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Theory of light-induced drift. IV. Models of bulk light-induced drift in three dimensions
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Light-induced drift(LID) of a rarefied gas in a cell is studied, and exact analytical closed-form solutions to
the model rate equations are obtained for bulk (BDID) in three dimensions, emphasis being placed on the
limit of low radiation absorption by the gas. Comparisons are made with an existing model of BLID in one
dimensionF. O. Goodman, preceding paper, Phys. Re§7A013410(2003], and we examine whether there
are any conditions under which that model is satisfactory. Comparisons are also made with the author’s models
of surface LID in one dimensiot@bove referengeand in three dimensiori§. O. Goodman, Phys. Rev. &5,
063409(2002; 65, 063410(2002].
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. INTRODUCTION tions of d(exp), D(erf), dG;, and so on, already made in
parts I-Ill, and these are collected together in Appendix A,

In part Il of this series of papefd—3], the phenomenon together with some explanation of the origins of some of the
of light-induced drift(LID) was discussed, and exact treat- names used therein; the reasons for making these perhaps
ments of models of surface and bulk LISLID and BLID,  peculiar-looking definitions will become clear when exact
respectively, in one dimension(1D) were presented and results are presented below. For clarity here, some of the
compared. Heré¢"here” means “in the present papej'we  earlier definitions are repeated in Appendix A.
consider a model of BLID in three dimensio(8D), and are
able to examine whether there are any conditions under
which the simpler 1D model of BLID is satisfactory. In parts
I and Il, models of SLID in 3D were presented, and we are We start the analysis in dimensions D) because we
able here to compare results for BLID and SLID in 3D; for wish to point out the interesting fact that the only values of
completeness, we also compare with results from part Ill fofor which a reasonably tractable exact analytical model of
SLID in 1D. BLID may be made arem=1 and 3, with the casa=1

As before[2,3], in order to understand the material here it having been studied already in part Ill. Because of the spe-
is necessary for readers to have read and understood partcial nature of the single component of gas molecule ve-
and of course an understanding of parts Il and Il is alsdocity (parallel to the laser begmand the essential appear-
necessary. References to entities in earlier parts are mad@éce of the speedv, it is convenient innD BLID
here with the notatior(l.5.7), (1l1.3.5), and so on. Unless calculations 6>1) to work with the two variablesuf,,v)
otherwise stated, symbols used here have the same meaningserev=(vy,vy,....,v,) andv=|v|. The bulk Maxwellian

II. ANALYSIS OF 3D BLID

as those in part IIl. distributionm(™(v), in n variablesv,, is given by
Dimensionlessunasteriskedvariables are formed from
dimensional(asteriskeg variables as in part Ill, that is, we m(n)(v):ﬂ.ntZefuzy — < p <, 2.
have
from which it follows that our modified distribution, in two
ho=x=b=2T/p=1, (1.1) variables, is given, fon>1, by
where#* is Planck’s constanty* is the laser frequency* 2(p2— p2)(-3)12, g~
. e : : . (vo—vy) ve
is a characteristic length associated with the d#ll,is the m™ (v, ,0)= - ’
Boltzmann constan®* is the temperature, ang* is the gas T ((n—1)/2)
molecular mass. As in part lll, the choice gqff for the
characteristic length implies that the dimensionless average Osv<ow®, —v<v,=v. (2.2

inverse mean free path for molecule—buffer-particle colli-
sions is given byd=6* y*, and 6 is carried through the It is the appearance of the exponent3)/2 in Eq.(2.2)
analysis. As in earlier parts, essentially all useful informationthat is the origin of our remarks above concerning the trac-
is contained in the three integrdlg,, |s, andlyq, particu-  tability (unique forn>1) of the casen=3, for which
larly in the ratios[4] | 44/dg, Ixs/lqa,» @andlie/lqg. )

In order to write results in concise form, we need to make m(v)=m® (v, ,v)=27" Yve V", (2.3
additional definitions of quantities analogous to the defini-

where we note thav, does not appear explicitly im

=m3)

=m-.
*Also at Department of Physics, University of Waterloo, and the  We now specialize to the case= 3. The working follows
Guelph-Waterloo Physics Institute, Ontario, Canada. that of Sec. lll A of part Ill down to(l11.3.5), with, for the

1050-2947/2003/671)/0134115)/$20.00 67013411-1 ©2003 The American Physical Society



FRANK O. GOODMAN

TABLE I. The limits for the 24 subintegrals, that is, the six
subintegrals for each of the four cases A-D discussed in Sec. Il.

