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Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate
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In a recent experiment at JILEE. A. Donley et al,, Nature(London 417, 529 (2002] an initially pure
condensate of°Rb atoms was exposed to a specially designed time-dependent magnetic-field pulse in the
vicinity of a Feshbach resonance. The production of additional components of the gas as well as their oscil-
latory behavior have been reported. We apply a microscopic theory of the gas to identify these components and
determine their physical properties. Our time-dependent studies allow us to explain the observed dynamic
evolution of all fractions, and to identify the physical relevance of the pulse shape. Baseld mitio
predictions, our theory strongly supports the view that the experiments have produced a molecular condensate.
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[. INTRODUCTION emerges directly in a model Hamiltoni&8l.
In this paper we give a microscopic treatment of the evo-

The subject of the coupling between atoms and moleculekition of a Bose-Einstein condensate in the presence of a
in Bose-Einstein condensates has attracted intense interdgne varying magnetic field that completely avoids assump-
following recent experimentgl—4]. The particular experi- tions on the nature of the states involved in the collision
ments we shall focus on are those performed at JIRA],  process. In fact we treat the binary events involving bound
where the strength of the interatomic potentialséﬁ?b was and free molecular states formed during the evolution in a
varied rapidly using specially designed magnetic-fieldunified manner. This is a most sensible approach, as strictly
pulses. This resulted in the loss of condensate atoms and tis@€eaking, in the presence of the nonadiabatically time vary-
production of additional components in the gas. One of thes#g field, there is no proper distinction between bound and
components is believed to be composed of molecules, and ftee states. At the end of the pulse sequence we can of course
be a molecular condensate. This is a remarkable achievéesolve the final state of the gas into free and bound compo-
ment, with profound consequences for future work in thenents. To do this we use only the assumption that the gas
field. We shall show that this interpretation is fully supportedremains dilute and that binary encounters are the dominant
by the theoretical work described in this paper. We want tocollisional process. The evolution of pairs of particles from
emphasize that the prediction of a molecular condensatée condensate into other free states or into bound molecular
arises naturally from the theory and does not have to b&tates comes from this treatment. Our theory strongly sup-
assumed at the outset. To make this prediction we use tHeorts the view that the experiments have produced a molecu-
microscopic theory of evolving condensed systems devellar condensate. We should emphasize again that this conclu-
oped in Ref.[5]. This theory allows us to include the full sion comes from aab initio prediction of the theory and not
dynamics of colliding pairs of atoms without the need foras an assumption.
any assumptions about the nature of the states produced in In the following sections we review briefly the micro-
the experiment. This theory gives us a generalization of th&copic theory of a dilute gas that we use in the analysis of the
well-known Gross-Pitaevskii equatig¢GPE which includes  problem. We then show how the macroscopic evolution of

the binary dynamics fully in the description of time evolving the condensates is coupled in and out of the binary dynamics.
condensates. We can then produce explicit expressions for the various

If the variation in the magnetic field occurs slowly in components that are produced in the experiments. We have
comparison with the duration of a collision one should ex-performed calculations both for the case of the homogeneous
pect to be able to use the standard Gross-Pitaevskii approagids and also for the case of a trapped condensate. The quali-
[6] to the problem. The derivation of the GPE, however,tative results of these two calculations agree but there are
relies precisely on the assumption that collisions occur on guantitative differences that merit further study. Our results
time scale small compared to all others in the prob[&h  for the loss of condensate and the production of a heated
This approximation, therefore, fails in this experimental re-component agree with those produced in the experiment. In
gime where the magnetic field, tuned in the region of a Fesaddition, we are able to confirm the presence of a molecular
hbach resonance, varies on this time scale. condensate with all the physical properties we would expect.

As mentioned above, the interpretation of the results of
the experiment posits the production of bound molecular
states, persisting at the end of the magnetic pulse sequence. Il. MICROSCOPIC DYNAMICS APPROACH
Some theoretical treatments of the problem of molecules in
condensately,8] separate out such states as a separate entity
of the physical system at the outset of their calculation, i.e., The microscopic dynamics approaf#l is based on the
physical observables associated with two-body bound stategeneral many-body Hamiltonian for identical bosons with a
are described in terms of a molecular quantum field thapair interactionVv(r,t),

A. Atomic mean field
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1 whereU ,5(t, 7) denotes the unitary time development opera-
H:j d®x T (X)H 1500) ¢h(X) + EJ d*xdy ¢ () ¢ (y) tor of the relative motion of two atoms in free spaf®) is
the zero-momentum plane wave, adft— 7) is the step
XV(X=Yy,0)(y) p(X). (1) function, which gives unity fot> 7 and vanishes elsewhere.

Throughout this paper the three-dimensional plane
Here, HlB(X)=—f12V2/2m+Vtrap is the Hamiltonian of a wave with momentum p is normalized as (r|p)
single atom containing the kinetic energy and the trapping=exp(p-r/#)/ 274>
potential. The field operators satisfy bosonic commutation
relations, [(x1),¥(xz)]=0 and [_'r/’(xl)"/’T(XZ)]_:5(X1 _ B. Noncondensed fraction
—X5). In the situation studied in this paper, the interatomic ] _ ] ]
interaction is varied using an external magnetic-field pulse in N the first-order microscopic dynamics approach, the
the vicinity of a Feshbach resonaried and its time depen- nonlmefar Schrdinger Eq.(3) Qeterml_nes not on!y the atomic
dence is noted explicitly in Eq1). mean field b_ut also the pair functiod, an_d, in turn, the
All physica| properties of a gas of atoms can be deter_densn:y- matrlX- of .the.noncondensed fractibnin Eq (2)
mined from correlation functiong(x,) - - - (x1) ), i.e.,  1he pair function is given by
expectation values of normal ordered products of field opera- .
tors with respect to the quantum state of the gas at time d(x,y,t)= _f de d3x' d3y' W (x', ") (y’,7)
Reference$10,5] provide a general scheme to transform the to
exact infinite hierarchy of coupled dynamics equations for 9
correlation functions into a more favorable form: The result- ><—<x,y|Ut2r§p(t,r)|x’,y’), (5)
ing equivalent set of dynamic equations for what are called a7
noncommutative cumulants allows for a systematic trunca- g ) ) .
tion in accordance with Wick’s theorem in statistical me-WhereUi(t,7) is the unitary time development operator of
chanics. In this paper we apply this truncation scheme téwo trapped atoms interacting through the pair potential
determine a closed set of equations of motion for the relevan¥(t). The density matrix of the noncondensed fraction ex-
physical quantities. The derivation of the approach to thé’ressed in terms of the pair function is given by
level of approximation required to study the phenomena re-
ported in Ref[4], i.e., the first-order microscopic dynamics _ 3y / * /
approach5], is given in Appendix A. F(x,y,t)—f AP HPE (XY, ©®
The relevant physical quantities involve only the first- and

second-order cumulants: As shown in Appendix A, Eq(6) assures both the positivity
of all occupation numbers and the conservation of the total
W(x,t)={p(X));, number of atoms in the gas:
(D(X!y!t):<¢(y) w(x)>t_<¢(y)>t< ¢(X)>t! f d3x[|q,(x't)|2+ F(X,X,t)]: Nc(t)+ Nnc(t): N. (7)

TGy, = PO (T YPX)).  (2) ,
The form of Eq.(6) suggests a separation of the number of
Here, ¥'(x,t) is the atomic mean fieldP(x,y,t) the pair noncondensed atoms into a molecular fraction and correlated
function, which plays an important role in the description of pairs of atoms after a time-dependent magnetic-field pulse of
correlated pairs of atoms, adt(x,y,t) is the one-body den- the kind reported in Ref4] as follows: The total number of
sity matrix of the noncondensed fraction. The density of thenoncondensed atoms is given by
gas gt the positiorx and timet iszthus given byn(x,t)
= (T () P9 ) =T (x,x,1) + [ W (x,1)[2 _ _ : L g2
<In the firs>t-order micro|scopic| dynamics approach the N”C(t)_f d3x1“(x,x,t)—f Ao [P (X', 1)]
atomic mean field is determined through a closed nonlinear

Schralinger equation5]: :f PREr|O(R,r,1)[2, ®)

