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Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate

Thorsten Ko¨hler, Thomas Gasenzer, and Keith Burnett
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

~Received 4 September 2002; published 7 January 2003!

In a recent experiment at JILA@E. A. Donley et al., Nature~London! 417, 529 ~2002!# an initially pure
condensate of85Rb atoms was exposed to a specially designed time-dependent magnetic-field pulse in the
vicinity of a Feshbach resonance. The production of additional components of the gas as well as their oscil-
latory behavior have been reported. We apply a microscopic theory of the gas to identify these components and
determine their physical properties. Our time-dependent studies allow us to explain the observed dynamic
evolution of all fractions, and to identify the physical relevance of the pulse shape. Based onab initio
predictions, our theory strongly supports the view that the experiments have produced a molecular condensate.
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I. INTRODUCTION

The subject of the coupling between atoms and molec
in Bose-Einstein condensates has attracted intense int
following recent experiments@1–4#. The particular experi-
ments we shall focus on are those performed at JILA@3,4#,
where the strength of the interatomic potential of85Rb was
varied rapidly using specially designed magnetic-fie
pulses. This resulted in the loss of condensate atoms an
production of additional components in the gas. One of th
components is believed to be composed of molecules, an
be a molecular condensate. This is a remarkable achi
ment, with profound consequences for future work in t
field. We shall show that this interpretation is fully support
by the theoretical work described in this paper. We wan
emphasize that the prediction of a molecular conden
arises naturally from the theory and does not have to
assumed at the outset. To make this prediction we use
microscopic theory of evolving condensed systems de
oped in Ref.@5#. This theory allows us to include the fu
dynamics of colliding pairs of atoms without the need f
any assumptions about the nature of the states produce
the experiment. This theory gives us a generalization of
well-known Gross-Pitaevskii equation~GPE! which includes
the binary dynamics fully in the description of time evolvin
condensates.

If the variation in the magnetic field occurs slowly
comparison with the duration of a collision one should e
pect to be able to use the standard Gross-Pitaevskii appr
@6# to the problem. The derivation of the GPE, howev
relies precisely on the assumption that collisions occur o
time scale small compared to all others in the problem@5#.
This approximation, therefore, fails in this experimental
gime where the magnetic field, tuned in the region of a F
hbach resonance, varies on this time scale.

As mentioned above, the interpretation of the results
the experiment posits the production of bound molecu
states, persisting at the end of the magnetic pulse seque
Some theoretical treatments of the problem of molecule
condensates@7,8# separate out such states as a separate e
of the physical system at the outset of their calculation, i
physical observables associated with two-body bound st
are described in terms of a molecular quantum field t
1050-2947/2003/67~1!/013601~17!/$20.00 67 0136
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emerges directly in a model Hamiltonian@9#.
In this paper we give a microscopic treatment of the e

lution of a Bose-Einstein condensate in the presence o
time varying magnetic field that completely avoids assum
tions on the nature of the states involved in the collisi
process. In fact we treat the binary events involving bou
and free molecular states formed during the evolution in
unified manner. This is a most sensible approach, as str
speaking, in the presence of the nonadiabatically time va
ing field, there is no proper distinction between bound a
free states. At the end of the pulse sequence we can of co
resolve the final state of the gas into free and bound com
nents. To do this we use only the assumption that the
remains dilute and that binary encounters are the domin
collisional process. The evolution of pairs of particles fro
the condensate into other free states or into bound molec
states comes from this treatment. Our theory strongly s
ports the view that the experiments have produced a mole
lar condensate. We should emphasize again that this con
sion comes from anab initio prediction of the theory and no
as an assumption.

In the following sections we review briefly the micro
scopic theory of a dilute gas that we use in the analysis of
problem. We then show how the macroscopic evolution
the condensates is coupled in and out of the binary dynam
We can then produce explicit expressions for the vario
components that are produced in the experiments. We h
performed calculations both for the case of the homogene
gas and also for the case of a trapped condensate. The q
tative results of these two calculations agree but there
quantitative differences that merit further study. Our resu
for the loss of condensate and the production of a hea
component agree with those produced in the experimen
addition, we are able to confirm the presence of a molec
condensate with all the physical properties we would exp

II. MICROSCOPIC DYNAMICS APPROACH

A. Atomic mean field

The microscopic dynamics approach@5# is based on the
general many-body Hamiltonian for identical bosons with
pair interactionV(r ,t),
©2003 The American Physical Society01-1
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H5E d3xc†~x!H1B~x!c~x!1
1

2 E d3xd3yc†~x!c†~y!

3V~x2y,t !c~y!c~x!. ~1!

Here, H1B(x)52\2
“

2/2m1Vtrap is the Hamiltonian of a
single atom containing the kinetic energy and the trapp
potential. The field operators satisfy bosonic commutat
relations, @c(x1),c(x2)#50 and @c(x1),c†(x2)#5d(x1
2x2). In the situation studied in this paper, the interatom
interaction is varied using an external magnetic-field pulse
the vicinity of a Feshbach resonance@4# and its time depen-
dence is noted explicitly in Eq.~1!.

All physical properties of a gas of atoms can be det
mined from correlation functions,̂c†(xn)•••c(x1)& t , i.e.,
expectation values of normal ordered products of field ope
tors with respect to the quantum state of the gas at timt.
References@10,5# provide a general scheme to transform t
exact infinite hierarchy of coupled dynamics equations
correlation functions into a more favorable form: The resu
ing equivalent set of dynamic equations for what are ca
noncommutative cumulants allows for a systematic trun
tion in accordance with Wick’s theorem in statistical m
chanics. In this paper we apply this truncation scheme
determine a closed set of equations of motion for the relev
physical quantities. The derivation of the approach to
level of approximation required to study the phenomena
ported in Ref.@4#, i.e., the first-order microscopic dynamic
approach@5#, is given in Appendix A.

The relevant physical quantities involve only the first- a
second-order cumulants:

C~x,t !5^c~x!& t ,

F~x,y,t !5^c~y!c~x!& t2^c~y!& t^c~x!& t ,

G~x,y,t !5^c†~y!c~x!& t2^c†~y!& t^c~x!& t . ~2!

Here, C(x,t) is the atomic mean field,F(x,y,t) the pair
function, which plays an important role in the description
correlated pairs of atoms, andG(x,y,t) is the one-body den
sity matrix of the noncondensed fraction. The density of
gas at the positionx and time t is thus given byn(x,t)
5^c†(x)c(x)& t5G(x,x,t)1uC(x,t)u2.

In the first-order microscopic dynamics approach
atomic mean field is determined through a closed nonlin
Schrödinger equation@5#:

i\
]

]t
C~x,t !5H1B~x!C~x,t !

2C* ~x,t !E
t0

`

dtC2~x,t!
]

]t
h~ t,t!. ~3!

The collision term distinguishes the non-Markovian dyna
ics Eq.~3! from the Gross-Pitaevskii approach and is det
mined through the coupling function

h~ t,t!5~2p\!3^0uV~ t !U2B~ t,t!u0&u~ t2t!, ~4!
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whereU2B(t,t) denotes the unitary time development ope
tor of the relative motion of two atoms in free space,u0& is
the zero-momentum plane wave, andu(t2t) is the step
function, which gives unity fort.t and vanishes elsewhere
Throughout this paper the three-dimensional pla
wave with momentum p is normalized as ^r up&
5exp(ip•r /\)/A2p\3.

B. Noncondensed fraction

In the first-order microscopic dynamics approach, t
nonlinear Schro¨dinger Eq.~3! determines not only the atomi
mean field but also the pair functionF, and, in turn, the
density matrix of the noncondensed fractionG in Eq. ~2!.
The pair function is given by

F~x,y,t !52E
t0

t

dtE d3x8d3y8C~x8,t!C~y8,t!

3
]

]t
^x,yuU trap

2B ~ t,t!ux8,y8&, ~5!

whereU trap
2B (t,t) is the unitary time development operator

two trapped atoms interacting through the pair poten
V(t). The density matrix of the noncondensed fraction e
pressed in terms of the pair function is given by

G~x,y,t !5E d3x8F~x,x8,t !F* ~y,x8,t !. ~6!

As shown in Appendix A, Eq.~6! assures both the positivity
of all occupation numbers and the conservation of the to
number of atoms in the gas:

E d3x@ uC~x,t !u21G~x,x,t !#5Nc~ t !1Nnc~ t !5N. ~7!

