . . . . ;i =1.0,K=0.4). B : fil i |
mechanism previously described in a different physical con—f‘VO 0 0-4). Bottom:(a) mode profile andb) its tempora

; ) - .

text[28]. Because “internal” perturbation modes with differ- ivgl;;ggnm%bg\ieo g]fg)mStablmy threshold,. £0.65, 4 Rep

ent symmetries can cross into the band and resonate with the = T

linear Bloch waves, the instability can trigger various types

of spatial dynamics, including the symmetry breaking insta- For the lowest-order fundamental gap modes, our analysis

bility. has shown the existence of internal modes which, if excited,
Applying the stability analysis to the modes identified in may be responsible for long-lived oscillations. It also pro-

Sec. IVA, we found thagll of the higher-order gap modes duced very narrow regions of extremely weak oscillatory in-

identified for our model exhibit oscillatory instability in the stability (Im8~ 10 4-10"%) in the close vicinity of the

regions of the existence domain near the upper band edgdsand edges. The accuracy of these calculations is low since

For the parameters used in our calculations the strong exhe gap mode is poorly localized in this region. As the com-

ponential instability, associated with a purely imagingty puted values Il8—0 with increased accuracy of the

does not occyrhas not been detected for gap modes. A typi-method, it is most likely that this oscillatory instability is

cal evolution of the internal perturbation mode in a gap andunphysicaland the fundamental gap solitons dieearly

birth of the oscillatory instability for large: is shown in Fig.  stable

9 (top), for the even, out-of-phase gap mode. The time scale In contrast, some of the higher-order localized modes of

for development of such weak instabilities is large, whichthe attractive condensatéo= —1), in the semi-infinite gap

means that oscillatory unstable modes can be dynamicallpelow the first band, have been found to experience the

stable on the scales comparable with the typical lifetime oktrong (exponentially growing linear instability, character-

the condensate. ized by a pair of purely imaginary eigenvalues of the pertur-
-2
1 1Y
0.8
06 w=0.52 1 u=0.59
@« g"; 05 FIG. 8. Atypical spectrum of the linear eigen-
E . R . £ 8 N value problem for the higher-order mode of the
H 9o H repulsive BEC Y¥,=1.0, K=0.4), below (left)
0.4 -0.5 and above (right) the instability threshold.
0.8 » L Shaded areas indicate linear Bloch bands.
-0.8
-1 15
0.2 04 06 08 1.0 12 0.2 04 06 08 1.0 12
uxRe uxRe B
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from 10’ atoms to 10 atoms. The results of our dynamical
simulations showing the different instability developments
for oscillatory and linearly unstable higher-order states of
repulsive and attractive condensates are presented in Figs.
9(b) and 1Qb), respectively.

0.12
E o008,

0.04:
V. CONCLUSIONS

0.2 We have analyzed the stationary states and stability of the

condensate in an optical lattice, in the framework of the GP
equation with a periodic potential. We have confirmed some
of the earlier predictions for the condensate structure based
on the effective tight-binding model, as well as revealed a
number of features not described by the effective discrete
models. In particular, we have extended the concept of the
Bloch waves to the case of a nonlinear model and described
the families of the nonlinear periodic states which generalize
the corresponding Bloch-wave modes of linear periodic sys-
FIG. 10. Top: growth rate of the strong linear instability for an tems. We have demonstrated that the spectrum of such peri-

even out-of-phase localized mode of thitractive BEC (Vo=1.0, ~ °dic modes possesses a band-gap structure, which depends
K=0.4, o=—1); dotted and solid lines correspond to the double-ON the number of atoms, i.e., the effective nonlinearity in the

peaked even in- and out-of-phase perturbation modes, respectivefiean-field theory.

(a)

Bottom: (a) the mode profile andb) its temporal evolution; the In the gaps of the_ matter-wave spectrum, we have numeri-
mode is initially perturbed by off-setting the position of its center cally found the families of spatially localized modes of the
(n=0.1, B=0.157). condensate in an optical lattice trapped by a few lattice

minima. Such modes should be compared with optical gap

solitons, and they can exist even for the condensates with
bation modes3. These modes originate from neutral modesrepulsive interaction. We have analyzed the structure and the
of the excitation spectruniwith Re8=0). An example of stability of the gap solitons which belong to different band
such instability development via bifurcation of the neutralgaps, for both repulsive and attractive interatomic interac-
mode into the imaginary plane is presented in Fig. 10 for ariions. Most of these solitons are dynamically stable on the
odd bound state of fundamental bright solitons. The instabiltimes comparable with the lifetime of the condensates in
ity growth rate drops as the mode moves away from theoptical traps. We believe that these types of spatially local-
lowest band edge due to the strong localization of largeized, coherent excitations of the condensate can potentially
density BEC droplets at the individual wells. In this limit the be observed in experiments.
lattice effects are weak, and the property of a localized state Our studies extend the analysis of the BEC in an optical
is described by the free-space GP equation, for which théattice beyond the applicability limits of the frequently used
(inverted for our choice ofx) Vakhitov-Kolokolov stability —discrete models based on the tight-binding approximation, as
criterion states that the nodeless bright solitons of attractivevell as they call for the future extensive analysis of the con-
BEC, such as the fundamental one, are linearly stable as lor@ensate stability in optical lattices described by the three-
as—dN/9u>0, i.e., in the entire semi-infinite ggpee Fig. dimensional GP equation with a periodic potential. In par-
7, top. ticular, similar to the condensates in a parabolic trap, we

In order to check the results of the stability analysis of theexpect that optical lattices can support dark solitons, excited

stationary solutions for the BEC modes, we have employe®n the different types of the nonlinear Bloch waves. The
direct numerical simulations of the time-dependent &),  stability of such dark solitons should differ dramatically from
using a split-step Fourier method which preserves the noithe stability of the conventional dark solitons. These studies
malization of the condensate wave function with a high acare now in progress.
curacy. To confirm the stable dynamics of gap solitons, the
results were obtained by running the simulations for 8000
dimensionless time units which is equivalent to a time of
10.6 s. Barretet al. [36] who created the first BEC directly We are indebted to N. Robins for help with numerical
in an optical trap, found that for a condensate of>31®*  simulations and to A. A. Sukhorukov for a critical reading of
atoms the ¥ lifetime was about 3.5 s. However, Stamper- this manuscript. We thank C. J. Williams and P. V. Elyutin
Kurn et al.[37] observed that in a purely optical trap the 1/ for useful discussions and suggestions. This work was par-
lifetime at low densities was longer than 10 s, although atially supported by the Australian Research Council and the
that timescale significant loss occurs as the population goesustralian Partnership for Advanced Computing.
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