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Theory of light-induced drift. IV. Models of bulk light-induced drift in three dimensions

Frank O. Goodman*
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
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Light-induced drift~LID ! of a rarefied gas in a cell is studied, and exact analytical closed-form solutions to
the model rate equations are obtained for bulk LID~BLID ! in three dimensions, emphasis being placed on the
limit of low radiation absorption by the gas. Comparisons are made with an existing model of BLID in one
dimension@F. O. Goodman, preceding paper, Phys. Rev. A67, 013410~2003!#, and we examine whether there
are any conditions under which that model is satisfactory. Comparisons are also made with the author’s models
of surface LID in one dimension~above reference! and in three dimensions@F. O. Goodman, Phys. Rev. A65,
063409~2002!; 65, 063410~2002!#.
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I. INTRODUCTION

In part III of this series of papers@1–3#, the phenomenon
of light-induced drift ~LID ! was discussed, and exact trea
ments of models of surface and bulk LID~SLID and BLID,
respectively!, in one dimension~1D! were presented an
compared. Here~‘‘here’’ means ‘‘in the present paper’’! we
consider a model of BLID in three dimensions~3D!, and are
able to examine whether there are any conditions un
which the simpler 1D model of BLID is satisfactory. In par
I and II, models of SLID in 3D were presented, and we a
able here to compare results for BLID and SLID in 3D; f
completeness, we also compare with results from part III
SLID in 1D.

As before@2,3#, in order to understand the material here
is necessary for readers to have read and understood p
and of course an understanding of parts II and III is a
necessary. References to entities in earlier parts are m
here with the notation~I.5.7!, ~III.3.5!, and so on. Unless
otherwise stated, symbols used here have the same mea
as those in part III.

Dimensionless~unasterisked! variables are formed from
dimensional~asterisked! variables as in part III, that is, we
have

\v5x5b52T/m51, ~1.1!

where\* is Planck’s constant,v* is the laser frequency,x*
is a characteristic length associated with the cell,b* is the
Boltzmann constant,T* is the temperature, andm* is the gas
molecular mass. As in part III, the choice ofx* for the
characteristic length implies that the dimensionless aver
inverse mean free path for molecule–buffer-particle co
sions is given byu5u* x* , and u is carried through the
analysis. As in earlier parts, essentially all useful informat
is contained in the three integralsI 1e , I xs , andI qd , particu-
larly in the ratios@4# I qd /q0 , I xs /I qd , andI 1e /I qd .

In order to write results in concise form, we need to ma
additional definitions of quantities analogous to the defi
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Guelph-Waterloo Physics Institute, Ontario, Canada.
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tions of d(exp), D(erf), dGj , and so on, already made i
parts I–III, and these are collected together in Appendix
together with some explanation of the origins of some of
names used therein; the reasons for making these per
peculiar-looking definitions will become clear when exa
results are presented below. For clarity here, some of
earlier definitions are repeated in Appendix A.

II. ANALYSIS OF 3D BLID

We start the analysis inn dimensions (nD) because we
wish to point out the interesting fact that the only values on
for which a reasonably tractable exact analytical model
BLID may be made aren51 and 3, with the casen51
having been studied already in part III. Because of the s
cial nature of the single componentvx of gas molecule ve-
locity ~parallel to the laser beam!, and the essential appea
ance of the speedv, it is convenient in nD BLID
calculations (n.1) to work with the two variables (vx ,v)
wherev5(vx ,vy ,...,vn) and v5uvu. The bulk Maxwellian
distributionm(n)(v), in n variablesvk , is given by

m~n!~v!5p2n/2e2v2
, 2`,vk,`, ~2.1!

from which it follows that our modified distribution, in two
variables, is given, forn.1, by

m~n!~vx ,v !5
2~v22vx

2!~n23!/2ve2v2

p1/2G„~n21!/2…
,

0<v,`, 2v<vx<v. ~2.2!

It is the appearance of the exponent (n23)/2 in Eq. ~2.2!
that is the origin of our remarks above concerning the tr
tability ~unique forn.1) of the casen53, for which

m~v ![m~3!~vx ,v !52p21/2ve2v2
, ~2.3!

where we note thatvx does not appear explicitly inm
[m(3).

We now specialize to the casen53. The working follows
that of Sec. III A of part III down to~III.3.5!, with, for the
©2003 The American Physical Society11-1
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FRANK O. GOODMAN PHYSICAL REVIEW A67, 013411 ~2003!
distributions f j (vx ,v) for the ground state (j [g) and ex-
cited state (j [e), the 3D~steady-state! substitution

f j~vx ,v !5F j~vx ,v !m~v ! ~2.4!

used instead of the 1D version which comes from~III.2.1!
and ~III.2.2!. The analogs of the results~III.3.10! are found
by calculating the integrals~2.5! below, in which the
excitation-frequency functionq(vx) is again writtenq(vx)
5q0Dh with q0 constant and the intervalDh defined by
~III.2.6!. We use the styleF j (vx ,v) for F j to remind us that
it depends both onv and on whether or notvx lies in the
excitation interval@va ,vb#. The required integrals are as fo
lows:

I 1 j5E
0

`

dv m~v !E
2v

v
dvxF j~vx ,v !, ~2.5a!

I q j5q0E
0

`

dv m~v !E
2v

v
dvxDhFj~vx ,v !, ~2.5b!

I v j5E
0

`

dv m~v !vE
2v

v
dvxF j~vx ,v !, ~2.5c!

I x j5E
0

`

dv m~v !E
2v

v
dvxvxF j~vx ,v !. ~2.5d!