The form of Eq.~6! suggests a separation of the number
noncondensed atoms into a molecular fraction and correl
pairs of atoms after a time-dependent magnetic-field puls
the kind reported in Ref.@4# as follows: The total number o
noncondensed atoms is given by

Nnc~ t !5E d3xG~x,x,t !5E d3xd3x8uF~x,x8,t !u2

5E d3Rd3r uF~R,r ,t !u2, ~8!

where the position dependence was changed to two-b
center-of-mass and relative coordinatesR5(x1y)/2 and r
5y2x, respectively. Under the assumption that the trap
switched off at timetfin , immediately after the pulse, and th
magnetic field is held constant at its final value, the ene
states of the relative motion of a pair of atoms become
tionary. A complete set of energy eigenstates is given by

15(
n

ufbn&^fbnu1E d3pufp
(1)&^fp

(1)u, ~9!
1-2
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MICROSCOPIC THEORY OF ATOM-MOLECULE . . . PHYSICAL REVIEW A 67, 013601 ~2003!
wherefbn are the molecular bound states of the final p
potential andfp

(1) are chosen as stationary scattering sta
which, at large relative distance, become a sum of an inc
ing plane wave with momentump and an outgoing spherica
wave ~see, e.g., Ref.@11# or Appendix B!. Replacing the
spatial integration over the relative coordinater in Eq. ~8! in
favor of the energy eigenstates in Eq.~9!, the noncondensed
fraction splits into a molecular part and a scattering part:

Nnc~ t !5E d3RF(
n

u^R,fbnuF~ t !&u2

1E d3pu^R,fp
(1)uF~ t !&u2G , ~10!

where uF(t)&[*d3Rd3r uR,r &F(R,r ,t). The choice of
eigenstates and the physical meaning of the contribution
Eq. ~10! depend on the experimental situation to be d
scribed. As will be shown in the following sections the m
lecular part in Eq.~10! determines the number of atom
bound to molecules after the pulse while the scattering
describes pairs of atoms emitted from the condensate
ballistic expansion.

C. Molecular fraction

The operator that determines the number of pairs of ato
in the specific bound statefb in a gas withN atoms reads, in
its first quantization form,

Nb5
1

2 (
i , j 51
i 5” j

N

ufb,i j &^fb,i j u, ~11!

wherei and j indicate the pair of atoms. Expressed in term
of the atomic field operator, Eq.~11! becomes

Nb5
1

2 E d3x1d3x2d3x18d
3x28fb(x282x18)fb* (x22x1)

3d~ 1
2 [x181x28!2 1

2 ~x11x2#)

3c†~x18!c†~x28!c~x2!c~x1!. ~12!

The mean number of molecules in the stateufb& is thus
given by

Nb~ t !5^Nb& t5
1

2E d3r 8d3rd3Rfb~r 8!fb* ~r !

3 K c†S R1
r 8
2 Dc†S R2

r 8
2 DcS R2

r

2DcS R1
r

2D L
t

,

~13!

whereR and r are center-of-mass and relative coordinat
respectively. The fourth-order correlation function in E
~13! can be factorized into cumulants@cf. Eq. ~A4!#, and
truncated in accordance with the level of approximation
the first-order microscopic dynamics approach:
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^c†~x4!c†~x3!c~x2!c~x1!& t

5^c†~x4!c†~x3!& t^c~x2!c~x1!& t . ~14!

The mean number of molecules in the stateufb& can then be
expressed in terms of a molecular mean field as

Nb~ t !5E d3RuCb~R,t !u2, ~15!

where

Cb~R,t !5
1

A2
E d3rfb* ~r !FF~R,r ,t !

1CS R1
r

2
,t DCS R2

r

2
,t D G . ~16!

The overlap of the molecular wave functionfb with the
second, factorized term on the right-hand side of Eq.~16!
can be shown to be negligible in all applications described
this paper. The molecular part on the right-hand side of
~10! is thus twice the number of dimer molecules in the g
i.e., the number of atoms bound to dimer molecules. T
wave functionCb(R,t), which yields the density of the mo
lecular fraction, is thus obtained systematically in terms
atomic field correlation functions. The derivation leading
Eqs. ~15! and ~16! does not depend onfb being a bound
state. The number of pairs of atoms in any two-body stat
obtained in an analogous way. In Sec. II D we will apply
analog of Eqs.~15! and ~16! to determine the number o
atoms emitted from the condensate during the magnetic-fi
pulse.

D. Burst of atoms

In this section we show that the scattering part of t
noncondensed fraction on the right-hand side of Eq.~10!
determines the number of relatively hot atoms emitted
pairs from the condensate. To this end we consider a ball
expansion of the gas at timetfin , i.e., the trap is switched of
and the magnetic field is held constant immediately at
end of a magnetic-field pulse. This is illustrated schem
cally in Fig. 1.

A relatively hot fraction, if present, will expand muc
faster than the condensate and can be detected far outsid

FIG. 1. Scheme of a ballistic expansion after a magnetic-fi
pulse. Pairs of atoms are emitted from the condensate with o
particle momentap and2p. The center of mass of the pairs sta
confined in the remnant condensate with a momentum spread
termined by the spread of momenta in the condensate. At a s
ciently long time after the pulse, a burst of relatively hot atoms c
be detected outside the remnant condensate.
1-3
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KÖHLER, GASENZER, AND BURNETT PHYSICAL REVIEW A67, 013601 ~2003!
remnant condensate at a timet sufficiently long aftertfin . For
a gas withN atoms the observable for the number of pairs
atoms with a relative coordinate betweenr andr1d3r , in its
first quantization form, is given by( i , j ur i j &^r i j ud3r , where,
as in Sec. II C,i andj indicate the pair of atoms. In complet
analogy to Sec. II C, the mean number of pairs of atoms w
a relative coordinate betweenr and r1d3r becomes

nr~ t !d3r 5E d3RuC r~R,t !u2d3r , ~17!

where

C r~R,t !5
1

A2
FF~R,r ,t !1CS R1

r

2
,t DCS R2

r

2
,t D G .

~18!
At the relative distancesr under consideration, which ex

ceed by far the size of the remnant condensate, the sec
factorized contribution to Eq.~18! is negligible. The energy
spectrum of the relatively hot atoms can be obtained from
expansion ofC r in terms of the energy states in Eq.~9! that
correspond to a release of the atoms from the trap:

C r~R,t !5
1

A2
(

n
fbn~r !^R,fbnuF~ t !&

1
1

A2
E d3pfp

(1)~r !^R,fp
(1)uF~ t !&. ~19!

The molecular wave functions in Eq.~19! have decayed a
the relevant distancesr that even exceed the extent of th
remnant condensate. The corresponding molecular contr
tion to the right-hand side of Eq.~19! is thus negligible.
Taking into account that the scattering wave functionsfp

(1)

are energy eigenstates of a pair of atoms after the pulse
remaining part of the amplitude in Eq.~19! becomes, after a
short calculation using Eq.~5!,

C r~R,t !5
1

A2
E d3pfp

(1)~r !

3^R,fp
(1)uF~ tfin!&e2 i (p2/m)(t2tfin)/\. ~20!

For two identical atoms the relative kinetic energyErel and
the relative momentump are related throughErel5p2/m.
The spectrum of the pairs of comparatively hot atoms, i
the number of pairs of atoms with a relative energy in
interval @Erel,Erel1dErel# , is thus given by

n~Erel!dErel5
1
2 Am3AEreldErelE dVpE d3RuCp~R!u2,

~21!

whereCp(R)5^R,fp
(1)uF(tfin)&/A2 is the amplitude on the

right-hand side of Eq.~20! and dVp denotes the angula
component ofd3p. The sum over all energy components
the spectrum yields
01360
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n~Erel!dErel5
1

2 E d3pE d3Rz^R,fp
(1)uF~ tfin!& z2.

~22!

A comparison between Eqs.~10!, ~15!, and ~22! shows that
the total noncondensed fraction of the gas consists of m
ecules and a burst of comparatively hot atoms emitted
pairs from the condensate with a time-of-flight spectrum
relative energies given by Eq.~21!. Whether the noncon-
densed fraction becomes significant depends on the time
pendence of the magnetic field, i.e., the way energy is
leased to the gas.

III. DYNAMICS OF THE GAS

A. Feshbach resonance and magnetic-field pulse

In this section we discuss the evolution of the gas whe
specially designed homogeneous magnetic-field pulse is
plied to tune the interatomic interaction rapidly in the vici
ity of a Feshbach resonance. Motivated by the experimen
Donleyet al. @4# we study the time variation of the magnet
field shown in Fig. 2. The magnetic field varies linearly
time within the subsequent time intervals.

