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Bose-Einstein condensates in optical lattices: Band-gap structure and solitons
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We analyze the existence and stability of spatially extended~Bloch-type! and localized states of a Bose-
Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a
periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and non-
linear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and
analyze their stability in different band gaps, for both repulsive and attractive atomic interactions.
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I. INTRODUCTION

Trapping of neutral atoms in optical lattices@1# provides
an effective and powerful means for controlling the prop
ties of Bose-Einstein condensates~BECs!, as confirmed by a
number of the recent experiments~see, e.g., Refs.@2–8#!.
Coupling between the BEC droplets localized in weakly
teracting minima of a standing light wave creates a recon
urable matter-wave structure that can be easily manipul
by varying the strength of the periodic potential and its w
spacing.

Many properties of such arrays of the BEC droplets c
be understood, within the framework of the mean-field a
proach, by employing the tight-binding approximation bo
rowed from solid-state physics@9–11#. Being based on the
assumption of strong localization of the condensate w
functions in the individual potential wells of the lattice, th
tight-binding approximation and the resulting discrete latt
models provide a limited description of the BEC dynamics
an optical lattice. An alternative reduction of the continuo
system to the discrete vector lattice involves employing
complete set of on-site Wannier states@12#, and is more gen-
eral than a tight-binding approximation. However, it is to
clarified whether such a reduction can provide predictions
the dynamics and stability of a BEC in a periodic potent
more readily than the full mean-field model. A more a
equate analysis of both periodic and localized modes of
continuous Gross-Pitaevskii~GP! equation with a periodic
lattice potential is still missing. Some of the recent studies
the GP model@13–16# point towards interesting features o
the BEC dynamics that should be observed beyond the
plicability of discrete models.

The main purpose of this paper is to analyze the struc
and stability of the stationary states of a condensate in
optical lattice, the so-called nonlinear modes@17#, in the
framework of a continuous mean-field model. This approa
allows us to consider more general types of stationary st
and BEC dynamics without many of the restrictions of t
discrete models. We solve the continuous one-dimensio
~1D! GP equation numerically and describe families of s
tionary states, which possess different spatial structure
stability properties.

First, we find spatially extended stationarynonlinear pe-
1050-2947/2003/67~1!/013602~9!/$20.00 67 0136
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riodic modesof the condensate in a lattice. These period
modes possess different symmetry, and provide a genera
tion of both the Bloch modes in the theory of linear period
systems and of the extended states of a condensate in a
optical lattice with a confining potential@18#. We demon-
strate that the matter-wave spectrum for such periodic B
states has a band-gap structure, which survives in the p
ence of the mean-field nonlinearity in the GP equation.

We also find different types of condensate states wh
cannot exist in the linear limit. These arespatially localized
nonlinear modesof the condensate which exist in the ban
gaps of the matter-wave spectrum and, therefore, they sh
be calledgap solitons. The existence of the matter-wave ga
solitons was first suggested in the framework of the coupl
mode theory@13#, in analogy to optical gap solitons in Brag
gratings. Remarkably, gap solitons—spatially localiz
atomic wave packets—may exist even in a condensate
repulsive interatomic interactions@13#. Their experimental
demonstration, however, remains a challenge. Here,
present a comprehensive theory of the structure and lin
stability analysis ofdifferent families of gap solitonswith
respect to variations in the lattice parameters and effec
nonlinearity defined by the number of atoms in the cond
sate. We discuss the key scenarios of instability of spati
localized modes in optical lattices and the physical mec
nism for creating different multiple states of the BEC dro
lets.

We would like to emphasize that many of the effects d
scribed here in the framework of the GP equation with
periodic potential, such as the mode stability and the e
tence of the localized modes in different band gaps, can
be obtained in the framework of the tight-binding appro
mation since the coherent and spectral properties of th
two models are different. This latter issue is similar to t
BEC dynamics in a double-well potential where a rigoro
coupled-mode wave theory should be based on the ana
of nonlinear modes of the entire structure, rather than c
densate wave functions of isolated wells@19#.