J
17— W (X, 1) =Hg() W (x,1) where the position dependence was changed to two-body
center-of-mass and relative coordinats (x+y)/2 andr
. o ) d =y—X, respectively. Under the assumption that the trap is
- (X't)ft dr¥5(x,7) ——h(t,7). (3)  switched off at timet;,, immediately after the pulse, and the
0 magnetic field is held constant at its final value, the energy
The collision term distinguishes the non-Markovian dynam-Stateés of the relative motion of a pair of atoms become sta-
ics Eq.(3) from the Gross-Pitaevskii approach and is deter-ionary. A complete set of energy eigenstates is given by
mined through the coupling function

_ 3 (+) (+)
h(t,T):(27Tﬁ)3<O|V(t)UZB(t,T)|O>0(t_T), (4) 1 EV |¢bv><¢bv|+fd p|¢p ><¢p |l (9)
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where ¢y, are the molecular bound states of the final pair .

potential and¢(+) are chosen as stationary scattering states, ;

which, at large relative distance, become a sum of an incom- [ ’ Y

ing plane wave with momentum and an outgoing spherical —p ‘ p

wave (see, e.g., Ref[11] or Appendix B. Replacing the

spatial integration over the relative coordinatm Eq. (8) in

favor of the energy eigenstates in Ef), the noncondensed FIG. 1. Scheme of a ballistic expansion after a magnetic-field

fraction splits into a molecular part and a scattering part: pulse. Pairs of atoms are emitted from the condensate with one-
particle momentg and —p. The center of mass of the pairs stays
confined in the remnant condensate with a momentum spread de-

E |<Rv¢bv|¢)(t)>|2 termined by the spread of momenta in the condensate. At a suffi-

! ciently long time after the pulse, a burst of relatively hot atoms can

be detected outside the remnant condensate.

Nnc(t)=J d°R

+ [ @plRggIe)E], a0

(P (Xa) P (Xa) (%) h(X1) )y

where |®(t))=[d*Rd*r|R,r)®(R,r,t). The choice of = (T x) W V(X)) (X)) (14
eigenstates and the physical meaning of the contributions to

Eq. (10) depend on the experimental situation to be de-The mean number of molecules in the statg) can then be
scribed. As will be shown in the following sections the mo- expressed in terms of a molecular mean field as

lecular part in Eq.(10) determines the number of atoms

bound to molecules after the pulse while the scattering part 3 ’

describes pairs of atoms emitted from the condensate in a Nb(t):f d*RIWK(R,1)[%, (19
ballistic expansion.

where
C. Molecular fraction
1
The operator that determines the number of pairs of atoms Yy(R)= —f d3r ¢} (r)[(l)(R,r,t)
in the specific bound statg,, in a gas withN atoms reads, in V2
its first quantization form, ] ;
1 N +W¥ R+§,t)\1'(R—§,t”. (16)
szz,Z | bo.ij (Dol (11)

W The overlap of the molecular wave functiah, with the

second, factorized term on the right-hand side of Ed)
wherei andj indicate the pair of atoms. Expressed in termscan be shown to be negligible in all applications described in
of the atomic field operator, Eq11) becomes this paper. The molecular part on the right-hand side of Eq.
(10) is thus twice the number of dimer molecules in the gas,
i.e., the number of atoms bound to dimer molecules. The
wave functionW(R,t), which yields the density of the mo-
lecular fraction, is thus obtained systematically in terms of

1 3y A3y A3y’ A3y’ '—x)) bk
Ny= 5 | Oxd¥%ad X1 d*)5 (X5 = X1) B (X2 = X1)

X 8(3 [X1+X9)— 5 (X1 +Xo]) atomic field correlation functions. The derivation leading to
e Egs. (15) and (16) does not depend om,, being a bound
Xap (X)) 1 (Xg) P(X2) h(Xq) . (12)  state. The number of pairs of atoms in any two-body state is

_ _ obtained in an analogous way. In Sec. Il D we will apply an
The mean number of molecules in the stadlg) is thus  analog of Eqs.(15) and (16) to determine the number of

given by atoms emitted from the condensate during the magnetic-field
pulse.
Np(t) =(Np) =1J d3r'd3rd3Repy(r’) o (1)
b bt 2 b b D. Burst of atoms
r' r' r r In this section we show that the scattering part of the
x( y! R+ = lﬂT(R—E) lﬂ(R— 5) lﬂ(RJrz : noncondensed fraction on the right-hand side of B
t

determines the number of relatively hot atoms emitted in
(13)  pairs from the condensate. To this end we consider a ballistic

expansion of the gas at tintg,, i.e., the trap is switched off
whereR andr are center-of-mass and relative coordinatesand the magnetic field is held constant immediately at the
respectively. The fourth-order correlation function in Eq.end of a magnetic-field pulse. This is illustrated schemati-
(13) can be factorized into cumulanfsf. Eq. (A4)], and cally in Fig. 1.
truncated in accordance with the level of approximation of A relatively hot fraction, if present, will expand much
the first-order microscopic dynamics approach: faster than the condensate and can be detected far outside the
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remnant condensate at a timnsufficiently long aftety,,. For T | T T T T T T

a gas withN atoms the observable for the number of pairs of 162 t
atoms with a relative coordinate betweeandr +d>r, in its Svolve
first quantization form, is given bi;;|r;;)(r;;|d®, where, = 160
as in Sec. Il Cj andj indicate the pair of atoms. In complete §
analogy to Sec. Il C, the mean number of pairs of atoms with¢g,
a relative coordinate betweenandr +d3r becomes o 158
n,(t)d3r = f d®R|¥,(R,1)|%d?r, (17 156
l
0 20 40 60 80
where t [us]
1 r r FIG. 2. Time dependence of the magnetic field. The field varies
V. (R,t)= —{CD(R,r,tH—\If R+=,t|T|R- —,t) . linearly within the subsequent time intervals. The numerical simu-
\/E 2 2 lations in this paper have been performed with the following pulse

(18 shape: Fall and rise times, 1&s; hold time aB=155.5 G, 13us;
At the relative distancesunder consideration, which ex- evolution time atB=160 G, teygye= 10—-40us; initial and final
ceed by far the size of the remnant condensate, the secorfiglds:B=162.2 G.
factorized contribution to Eq.18) is negligible. The energy
spectrum of the relatively hot atoms can be obtained from an o 1 3 3 +) 5
expansion of¥’, in terms of the energy states in E§) that f N(Ere)dEre= Ef d pf d°RKR, [ D (tsin) )"

0
correspond to a release of the atoms from the trap: 22)

1 A comparison between Eqg§10), (15), and(22) shows that
¥i(RO= E EV Pou(1)(R, | P (1)) the total noncondensed fraction of the gas consists of mol-
ecules and a burst of comparatively hot atoms emitted in
1 pairs from the condensate with a time-of-flight spectrum of
+Tj d3p¢>é+)(r)(R,¢E,+)|<D(t)>. (19 relative energies given by Eq21). Whether the noncon-
2 densed fraction becomes significant depends on the time de-
pendence of the magnetic field, i.e., the way energy is re-

The molecular wave functions in EL9) have decayed at |a5sed to the gas.

the relevant distancesthat even exceed the extent of the
remnant condensate. The corresponding molecular contribu-

tion to the right-hand side of Eq19) is thus negligible. lll. DYNAMICS OF THE GAS

Taking into account that the scattering wave functigt}s’ A. Feshbach resonance and magnetic-field pulse
are energy eigenstates of a pair of atoms after the pulse, the
remaining part of the amplitude in E(QL9) becomes, after a
short calculation using Ed5),

In this section we discuss the evolution of the gas when a
specially designed homogeneous magnetic-field pulse is ap-
plied to tune the interatomic interaction rapidly in the vicin-
ity of a Feshbach resonance. Mativated by the experiment of
¥ (R,t)= ij dPpe(r) Donleyet al.[4] we study the time variation of the magnetic
’ NA P field shown in Fig. 2. The magnetic field varies linearly in
., time within the subsequent time intervals.
X(R, 57| D (tgy))e PTM A (20) A Feshbach resonance occurs when the energy of a bound
state of a closed-channel potential is tuned close to the dis-
For two identical atoms the relative kinetic eneffgy, and  sociation threshold of the ground-state potenti2]. This
the relative momentunp are related throughe,e=p?/m. tuning of the interaction in the interatomic motion takes ad-
The spectrum of the pairs of comparatively hot atoms, i.e.yantage of the Zeeman effect in the electronic energy levels
the number of pairs of atoms with a relative energy in theof the atoms. If the closed-channel bound state approaches
interval [ E o, Eq+ dEg ], is thus given by the threshold from below, the interatomic potential supports
a shallow(metastables-wave bound state. Around the reso-
nance, a slight change in the energy difference of the poten-
n(Erel)dEreI:%\/as\/ad Erelf deJ d3R|‘I’p(R)|2* tials thus leads to a large variation of the scattering length.
(2D Neglecting the slow decay of thewave bound state, the
scattering length depends on the magnetic field through the
whereW ,(R) =(R, ¢\ "|®(t4n))/ V2 is the amplitude on the  relation
right-hand side of Eq(20) and d{), denotes the angular
component ofd®p. The sum over all energy components of a(B)=a,
the spectrum vyields 9