A Feshbach resonance occurs when the energy of a bo
state of a closed-channel potential is tuned close to the
sociation threshold of the ground-state potential@12#. This
tuning of the interaction in the interatomic motion takes a
vantage of the Zeeman effect in the electronic energy lev
of the atoms. If the closed-channel bound state approac
the threshold from below, the interatomic potential suppo
a shallow~metastable! s-wave bound state. Around the res
nance, a slight change in the energy difference of the po
tials thus leads to a large variation of the scattering leng
Neglecting the slow decay of thes-wave bound state, the
scattering length depends on the magnetic field through
relation

a~B!5abgS 12
DB

B2B0
D , ~23!

FIG. 2. Time dependence of the magnetic field. The field var
linearly within the subsequent time intervals. The numerical sim
lations in this paper have been performed with the following pu
shape: Fall and rise times, 12ms; hold time atB5155.5 G, 13ms;
evolution time atB5160 G, tevolve510–40ms; initial and final
fields: B5162.2 G.
1-4
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MICROSCOPIC THEORY OF ATOM-MOLECULE . . . PHYSICAL REVIEW A 67, 013601 ~2003!
whereDB is the width of the Feshbach resonance andB0 is
the resonant field. We consider the resonance of85Rb atB0

5154.9 G, withDB511.0 G @13#, which has been used i
Ref. @4#. For the background scattering length we use
valueabg52450aBohr @4#, whereaBohr is the Bohr radius.

Figure 3 shows the scattering length as a function of
field B in the vicinity of the resonance for the values ofB
that are relevant in this paper. At the initial timet0, the
magnetic fieldB5162.2 G implies a scattering length o
about 228aBohr ~cf. Fig. 3!. The interactions then vary ac
cording to the pulse shape in Fig. 2. Similar to the expe
mental procedure@4# we will determine the dynamic evolu
tion of the gas for fixed time constants and field strengths
the initial and final pulses, but for different evolution time
tevolve.

In the experiment@4# an adiabatic field variation followed
the pulse sequence. Finally the trap and the magnetic
were switched off, and the gas freely expanded before
number of atoms in the remnant condensate as well as a
of relatively hot atoms were detected by absorption imagi
A series of measurements was performed for varying ev
tion times tevolve. The number of atoms in each compone
showed an oscillatory dependence ontevolve, with the fre-
quency corresponding to the energy of the shallow two-b
s-wave bound state in the evolution period. Moreover, a fr
tion of missing atoms was found oscillating at the same
quency. An interesting side result reported in Ref.@4# is that
the visibility of the oscillations depended sensitively on t
presence of the initial and final ramp very close to the re
nance~at 155.5 G in Fig. 2!. In the following sections we
shall explain these observations.

B. Coupling function

We will study first the coupling function of the non
Markovian nonlinear Schro¨dinger Eq.~3! for magnetic-field
variations as shown in Fig. 2. The coupling functionh(t,t),
given in Eq.~4!, reflects the binary dynamics that enters t
description of the condensate through Eq.~3!. We will dis-
cuss the extent to which the binary dynamics can alre

FIG. 3. The scattering lengtha in units of the Bohr radius, as a
function of the magnetic fieldB, in the vicinity of the Feshbach
resonance.a(B) is determined from Eq.~23!, usingB05154.9 G,
DB511.0 G, andabg52450aBohr.
01360
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explain why the particular field pulse was needed to obse
the oscillations between the condensate and the non
densed fraction of the gas.

We have numerically determined the time dependence
h(t,t) in the two-dimensional plane (t,t) for t0,t,tfin and
t0,t,t using the methods described in Appendix B. Figu
4 showsh(t,t) as a function oft, for t5t0 and the time
dependence of the magnetic field in Fig. 2, withtevolve
510 ms. In the evolution period betweent3537 ms andt4
547 ms, h(t,t) oscillates with the frequencynevolve
>200 kHz. This particular oscillatory dependence is to
expected, as, according to Eq.~4!, h(t,t) involves the two-
body time development operatorU2B(t,t): In this period the
binary potential is stationary and supports a shallows-wave
bound statefb

evolve. A spectral decomposition ofU2B(t,t)
shows that the contribution of this bound state toh(t,t),
within the evolution period, is given by

h~ t,t!>~2p\!3^0uV~ t !ufb
evolve&^fb

evolveuU2B~ t3 ,t!u0&

3u~ t2t!e2 iEb
evolve(t2t3)/\, ~24!

wheret3 is the initial time of the evolution period. The fre
quency of the oscillations in the coupling function thus co
responds to the bound-state energy in the evolution per
i.e., nevolve5uEb

evolveu/h. The amplitude and phase of thes
oscillations, however, depend on the time evolution befo

The particularly large amplitude in Fig. 4 is achieved
the initial ramp close to the resonance atB>155 G in Fig. 2.
To illustrate the role of the first ramp, Fig. 5 showsh(t,t) as
a function of t, at t5t0, for a trapezoidal pulse. Here, th
trapezoidal pulse is chosen similar to Fig. 2 except that
initial and final ramps toB5155.5 G are cut off, i.e., the
magnetic field is held constant at 160 G betweent>4 ms
and t>80 ms. As shown in Figs. 4 and 5 the first ramp
B5155.5 G causes a pronounced enhancement of the am
tude by a factor of about 20 for the optimized pulse in Fig
as compared to the trapezoidal pulse.

Figure 6 shows the real and imaginary parts ofh(t,t) in
the two-dimensional plane (t,t), for the same parameters a

FIG. 4. The coupling functionh(t,t) as a function oft, describ-
ing the two-body dynamics driven by the magnetic-field pulse
Fig. 2, for t5t0, and an evolution timetevolve510 ms.
1-5
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KÖHLER, GASENZER, AND BURNETT PHYSICAL REVIEW A67, 013601 ~2003!
in Fig. 4. The figure reveals that the amplitude of the os
lations during the evolution period betweent537 ms andt
547 ms rapidly decays int. The phase of the oscillations
however, is largely independent oft. A further analysis
shows that these properties of the especially optimized p
form in Fig. 2 assure the reappearance of the oscillation
quency ofh(t,t) in the nonlinear dynamics of the conde
sate described by Eq.~3!.

C. Homogeneous gas

The dynamics of a homogeneous condensate driven
magnetic-field pulse of the form in Fig. 2 already exhibits
basic qualitative phenomena reported in Ref.@4#. We will
therefore study the time evolution of the condensate as

FIG. 5. The coupling functionh(t,t) as a function oft, for t
5t0, describing the two-body dynamics for a trapezoidal pulse,
the magnetic-field pulse in Fig. 2 but without the initial and fin
ramps toB5155.5 G. The magnetic field is thus held constant
B5160 G fromt>4 ms to t>80 ms.
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as the final non-condensed fraction in detail for this idealiz
gas. Thereafter, we will discuss the corrections due to
presence of a trap in Sec. III D. All physical quantities und
consideration are determined by the nonlinear Schro¨dinger
equation~3!, driven by coupling functions of the form of Fig
6, with a variable evolution timetevolve.