The paper is organized as follows. In Sec. II, we pres
our model and reduce it to the one-dimensional GP equat
under the assumption of a cigar-shaped condensate. Se
III includes the analysis of both linear and nonlinear matt
wave spectra in an optical lattice. We revisit the structure
the band-gap spectrum for the Bloch-like modes of the n
©2003 The American Physical Society02-1
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interacting condensate, and extend this concept to the
linear case, demonstrating the existence of the nonlin
Bloch-like modes and the nonlinearity-dependent band-
structure of the matter-wave spectrum in optical lattices. T
study of the BEC gap solitons in different band gaps is su
marized in Sec. IV, where we also present our results on
stability of gap solitons, for both repulsive and attracti
atomic interactions. Section V concludes with a summ
and further perspectives.

II. MODEL

We consider the macroscopic dynamics of a BEC loa
onto an elongated optical lattice, similar to those created
number of experiments~see, e.g., Refs.@1–3#!. The conden-
sate dynamics is described by the three-dimensional
equation,

i\
]C

]T
5F2

\2

2m
¹21V~X,Y,Z!1GuCu2GC,

whereC(X,Y,Z;T) is the wave function of the cigar-shape
condensate, (Y,Z) are the directions of strong transver
confinement, andX is the direction of the lattice. The com
bined potential of the optical lattice and magnetic tr
V(X,Y,Z) can be written as,V(X,R2)5E0sin2(pX/d)
1(1/2)m(vx

2X21v'
2 R2), whereR25Y21Z2, E0 is the well

depth of the optical lattice,d is the characteristic lattice con
stant, andv i are trapping frequencies in the correspond
directions. The parameterG54p\2as /m characterizes the
s-wave scattering of atoms in the condensate which in
duces an effective nonlinearity in the mean-field equation
is positive for repulsive interactions and negative for attr
tive interactions.

Measuring time in units ofv'
21 , the spatial variables in

units of the transverse harmonic-oscillator lengtha0
5(\/mv')1/2, the wave function amplitude in units o
a0

23/2, and the potential in units of\v' , we obtain the fol-
lowing dimensionless GP equation:

i
]C

]t
5F2

1

2
¹21V~x,r 2!1g3DuCu2GC, ~1!

where t5Tv' , (x,r )5(X,R)/a0, and g3D54p(as /a0).
The potential now takes the formV(x,r 2)5V0sin2(Kx)
1(1/2)(V2x21r 2), where V05E0 /(\v'), and K
5pa0 /d. The ratio of the confinement strengths for t
magnetic trapV5vx /v' varies from 1021 @3–5,20# to
1/A2 @6–8#.

To simplify our analysis, we consider a cigar-shaped c
densate in a strongly elongated trap (V;1021) and a quasi-
one-dimensional optical lattice in the direction of a we
confinement. Under these assumptions, the model can b
duced to a one-dimensional GP equation by assuming s
rable solutions of the form,C(r ,x;t)5F(r )c(x;t). Due to
the tight confinement of the condensate in the transverse
rection, we assume that the spatial structure of the func
F(r ) is well described by a solution of the two-dimension
radially symmetric quantum harmonic-oscillator proble
01360
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2 F12F2r 2F50. Taking the ground-state solution

F(r )5C exp(2r2/2), whereC251/p is found from the nor-
malization condition,*2`

` uFu2dydz51, and integrating Eq.
~1! over the transverse coordinate, we derive an effec
one-dimensional GP equation in the dimensionless variab

i
]c

]t
52

1

2

]2c

]x2
1V~x!c1sg1Ducu2c, ~2!

whereg1D52uasu/a0, and the coefficients5sgn(as)561
characterizes the type of the s-wave interactions. Due to
weak magnetic confinement inx direction, it is possible to
omit the termV2 from the effective potential, thus, assumin
that the 1D lattice potential,V(x)5V0sin2(Kx) is uniform
and is not affected by the presence of the additional con
ing potential. Furthermore, it is convenient to reduce the
rameter space of the model~i.e., effectively setg1D51) by
rescaling the wave function asc→cAg1D. In physical
terms, it means that the peak density of the condensat
used to characterize the effective mean-field nonlinearity