1 AB) 23
B——Bo’ (23
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5000 T T T T 15000 T T T T T T T T
I | I — Re(h{t,t;)
4000 = T L MIEEN | Im(h{t,1.))
3

-4000

-8000

|
ht,t;) [4n(hi2n)ag, , jm)

L L | 2 | L
150 155 160 165 170 -10000
B [Gauss] L
. . . . -15000, .
FIG. 3. The scattering lengthin units of the Bohr radius, as a 0 20 40 60 80
function of the magnetic field, in the vicinity of the Feshbach t [us]
resonancea(B) is determined from Eq23), usingBy=154.9 G, ) ) ) )
AB=11.0 G, anday,=— 450 - FIG. 4. The coupling functioh(t,7) as a function ot, describ-

ing the two-body dynamics driven by the magnetic-field pulse in
Fig. 2, for 7=ty, and an evolution timeégygye= 10 uSs.
whereAB is the width of the Feshbach resonance 8gds
the resonant field. We consider the resonancé’Bb atB,  explain why the particular field pulse was needed to observe
=154.9 G, withAB=11.0 G[13], which has been used in the oscillations between the condensate and the noncon-
Ref. [4]. For the background scattering length we use thedensed fraction of the gas.
value apg= — 45085, [4], Whereag,y, is the Bohr radius. We have numerically determined the time dependence of
Figure 3 shows the scattering length as a function of thén(t,7) in the two-dimensional pland (r) for to<t<t, and
field B in the vicinity of the resonance for the valuesBf ty<7<t using the methods described in Appendix B. Figure
that are relevant in this paper. At the initial timg, the 4 showsh(t,7) as a function oft, for =ty and the time
magnetic fieldB=162.2 G implies a scattering length of dependence of the magnetic field in Fig. 2, withoye
about 228g,, (cf. Fig. 3. The interactions then vary ac- =10 us. In the evolution period betwedg=37 us andt,
cording to the pulse shape in Fig. 2. Similar to the experi-=47 us, h(t,7) oscillates with the frequencyveyoe
mental procedur@] we will determine the dynamic evolu- =200 kHz. This particular OSCiIIatOI’y dependence is to be
tion of the gas for fixed time constants and field strengths ofXPected, as, according to E@), h(t,7) involves the two-

the initial and final pulses, but for different evolution times body time development operatorg(t, 7): In this period the
binary potential is stationary and supports a shaltewave

tevolve- I iti
In the experimenf4] an adiabatic field variation followed Pound stateg . A spectral decomposition dfl 5p(t, 7)

the pulse sequence. Finally the trap and the magnetic fiel@hoWs that the contribution of this bound statehi@, 7),
were switched off, and the gas freely expanded before th&¥ithin the evolution period, is given by
number of atoms in the remnant condensate as well as a burst ~ 3 evolve, / 4 evolv
of relatively hot atoms were detected by absorption imaging. h(t, 7)=(277)*(0[V(1)] 5" (b5 "IV 2(t5,7)|0)
A series of measurements was performed for varying evolu- X O(t— T)efiEE""'Ve(t*ta)/ﬁ, (24)
tion timestg,qve. The number of atoms in each component
showed an oscillatory dependence Qyye, With the fre-  \wheret; is the initial time of the evolution period. The fre-
quency corresponding to the energy of the shallow two-bodyjuency of the oscillations in the coupling function thus cor-
s-wave bound state in the evolution period. Moreover, afraCTesponds to the bound-state energy in the evolution period,
tion of missi_ng atoms was found oscillating_ at the_same freje., Vevolve:|EEV0|vﬁ/h- The amplitude and phase of these
quency. An interesting side result reported in Rél.is that  ogcillations, however, depend on the time evolution before.
the visibility of the oscillations depended sensitively on the The particularly large amplitude in Fig. 4 is achieved by
presence of the initial and final ramp very close to the resotne initial ramp close to the resonanceBat 155 G in Fig. 2.
nance(at 155.5 G in Fig. 2 In the following sections we T jjjustrate the role of the first ramp, Fig. 5 shot@, 7) as
shall explain these observations. a function oft, at 7=t,, for a trapezoidal pulse. Here, the
trapezoidal pulse is chosen similar to Fig. 2 except that the
) _ initial and final ramps tdB=155.5 G are cut off, i.e., the
B. Coupling function magnetic field is held constant at 160 G betweem us
We will study first the coupling function of the non- andt=80 us. As shown in Figs. 4 and 5 the first ramp to
Markovian nonlinear Schrbnger Eq.(3) for magnetic-field B=155.5 G causes a pronounced enhancement of the ampli-
variations as shown in Fig. 2. The coupling functioft, 7), tude by a factor of about 20 for the optimized pulse in Fig. 2
given in Eq.(4), reflects the binary dynamics that enters theas compared to the trapezoidal pulse.
description of the condensate through E8). We will dis- Figure 6 shows the real and imaginary parth¢f,7) in
cuss the extent to which the binary dynamics can alreadthe two-dimensional pland (r), for the same parameters as
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2000 T T T T T T T T 1 T T T T T T T
— Re(h(t,1,))
= 1seop | Im(h(t,1;)) 0.9} J
X
& 1000 |
:\n3 0.8+ ,' Y " emm—— |
? o 8 Rt SO s
] = L
5 = o7t -
2 — fovore = 10 1S
A R HEHE L HE I LR T FAR R I R AR FAR T | ! O fovoive = 12 S
061 |- fevolve = 14 us 7]
-1000 : ' - ' : ' : ' . . . ! ‘ ! . .
0 20 ;l([)”s , 60 80 0.50 20 20 60 30
t [us]
FIG. 5. The coupling functio(t, ) as a function of, for 7 FIG. 7. The time dependence of the relative condensate fraction

o, describing the two-body dynamics for a trapezoidal pulse, €-1h(t)/n, remaining of the initial density afi;=3.9x 1012 cm~3 for
the magnetic-field pulse in Fig. 2 but without the initial and final . . ) -
o three different evolution times.qne=10 1S, 12us, and 14us.
ramps toB=155.5 G. The magnetic field is thus held constant at I ; R .
B=160 G fromt=4 S 10t=80 us The sequence of magnetic-field pulses is chosen as in Fig. 2 with a
K S field strength in the evolution period &gyqe= 160 G.

in Fig. 4. The figure reveals that the amplitude of the oscil- i o . . .

lations during the evolution period between 37 us andt as the final non—conder]seq fraction in detail f_orthls idealized

— 47 us rapidly decays in. The phase of the oscillations gas. Thereafter, we will discuss the corrections due to the

however, is largely independent of A further analysis " presence of a trap in Sec. Il D. All physical quantities under
' i S%onsideration are determined by the nonlinear Sdinger

shows that these properties of the especially optimized pul quation(3), driven by coupling functions of the form of Fig.

form in Fig. 2 assure the reappearance of the oscillation frez """ : . .
g bp 6, with a variable evolution timeé,,gye-

guency ofh(t,7) in the nonlinear dynamics of the conden- Starting from a pure condensate with the density

sate described by Eq3). =3.9%x 10" cm™3, Fig. 7 shows the relative atomic conden-
sate densityn,(t)/ngy, as a function of, for three different
C. Homogeneous gas evolution timedgyove= 10 1S, 12 us, and 14us. The initial

The dynamics of a homogeneous condensate driven by @onditions correspond roughly to the low-density measure-
magnetic-field pulse of the form in Fig. 2 already exhibits allments in Ref[4]. After an initial loss period during,=0
basic qualitative phenomena reported in Réfl. We will <t=35 us, the condensate density shows a distinct oscilla-
therefore study the time evolution of the condensate as wetbry behavior around 80% of the initial density. The fre-

g g

< <

E > 2

S 0 g 20
(2] a

e <

= [

= il

— 40 — 40

= T (1S = T |us
10000 [ps] & (ps]
< <

Q =]

o~ 0 = 60

~10000 ~10000
40 20 : 40 20 5
t [ps] t [ps]

FIG. 6. The coupling functiom(t,7) as a function ot and r, for the same parameters as used in Fig. 4.