The subscripts$,0 on thev, limits indicate, in an obvious notation,
which of F{™ F{® s involved. In the v limits, min
=min(v,,Jvp]) and maxemax(v,jvy). Examples of the use of the
table are given in Eqg2.6) and(2.7).

»(A-D) o® b (® b(© b (®
(0, min) (vww)o  (Fovw)i (Fvw)i (Fvw)e
(min, may (—v,va)o (—v,vp)
(va,v)i (vp.v)o
(max, =) (—v,va)o
(va,Ub)i
(Ubrv)o

distributions f;(v,,v) for the ground statej&g) and ex-
cited state {=e), the 3D(steady-statesubstitution
fi(vy,v)=Fj(vy,v)m(v) (2.9
used instead of the 1D version which comes frdih2.1)
and (I11.2.2). The analogs of the resultfl.3.10) are found
by calculating the integralg2.5 below, in which the
excitation-frequency functiow(v,) is again writtenq(v,)
=goAh with gy constant and the intervalh defined by
(11.2.6). We use the styl&;(v,,v) for F; to remind us that
it depends both ow and on whether or nat, lies in the

excitation intervalv,,v,]. The required integrals are as fol-
lows:

|1,-=f:dv m(u)f_vvdeFj(vx,v), (2.53
|qj=q0f:dv m(v)fjvdeAhFj(vx,v), (2.5
|U,-=f0wdv m(v)vfjvdvxl:j(vx,v), (2.50
Ixj=j:dv m(v)f_vudvxvxlz,-(ux,u). (2.50

Because of the difference betweBfl” and F{*Y, it is
convenient to rewrite each of the integrélsh) as a sum of
six subintegrals, the limits for which depend on,vy.
There are four different casé8—D) to consider, bearing in
mind thatv,<vyp: (A) O0<v,<vy, (B) v,<0<v, with
[va<vp, (C) v,<0=<v, with |vy|>v,, and (D) v,<vy
<0. The limits for the 24 subintegra(six for each caseare

given in Table I, and the first steps in two examples will help

readers interpret Table I, as follows.

The first subintegral for case A has limits (0, min)
=(0,va])=(0p,) and vy limits (—v,v),, thus involving
F}"“t), so that, for example, the first subintegfé}l) contri-
bution tol,; in this case is
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v v
|fﬁ)=f adv m(v)vf deFI(OUD (2.6a
0 —v

=4w—1’2f “dv v2e V(S +2Z/(v+g)]. (2.6D)
0

The second subintegral for case C hasimits (min, max)
=([vp|,|val)=(p,—va) anduy limits (—v,vy,);, thus involv-
ing F{"™, so that, for example, the second subintedf?)
contribution tol,; in this case is

If(?):f “dv m(v)f bdvxvxF}in) (2.73
Up —-U

= Wﬁl/ZJ_Uadv v(v%—vz)efvz[8j+2wj [(v+w)].
Vb
(2.70

In order to help readers in working through the four cases,
the complete results for case A are given in Appendix B.
The exact solution in each case is now obtained by solv-
ing the system offive) equations
Cjzllj, Cjﬁj:%’ﬂllzlvj, Cg+Ce:1 (28)
for the (four) quantitiesc;, ;. The general exact results for
the important quantities are readily obtained from the proce-
dure described above, but are too long to be usefully pre-
sented her¢5]. However, with use of the definitions in Ap-
pendix A, useful exact results for the double limitg,,)
—(0,0), wherevy is the spontaneous decay rate parameter,
which apply not only to all four casg#\—D), but to general
values ofv,,v, with v,#v,, may be made surprisingly
simple, and are presented in Table I, together with the analo-
gous exact results for 1D BLID and SLIP3] and 3D
SLIDCC [2] where the CC indicates circular-cylindrical cell
geometry. The analogous double limit does not exist for 3D
SLID with flat-plate cell geometrj/1], or for I ;¢ in 1D BLID
[3]. If vg>vy, then the laser excitation interval of; is, of
course[vy,v,] instead of v, ,vp].
A popular [1-3,6 special case is that{,vy,)=(0,2),
and exact results for this case, again with the double limit
(v,90)—(0,0), are shown in Table llI.
In order to use Table Il to get results for the cake
—0, with (v,,vp)=(v —dv/2p +dv/2), that is, analogs
of, for example,(I11.2.19b), (111.3.16b), and (111.3.17b), we
make additional interpretations, analogous to those made in
(1.5.7) and(ll1.3.14), all of which follow from the definitions
in Appendix A.
As we see below, it is useful to define a functigfw) by
B(v) =72 (1—erflv|)e’” 2.9
which is shown in Fig. 1. The expansions ¢fv) for small
and largelv| may be written as follows:

sgr(v) ¢(v)=m"v|— 202+ 7v |3+ O(v?),
(2.10a
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TABLE II. Exact results for 3D BLID(here, 1D BLID and SLID[3], and 3D SLIDCC[2] for general
values ofv 5 ,v, With v, # vy, . Forlgg/dg, the limits withqe— O are shown; for the other two quantities, the
double limits with (y,q,)— (0,0) are shown. The indicated double limit does not exist in 3D SLIOHPr
for I, in 1D BLID [3], which is the reason for the blank entry. The limj— 0 is not in fact needed in the
second and third entries for 1D SLID.

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC
lgd |a(erf) |a(er) |d(erf) |d(erf)
o 2 2 2 2
agte lys 7 V2D (v exp)+d(v?erf C) + (1/2)D(erf) D(erf) d(exp)  d(exp)
Aa gy éd(erf) gd(erf) d(erf) 2 d(erf)
B ’7T3/2
ae:ie v . 27 Y2d(exp C sgi+2d(v erf C) Y2 gt —-
qd 260 6d(erf)
sgnv) ¢(v)=1—1/20°+3/4*+O(1®). (2.10b el 16/l gq= 3+ 2= |dv|+O((dv)?). (3.1
Exact results for the triple limit ¢,q,,dv)—(0,0,0) are As with the models presentdd—3] in parts I-Ill, nu-
given in Table IV. merical results may be obtained by iteration of the analytical
steady-state equations, and, independently, by integration of
IIl. DISCUSSION AND CONCLUSION the Maxwell-Boltzmann rate equations with respect to time.

Implementation of these procedures is described most thor-
For SLID, the 1D model gives a reasonable approximapughly in part I, and is not discussed further here.

tion to the 3D model with CC geometry, the differences in-  We conclude that, as attractive as it seems at first sight,
volving just two factors ofm/2 (Table Il). The same is not the 1D model3] is not generally useful for calculations of
true for BLID, in which the 1D model gives unacceptable BLID, although it may be qualitatively correct in special
results(except forl44/qq, for which all the models agreée  cases, as in some resulf&ble Il) for (va,vp)=(02), for
We have already established that the 1D BLID model is unexample. Physically, this situation is related to the fact that,
acceptable for calculations df/144, and the situation is as we have already discussed in Sec. Il, the 1D méate!
similar for calculations ofl s/l 44, as is made clear from opposed to amD model with n>1) is very special: the
comparison of Figs. 2 and 3. Figure 2 shows exact results igingle velocity component, both (i) is completely respon-
1D BLID as a function ob, for three values ob,, and Fig.  sible for the molecule—buffer-particle collision®f fre-

3, which contains analogous results in 3D BLID, showsquencyé|v,|) and (i) contains the laser excitation interval
clearly how the curves separate smoothly in the realistic 3Qy <v,<v,); with n>1, it is v, rather than just,, that is

case. _ responsible for the collision®f frequencyédv) giving quali-
Figure 4 shows analogous results in 3D BLID for the tatjvely different results generally.
other important ratid ;¢ /1 44 for z=1 (4=0), wherezis the The same is not true of the 1D model of SL[B], in

fraction of excited-state molecules that are quenched to th@hich motion orthogonal te, must be superimposed artifi-
ground state during diffuse scattering. The corner that is evi-

dent in the curve fow,=0 looks suspicious at first, but is 10 .
consistent with the following result, which is exact for suffi-
ciently small|dv| in the double limit ¢,qo)— (0,0) with
v,=0:

e - A=1/2v2 +3/4v*)sgn(v) + X1 /v5)

TABLE lll. Analog of Table Il for (v,,vp)=(02).

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC

Nav(i-erf | v ) exp(v?)
o
o

~ad 112 112 172 172 s |
o ;/«/Ev—Zv‘vl+«/ﬁv3+0(V4)
agate Iys 1 1 1 T
ALY | qd 2_0 _6 E d
0.0 ™ T T T
/2 0 1 2 3 4 5
| —-1/2 . v
l qd [

FIG. 1. The functiong(v) defined by Eq(2.9). We note that
¢(v) is an odd function ob with the expansion§2.10 as shown.
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TABLE IV. Analog of Table Il for (va,vp)=(v—dv/2p
+dv/2) with the additional limitdv—0. We note thaty in this
table stands fov, in the text. The limitgy— 0 is not in fact needed
in the second entry for 1D BLID in this case.