The model~2! can describe the BEC in a one-dimension
optical lattice over a wide range of experimental paramet
such as lattice depth, well spacing, and the effective non
earity. Indeed, Eq.~2! is invariant with respect to the
following scaling transformation: $K,V0 ,x,t,c%
→$K/h,V0 /h2,xh,th2,c/h%, whereh is a dimensionless
constant. However, a significant point of difference betwe
the lattice in our model and those in experiments@1–3# is the
absence of an additional confining potential~e.g., gravity or
magnetic trapping!.

We determine the experimentally relevant range of dim
sionless parameters for our model by taking the case of87Rb
atoms, which setsm51.44310225 kg andas55.3 nm. The
characteristic lattice constantd is determined by the angle
between the intersecting laser beams forming the lattice a
in the current experiments, can be varied in the ran
0.4–1.6mm @6,7#. The lattice depthE0 scales linearly with
the light intensity, and varies between zero andE0

max

;20Erec, whereErec5\2p2/(2md2) is the lattice recoil en-
ergy @6,7#. Taking the transverse frequency asv';2p
3102 Hz @3,4#, we obtain the following regions of the mode
parameters: 2<K<8 and 4.53101<V0

max<7.03102, re-
spectively. In what follows, for the sake of computation
convenience, we will make use of the scaling properties
the model and use two different sets of the parametersK
50.1,V0;0.1 (h55), andK50.4,V0;1.0 (h520).

We note that the number of atoms in the condensate w
function, N, is now given by the expressionN5N/g1D ,
where

N5E
2`

`

uc~x,t !u2dx ~3!

is an integral of motion for the model~2!.
2-2
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III. BAND-GAP SPECTRUM OF MATTER WAVES

A. Linear Bloch modes

Stationary states of the condensate in an infinite perio
potential of an optical lattice~nonlinear modes! are described
by solutions of Eq. ~2! of the form: c(x,t)
5f(x)exp(2imt), where m is the corresponding chemica
potential. The steady-state wave functionf(x) obeys the
time-independentGP equation

1

2

d2f

dx2
2@V0sin2~Kx!f2mf#2sufu2f50, ~4!

where the lattice depthV0 and wave numberK are the ex-
perimentally controlled parameters, and they both can
varied in our model.

In the case of noninteracting condensate, which forma
corresponds tos50, Eq.~4! is linear inf and, as has bee
shown in Ref.@21#, the Bloch-function formalism applies. I
this case Eq.~4! can be written as the Mathieu’s equation

d2f

dy2
2@2q cos~2y!2p#f50, ~5!

where y5Kx, q52V0 /(2K2), and p52(q1m/K2). By
employing the Floquet-Bloch theorem, the condensate w
function can be presented as a superposition ofBloch waves,

f~y!5b1P1~y!eily1b2P2~y!e2 ily, ~6!

whereP1,2(y) are periodic functions with the periodp, b1,2
are constants, andl is the Floquet exponent. The structure
all solutions to the Mathieu’s equation can be determined
Floquet theory~this text-book analysis can be found, e.g.,
Ref. @22#!. According to this theory, the spectrum of Eq.~5!
consists of domains~bands! of the (p,q) space in which
there exist only amplitude-bounded, oscillatory solutio
The bands are separated by the regions~gaps! where un-
bounded solutions exist. The band edges correspond to
actly periodic solutions.

Figure 1 presents the band-gap diagram for the exten
solutions of Eq.~5! which describe noninteracting condens
atoms in an optical lattice. The results are presented for
parameter domain (m,V0) relevant to our problem. The
shaded areas correspond to the regions where the Flo
exponent has a real part~which is an odd or even integer!
and, therefore, spatially oscillating~but not in general peri-
odic! solutions to the linear model Eq.~4! exist. If l has a
nonvanishing imaginary part, the solutions do not oscill
~decay or grow exponentially withx); such solutions belong
to the gaps separating the bands of oscillatory solutions.
first two gaps where unbounded solutions exist, number
and II in Fig. 1 are bordered by the band edges represen
the linear Bloch waves with periodicity of 2p/K andp/K,
respectively.