Starting from a pure condensate with the densityn0
53.931012 cm23, Fig. 7 shows the relative atomic conde
sate densitync(t)/n0, as a function oft, for three different
evolution timestevolve510 ms, 12ms, and 14ms. The initial
conditions correspond roughly to the low-density measu
ments in Ref.@4#. After an initial loss period duringt050
<t&35 ms, the condensate density shows a distinct osci
tory behavior around 80% of the initial density. The fr

.,

t

FIG. 7. The time dependence of the relative condensate frac
nc(t)/n0 remaining of the initial density ofn053.931012 cm23 for
three different evolution timestevolve510 ms, 12ms, and 14ms.
The sequence of magnetic-field pulses is chosen as in Fig. 2 w
field strength in the evolution period ofBevolve5160 G.
FIG. 6. The coupling functionh(t,t) as a function oft andt, for the same parameters as used in Fig. 4.
1-6
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MICROSCOPIC THEORY OF ATOM-MOLECULE . . . PHYSICAL REVIEW A 67, 013601 ~2003!
quency of these oscillations very precisely matches
bound-state frequency in the evolution period, i.e.,nevolve

5uEb
evolveu/h>200 kHz. After the evolution period, the se

ond magnetic-field pulse, which shifts the atoms in and
of the vicinity of the Feshbach resonance, causes the con
sate fraction to develop to values between 55% and 8
The final fraction depends on the phase of the intermed
oscillations at the end of the evolution period when the s
ond resonant pulse starts. The remnant condensate dens
time tfin , immediately after the pulse sequence, therefo
also oscillates as a function oftevolve. While the first ramp to
B5155.5 G in Fig. 2 drives the amplitude of the oscillatio
of nc(t) in t, the second ramp in Fig. 2 amplifies the visibili
of the oscillations innc(tfin) as a function oftevolve. The fast
oscillations of the functionh(t,t) in t at the very beginning
and ending of the pulse sequence~see Figs. 4 and 6! have
only a minor influence on the evolution of the condensat

The atomic mean fieldC determines the pair function
through Eq.~5! and, in turn, the molecular fraction in Eq
~15! and ~16! as well as the energy spectrum of compa
tively hot atoms, Eq.~21!, after the pulse. Figure 8 shows th
density of atoms emitted in pairs from the condensate a
function of their relative energy for a uniform gas under t
conditions described in Fig. 7. As the momentum spread
the center-of-mass motion of the pairs corresponds to
small spread of momenta in the atomic condensate, the
ergy of a single atom in a pair is related to the relative ene
throughE1B5Erel/2. The spectra exhibit a damped oscill
tory dependence on the energy with a first, dominant ma
mum below E1B /kB5150 nK. The time-of-flight energy
spectra in Fig. 8, as described in Sec. II D, do not corresp
completely to the experimental procedure in Ref.@4#. The
presence of a trap should also modify their shape in a not
able way. We expect, however, that Fig. 8 reflects the typ

FIG. 8. The density of burst atoms@2n(Erel) with n(Erel) given
by Eq. ~21!# as a function of the relative energyErel in a uniform
gas for three different evolution timestevolve511 ms, 12ms, and
13 ms. The external parameters are chosen as in Fig. 7. The a
are emitted from the condensate in pairs with momentap and
2p. The relative energyErel5p2/m is related to the energy of a
single atom,E1B5p2/2m, through E1B5Erel/2. The vertical line
indicates the scale of the mean energies of burst atoms report
Ref. @4#.
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energy scales of the burst atoms in Ref.@4#.
The experimental procedure did not allow for a dire

detection of molecules. We thus identify the fraction of mis
ing atoms reported in Ref.@4# as those atoms that are boun
to dimer molecules after the pulse sequence. The total d
sity of unbound atoms is then given by the initial densityn0
minus twice the density of dimer molecules in the homog
neous gas. In the course of our studies we have determ
the remnant condensate as well as the final molecular f
tion as a function of the evolution timetevolve from 10 to
40 ms in steps of 1ms. The total length of the pulses ha
thus been varied between 84ms and 114ms.

The results are summarized in Fig. 9. The solid line is
interpolation of the data for the remnant condensate den
relative to the initial density ofn053.931012 cm23 ~filled
circles! with the sinusoidal fit function proposed by Donle
et al. @4#. The frequency of the oscillations corresponds
the binding energyuEb

evolveu/h5uEb(160 G)u/h>200 kHz. In
Fig. 9 the filled squares and their interpolation, i.e., the u
permost curve, show the fraction of atoms that are not bo
to dimer molecules after the magnetic-field pulse~Fig. 2!.
Number conservation allows to determine the density of
burst of relatively hot atoms directly from the total density
unbound atoms and the remnant condensate@cf. Eqs.~7! and
~10!#. For this reason the dotted curve in Fig. 9, term
‘‘burst of atoms,’’ has been obtained by subtracting the so
curve from the dashed curve. Both the fraction of ‘‘missin

ms

in

FIG. 9. The remaining fraction of condensate atoms,nc(tfin),
~solid line! together with the total density of unbound atom
~dashed line! in a homogeneous gas, as a function of the final ti
tfin , elapsed after a magnetic-field pulse of the form in Fig. 2.
densities are given relative to the initial density ofn053.9
31012 cm23. The external parameters are chosen as in Fig. 2.
filled circles and squares correspond to direct calculations of
remnant condensate and the molecular fraction. The solid
dashed curves are interpolations with the sinusoidal fit functi
proposed in Ref.@4#. The dotted line indicates the ‘‘burst’’ of rela
tively hot ~unbound! atoms emitted in pairs from the condensate
determined from the remnant condensate and the total fractio
unbound atoms through number conservation@cf. Eqs. ~7! and
~10!#. The filled diamonds correspond to direct calculations of
burst fraction obtained from integration of the spectra in Fig. 8 w
respect to the energy.
1-7
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KÖHLER, GASENZER, AND BURNETT PHYSICAL REVIEW A67, 013601 ~2003!
atoms and the burst of atoms exhibit oscillations with
frequencynevolve5uEb

evolveu/h in tevolve as well as the phas
relation with respect to the remnant condensate reporte
Ref. @4#.

D. Trapped gas

The studies of the homogeneous gas in Sec. III C allow
to identify the three components of the gas as observe
Ref. @4#. The purpose of this section is to study the influen
of the trap and the inhomogeneous local densities of the
on the relative magnitudes of these components.

We have performed these studies similar to Sec. III C
in the presence of a trap. The trap has been idealized
spherical harmonic-oscillator potentialVtrap(r )5 1

2 mvho
2 r 2

with an oscillator frequency of aboutvho>80 s21 and a re-
sulting oscillator length of aboutl ho>3 mm. The trap pa-
rameters correspond to the geometric mean of the freq
cies in Ref.@4#, i.e., vho5A3 v radial

2 vaxial. We have studied
initially pure condensates ofN0517 100 atoms with differ-
ent local densities. The different initial density profiles a
shown in Fig. 10. The solid line is the density obtained fro
the exact solution to the time-independent Gross-Pitaev
equation for 17 100 atoms with a scattering length of ab
a(162.2 G)>228aBohr. This stationary condensate groun
state exhibits a nearly perfect agreement with its Thom
Fermi approximation. The second state we have studied
Gaussian~dashed line!, which, for 17 100 atoms, is the be
least-square fit to the Thomas-Fermi approximation~dotted
line!.

Figure 11 shows the condensate, molecular, and b
fractions at the end of the pulse~Fig. 2! for the exact solution

FIG. 10. The different initial states studied in a spherical h
monic trap with an oscillator length of aboutl ho>3 mm, i.e., a trap
frequency ofvho>80 s21, corresponding to the geometric mean
the frequencies used in the experiment@4# (vho5A3 v radial

2 vaxial).
The atoms are exposed to a magnetic field ofB5162.2 G which
implies a scattering length of about 228aBohr. Shown are the den
sities as functions of the radius corresponding to the exact gro
state wave function given by the time-independent Gross-Pitaev
equation~solid line!, and a Gaussian~dashed line!, which is the best
least-square fit to the Thomas-Fermi approximation~dotted line!.
All densities correspond to 17 100 condensed atoms.
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of the time-independent Gross-Pitaevskii equation~a! and
the Gaussian~b!. The evolution times range between 10ms
and 17ms such that the total time of the pulse ranges
tween 84ms and 91ms. The analysis of the trapped gas do
not show any qualitative differences from its analog in
homogeneous gas in Fig. 9. All components oscillate w
the same frequencynevolve5uEb

evolveu/h and exhibit phase
shifts similar to those in Fig. 9. Figure 11 reveals, howev
that the relative magnitude of the components depends
sitively on the local densities in the initial inhomogeneo
condensate.