013601-6



MICROSCOPIC THEORY OF ATOM-MOLECUE. .. PHYSICAL REVIEW A 67, 013601 (2003
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= 001f b : i =
< b '. B = — condensate
NI 3 N ° 04 ey atoms |
X 0.005 : . é i
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FIG. 8. The density of burst atoni&n(E,) with n(E,e) given
by Eq.(21)] as a function of the relative enerdg, in a uniform
gas for three different evolution timeg,g.=11 us, 12us, and
13 us. The external parameters are chosen as in Fig. 7. The ato
are emitted from the condensate in pairs with momentand

—p. The relative eg‘ergfre': p*/m is related to the energy of & 1412 3, The external parameters are chosen as in Fig. 2. The
single atom,Eqg=p°/2m, through E;=Ee/2. The vertical ine g0 gircles and squares correspond to direct calculations of the
indicates the scale of the mean energies of burst atoms reported {3, ,ant condensate and the molecular fraction. The solid and
Ref.[4]. dashed curves are interpolations with the sinusoidal fit functions
L . proposed in Refl4]. The dotted line indicates the “burst” of rela-

quency of these oscillations very precisely matches thgyely hot (unbound atoms emitted in pairs from the condensate as
bound-state frequency in the evolution period, i£wyove  determined from the remnant condensate and the total fraction of
:|EgvoIVt1/h5200 kHz. After the evolution period, the sec- unbound atoms through number conservatjch Egs. (7) and
ond magnetic-field pulse, which shifts the atoms in and out10)]. The filled diamonds correspond to direct calculations of the
of the vicinity of the Feshbach resonance, causes the condeburst fraction obtained from integration of the spectra in Fig. 8 with
sate fraction to develop to values between 55% and 85%espect to the energy.
The final fraction depends on the phase of the intermediate
oscillations at the end of the evolution period when the secenergy scales of the burst atoms in Réfl.
ond resonant pulse starts. The remnant condensate density atThe experimental procedure did not allow for a direct
time t;,, immediately after the pulse sequence, thereforegetection of molecules. We thus identify the fraction of miss-
also oscillates as a function tf ... While the first ramp to  ing atoms reported in Ref4] as those atoms that are bound
B=155.5 G in Fig. 2 drives the amplitude of the oscillationsto dimer molecules after the pulse sequence. The total den-
of n (t) in t, the second ramp in Fig. 2 amplifies the visibility sity of unbound atoms is then given by the initial densigy
of the oscillations im(ts,) as a function ot.,.... The fast minus twice the density of dimer molecules in the homoge-
oscillations of the functiom(t,7) in t at the very beginning neous gas. In the course of our studies we have determined
and ending of the pulse sequensee Figs. 4 and)éhave the remnant condensate as well as the final molecular frac-
only a minor influence on the evolution of the condensate. tion as a function of the evolution timg,q. from 10 to

The atomic mean fieldl' determines the pair function 40 us in steps of lus. The total length of the pulses has
through Eq.(5) and, in turn, the molecular fraction in Egs. thus been varied between g% and 114us.
(15) and (16) as well as the energy spectrum of compara- The results are summarized in Fig. 9. The solid line is an
tively hot atoms, Eq(21), after the pulse. Figure 8 shows the interpolation of the data for the remnant condensate density
density of atoms emitted in pairs from the condensate as eelative to the initial density ohy=3.9x 10" cm™2 (filled
function of their relative energy for a uniform gas under thecircles with the sinusoidal fit function proposed by Donley
conditions described in Fig. 7. As the momentum spread o€t al. [4]. The frequency of the oscillations corresponds to
the center-of-mass motion of the pairs corresponds to ththe binding energyES"*4/h=|E(160 G)/h=200 kHz. In
small spread of momenta in the atomic condensate, the eifFg. 9 the filled squares and their interpolation, i.e., the up-
ergy of a single atom in a pair is related to the relative energypermost curve, show the fraction of atoms that are not bound
throughEg=E,/2. The spectra exhibit a damped oscilla- to dimer molecules after the magnetic-field pul§ég. 2).
tory dependence on the energy with a first, dominant maxiNumber conservation allows to determine the density of the
mum below E;g/kg=150 nK. The time-of-flight energy burst of relatively hot atoms directly from the total density of
spectra in Fig. 8, as described in Sec. Il D, do not correspondnbound atoms and the remnant condenfszdteEqgs.(7) and
completely to the experimental procedure in Refl. The  (10)]. For this reason the dotted curve in Fig. 9, termed
presence of a trap should also modify their shape in a noticé'burst of atoms,” has been obtained by subtracting the solid
able way. We expect, however, that Fig. 8 reflects the typicaturve from the dashed curve. Both the fraction of “missing”

FIG. 9. The remaining fraction of condensate atomgts,),
(solid line) together with the total density of unbound atoms
(dashed lingin a homogeneous gas, as a function of the final time
f?n, elapsed after a magnetic-field pulse of the form in Fig. 2. All
densities are given relative to the initial density of=3.9
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FIG. 10. The different initial states studied in a spherical har-
monic trap with an oscillator length of abadyt=3 um, i.e., a trap
frequency ofwp,=80 s !, corresponding to the geometric mean of

the frequencies used in the experiméat (whO:S\/wzradia@axiaD.

FIG. 11. The remaining fraction of condensate atoMgts),
(solid line), together with the molecular fractiomlashed ling and
the burst of relatively hot unbound atorfootted ling, as a function

At ! of the total timety, elapsed after the magnetic-field pulse. The
The atoms are exposed to a magnetic field3ef 162.2 G which fractions are given relative to the initial number of atoms, Ny,

implies a scattering length of about 288, . Shown are the den- =17100. The calculations take into account the exact quantum

sities as functions of the radius corresponding to the exact grounddynamics of the trap for the initial state given, in Fig. 10, by the

state wave function given by the time-independent Gross-Pitaevsk“me_inde endent Gross-Pitaevskii equatianand a Gaussian den-
equation(solid line), and a Gaussiafdashed ling which is the best sity distrit?ution(b) quatiana

least-square fit to the Thomas-Fermi approximatidotted ling.

All densities correspond to 17 100 condensed atoms. of the time-independent Gross-Pitaevskii equatien and

the Gaussiarib). The evolution times range between 48
atoms and the burst of atoms exhibit oscillations with theand 17us such that the total time of the pulse ranges be-
frequency veyone=|ELV4/h in teyone as well as the phase tween 84us and 91us. The analysis of the trapped gas does

relation with respect to the remnant condensate reported R0t show any qualitative differences from its analog in a
Ref. [4]. homogeneous gas in Fig. 9. All components oscillate with

the same frequencyeyone=|EL™V9/h and exhibit phase
D. Trapped gas shifts similar to those in Fig. 9. Figure 11 reveals, however,

that the relative magnitude of the components depends sen-

The studies of the homogeneous gas in Sec. Ill C allowed;tyely on the local densities in the initial inhomogeneous
to identify the three components of the gas as observed iggndensate.