It is in these gaps of the linear spectrum that the nonlin
localization of matter waves in the form of gap solitons o
curs, and it is this localization that could enable the creat
of solitons in the BEC with repulsive interatomic interactio
01360
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The chemical potentials corresponding to such localiz
waves lie in the band gaps of the spectrum of the nonin
acting condensate~marked areas in Fig. 1!.

The dashed line in Fig. 1 marks the value of the latt
depth for which the the study of the gap modes presen
below is conducted. We note that this value is greater t
the threshold valueV* 5m that roughly marks the transition
between the quasi-unbounded (V0,V* ) and strongly
bounded (V0.V* ) condensate wave functions~see also dis-
cussion in Ref.@23#!. The tight-binding or ‘‘fragmented’’
condensate regime corresponds toV0@V* , where the bands
‘‘collapse’’ to discrete levels of the Wannier states@21#.

The knowledge of a complete band-gap spectrum of
matter waves in an optical lattice provides us with importa
clues on the existence and stability regions of different ty
of BEC localized states that may be excited in an opti
lattice. The frequently employed nearest-neighbor tig
binding approximation based on a discrete model@10,11,24#
is inferior to the analysis of the complete continuous mo
in that it describes only one~the first! band surrounded by
two semi-infinite gaps. The following sections aim to pr
vide us with understanding of the details of the formati
and stability of ‘‘gap modes’’—the nonlinear localized stat
of the condensate in a lattice. Despite the recent advance
the treatment of the continuous GP models@14,16,25#, such
an analysis is still missing@38#.

B. Nonlinear Bloch modes

The effect of interatomic interaction, described by the c
bic nonlinearity in the mean-field GP equation, results in
effective shift of the chemical potential for the extended p
riodic states, i.e., Bloch waves of BEC, on the band edg
This leads to the corresponding shifts of the band-gap ed

FIG. 1. Band-gap diagram for Bloch waves in the linear regi
~noninteracting BEC in an optical lattice!. Shaded areas, bands o
bounded oscillatory solutions for the matter waves; numbered a
~I and II!, the lowest two band gaps in the spectrum where so
solutions are unbounded and no periodic solutions exist. Solid li
band edges corresponding to periodic solutions. The dashed
shows the particular valueV050.1 used below.
2-3
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LOUIS et al. PHYSICAL REVIEW A 67, 013602 ~2003!
and the gaps can even close up for large densities of
repulsive condensates. The nonlinearity-induced shift of
bands can be described by the multiscale perturbation th
developed for the Mathieu’s equation with cubic nonlinear
~4! and a shallow potential (V0!1) ~see, e.g., Ref.@26#!.
Here, we study the extended periodic stationary states o
interacting condensates in the form ofnonlinear Bloch
waves, by solving Eq.~4! numerically with standard relax
ation techniques.

In correspondence to the linear odd and even Bloch wa
that satisfy Eq.~5!, the nonlinear Bloch waves display sim
lar spatial structures, in which the droplets of the neighb
ing wells are out of phase or in phase with each other~see
Fig. 2!. The families corresponding to the two distinct st
tionary states for different condensate densities are show
Fig. 2 for the repulsive condensate (s511). The departure
of the nonlinear Bloch states from the linear limit~recovered
at N→0) indicates the degree to which the mean-field n
linearity affects the structure of the band gaps in the mat
wave spectrum. However large this departure is, the sp
periodicity and symmetry of the linear Bloch waves cor
sponding to different bands~see, e.g., Ref.@27#! is preserved