To study the role of the trap potential and the one-bo
kinetic energy we have performed the same analysis a
Fig. 11 in the local-density approximation, which accoun
only for the dynamics of the nonlinear Schro¨dinger Eq.~3!
for a uniform gas but with different densities, weighted a
cording to the initial condensate wave function. The appro
mation, however, neglects the trapping potential and the o
body kinetic energy. Figure 12 shows the different fractio
of the gas under the same conditions as in Fig. 11. A co
parison of Figs. 11 and 12 reveals no qualitative differenc
but a quantitative dependence of all fractions of the gas
the trap potential and the one-body kinetic energy. The os
lation frequencies are the same but the mean values and
plitudes vary. In the local-density approximation the fracti
of burst atoms is considerably smaller than in the exact
culation. A further analysis of the time dependence of
condensate fraction, similar to Fig. 7, shows that the p
dominant influence of the trap potential occurs during
initial ramp to B5155.5 G in Fig. 2. In this period of the
pulse sequence the scattering length becomes comparab
the oscillator length@14#. This additional length scale is ne
ther accounted for in the homogeneous gas nor in the lo
density approximation. The results of this section show th

-

d-
kii

FIG. 11. The remaining fraction of condensate atoms,Nc(tfin),
~solid line!, together with the molecular fraction~dashed line! and
the burst of relatively hot unbound atoms~dotted line!, as a function
of the total time tfin elapsed after the magnetic-field pulse. T
fractions are given relative to the initial number of atoms, i.e.,N0

517 100. The calculations take into account the exact quan
dynamics of the trap for the initial state given, in Fig. 10, by t
time-independent Gross-Pitaevskii equation~a! and a Gaussian den
sity distribution~b!.
1-8
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MICROSCOPIC THEORY OF ATOM-MOLECULE . . . PHYSICAL REVIEW A 67, 013601 ~2003!
quantitative comparison of the magnitude of the differe
fractions in the gas with the experiment@4# should include
the correct trap potential with the precise local densities
the initial condensate as well as the precise time depend
of the magnetic-field pulse.

E. Interpretation of the results

In the preceding sections we have analyzed the dynam
of an initially condensed Bose gas of85Rb atoms exposed to
a magnetic-field pulse of the form in Fig. 2. We have ide
tified the different fractions of unbound atoms in the gas a
remnant condensate and a burst of comparatively hot at
with kinetic energies of aboutE1B /kB*100 nK. We have
further analyzed the dependence of the relevant physical
servables on the precise external conditions. Our res
strongly indicate that the fraction of missing atoms repor
in Ref. @4# corresponds to atoms bound to dimer molecu
that could not be detected.

Donley et al. @4# raised the question whether these m
ecules form a condensate. The analysis in Sec. II provid
definite answer on the basis of the microscopic approac
the many-body quantum dynamics: In Sec. II D we ha
predicted that the molecular fraction would stay confined
the atomic condensate in a ballistic expansion immedia
after the pulse, while the burst fraction of unbound pairs
atoms rapidly disperses. The expansion served as an ex
mental technique to prove the presence of a condensate

The formation of a molecular condensate can be ph
cally understood from the nature of the external perturba
of the initial atomic condensate: The magnetic-field pu
provides energy to form dimer molecules and correla
pairs of burst atoms but no momentum to drive their cen
of mass. A further analysis of Eqs.~5!, ~16!, and~20! shows

FIG. 12. The remaining fraction of condensate atoms,Nc(tfin)
~solid line!, together with the molecular fraction~dashed line! and
burst of relatively hot unbound atoms~dotted line!, as a function of
the total timetfin elapsed after the magnetic-field pulse. The fra
tions are given relative to the initial number of atoms, i.e.,N0

517 100. The calculations are performed in the local-density
proximation for the initial state given, in Fig. 10, by the tim
independent Gross-Pitaevskii equation~a! and a Gaussian densit
distribution ~b!.
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that, indeed, the molecules as well as the correlated pair
burst atoms exhibit the same momentum spread in their c
ters of mass as the condensate atoms. Momentum is tr
ferred only to the relative coordinate of the burst atoms s
that the total momentum of the pairs remains negligib
small. A typical density of a molecular condensate in
spherical trap is shown in Fig. 13.

As a great advantage of the microscopic dynamics
proach, the molecular condensate wave function,Cb in Eq.
~16!, has been derived from the exact hierarchy of dynam
equations for correlation functions of field operators with t
general Hamiltonian, Eq.~1!, using a systematic truncatio
scheme. Hence, the determination of the molecular cond
sate fraction does not rely upon any assumption on the e
tence of a molecular order parameter. The analysis in
section is independent of the precise trap geometry or
density profile of the initial state.
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APPENDIX A: THE MICROSCOPIC QUANTUM
DYNAMICS APPROACH

In this appendix we will derive the first-order microscop
dynamics approach to Bose condensed gases. The pr
derivation includes the explicit dynamics of the nonco
densed fraction, which is not considered in Ref.@5#.

1. Dynamic equations for cumulants

In general, the quantum state of a gas at timet is de-
scribed by a statistical operatorr(t), and the corresponding
expectation value of an operatorO reads:

-

-

FIG. 13. The initial~dotted line! and final~dashed line! atomic
condensate density, together with the molecular condensate de
nb ~solid line! for tevolve516 ms in a spherical trap. The curve
correspond to the calculations in Fig. 11~a!. The atomic densities
are multiplied by a factor of 0.04.
1-9
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^O& t5Tr@r~ t !O#. ~A1!

Quantum expectation values of normal ordered product
field operators are termed correlation functions. The ex
dynamics of the infinite hierarchy of correlation functions
given by

i\
]

]t
^c†~xn!•••c~x1!& t5^@c†~xn!•••c~x1!,H#& t ,

~A2!

wheren denotes the number of field operators in the norm
ordered product andH is the quite general Hamiltonian i
Eq. ~1!. The set of Eqs.~A2! is equivalent to the many-bod
Schrödinger equation and determines all physical proper
of a gas of atoms. Due to the interaction term in Eq.~1! any
finite subsystem of Eqs.~A2! does not close, and any attem
of an approximate solution relies upon a consistent way
truncation. A systematic truncation scheme, based on cu
lants of correlation functions, has been proposed in Ref.@10#
for the dynamics of fermionic many-body systems on sh
time scales. The extension of this work to interacting Bo
gases@5#, with a modified truncation scheme, allows us
describe the dynamics on time scales that are relevant in
paper.

The cumulants considered here are equivalent to the
nectedn-point functions and are usually defined as deriv
tives of a generating functional~cf., e.g., Ref.@15#!:

^c†~xn!•••c~x1!&c

5
d

dJ~xn!
•••

d

dJ* ~x1!
lnK expS E d3x@J* ~x!c~x!

1J~x!c†~x!# D L U
J5J* 50

. ~A3!

The cumulants may also be derived recursively, and the
three orders read

^O1&5^O 1&
c,

^O1O2&5^O1O 2&
c1^O 1&

c^O 2&
c,

^O1O2O3&5^O1O2O 3&
c1^O 1&

c^O 2&
c^O 3&

c

1^O 1&
c^O2O 3&

c1^O 2&
c^O1O 3&

c

1^O 3&
c^O1O 2&

c,A. ~A4!

For an ideal Bose gas, in the grand canonical thermal e
librium, all cumulants containing more than two field oper
tors vanish. This is a consequence of Wick’s theorem in
tistical mechanics according to which every numb
conserving the normal ordered correlation function can
expressed as a sum of products of all possible pair cont
tions conserving the operator ordering. Moreover, as the
pectation value of a single field vanishes, the second-o
cumulants becomêO1O2&5^O1O 2&

c. In accordance with
Eq. ~A4! the cumulants of an order higher than 2 vanish.
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an interacting gas the higher-order cumulants thus provid
measure for the deviation of the state of the gas from ther
equilibrium.

For the applications discussed in this paper, with a c
densate present in the gas, the relevant cumulants contai
non-number-conserving condensate wave functionC(x,t)
5^c(x)& t

c , the pair functionF(x,y,t)5^c(y)c(x)& t
c, and

the density matrix of the noncondensed fractionG(x,y,t)
5^c†(y)c(x)& t

c . The cumulant approach consists in tran
forming the exact hierarchy of dynamic equations~A2! into
an equivalent set of equations of motion for cumulants. T
exact dynamic equations for cumulants up to the second
der are given explicitly in Ref.@5#. The truncation scheme o
Ref. @5# consists in retaining, to the order ofn, the exact
dynamic equations for cumulants up to the order ofn as well
as the free time evolution of the cumulants of the order
n11 andn12. The free time evolution of the cumulants o
the order ofn11 and n12 is obtained by neglecting, in
their dynamic equations, all products of cumulants conta
ing n13 andn14 field operators.

The first-order microscopic dynamics approach (n51)
results in a closed nonlinear Schro¨dinger equation for the
mean fieldC that allows us to describe the dynamics of
condensate close to but also far away from thermal equ
rium @5#. The first-order dynamic equations that lead to t
nonlinear Schro¨dinger equation read@5#

i\
]

]t
C~x,t !5H1B~x!C~x,t !1E d3yV~x2y,t !C* ~y,t !

3@F~x,y,t !1C~x,t !C~y,t !#, ~A5!

i\
]

]t
F~x1 ,x2 ,t !5H2B~x1 ,x2!F~x1 ,x2 ,t !