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC
lqd eV e v’ e v’ eV’
Godv 2 w2 w12 72
gcte Ixs $(v) o) .
Aa qu 0 0 2
77,3/2
l1e (12 + p(v)lv Y a2 ¢+T

de
lqq 0

cially (in order to get molecule-surface collisionsn this

sense, a true 1D model of SLID cannot be made, but the fake
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0.5

(3D BLID)

o
°
N

ba,, I,
ba Iy

0.5

FIG. 3. As Fig. 2 except that 3D BLID is considered.

one[3] does give results that are quite similar to those of the

3D model[2] (for CC geometry.
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APPENDIX A: DEFINITIONS USED HERE

In the following definitions ¢ stand fora, g, or w:

y=m"(1-2)lz, (A1)
l)|_=(Ub+Ua)/2, (A2)
dv=vp—v,, (A3)
G:=G(9), (A4)
Gee=G(ve,€), c=a or b, (A5)
1.0
/
0.5 I_/‘/
§ v,=1/'
2
~ o,o{ ///‘/ L o
~f|,3 I - -1
g1
0.5 -
-1.0
-3 2 1 (I) 1 2 3

Vs

FIG. 2. Exact resultgTable I)) for I,s/l4q in 1D BLID as a
function of v, with v,=—1, 0, 1, in the double limit §,qo)
—(0,0). All other parameters are arbitrary.

dG§:Gb§_Ga§! (A6)
d(v?)=vi-v2 (A7)
d(erfy=erfv,—erfv,, (A8)
2 2

d(exp=e Ya—e Vb, (A9)
D(erfy=erflvp| —erflv g, (A10)

2 2
D(v exp =|vale "a—|vyle ", (A11)

d(v erfC)=vp(1—erfluy|) —va(l—erflvy), (Al2)

d(v?erfC)=vi(1—erflvy|)—vi(1—erflv,|), (A13)

d(expC sgn=(1—e "5)sgrivy) — (1-e “2)sgr(v,),
(A14)

where the order of the, b terms in Egs.(A9) and (Al11)
must be noted; this unusughnd, with hindsight, unfortu-
nate ordering originated in part | in order to makkexp)
>0 when G<v,<v, (case(A) here.

2.0 L ~L

7= v, |40

(3D BLID)

L
Ioa

6,

0.5 4

0.0

Vb

FIG. 4. As Fig. 3 except that exact results fqg /1,4 with z
=1 are shown.
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Some explanation of the origins of the names used in the
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- . 15 =7 (1-e )£l B3
definitions (A10)—(A14) will help readers to remember m Hl-e - 61 (B33
them. The use of capitdD for D(erf) in Eq. (A10) and (2)_ _—1 _ (2
D(v exp) in Eq.(A11) alludes to the fact that the absolute /= Pd(exp — ¢l (B3b)

. 3)_ . _—12.-v 3)

dard for the complementary error function {%rfz), and |( =7 b_§|( (B30)
capitalizing the “c”to “C” in Egs. (A12) and(A13) alludes
to the fact that the argument is now an absolute valuepthe 15=3 erfo,— 7 Y2 .e ~va— a4y, (B4a)
and v? are appended for the obvious reason. Similarly,
exp C@z) could be used for a complementary exponential 13 =3d(erf)+ 7 2D (v exp — €15, (B4b)
function (1—e*22), with the “sgn” appended in(Al4),
again for the obvious reason. 1) =3(1—erfop) + 7 Y2,e vb_§|<3> (B4o)

APPENDIX B: RESULTS FOR THE INTEGRALS FOR the results may be written as follows:

CASE A, THAT IS, 0<v,<uv,
_ o =S+ 2W (I3 —val i+ dvl ) +2Z;(21 5 +17)

With the 12 definitions 2 B

ol + 213 —dul ), (B5)
1= Gy, (B1a) v

+ 2)_ 1@ 4 gp|®

—da,, (B1b) =[1 Sid(erf) +2W;(ly;z —val i +dvl7) 1do, =6
B . _

t0 =G¢— Gy, (B1o) =27 Y2, +2W(|<2) val B+ dvl3)

15 =erfu,—1), (B2a) +2Z,(21 G+ 1 vl G+ 218 - dvlgfz)), (B7)
— _12
=d(erf) |§0’ (B2b) X]:Wj[l\(NS gl\(/vzl) 2)|(3)] Z[I(Z)

19 =1-erfo,— 1, (B20) d(v?)15y]: (B8)
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