FIG. 2. Middle: condensate population@shown as the number o
atomsN, defined by Eq.~3!, per lattice periodp/K] for the ex-
tended stationary states of a repulsive interaction (s.0) BEC in an
optical lattice atV050.1. The values ofm corresponding to the
linear band edges atV050.1 are recovered in the limitN→0 ~cf.
Fig. 1, dashed line!. Top and bottom: dotted lines, structure of th
lattice potential; and solid lines, spatial structure of the nonlin
Bloch waves at the marked points on the band edges.
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in the nonlinear regime. The ‘‘in-phase’’ and ‘‘out-of-phase
extended periodic states of the condensate correspondin
the lower and upper edges of the lowest band~see Fig. 2,
bottom panel! represent a continuous-wave analogue to
so-called ‘‘unstaggered’’ and ‘‘staggered’’ modes of the d
crete lattice model, respectively@11#. However, none of the
higher-order band modes can be described by the disc
model, in the framework of the nearest-neighbor tig
binding approximation, and its validity is therefore restrict
to the lowest band only.

IV. MATTER-WAVE GAP SOLITONS

A. Spatially localized modes

We have numerically found different families of spatial
localized BEC states in an optical lattice, for both repuls
and attractive interaction. Such states can be regarde
strongly localized soliton like modes created in band gaps
the optical-lattice spectrum, and therefore, they should
compared with gap solitons found for other periodic syste
beyond the coupled-mode theory~see, e.g., Refs.@28,29# and
references therein!. Several families of the lowest-order ga
modes and their spatial structure are presented in Figs. 3
for s511. The gap solitons exist in all band gaps, exclu
ing the semiinfinite gap of the spectrum below the first ba
which is analogous to the total internal reflection gap in o
tical Bragg gratings.

One of our main results is that each of the band g
includes a branch of the lower-order fundamental gap mo
possessing a single central peak. These fundamental lo
ized states, orthe BEC droplets, are strongly localized near
minimum of a potential well, as shown for the first two ga
by the branchesA and H in Fig. 3 and the correspondin
profiles in Figs. 4 and 5. Higher-order modes can be thou
of asbound statesof several fundamental modes, includin
the continuous counterparts of ‘‘twisted modes’’ of the d
crete model@29# and multiple states of the localized mod
in nonlinear lattices@30#.

In the first gap~see Fig. 4!, we show only the lowest-
order bound states of two~statesB, D, F, andG) or three
~statesC and E) in-phase~statesD, E, and F) or out-of-

r

FIG. 3. Families of different gap solitons. The structure of t
modes corresponding to the marked points is shown in Figs. 4
5. Shaded areas show the linear Bloch-wave bands.
2-4
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BOSE-EINSTEIN CONDENSATES IN OPTICAL . . . PHYSICAL REVIEW A 67, 013602 ~2003!
phase~statesB, C, andG) fundamental modes. These can
‘‘even,’’ i.e., centered between potential wells~statesB, C, D,
and E) or ‘‘odd,’’ i.e., centered on the potential minim
~statesF andG). For low condensate densities, the numb
of atoms in the localized states that correspond to the bo
states of two or three fundamental modes are, corresp
ingly, two or three times larger than that in a fundamen

FIG. 4. Spatial structure of the localized states in the first b
gap corresponding to the marked families in Fig. 3.
01360
r
nd
d-
l

state~see Fig. 3!. The families of the higher order formed o
the same number of fundamental states are degenerateN
for low densities; this degeneracy lifts for larger densitie
i.e., for larger mean-field nonlinearities. It is interesting
note that, along with the fundamental and its bound sta
there exist higher-order localized modes and their co
sponding bound states thatdo not have analoguesin the
discrete lattice models. A representative mode~K! and its
out-of-phase bound state~L! are shown in Fig. 5.