Ref.[4]. The purpose of this section is to study the influence 14 study the role of the trap potential and the one-body
of the trap a_md the in_homogeneous local densities of the g3gnetic energy we have performed the same analysis as in
on the relative magnitudes of these components. Fig. 11 in the local-density approximation, which accounts
. We have performed these studies similar to Sec. .III C bUBnIy for the dynamics of the nonlinear Schioger Eq.(3)
in the presence of a trap. The trap has been |1deal|zze2d aSt8r a uniform gas but with different densities, weighted ac-
spherical harmonic-oscillator potentialy,{r) =z Mwjr cording to the initial condensate wave function. The approxi-
with an oscillator frequency of about,,=80 s* and a re-  mation, however, neglects the trapping potential and the one-
sulting oscillator length of about,;=3 um. The trap pa- pody kinetic energy. Figure 12 shows the different fractions
rameters correspond to the geometric mean of the frequersf the gas under the same conditions as in Fig. 11. A com-
cies in Ref.[4], i.e., wpo=YwZgawaxa- We have studied parison of Figs. 11 and 12 reveals no qualitative differences,
initially pure condensates d,=17 100 atoms with differ- but a quantitative dependence of all fractions of the gas on
ent local densities. The different initial density profiles arethe trap potential and the one-body kinetic energy. The oscil-
shown in Fig. 10. The solid line is the density obtained fromlation frequencies are the same but the mean values and am-
the exact solution to the time-independent Gross-Pitaevskjplitudes vary. In the local-density approximation the fraction
equation for 17 100 atoms with a scattering length of aboubf burst atoms is considerably smaller than in the exact cal-
a(162.2 GE=22&,y,. This stationary condensate ground culation. A further analysis of the time dependence of the
state exhibits a nearly perfect agreement with its Thomaseondensate fraction, similar to Fig. 7, shows that the pre-
Fermi approximation. The second state we have studied is dominant influence of the trap potential occurs during the
Gaussian(dashed ling which, for 17 100 atoms, is the best initial ramp to B=155.5 G in Fig. 2. In this period of the
least-square fit to the Thomas-Fermi approximatidatted  pulse sequence the scattering length becomes comparable to
line). the oscillator lengthi14]. This additional length scale is nei-
Figure 11 shows the condensate, molecular, and bursher accounted for in the homogeneous gas nor in the local-
fractions at the end of the pul$Eig. 2) for the exact solution density approximation. The results of this section show that a
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FIG. 13. The initial(dotted ling and final(dashed ling atomic
FIG. 12. The remaining fraction of condensate atohgts,) condensate density, together with the molecular condensate density
(solid ling), together with the molecular fractioidashed ling and N, (solid line) for teyowe=16 us in a spherical trap. The curves
burst of relatively hot unbound atontdotted ling, as a function of ~ correspond to the calculations in Fig.(&l The atomic densities
the total timety, elapsed after the magnetic-field pulse. The frac-are multiplied by a factor of 0.04.

tions are given relative to the initial number of atoms, M, . .
=17 100. The calculations are performed in the local-density aplhat' indeed, the molecules as well as the correlated pairs of

proximation for the initial state given, in Fig. 10, by the time- PUrst atoms exhibit the same momentum spread in their cen-

independent Gross-Pitaevskii equati@ and a Gaussian density (€rs of mass as the condensate atoms. Momentum is trans-

distribution (b). ferred only to the relative coordinate of the burst atoms such
that the total momentum of the pairs remains negligibly

I . . . small. A typical density of a molecular condensate in a
guantitative comparison of the magnitude of the different yp Y

. X , : ) spherical trap is shown in Fig. 13.
fractions in the gas W'Fh th(_a expe”me['?“] should |ncIL_|(_je . As a great advantage of the microscopic dynamics ap-
the correct trap potential with the precise local densities i

o o roach, the molecular condensate wave functibp,in Eq.
the initial condensate as well as the precise time dependen %) has been derived from the exact hierarchy of dynamic
of the magnetic-field pulse. :

equations for correlation functions of field operators with the
) general Hamiltonian, Eq.l), using a systematic truncation
E. Interpretation of the results scheme. Hence, the determination of the molecular conden-
In the preceding sections we have analyzed the dynamicsate fraction does not rely upon any assumption on the exis-
of an initially condensed Bose gas &Rb atoms exposed to tence of a molecular order parameter. The analysis in this
a magnetic-field pulse of the form in Fig. 2. We have iden-section is independent of the precise trap geometry or the
tified the different fractions of unbound atoms in the gas as &lensity profile of the initial state.
remnant condensate and a burst of comparatively hot atoms
with kinetic energies of abouEz/kg=100 nK. We have ACKNOWLEDGMENTS
further analyzed the dependence of the relevant physical ob-
servables on the precise external conditions. Our results We would like to thank Eite Tiesinga, Eric Bolda, Paul
strongly indicate that the fraction of missing atoms reportedjulienne, and Bill Phillips for very inspiring and helpful dis-
in Ref. [4] corresponds to atoms bound to dimer moleculegussions. This work has been supported by the Alexander
that could not be detected. von Humboldt FoundatiofT.K., T.G), the European Com-
Donley et al. [4] raised the question whether these mol-munity under Contract No. HPMF-CT-1999-00¢BG.), and
ecules form a condensate. The analysis in Sec. Il provides e United Kingdom EPSRC.
definite answer on the basis of the microscopic approach to
the many-body quantum dynamics: In Sec. IID we have APPENDIX A: THE MICROSCOPIC QUANTUM
predicted that the molecular fraction would stay confined in DYNAMICS APPROACH
the atomic condensate in a ballistic expansion immediately ) ) , , i i i
after the pulse, while the burst fraction of unbound pairs of In th_|s appendix we will derive the first-order microscopic
atoms rapidly disperses. The expansion served as an expefynamics approach to Bose condensed gases. The present
mental technique to prove the presence of a condensate. derivation |n.cludes _the_ explicit dynam|c_s of the noncon-
The formation of a molecular condensate can be physidensed fraction, which is not considered in R&f.
cally understood from the nature of the external perturbation
of the initial atomic condensate: The magnetic-field pulse
provides energy to form dimer molecules and correlated In general, the quantum state of a gas at time de-
pairs of burst atoms but no momentum to drive their centerscribed by a statistical operatp(t), and the corresponding
of mass. A further analysis of Eq&®), (16), and(20) shows expectation value of an operatér reads:

1. Dynamic equations for cumulants
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(O)=Tip(t)O]. (A1) an interacting gas the higher-order cumulants thus provide a
measure for the deviation of the state of the gas from thermal
Quantum expectation values of normal ordered products ofquilibrium.
field operators are termed correlation functions. The exact For the applications discussed in this paper, with a con-
dynamics of the infinite hierarchy of correlation functions is densate present in the gas, the relevant cumulants contain the
given by non-number-conserving condensate wave functiofx,t)
=((x))f, the pair function®(x,y,t) =(¢(y)¥(x));, and
L0 ot the density matrix of the noncondensed fractib(x,y,t)
1 (P (Xn) - - (%) o= (LY (Xn) - - - (%) H D1, =(y(y)¥(x)). The cumulant approach consists in trans-
(A2)  forming the exact hierarchy of dynamic equatidgA®) into
an equivalent set of equations of motion for cumulants. The
wheren denotes the number of field operators in the normakyact dynamic equations for cumulants up to the second or-
ordered product anét is the quite general Hamiltonian in  der are given explicitly in Ref5]. The truncation scheme of
Eqg. (1). The set of Eqs(A2) is equivalent to the many-body Ref. [5] consists in retaining, to the order of the exact
Schralinger equation and determines all physical propertiegynamic equations for cumulants up to the orden e well
of a gas of atoms. Due to the interaction term in Bj.any a5 the free time evolution of the cumulants of the order of
finite subsystem of Eq$A2) does not close, and any attempt 1+ 1 andn+2. The free time evolution of the cumulants of
of an qpproximate solytion religs upon a consistent way ofhe order ofn+1 andn+2 is obtained by neglecting, in
truncation. A systematic truncation scheme, based on cuminejr dynamic equations, all products of cumulants contain-
lants of correlation functions, has been proposed in RéX. ing n+3 andn+4 field operators.
for the dynamics of fermionic many-body systems on short “Tne first-order microscopic dynamics approacih=(l)
time scales. The extension of this work to interacting Bosgegyits in a closed nonlinear Séhinger equation for the
gases[5], with a modified truncation scheme, allows Us t0 nean fieldw that allows us to describe the dynamics of a
describe the dynamics on time scales that are relevant in thig;densate close to but also far away from thermal equilib-

paper. _ ) rium [5]. The first-order dynamic equations that lead to the
The cumulants considered here are equivalent to the corygnlinear Schidinger equation reab]

nectedn-point functions and are usually defined as deriva-
tives of a generating function#tf., e.g., Ref[15]):

ihi\P(x,t)zHlB(x)qf(x,t)+f d3yV(x—y,t)¥*(y,t)
(B (%) -~ (1)) &

5 5 X[D(x,y,t) +V(x,H)¥(y,1)], (A5)

= e |
8J(Xn)  8I*(xq)

n< exp{ f d3X[J* (X) ¢(X)
17— @ (X1,Xz,1) = Hag(X1,X2) P (X1, X2, 1)

+I) (%] > s (A3) F V(X X0, )T (Xq 1) T (Xo,1).
: : , (A6)
The cumulants may also be derived recursively, and the first
three orders read Here the one- and two-body Hamiltonians are denoted by
(01)=(0)", Hig(x)= —ﬁ2V2/2m+VtraF(x),
(010,)={0,0,)¢+(0 )% O,)°, Hag(X1,X2) =Hip(X1) +Hip(Xo) + V(X1 —X2,1). (A7)

Equations(A5) and (A6) include the loss of condensate at-

— C C C C
(010205)=(0,10,03)"+(01)(02)(O3) oms into the noncondensed fraction as well as the back ac-

+(0 )N 0,03)°+{0,)%0,03)° tion of noncondensed atoms on the condensate on time scales
comparable to collisional durations. On longer time scales,

+(03)%0,0,)%,:. (A4)  the noncondensed fraction becomes dilute and its back action
is neglected.