1V~x12x2 ,t !C~x1 ,t !C~x2 ,t !.

~A6!

Here the one- and two-body Hamiltonians are denoted b

H1B~x!52\2
“

2/2m1Vtrap~x!,

H2B~x1 ,x2!5H1B~x1!1H1B~x2!1V~x12x2 ,t !. ~A7!

Equations~A5! and ~A6! include the loss of condensate a
oms into the noncondensed fraction as well as the back
tion of noncondensed atoms on the condensate on time s
comparable to collisional durations. On longer time sca
the noncondensed fraction becomes dilute and its back ac
is neglected.

The first-order dynamics of the noncondensed fraction
determined through the conservation of the total numbe
atoms in the gas:

N5E d3x@G~x,x,t !1uC~x,t !u2# ~A8!

is a constant of motion. The corresponding approximate
namic equation forG is then obtained from its exact coun
terpart in Ref.@5# through
1-10
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i\
]

]t
G~x1 ,x2 ,t !5 HH1B~x1!G~x1 ,x2 ,t !

1E d3yV~x12y,t !F* ~y,x2 ,t !

3@F~x1 ,y,t !1C~x1 ,t !C~y,t !#J
2$x1↔x2%* . ~A9!

The density matrix of the noncondensed fractionG(x1 ,x2 ,t),
as given in Eq.~A9!, is determined solely by the evolution o
C from the initial timet0 up to the present timet.

2. First-order dynamics

In this section we will derive the nonlinear Schro¨dinger
Eq. ~3! as well as Eqs.~5! and ~6! for the pair function and
the density matrix of the non-condensed fraction, resp
tively. For the purpose of solving Eqs.~A6! and ~A9! for-
mally in terms of the mean fieldC, it is convenient to
change the representation from the configuration space to
one-body energy states of the trap potentialuf i& or, for a
homogeneous gas, into Fourier space. The correspon
single-mode annihilation and creation operators obey
commutation relations@ai ,aj

†#5d i j , and the field operato
becomesc(x)5( if i(x)ai . In this representation the cumu
lants up to the second order readC i(t)5^ai& t

c , F i j (t)
5^ajai& t

c , andG i j (t)5^aj
†ai& t

c . We will abbreviate the trap
statesuf i& by u i & in the following.

In this representation, Eq.~A6! for the pair function as-
sumes the form

i\
]

]t
F i j ~ t !5~Ei1Ej !F i j ~ t !1 (

k1 ,k2

^ i , j uV~ t !uk1 ,k2&

3@Fk1k2
~ t !1Ck1

~ t !Ck2
~ t !#, ~A10!

whereEi is the eigenvalue ofH1B with respect to the mode
function f i(x). Equation~A10! can be solved formally in
terms of the two-body Green’s function@16#:

F i j ~ t !5 (
k1 ,k2

F ^ i , j uU trap
2B ~ t,t0!uk1 ,k2&Fk1k2

~ t0!

1E
t0

t

dt^ i , j uG2B
(1)~ t,t!V~t!uk1 ,k2&Ck1

~t!Ck2
~t!G .
~A11!

HereG2B
(1) is the retarded two-body Green’s function,

S ih
]

]t
2H2B~ t ! DG2B

(1)~ t,t!5d~ t2t!, ~A12!

which vanishes fort,t. The retarded Green’s function i
related to the time development operator of two trapped
teracting atoms, given by the time-ordered exponential
01360
c-
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U trap
2B ~ t,t!5T expF2

i

\Et

t

dt8H2B~ t8!G , ~A13!

through

G2B
(1)~ t,t!5

1

i\
u~ t2t!U trap

2B ~ t,t!, ~A14!

where u(t2t) is the step function that yields unity fort
.t and vanishes elsewhere. In all applications in this pa
the gas is a dilute condensate at the initial timet0. The initial
pair functionFk1k2

(t0) on the right-hand side of Eq.~A11!

can then be neglected@5# and Eq.~A11! thus yields Eq.~5! in
position space.

Inserting Eq.~A11! into Eq.~A5! for the mean field leads
to the closed nonlinear Schro¨dinger equation

i\
]

]t
C i~ t !5EiC i~ t !

1 (
k1 ,k2 ,k3

E
t0

`

dt^ i ,k3uT2B
(1)~ t,t!uk1 ,k2&

3Ck1
~t!Ck2

~t!Ck3
* ~ t !, ~A15!

whereT2B
(1) denotes the retarded two-body transition mat

in the time domain:

T2B
(1)~ t,t!5V~ t !d~ t2t!1V~ t !G2B

(1)~ t,t!V~t!.
~A16!

As in all applications in this paper, the trap potential
slowly varying on the spatial scale determined by the ran
of the binary interactionV(t), and the thermodynamic limi
in the relative motion of two atoms can be performed in t
collision term in Eq.~A15! @5#. The coupling function in Eq.
~4! thus involves the time development operator of the re
tive motion of two atoms in free space, denoted byU2B(t,t).
Transformed back to the position space, Eq.~A15! then
yields the nonlinear Schro¨dinger Eq.~3!.

In the first-order microscopic dynamics approach the p
function, as given by Eq.~A11! with Fk1k2

(t0)50, deter-
mines the density matrix of the noncondensed fraction: D
ferentiation with respect to the timet shows that

G i j ~ t !5(
k

F ik~ t !F jk* ~ t ! ~A17!

is the solution of Eq.~A9! for an initial pure condensate, i.e
G i j (t0)50, which derives Eq.~6!. The density matrix of the
noncondensed fraction thus assumes the form of a pa
trace over one coordinate of a two-body pure state. The
responding occupation numbers, i.e., the diagonal eleme

G i i ~ t !5(
k

uF ik~ t !u2 ~A18!

are positive, independent of the specific choice of the ba
set.
1-11
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As shown in Secs. II C and II D, the noncondensed fr
tion consists of a molecular part and a burst of atoms emi
in pairs from the condensate with a comparatively fast re
tive motion. This separation corresponds to a ballistic exp
sion of a gas that is released from a trap. The density
molecules in the bound statefb is described by the mea
field Cb in Eq. ~16!. In analogy to the collision term of the
nonlinear Schro¨dinger equation~A15!, the molecular mean
field can be expressed in terms of the atomic conden
wave functionC:

Cb~R,t !52
1

A2
E

t0

`

dtC2~R,t!
]

]t
hb~ t,t!. ~A19!

The corresponding coupling functionhb(t,t) involves the
overlap of the molecular bound-state wave functionfb and
the two-body time development operator, which, in all app
cations in this paper, is excellently approximated by the th
modynamic limit:

hb~ t,t!5~2p\!3/2^fbuU2B~ t,t!u0&u~ t2t!. ~A20!

The energy spectrum of the burst atoms in Eq.~21! involves
an amplitudeCp(R), similar to Eq.~A19!, except that the
bound statefb is replaced by the stationary scattering st
fp

(1) , which is associated with the relative momentump,
i.e.,

Cp~R!52
1

A2
E

t0

tfin
dtE d3R8d3r 8C~R81r 8/2,t!

3C~R82r 8/2,t!
]

]t
^R,fp

(1)uU trap
2B ~ tfin ,t!uR8,r 8&.

~A21!

Here,tfin is the final time immediately after the pulse in Fi
2. As fp

(1)(r ) is not confined in space~see Appendix B!, the
coupling function corresponding toCp(R) should explicitly
account for the discrete nature of the trap states also in
relative motion of two atoms. In Sec. III we have determin
the energy spectrum of the burst atoms for a homogene
gas, i.e., in the absence of a trap potential. The coup
function ofCp then becomes similar tohb(t,t) in Eq. ~A20!.

APPENDIX B: TWO-BODY DYNAMICS

In Appendix A we have formulated the many-body d
namics of a condensed gas in terms of the unitary time e
lution operator of two atoms interacting through their inte
atomic potential. In this appendix we provide a practic
approach to determine the relevant low-energy time evo
tion of two 85Rb atoms, which serves as an input to t
microscopic dynamic description of a partially condens
gas exposed to the time-dependent magnetic field discu
in Sec. III. The approach takes advantage of the fact tha
all applications in this paper the binary interaction of85Rb is
dominated by the presence of a shallows-wave bound state
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1. Resonance enhanced scattering

In ultracold dilute gases the energies of two colliding
oms are usually sufficiently small for the differential cro
sections to become isotropic. In accordance with the eff
tive range theory@16#, the s-wave scattering amplitude ca
then be expanded as

f 0~k!52a1 ia~ka!1O~k2!5
2a

11 ika
1O~k2!, ~B1!

where k is the wave number that is related to the relati
momentum of two colliding atoms throughp5\k. Equation
~B1! effectively provides an expansion in terms ofkl, where
the first dominant length scalel is given by thes-wave scat-
tering lengtha. The next correction term involves the effe
tive range of the binary potentialV @16#, denoted asr eff in the
following. In general, botha and r eff depend sensitively on
the detailed shape ofV.