The spatially localized modes exist only in the gaps of
Bloch-wave spectrum. Closer to the band edges, the m
structure changes dramatically. In particular, all the localiz
modes of BEC withrepulsive interaction(s511) develop
extended ‘‘staggered’’ oscillating tails near the upper g
edges, as demonstrated for the fundamental mode and tw
its bound states in the second gap~Fig. 5, right column at
m50.09). The spatial symmetry and periodicity of the
tails corresponds to the Bloch-wave structure at the co
sponding band edge~see Fig. 5, second column!. Inside the

d

FIG. 5. Spatial structure of the localized states in the second
corresponding to the marked families in Fig. 3.
2-5
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LOUIS et al. PHYSICAL REVIEW A 67, 013602 ~2003!
bands, these localized states~two examples are shown in Fig
6! exist as the modes on an extended, oscillating backgro
with the structure of the corresponding Bloch wave@cf. Figs.
6 and 2~c!#. These states, localized on a background,
analogous to the ‘‘antidark’’ optical gap solitons described
Ref. @31#, and can, in principle, be observed experimenta

For theattractive interatomic interaction(s521), addi-
tionally to the gap modes described above, nonlinear lo
ized modes and their bound states are found in the se
infinite gap, i.e., below the lowest edge of the first band
the matter-wave spectrum~see Figs. 1 and 2!. The modes of
this type, shown in Fig. 7 are supported by the attract
interaction, and they are similar to conventional bright so
tons with exponentially decaying tails that have no nodes
are weakly modulated by the lattice potential. For any fix
value of the lattice amplitudeV0 with growing chemical po-
tential, the localized modes approach the lower edge of
first band of the linear spectrum and develop oscillating t
with the structure defined by the structure of the lowest-or
Bloch waves@cf. Fig. 2~a!#.

B. Stability of localized modes

Stability of extended and localized modes in nonline
systems is a very important issue, since only dynamic
stable modes are likely to be generated and observed in
periments. To determine the stability properties of the loc
ized modes, we consider small perturbations to a solutio
the GP Eq.~2! in the form

c~x,t !5f~x!e2 imt1«@u~x!eibt1w* ~x!e2 ib* t#e2 imt,
~7!

where«!1, andf(x) is the steady-state localized nonline
mode. We linearize Eq.~2! around the localized solution an
obtain, to the first order in«, the linear eigenvalue problem
for the perturbation modes

F L̂0 2sf2

sf* 2
2L̂0

G S u

wD 5bS u

wD , ~8!

where

L̂0[
1

2

d2

dx2
2V~x!22sufu21m.

FIG. 6. Spatial structure of the states in the second band, lo
ized on the extended background and corresponding to the state~a!
A and ~b! B in Fig. 4.
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In this presentation, the modes describing the developm
of instability have eitherpurely imaginaryor complexeigen-
valuesb; in this latter case, the instability is calledan oscil-
latory instability. We solve the eigenvalue problem~8! for
the condensate localized states found numerically in the
ceding section by standard finite-difference methods or a
matrix eigenvalue problem with Fourier or polynomial inte
polants for the differential operators.

It is well known from the theory of optical gap solitons i
nonlinear Bragg gratings, that the linear stability analysis
gap solitons is not trivial and presents significant compu
tional difficulties@32–35#. We have confirmed that the sam
difficulties arise in the stability analysis of matter-wave g
solitons. The reason for this is the occurence of weak os
latory instabilities of gap solitons, which are associated w
poorly localized perturbation eigenfunctions. Detection
such instabilities for afinite continuous system, whether by
finite-differences or pseudospectral methods, is highly se
tive to the boundary conditions, the size of the spatial d
main, and, thus, to the periodicity of the system. In additio
the discretization of the continuous system of the spatial
tent L with M grid points has been shown to produce spu
ous unstable eigenvalues. In general, the convergence o
perturbation eigenvalues as$L,M /L%→` is exponentially
slow @32,33#. The effective and accurate detection of oscil
tory instabilities is possible forL→`, and the infinite do-
main boundary conditions can be simulated, for example,
expanding the wave functions in the basis of Bloch wav
~or generalized plane waves in optical case@34,35#!. The
accuracy of this method is limited by the number of Blo
functions in the expansion. Alternatively, the Evans functi
method used, e.g., in@28,29# is capable of treating exac
boundary conditions at the edges of the spatial domain.