For an ideal Bose gas, in the grand canonical thermal equi- The first-order dynamics of the noncondensed fraction is

librium, all cumulants containing more than two field opera-getermined through the conservation of the total number of
tors vanish. This is a consequence of Wick's theorem in stagioms in the gas:

tistical mechanics according to which every number
conserving the normal ordered correlation function can be
expressed as a sum of products of all possible pair contrac-
tions conserving the operator ordering. Moreover, as the ex-
pectation value of a single field vanishes, the second-ordas a constant of motion. The corresponding approximate dy-
cumulants becomé?,0,)=(0,0,)°. In accordance with namic equation fol" is then obtained from its exact coun-
Eq. (A4) the cumulants of an order higher than 2 vanish. Interpart in Ref[5] through

N= f dA3X[T(x,x,t) + | W (x,1)|?] (A8)
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J
ihﬁr(xl,xZ,t)=[Hla(xl)F(Xl,Xz.t) trap(t T)= TEX;{__f dt"Hop(t’ )} (A13)
+f d3yV(X1_y,t)¢'*(y,x2,t) through
N 1
X[P Oy, + W 0,0V (0] Gl (tn) = ot-DURMLD,  (Ald)

— XX} *. (A9) where 0(t—7;) is the step function that' yiglds l.mity' far
> 7 and vanishes elsewhere. In all applications in this paper

The density matrix of the noncondensed fractitix, ,x,,t), thg gasis a dilute condensate at the |n|t|al'tlmeThe initial

as given in Eq(A9), is determined solely by the evolution of P& function®y.(to) on the right-hand side of EqAL1)

¥ from the initial timet, up to the present time can then be neglect¢8] and Eq.(A11) thus yields Eq(5) in

position space.

, , Inserting Eq.(A11) into Eq.(A5) for the mean field leads

2. First-order dynamics to the closed nonlinear Schiimger equation
In this section we will derive the nonlinear Scdinger

Eq. (3) as well as Eqs(5) and (6) for the pair function and

the density matrix of the non-condensed fraction, respec-

tively. For the purpose of solving Eq§A6) and (A9) for-

o
|ﬁﬁ\lf|(t)— E,‘Iﬁ(t)

mally in terms of the mean fieldV, it is convenient to (+)

+ k3| TS kq,k
change the representation from the configuration space to the kl%,ka dT(I d (tlka ko)
one-body energy states of the trap potenfial) or, for a .
homogeneous gas, into Fourier space. The corresponding XWy (1), (1) T (1), (A15)

single-mode annihilation and creation operators obey the
commutation relationga; ,a/ N= 8ij, and the field operator whereT(” denotes the retarded two-body transition matrix

becomes)(x) ==, ¢i(X)a; . In this representation the cumu- in the time domain:
lants up to the second order real(t)=(a);, D;;(t) T B ()
=(aja), andT; (1) =(a/a;){ . We will abbreviate the trap g (L) =V(H =7 +V(1)Gap(t, V(7). (AL6)
states| ¢;) by |i) in the foIIowmg
In this representation, EA6) for the pair function as- As in all applications in this paper, the trap potential is

sumes the form slowly varying on the spatial scale determined by the range
of the binary interactioV(t), and the thermodynamic limit
i — q)”(t) (E+E)®;(t)+ E G,iIV(D)[Kq ko) in the relative motion of two atoms can be performed in the

collision term in Eq.(A15) [5]. The coupling function in Eq.
(4) thus involves the time development operator of the rela-
tive motion of two atoms in free space, denoteddyg(t, 7).
Transformed back to the position space, E415) then
whereE; is the eigenvalue ofi ;g with respect to the mode yields the nonlinear Schdinger Eq.(3).

X[, (D+ T (O (D], (ALD)

function ¢;(x). Equation(A10) can be solved formally in In the first-order microscopic dynamics approach the pair
terms of the two-body Green’s functi¢a6]: function, as given by Eq(A1l) with @, (to)=0, deter-

mines the density matrix of the noncondensed fraction: Dif-
Di(t)= 2 [0 J|Utrap(t to) Ky ko) @i i (to) ferentiation with respect to the tinteshows that

()= E iy (D) DR (1) (A17)
f d (i, j| G (t, V(1) Ky k) Wy (1) W (7) |.

is the solution of Eq(A9) for an initial pure condensate, i.e.,
I'jj(to) =0, which derives Eq(6). The density matrix of the
noncondensed fraction thus assumes the form of a partial
trace over one coordinate of a two-body pure state. The cor-
responding occupation numbers, i.e., the diagonal elements

(A11)

Here G(+) is the retarded two-body Green'’s function,

(ih%—HZB(t))G(”(t =08(t—1), (A12)
=20 [P0 (A18)

which vanishes fot<r. The retarded Green’s function is
related to the time development operator of two trapped inare positive, independent of the specific choice of the basis
teracting atoms, given by the time-ordered exponential set.
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As shown in Secs. Il C and Il D, the noncondensed frac- 1. Resonance enhanced scattering
tion consists of a molecular part and a burst of atoms emitted |, itracold dilute gases the energies of two colliding at-
in pairs from the condensate with a comparatively fast rela;

. . X ; Y oms are usually sufficiently small for the differential cross
tive motion. This separation corresponds to a ballistic expanzactions to become isotropic. In accordance with the effec-

sion of a gas that is released from a trap. The density Ofie range theonf16], the swave scattering amplitude can
molecules in the bound stai, is described by the mean ihan pe expanded as

field Wy, in EqQ. (16). In analogy to the collision term of the

nonlinear Schrdinger equationA15), the molecular mean —a

field can be expressed in terms of the atomic condensate  fo(k)=—a+ia(ka)+O(k?)= 1+ika+0(k2)’ (B1)
wave functionW¥:

wherek is the wave number that is related to the relative
1 (e d momentum of two colliding atoms through=7Kk. Equation
Vy(R,t)=— 2 dr¥3(R,7) - Me(t,7). (A19)  (B1) effectively provides an expansion in termskof where
o the first dominant length scales given by thes-wave scat-

tering lengtha. The next correction term involves the effec-

The corresponding coupling functidm(t, 7) involves the 0 1ange of the binary potentisl[16], denoted as in the
overlap of the molecular bound-state wave functippand ¢, 15ing. In general, botta andr.; depend sensitively on
the two-body time development operator, which, in all apph-the detailed shape of.

cations in this paper, is excellently approximated by the ther-

Soor When the bina otential supports a shallewave
modynamic limit: ry p pp

bound state, the scattering length is positive and may by far
_ 32 exceed all the other length scales set\byThis situation is
ho(t,7)=(27A) "X ¢p|Ug(t, 7)[0)6(t— 7).  (A20)  gometimes referred to as a zero-energy resonfi@e The