When the binary potential supports a shallows-wave
bound state, the scattering length is positive and may by
exceed all the other length scales set byV. This situation is
sometimes referred to as a zero-energy resonance@16#. The
scattering amplitude is then given by2a/(11 ika), as ob-
tained from the right-hand side of Eq.~B1!, which corre-
sponds to the contact potential@17#. Extending the collision
energiesp2/m into the complex plane, Eq.~B1! yields theT
matrix @16# of the contact potential, which assumes the se
rable, i.e., factorized, form

T2B~z!5
ux&j^xu

11 iAmz/\2a
, ~B2!

where z5p2/m1 i« is a complex energy variable and th
complex square root is chosen with a positive imagin
part. The wave functionux& and the amplitudej are obtained
as^r ux&5d(r ) andj54p\2a/m, respectively. TheT matrix
determines all eigenstates of the two-body Hamiltonian. T
pole on the right-hand side of Eq.~B2! indicates that the
contact potential with a positive scattering length support
singles-wave bound state with the binding energy

Eb52\2/ma2. ~B3!

The separable form of Eq.~B2! is quite general whenever th
T matrix is dominated by the pole of a shallows-wave bound
statefb . A spectral decomposition of the two-body Ham
tonian then implies that at low collision energies theT matrix
is well approximated as@16#

T2B~z!5
ux&j^xu

12j^xuG0~z!ux&
, ~B4!

where

ux&5Vufb&,

j51/̂ fbuVufb&, ~B5!

and G0(z)5(z1\2D/m)21 is the free-energy-dependen
Green’s function of the relative motion of two atoms.
1-12
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few-body scattering theory, Eq.~B5! is usually referred to as
the unitary pole approximation@18#. A further analysis shows
that theT matrix in Eq.~B4! has a pole at the exact boun
state energy of the potentialV. The wave functionx(r ) ac-
counts for the spatial extent ofV.

The long-range behavior of interatomic potentials is d
termined by the van der Waals dispersion interact
VvdW(r )52C6 /r 6. The spatial extent ofV is then character-
ized by the van der Waals lengthl vdW5(mC6 /\2)1/4. As
shown by Gribakin and Flambaum@19#, the next correction
to the binding energy for an interatomic potential modifi
Eq. ~B3! to1

Eb52\2/m~a2ā!2. ~B6!

Hereā is the mean scattering length given in terms of theG
function as

ā5
1

2A2
l vdW

G~3/4!

G~5/4!
. ~B7!

Figure 14 illustrates the dependence of the bound-state
ergy of the shallows-wave bound state of the85Rb pair
interaction on the magnetic fieldB. The binding energies
obtained from Eq.~B6! are sufficiently accurate to match
recent exact coupled channels scattering calculation@20#. Al-
though the85Rb dimer, in the vicinity of the Feshbach res

1We thank Paul Julienne for pointing this out to us.

FIG. 14. The energy of the uppermosts-wave bound state below
threshold of two85Rb atoms,Eb , as a function of the magnetic
field strengthB. The dotted line shows Eq.~B3!, which corresponds
to a zero-energy resonance, witha(B) determined from Eq.~23!,
using B05154.9 G, DB511.0 G, and abg52450aBohr. The
dashed line shows Eq.~B6!, which accounts for the van der Waa
interaction usingC654660 a.u.@13#. The dashed curve can b
compared directly with a recent exact coupled-channel scatte
calculation@20#. The solid line is obtained from the binding ene
gies of two-parameter separable potentials with the rounded pa
eter h55000maBohr

2 /\ and the scattering length chosen in acc
dance with Eq.~23!.
01360
-
n

n-

nance, is particularly weakly bound in comparison to us
molecular ground states, Fig. 14 exhibits a pronounced
ference between Eqs.~B3! and~B6!. This deviation from the
zero-energy resonance situation is related to the large van
Waals length of aboutl vdW5164 aBohr.

2. The separable potential approach

Direct insertion shows that Eq.~B4! exactly solves the
Lippmann-Schwinger equation@16#

T2B~z!5V1VG0~z!T2B~z! ~B8!

as long as the actual potentialV is replaced by the separab
potential

Vsep5ux&j^xu. ~B9!

Since the pioneering work of Lovelace@21# separable expan
sions of potentials@22# have played an important role i
nuclear few-body physics, as they provide a systematic
proach to solve two-body scattering problems analytically
a limited range of collision energies. In this section we sh
determine a separable potential of the form of Eq.~B9! that
accurately describes the dynamics of two85Rb atoms in the
relevant range of magnetic fields and collision energies.

The unitary pole approximation in Eq.~B5! is obtained
from spectral properties of the two-body Hamiltonian a
thus applies to interatomic potentials@23#. Equation~B5! re-
produces the exact bound-state energy ofV but the scattering
length is only approximate. A further improvement can
achieved by choosingux& andj in such a way that the sepa
rable potential in Eq.~B9! matches both the energy of th
last s-wave bound state and the scattering length ofV at the
actual magnetic field. At the low collision momenta und
consideration the corresponding plane-wave states do no
solve the functional form of the wave functionx(r ). The
specific form ofx(r ) is thus not relevant as long asx(r )
decays in space on the length scale set by the van der W
length. We have chosen a Gaussian form, which in mom
tum space is given by

x~p!5^pux&5~2p\!23/2e2hp2/2m\. ~B10!

In position spaceux& is of the form x(r )}exp(2r2/2s2)
with a range parameters5A\h/m. The separable potentia
is then parametrized by the two constantsj and h. These
parameters have to be determined at each magnetic fiel
matching the binding energy and scattering length of
separable potential to the values ofEb and a of the actual
interactionV. The bound-state energy of the separable pot
tial is the real energyz5Eb at the pole of theT matrix in Eq.
~B4!, i.e., Eb is determined as

12j^xuG0~Eb!ux&50. ~B11!

The scattering length is obtained from the zero-energy li
of the T matrix as

g

m-
-
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a5~2p\!3
m

4p\2
^0uT2B~0!u0&

5
m

4p\2

~2p\!3^0ux&u2

1/j2^xuG0~0!ux&
. ~B12!

It turns out that the optimized parameterh is independent of
B with the corresponding range parameters5A\h/m
roughly given byl vdW/2. In the applications in this paper w
have used the rounded off value ofh55000maBohr

2 /\ and
determinedj(B) in such a way that the separable potent
matches exactly the dependence of the scattering lengt
the magnetic field in Eq.~23!. The resulting dependence o
the binding energy of the separable potential on the magn
field B is shown in Fig. 14. The separable potential approa
as proposed in this section, does not depend upon the a
racy of model potentials for all scattering channels and,
stead, describes the complete low-energy collision dynam
in terms of the scattering lengtha and the van der Waal
dispersion coefficientC6. Both parameters of the actual b
nary potential are accessible to experiment@24,13#.

To illustrate the degree of accuracy of the proposed
proach we shall provide a comparison of the low-ene
scattering properties obtained from the separable pote
with the exact solution of the Schro¨dinger equation for a
well-known interatomic interaction. We have chosen t
scattering of two ground-state4He atoms for this compariso
as the binary potential supports a single shallows-wave
bound state, and, within several decades of intensive st
all properties of the interaction have been determined v
accurately, to a large extent, from first-principles calculatio
@25#. The scattering length and the binding energy have b
determined recently from experiment in Ref.@26#.

We have determined the separable potential, as given
Eqs.~B9! and~B10!, that corresponds to the Tang, Toennie
and Yiu ~TTY! 4He interaction@25# with a5188aBohr and
C651.461 a.u. For4He the ratio of the scattering length an

FIG. 15. The 4He binary ~TTY! potential @25# and the radial
probability densities corresponding to the shallows-wave bound
states of4He as well as85Rb, as obtained from the separable p
tential, at a magnetic-field strength of 162.2 G. The radius is gi
on a logarithmic scale.
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the effective range,a/r eff , is of the order of magnitude of 14
Figure 15 shows the exact radial probability distribution
the bound-state wave function of4He2 as well as the shallow
s-wave bound state of85Rb, corresponding to the separab
potential approach at a magnetic field of 162.2 G, as
tained from the integral form of the Schro¨dinger equation

ufb&5G0~Eb!Vufb&. ~B13!