One should bear in mind, however, that the stability
sults obtained for the infinite domain may not be confirm
by the dynamical simulations of the time-dependent
equation due to their essentially finite spatial domains.~For
instance, optical gap solitons found to be stable on an infi
domain can be unstable on a finite domain@33#!. The prob-
lem is not only a numerical one since the physical exten
the optical lattices is always limited by the size of the ext
nal trapping potential. Below, we present stability analy
for a large but finite lattice without an external potential. T
virtue of this analysis is in its qualitative predictions wi
regard to the types and scenarios of the instability tha
exhibited by the localized modes of the BEC in a 1D lattic
Quantitatively accurate, experimentally relevant calculatio
of both localized states and their stability should ideally tr
a finite lattice with the parabolic trapping potential.

A typical structure of the eigenvalue spectrum is p
sented in Fig. 8. Since the perturbation eigenfunctions
supported by the periodic potential of the lattice, the f
spectrum of the eigenvalue problem~8!, i.e., the values of
(m6b), has the band-gap structure identical to that p
sented in Fig. 1. The values of (m6b) corresponding to the
‘‘neutral’’ modes withb50 are located in the gaps. In add
tion, for any fixedm, there may exist modes withbÞ0 that
are localized inside the gaps of the continuous spectrum,
so-called ‘‘internal modes.’’ These linear gap modes ex

l-
2-6
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due to the distributed ‘‘defect’’ in the lattice potential intro
duced by the nonlinear localized states. As the chemical
tential grows, the internal modes of the localized states m
towards the upper edges of the continuum bands~see Fig. 8!
and generate an oscillatory instability through the resona
mechanism previously described in a different physical c
text @28#. Because ‘‘internal’’ perturbation modes with diffe
ent symmetries can cross into the band and resonate with
linear Bloch waves, the instability can trigger various typ
of spatial dynamics, including the symmetry breaking ins
bility.

Applying the stability analysis to the modes identified
Sec. IV A, we found thatall of the higher-order gap mode
identified for our model exhibit oscillatory instability in th
regions of the existence domain near the upper band ed
For the parameters used in our calculations the strong
ponential instability, associated with a purely imaginaryb
does not occur, has not been detected for gap modes. A ty
cal evolution of the internal perturbation mode in a gap a
birth of the oscillatory instability for largem is shown in Fig.
9 ~top!, for the even, out-of-phase gap mode. The time sc
for development of such weak instabilities is large, whi
means that oscillatory unstable modes can be dynamic
stable on the scales comparable with the typical lifetime
the condensate.

FIG. 7. Top: the family diagram and bottom, spatial structure
the lowest-order localized states of the attractive BEC (s521) in
the semi-infinite gap:~a! far from, and~b! near the edge of the firs
band, form5531024 andm52.2231022, respectively.
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For the lowest-order fundamental gap modes, our anal
has shown the existence of internal modes which, if excit
may be responsible for long-lived oscillations. It also pr
duced very narrow regions of extremely weak oscillatory
stability (Imb; 1024–1025) in the close vicinity of the
band edges. The accuracy of these calculations is low s
the gap mode is poorly localized in this region. As the co
puted values Imb→0 with increased accuracy of th
method, it is most likely that this oscillatory instability i
unphysicaland the fundamental gap solitons arelinearly
stable.

In contrast, some of the higher-order localized modes
the attractive condensate(s521), in the semi-infinite gap
below the first band, have been found to experience
strong ~exponentially growing! linear instability, character-
ized by a pair of purely imaginary eigenvalues of the pert

f

FIG. 9. Top: example of the resonance between one of the
turbation modes and the Bloch-wave band edge leading to an o
latory instability of the odd localized mode of the repulsive BE
(V051.0, K50.4). Bottom:~a! mode profile and~b! its temporal
evolution above the instability threshold (m50.65, m6Reb
50.733, Imb560.019).
-
e