) ) scattering amplitude is then given bya/(1+ika), as ob-
The energy spectrum of the burst atoms in ) involves  tgined from the right-hand side of E¢B1), which corre-
an amplitude¥ (R), similar to Eq.(A19), except that the gponds to the contact potentfdl7]. Extending the collision
bound statep,, is replaced by the stationary scattering stateenergiegp?/m into the complex plane, EqB1) yields theT
5", which is associated with the relative momentpm  matrix [16] of the contact potential, which assumes the sepa-

ie., rable, i.e., factorized, form
1 [(tn |x)E(x|
W (R)=——| dr| d®R'd*r'W(R +r'/2, Top(2)= ——F—=—— (B2)
oR) \/Efto Tf rYRr2) 2l 1+iVmz#h2%a
o d (+)11 128 L, where z=p?/m+ie is a complex energy variable and the
XW(R'=1"12,7) (R, " [Uiraif tin, IR'.F'). complex square root is chosen with a positive imaginary

part. The wave functiofy) and the amplitude are obtained
(A21)  as(r|y)=&(r) andé=4mh2a/m, respectively. Thd matrix
. ] o ) ~_ determines all eigenstates of the two-body Hamiltonian. The
Here,t;, is the final time immediately after the pulse in Fig. pole on the right-hand side of E¢B2) indicates that the
2. As ¢,"(r) is not confined in spacesee Appendix B the  contact potential with a positive scattering length supports a

coupling function corresponding t,(R) should explicitly  single swave bound state with the binding energy
account for the discrete nature of the trap states also in the

relative motion of two atoms. In Sec. Il we have determined Ep=—7%2/ma’. (B3)
the energy spectrum of the burst atoms for a homogeneous ) )
gas, i.e., in the absence of a trap potential. The couplind "€ Separable form of E¢B2) is quite general whenever the

function of ¥, then becomes similar fo(t, 7) in Eq. (A20). matrix is dominated by the pole of a shall@wave bound
P state¢,. A spectral decomposition of the two-body Hamil-

tonian then implies that at low collision energies Thmatrix

APPENDIX B: TWO-BODY DYNAMICS is well approximated ag16]

In Appendix A we have formulated the many-body dy-

namics of a condensed gas in terms of the unitary time evo- Top(2)= x| , (B4)
lution operator of two atoms interacting through their inter- 1-&XIGo(2)[x)
atomic potential. In this appendix we provide a practical
. . where
approach to determine the relevant low-energy time evolu-
tion of two ®Rb atoms, which serves as an input to the 1x)=V| ),
microscopic dynamic description of a partially condensed
gas exposed to the time-dependent magnetic field discussed E=1K ¢u|V| dbp), (B5)

in Sec. Ill. The approach takes advantage of the fact that in
all applications in this paper the binary interaction®@Rb is  and Gy(z)=(z+#2A/m)~! is the free-energy-dependent
dominated by the presence of a shallswave bound state. Green’s function of the relative motion of two atoms. In
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250———T——7T T 7T T T T nance, is particularly weakly bound in comparison to usual
— two parameter separable potential | molecular ground states, Fig. 14 exhibits a pronounced dif-
2, 2 ference between Eg&3) and(B6). This deviation from the
2000+ o (W2R) Ima NS
- 2 _o2 zero-energy resonance situation is related to the large van der
(h/2m) /m(a-a) Waals length of about,qy,= 164 aggp,.
i:: 1500
E’ 2. The separable potential approach
1371000 Direct insertion shows that EqB4) exactly solves the
Lippmann-Schwinger equatidri 6]
01 T2a(2)=V+VGo(2) Toe(2) (B8)
| N 1 . . 1 ) | N 1 H
0155 56 157 158 159 160 161 162 as Iong as the actual potenthlis replaced by the separable
B [Gauss) potential
FIG. 14. The energy of the uppermasivave bound state below Vser™ |X> §<X|- (B9)

threshold of two®Rb atoms,E,, as a function of the magnetic-
field strengthB. The dotted line shows E¢B3), which corresponds

0 a zero-energy resonance, wiaki) determined from Eq(23) Since the pioneering work of Lovelag®l] separable expan-

g B, 1503 6 S8 110G arda g, The 5008 Of PO hve peved o mpornt e n
dashed line shows EB6), which accounts for the van der Waals ’ B . .
interaction usingCg=4660 a.u.[13]. The dashed curve can be prqac;h to solve tWO-bpqy scatter!ng problgms analytlcally n
compared directly with a recent exact coupled-channel scattering I'm'te_d range of collision energies. In this section we shall
calculation[20]. The solid line is obtained from the binding ener- etermine a sepgrable potentlallof the form of EBQ). that
gies of two-parameter separable potentials with the rounded paranfcCurately describes the dynamics of tmb. atoms in the
eter »=5000maZ,,/% and the scattering length chosen in accor- 'elevant range of magnetic fields and collision energies.
dance with Eq(23). The unitary pole approximation in E@B5) is obtained
from spectral properties of the two-body Hamiltonian and
few-body scattering theory, E(B5) is usually referred to as thus applies to interatomic potentidlz3]. Equation(B5) re-
the unitary pole approximatidri.8]. A further analysis shows Produces the exact bound-state energy ot the scattering
that theT matrix in Eq.(B4) has a pole at the exact bound- length is only approximate. A further improvement can be
state energy of the potentigl The wave functiony(r) ac-  achieved by choosinfy) andé in such a way that the sepa-
counts for the spatial extent of rable potential in Eq(B9) matches both the energy of the
The long-range behavior of interatomic potentials is delasts-wave bound state and the scattering lengtiVaft the
termined by the van der Waals dispersion interactiorﬁCtUﬂ' magnetic field. At the low collision momenta under
Vyaw(r) = —Cg/r8. The spatial extent of is then character- consideration the corresponding plane-wave states do not re-
ized by the van der Waals lengthy,=(mCs/#2)Y4. As  solve the functional form of the wave functiop(r). The
shown by Gribakin and Flambaufd9], the next correction ~specific form ofx(r) is thus not relevant as long agr)
to the binding energy for an interatomic potential modifiesdecays in space on the length scale set by the van der Waals
Eq. (B3) to' length. We have chosen a Gaussian form, which in momen-
tum space is given by

Ep=—%%/m(a—a)2. (B6)
_ X(P)=(plx)=(2h) 3%~ WP (B10)
Herea is the mean scattering length given in terms of khe
function as In position spacey) is of the form x(r)=exp(-r¥2s?)
with a range parameter= \% n/m. The separable potential
— 1 I'(3/4) is then parametrized by the two constagtand 7. These

(B7) parameters have to be determined at each magnetic field by

zﬁ'vdwr(sm)' _ e tc _

matching the binding energy and scattering length of the
Figure 14 illustrates the dependence of the bound-state eféParable potential to the values iBf anda of the actual
ergy of the shallows-wave bound state of th&Rb pair mteractmnV. The bound-state energy of the sepa_ra_ble poten-
interaction on the magnetic fielB. The binding energies U2l is the real energg=E, at the pole of th& matrix in Eq.
obtained from Eq(B6) are sufficiently accurate to match a (B4), i-8.,Ey is determined as
recent exact coupled channels scattering calculfi6h Al-
though the®Rb dimer, in the vicinity of the Feshbach reso- 1-&x|Go(Ep)|x)=0. (B11)

The scattering length is obtained from the zero-energy limit
We thank Paul Julienne for pointing this out to us. of the T matrix as
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FIG. 15. The“He binary (TTY) potential[25] and the radial FIG. 16. The*He radial probability density corresponding to the

probability densities corresponding to the shallewave bound swave bound state dfHe as obtained from the TTY potenti@5]
states of*He as well as®®Rb, as obtained from the separable po- (solid line) and the separable potential approgdashed ling
tential, at a magnetic-field strength of 162.2 G. The radius is given

on a logarithmic scale. the effective rangea/r o, is of the order of magnitude of 14.