The radius is given on a logarithmic scale. According to E
~B13! the asymptotic functional behavior of both bound-sta
wave functions at far relative distances of the two atoms
determined solely through the free Green’s function eva
ated at the binding energyEb . As their molecular states ar
very weakly bound, both wave functions extend far outs
the range of their pair interaction.

For 4He the estimate corresponding to a zero-energy re
nance in Eq.~B3! gives uEbu/h525 486 kHz, while the for-
mula of Gribakin and Flambaum in Eq.~B6! yields uEbu/h
526 856 kHz. The exact binding energy of the TTY pote
tial is uEbu/h527087 kHz. The comparison shows thatEb
and, in turn, the bound-state wave function, are virtua
completely determined bya andC6. Figure 16 compares the
exact wave function of4He2 with the wave function ob-
tained from the separable potential approach. The main s
deviations occur in the region of the inner well of the TT
potential in Fig. 15.

The T matrix determines the stationary scattering wa
functions that correspond to the relative momentump
through the Lippmann-Schwinger equation@16#

ufp
(1)&5up&1G0~p2/m1 i0!T2B~p2/m1 i0!up&,

~B14!

where the energy argumentsp2/m1 i0 indicate that the rea
energyp2/m is approached from the upper half of the com
plex plane. At low collision momentap5\k the stationary
scattering states assume the asymptotic form

n

FIG. 16. The4He radial probability density corresponding to th
s-wave bound state of4He as obtained from the TTY potential@25#
~solid line! and the separable potential approach~dashed line!.
1-14
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fp
(1)~r !;

1

A2p\3 Feip•r /\1 f 0~k!
eipr /\

r G , ~B15!

as soon as the relative distancer exceeds by far the range o
the potential. Figure 17 compares thes-wave scattering am
plitude in Eq.~B15! for two 85Rb atoms, obtained from th
separable potential given by Eq.~B10!, at B5162.2 G, with
the amplitude of the contact potential in Eq.~B1!.

The pronounced deviations atk.1023aBohr
21 are related to

the large van der Waals length of the85Rb interaction. This
length scale is not accounted for by Eq.~B1!. The s-wave
scattering amplitude approaches Eq.~B1! once the magnetic
field is shifted further toward the Feshbach resonance aB
5154.9 G. The analogous comparison for4He in Fig. 18
may illustrate the degree of accuracy to which the scatte
from the long-range part of the binary interaction is d
scribed by the separable potential given by Eq.~B10!. In
accordance with the small van der Waals length of helium
about 10aBohr, the deviations between the contact poten
approach in Eq.~B1! and the exact scattering amplitude a
much less pronounced. Even the small deviations, howe
are correctly accounted for in the separable potential
proach up to wave numbers of about 331021aBohr

21 . The
length scale related to this upper limit of the wave numb
roughly corresponds to the radius of the inner well of t
TTY potential in Fig. 15.

FIG. 17. The real and imaginary parts of thes-wave scattering
amplitude f 0(k) for 85Rb. The solid lines are obtained with th
two-parameter separable potential, the dashed lines in the co
potential approximation, both with a scattering length
a(162.2 G)5228aBohr. The wave numberk is given on a logarith-
mic scale.
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3. Dynamics

In Sec. 2 of this appendix we have analyzed the sta
low-energy scattering properties of two85Rb atoms at a
given magnetic field. In this section we shall determine
collision dynamics that enters the many-body theory o
partially condensed Bose gas through coupling functions
the form of Eq.~4!. These coupling functions involve th
complete unitary time evolution operator of two85Rb atoms,
U2B(t,t), exposed to a magnetic field pulse as shown in F
2. We shall apply the separable potential approach of Se
of this appendix to determine the coupling functions as
effective low-energy potential renders the time-depend
Schrödinger equation into a practical form.

We shall first determine the coupling function of the no
linear Schro¨dinger equation~3!, denoted ash(t,t) in Eq. ~4!.
The coupling functionh(t,t) can be represented in terms
the time developed zero momentum plane wave of the r
tive motion of two atoms,uz(t)&5U2B(t,t)u0&, in the form

h~ t,t!5u~ t2t!~2p\!3^0uV~ t !uz~ t !&. ~B16!

The wave functionuz(t)& is determined by the integral form
of the time dependent Schro¨dinger equation as

uz~ t !&5u0&1E
t

t

dt8G0~ t2t8!V~t8!uz~t8!&, ~B17!

act

FIG. 18. The real and imaginary parts of thes-wave scattering
amplitude f 0(k) for 4He. The solid lines are obtained with th
two-parameter separable potential, the dashed lines in the co
potential approximation. The dotted lines show the scattering
plitude of an improved contact potential approach@27# that ac-
counts for the effective range of the TTY potential. The bulle
show the exacts-wave scattering amplitude for the TTY potenti
@25#.
1-15
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whereG0(t)5u(t)U0(t)/ i\ is the two-body Green’s func
tion of the relative motion of two noninteracting atoms.
obtain the coupling function through Eq.~B16!, on the basis
of the actual binary potentialV(t), the Schro¨dinger equation
~B17! needs to be solved for all times (t,t) between the
initial and final time of the magnetic-field pulse and, mor
over, at all relative distances in the argument of the wa
function z(r ,t).

The magnetic-field pulse, however, releases a sufficie
small amount of energy to the gas, to that the actual poten
V(t) in Eq. ~B17! can be replaced by the effective low
energy potentialVsep in Eq. ~B9!. Thereby, the amplitudej
5j(t) accounts for the time dependence of the magn
field through the variation of the scattering lengtha illus-
trated in Fig. 19. Equations~B16! and ~B17! then yield the
closed integral equation

h~ t,t!5~2p\!3u^0ux&u2j~ t,t!1j~ t,t!

3E
t

t

dt8^xuG0~ t2t8!ux&h~t8,t!, ~B18!

wherej(t,t)[j(t)u(t2t). The separable form of the effec
tive low-energy potential leads to a closed dynamic equa
for h(t,t), which avoids explicitly taking into account th
spatial dependence ofz(r ,t). The coupling functionh(t,t),
as obtained from Eq.~B18!, is shown in Figs. 4 and 6.

The coupling function associated with the molecular co
densate wave functionCb is given in Appendix A by Eq.
~A20! and denoted ashb(t,t). In Sec. III, uCbu2 describes
the density of85Rb2 molecules at timetfin , immediately after
the magnetic-field pulse, in the bound state correspondin
the wave function in Fig. 15. The wave functionz(r ,tfin) in

FIG. 19. The variation of thes-wave scattering lengtha corre-
sponding to the magnetic-field pulse in Fig. 2.
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Eq. ~B17! determineshb(tfin ,t) as

hb~ tfin ,t!5u~ tfin2t!~2p\!3/2^fbuz~ tfin!&. ~B19!

Taking advantage of the separable form of the effective lo
energy potential, the Schro¨dinger equation~B17! inserted
into Eq. ~B19! determineshb(tfin ,t) in terms of the known
coupling functionh(t,t):

hb~ tfin ,t!5u~ tfin2t!F ~2p\!3/2^fbu0&

1E
t

tfin
dt

^fbuG0~ tfin2t !ux&

^0ux&
h~ t,t!G .

~B20!

The molecular coupling functionhb(tfin ,t), as a function of
t, is shown in Fig. 20 for the magnetic-field pulse in Fig.
The calculation ofhb(tfin ,t) has been performed with th
85Rb2 wave function in Fig. 15 that corresponds to the sh
low s-wave bound state at the magnetic field ofB
5162.2 G at the end of the pulse sequence.

A relation, similar to Eq.~B20!, with fb replaced by the
stationary scattering statefp

(1) has been applied to calculat
the spectral density of the pairs of burst atoms at a rela
kinetic energyErel5p2/m in a homogeneous gas in Se
III C.

FIG. 20. The molecular coupling functionhb(tfin ,t), as a func-
tion of t, corresponding to the molecular wave function of tw
85Rb atoms at the final time of the pulse as depicted in Fig. 15.
magnetic-field pulse corresponds to Fig. 2 withtevolve510 ms.
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