FIG. 8. A typical spectrum of the linear eigen
value problem for the higher-order mode of th
repulsive BEC (V051.0, K50.4), below ~left!
and above ~right! the instability threshold.
Shaded areas indicate linear Bloch bands.
2-7
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bation modesb. These modes originate from neutral mod
of the excitation spectrum~with Reb50). An example of
such instability development via bifurcation of the neut
mode into the imaginary plane is presented in Fig. 10 for
odd bound state of fundamental bright solitons. The insta
ity growth rate drops as the mode moves away from
lowest band edge due to the strong localization of lar
density BEC droplets at the individual wells. In this limit th
lattice effects are weak, and the property of a localized s
is described by the free-space GP equation, for which
~inverted for our choice ofm) Vakhitov-Kolokolov stability
criterion states that the nodeless bright solitons of attrac
BEC, such as the fundamental one, are linearly stable as
as2]N/]m.0, i.e., in the entire semi-infinite gap~see Fig.
7, top!.

In order to check the results of the stability analysis of
stationary solutions for the BEC modes, we have emplo
direct numerical simulations of the time-dependent Eq.~2!,
using a split-step Fourier method which preserves the n
malization of the condensate wave function with a high
curacy. To confirm the stable dynamics of gap solitons,
results were obtained by running the simulations for 80
dimensionless time units which is equivalent to a time
10.6 s. Barrettet al. @36# who created the first BEC directl
in an optical trap, found that for a condensate of 3.53104

atoms the 1/e lifetime was about 3.5 s. However, Stampe
Kurn et al. @37# observed that in a purely optical trap the 1e
lifetime at low densities was longer than 10 s, although
that timescale significant loss occurs as the population g

FIG. 10. Top: growth rate of the strong linear instability for a
even out-of-phase localized mode of theattractiveBEC (V051.0,
K50.4, s521); dotted and solid lines correspond to the doub
peaked even in- and out-of-phase perturbation modes, respect
Bottom: ~a! the mode profile and~b! its temporal evolution; the
mode is initially perturbed by off-setting the position of its cen
(m50.1, b50.157i ).
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from 107 atoms to 105 atoms. The results of our dynamica
simulations showing the different instability developmen
for oscillatory and linearly unstable higher-order states
repulsive and attractive condensates are presented in
9~b! and 10~b!, respectively.

V. CONCLUSIONS

We have analyzed the stationary states and stability of
condensate in an optical lattice, in the framework of the
equation with a periodic potential. We have confirmed so
of the earlier predictions for the condensate structure ba
on the effective tight-binding model, as well as revealed
number of features not described by the effective discr
models. In particular, we have extended the concept of
Bloch waves to the case of a nonlinear model and descr
the families of the nonlinear periodic states which genera
the corresponding Bloch-wave modes of linear periodic s
tems. We have demonstrated that the spectrum of such
odic modes possesses a band-gap structure, which dep
on the number of atoms, i.e., the effective nonlinearity in
mean-field theory.

In the gaps of the matter-wave spectrum, we have num
cally found the families of spatially localized modes of th
condensate in an optical lattice trapped by a few latt
minima. Such modes should be compared with optical g
solitons, and they can exist even for the condensates
repulsive interaction. We have analyzed the structure and
stability of the gap solitons which belong to different ba
gaps, for both repulsive and attractive interatomic inter
tions. Most of these solitons are dynamically stable on
times comparable with the lifetime of the condensates
optical traps. We believe that these types of spatially loc
ized, coherent excitations of the condensate can potent
be observed in experiments.

Our studies extend the analysis of the BEC in an opti
lattice beyond the applicability limits of the frequently use
discrete models based on the tight-binding approximation
well as they call for the future extensive analysis of the co
densate stability in optical lattices described by the thr
dimensional GP equation with a periodic potential. In p
ticular, similar to the condensates in a parabolic trap,
expect that optical lattices can support dark solitons, exc
on the different types of the nonlinear Bloch waves. T
stability of such dark solitons should differ dramatically fro
the stability of the conventional dark solitons. These stud
are now in progress.
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