Figure 15 shows the exact radial probability distribution of
m the bound-state wave function 8He, as well as the shallow
4Wﬁ2<0|T25(0)|0> swave bound state of°Rb, corresponding to the separable
potential approach at a magnetic field of 162.2 G, as ob-
m  (275)3(0|x)|? tained from the integral form of the Schiinger equation

= a2 U= (xXIGo(0)x)" (B12

a=(2mh)3

| p)=Go(Ep)V| ). (B13

It turns out that the optimized parameteiis independent of
B with the corresponding range parameter=\Z#n/m  The radius is given on a logarithmic scale. According to Eq.
roughly given byl,q/2. In the applications in this paper we (B13) the asymptotic functional behavior of both bound-state
have used the rounded off value g=500ana3,,/% and  wave functions at far relative distances of the two atoms is
determinedé(B) in such a way that the separable potentialdetermined solely through the free Green'’s function evalu-
matches exactly the dependence of the scattering length afted at the binding enerdy,. As their molecular states are
the magnetic field in Eq(23). The resulting dependence of very weakly bound, both wave functions extend far outside
the binding energy of the separable potential on the magnetighe range of their pair interaction.
field B is shown in Fig. 14. The separable potential approach, For “He the estimate corresponding to a zero-energy reso-
as proposed in this section, does not depend upon the acchance in Eq(B3) gives|E,|/h=25486 kHz, while the for-
racy of model potentials for all scattering channels and, inmula of Gribakin and Flambaum in E¢B6) yields |Ey|/h
stead, describes the complete low-energy collision dynamics: 26 856 kHz. The exact binding energy of the TTY poten-
in terms of the scattering length and the van der Waals tjg] is |E,|/h=27087 kHz. The comparison shows tHzg
dispersion coefficien€¢. Both parameters of the actual bi- and, in turn, the bound-state wave function, are virtually
nary potential are accessible to experimga#,13]. completely determined by andCg. Figure 16 compares the

To illustrate the degree of accuracy of the proposed apexact wave function of*He, with the wave function ob-
proach we shall provide a comparison of the low-energptained from the separable potential approach. The main small
scattering properties obtained from the separable potentigleviations occur in the region of the inner well of the TTY
with the exact solution of the Schiimger equation for a potential in Fig. 15.
well-known interatomic interaction. We have chosen the The T matrix determines the stationary scattering wave
scattering of two ground-stattHe atoms for this comparison functions that correspond to the relative momentym

as the binary potential supports a single shallswave  through the Lippmann-Schwinger equatii6]
bound state, and, within several decades of intensive study,

all properties of the interaction have been determined very . .
accurately, to a large extent, from first-principles calculations |¢57) =)+ Go(P?/M+i0) Tp(pZ/m+i0)|p),

[25]. The scattering length and the binding energy have been (B14)
determined recently from experiment in REZ6].

We have determined the separable potential, as given byhere the energy argumerpé/m+i0 indicate that the real
Egs.(B9) and(B10), that corresponds to the Tang, Toennies,energyp?/m is approached from the upper half of the com-
and Yiu (TTY) “He interaction[25] with a=188ag,,, and  plex plane. At low collision momentp=7#k the stationary
Ce=1.461 a.u. For*He the ratio of the scattering length and scattering states assume the asymptotic form
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FIG. 17. The real and imaginary parts of th@vave scattering FIG. 18. The real and imaginary parts of thevave scattering

amplitude fo(k) for ®Rb. The solid lines are obtained with the amplitude fo(k) for *He. The solid lines are obtained with the

two-parameter separable potential, the dashed lines in the contaito-parameter separable potential, the dashed lines in the contact

potential approximation, both with a scattering length of potential approximation. The dotted lines show the scattering am-

a(162.2 GF228ag,,,- The wave numbek is given on a logarith-  plitude of an improved contact potential approd@7] that ac-

mic scale. counts for the effective range of the TTY potential. The bullets
show the exact-wave scattering amplitude for the TTY potential

eipr/ﬁ, [25].

P fok)——]|,  (B19

.
¢El M~ J2mh3 € 3. Dynamics
In Sec. 2 of this appendix we have analyzed the static
low-energy scattering properties of tw&Rb atoms at a
; . . given magnetic field. In this section we shall determine the
the potential. Figure 17 compares the/ave scattering am- . iision dynamics that enters the many-body theory of a
plitude in Eq.(B15) for two “Rb atoms, obtained from the . tia)ly condensed Bose gas through coupling functions of
separable potential given by E@®10), atB=162.2 G, with e form of Eq.(4). These coupling functions involve the
the amplitude of the contact potentleilgmili(ﬁil). complete unitary time evolution operator of tfigRb atoms,
The pronounced deviations lat- 10 “ag, are related to  y_ (¢ 1), exposed to a magnetic field pulse as shown in Fig.
the large van der Waals length of tfeRb interaction. This 5 ‘e shall apply the separable potential approach of Sec. 2
length scale is not accounted for by H&1). The swave  of this appendix to determine the coupling functions as the
scattering amplitude approaches EB1) once the magnetic effective low-energy potential renders the time-dependent
field is shifted further toward the Feshbach resonancB at Schralinger equation into a practical form.
=154.9 G. The analogous comparison fée in Fig. 18 We shall first determine the coupling function of the non-
may illustrate the degree of accuracy to which the_z scz_;ttteringnear Schrdinger equatiori3), denoted a&(t, ) in Eq. (4).
from the long-range part of the binary interaction is de-The coupling functiom(t, ) can be represented in terms of

scribed by the separable potential given by E§10). In  the time developed zero momentum plane wave of the rela-
accordance with the small van der Waals length of helium of;,e motion of two atoms](t)) = U,g(t, 7)|0), in the form

about 1@g,,,, the deviations between the contact potential

approach in Eq(B1) and the exact scattering amplitude are h(t,7)=6(t—7)(27h)3(0|V(1)|£(1)). (B16)
much less pronounced. Even the small deviations, however,

are correctly accounted for in the separable potential apfhe wave functiorj{(t)) is determined by the integral form
proach up to wave numbers of abouk 30 ‘agt,. The of the time dependent Scldimger equation as

length scale related to this upper limit of the wave numbers

. . t
roughly corresponds to the radius of the inner well of the =10 +J d7 Ga(t— 7 WV( 7 / B1
TTY potential in Fig. 15. €1)=10) T 7 Golt=TIV(T)IE(7), (BL7)

as soon as the relative distancexceeds by far the range of
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FIG. 19. The variation of the-wave scattering length corre-
sponding to the magnetic-field pulse in Fig. 2.

where Gy(t) = 0(t)Uy(t)/i% is the two-body Green’s func- FIG. 20. The mole_cular coupling functidn,(tg, ,7), as_afunc—
tion of the relative motion of two noninteracting atoms. To tion of 7, corresponding to the molecular wave function of two
obtain the coupling function through E(B16), on the basis %Rb atoms at the final time of the pulse as depicted in Fig. 15. The
of the actual binary potential(t), the Schrdinger equation Magnetic-field pulse corresponds to Fig. 2 iffye=10 us.
(B17) needs to be solved for all timeg,{) between the Eq. (B17) determinesh.(t. as
initial and final time of the magnetic-field pulse and, more- a. (B17) o{tan 7)
over, at all relative distances in the argument of the wave

The magnetic-field pulse, however, releases a sufficiently_ . .
small amount of energy to the gas, to that the actual potentialakIng advantage of the ;eparable f"”‘? of the effectwe low-
V(1) in Eq. (B17) can be replaced by the effective low- energy potential, the Schiimger equation(B17) inserted

energy potential/., in Eq. (B9). Thereby, the amplitude into Eg. (B19) _determineshb(tﬁn,r) in terms of the known
=¢(t) accounts for the time dependence of the magneti(,COUpIIng functionh(t, 7):

field through the variation of the scattering lengthillus-

et g 19, EQuaton1o and B17 en o he 1=t ) (211Kl

h(t,7)=(2mh)3[(0[ x)|2£(t, 7) + £(t, 7) +ftfi“dt<¢b|G0(tfin_t)|X>h(t’T) .

t . (0lx)
><frd7'<X|Go(t—T’)I)()h(T',T), (B19) (B20)

where£(t, 7)=&(t) 6(t— 7). The separable form of the effec- The molecular coupling functioh(ts,,7), as a function of
tive low-energy potential leads to a closed dynamic equatiorr, is shown in Fig. 20 for the magnetic-field pulse in Fig. 2.
for h(t,7), which avoids explicitly taking into account the The calculation ofh(tg,,7) has been performed with the

spatial dependence ¢fr,t). The coupling functiorh(t,7), 8Rb, wave function in Fig. 15 that corresponds to the shal-

as obtained from EqB18), is shown in Figs. 4 and 6. low swave bound state at the magnetic field &f
The coupling function associated with the molecular con-=162.2 G at the end of the pulse sequence.

densate wave functio¥,, is given in Appendix A by Eq. A relation, similar to Eq(B20), with ¢, replaced by the

(A20) and denoted ak(t,7). In Sec. lll,|¥|? describes stationary scattering statﬁ:ff) has been applied to calculate

the density off®Rb, molecules at timéy,,, immediately after the spectral density of the pairs of burst atoms at a relative
the magnetic-field pulse, in the bound state corresponding tkinetic energyE,=p?m in a homogeneous gas in Sec.
the wave function in Fig. 15. The wave functid(r,tg,) in I C.
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