Because of the difference betweenF j
(in) and F j

(out) , it is
convenient to rewrite each of the integrals~2.5! as a sum of
six subintegrals, the limits for which depend onva ,vb .
There are four different cases~A–D! to consider, bearing in
mind that va,vb : ~A! 0<va,vb , ~B! va<0,vb with
uvau,vb , ~C! va,0<vb with uvau.vb , and ~D! va,vb
<0. The limits for the 24 subintegrals~six for each case! are
given in Table I, and the first steps in two examples will he
readers interpret Table I, as follows.

The first subintegral for case A hasv limits (0, min)
5(0,uvau)5(0,va) and vx limits (2v,v)o , thus involving
F j

(out) , so that, for example, the first subintegralI v j
(1) contri-

bution to I v j in this case is

TABLE I. The limits for the 24 subintegrals, that is, the s
subintegrals for each of the four cases A–D discussed in Sec
The subscriptsi,o on thevx limits indicate, in an obvious notation
which of F j

(in) ,F j
(out) is involved. In the v limits, min

[min(uvau,uvbu) and max[max(uvau,uvbu). Examples of the use of the
table are given in Eqs.~2.6! and ~2.7!.

v (A–D) vx
(A) vx

(B) vx
(C) vx

(D)

~0, min! (2v,v)o (2v,v) i (2v,v) i (2v,v)o

~min, max! (2v,va)o (2v,vb) i

(va ,v) i (vb ,v)o

~max,`! (2v,va)o

(va ,vb) i

(vb ,v)o
01341
I v j
~1!5E

0

va
dv m~v !vE

2v

v
dvxF j

~out! ~2.6a!

54p21/2E
0

va
dv v2e2v2

@Sj12Zj /~v1g!#. ~2.6b!

The second subintegral for case C hasv limits (min, max)
5(uvbu,uvau)5(vb ,2va) and vx limits (2v,vb) i , thus involv-
ing F j

(in) , so that, for example, the second subintegralI x j
(2)

contribution toI x j in this case is

I x j
~2!5E

vb

2va
dv m~v !E

2v

vb
dvxvxF j

~ in! ~2.7a!

5p21/2E
vb

2va
dv v~vb

22v2!e2v2
@Sj12Wj /~v1w!#.

~2.7b!

In order to help readers in working through the four cas
the complete results for case A are given in Appendix B.

The exact solution in each case is now obtained by so
ing the system of~five! equations

cj5I 1 j , cjb j5
1
2 p1/2I v j , cg1ce51 ~2.8!

for the ~four! quantitiescj ,b j . The general exact results fo
the important quantities are readily obtained from the pro
dure described above, but are too long to be usefully p
sented here@5#. However, with use of the definitions in Ap
pendix A, useful exact results for the double limits (g,q0)
→(0,0), whereg is the spontaneous decay rate parame
which apply not only to all four cases~A–D!, but to general
values of va ,vb with vaÞvb , may be made surprisingly
simple, and are presented in Table II, together with the an
gous exact results for 1D BLID and SLID@3# and 3D
SLIDCC @2# where the CC indicates circular-cylindrical ce
geometry. The analogous double limit does not exist for
SLID with flat-plate cell geometry@1#, or for I 1e in 1D BLID
@3#. If va.vb , then the laser excitation interval ofvx is, of
course,@vb ,va# instead of@va ,vb#.

A popular @1–3,6# special case is that (va ,vb)5(0,̀ ),
and exact results for this case, again with the double li
(g,q0)→(0,0), are shown in Table III.

In order to use Table II to get results for the casedv
→0, with (va ,vb)5(vL2dv/2,vL1dv/2), that is, analogs
of, for example,~III.2.19b!, ~III.3.16b!, and ~III.3.17b!, we
make additional interpretations, analogous to those mad
~I.5.7! and~III.3.14!, all of which follow from the definitions
in Appendix A.

As we see below, it is useful to define a functionf(v) by

f~v !5p1/2v~12erfuvu!ev2
~2.9!

which is shown in Fig. 1. The expansions off(v) for small
and largeuvu may be written as follows:

sgn~v !f~v !5p1/2uvu22v21p1/2uvu31O~v4!,
~2.10a!

II.
1-2
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TABLE II. Exact results for 3D BLID~here!, 1D BLID and SLID @3#, and 3D SLIDCC@2# for general
values ofva ,vb with vaÞvb . For I qd /q0 , the limits withq0→0 are shown; for the other two quantities, th
double limits with (g,q0)→(0,0) are shown. The indicated double limit does not exist in 3D SLIDFP@1# or
for I 1e in 1D BLID @3#, which is the reason for the blank entry. The limitq0→0 is not in fact needed in the
second and third entries for 1D SLID.

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC

Iqd

q0

ud~erf!u
2

ud~erf!u
2

ud~erf!u
2

ud~erf!u
2

agae

Da

Ixs

Iqd

p21/2D~v exp!1d~v2 erf C!1~1/2!D~erf!

ud~erf!

D~erf!

ud~erf!

d~exp!

d~erf!

p

2

d~exp!

d~erf!

ae

I1e

Iqd

c

2u
1

2p21/2d~exp C sgn!12d~v erf C!

ud~erf!
c1p21/2 c1

p3/2

2
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sgn~v !f~v !5121/2v213/4v41O~1/v6!. ~2.10b!

Exact results for the triple limit (g,q0 ,dv)→(0,0,0) are
given in Table IV.

III. DISCUSSION AND CONCLUSION

For SLID, the 1D model gives a reasonable approxim
tion to the 3D model with CC geometry, the differences
volving just two factors ofp/2 ~Table II!. The same is not
true for BLID, in which the 1D model gives unacceptab
results~except forI qd /q0 , for which all the models agree!.
We have already established that the 1D BLID model is
acceptable for calculations ofI 1e /I qd , and the situation is
similar for calculations ofI xs /I qd , as is made clear from
comparison of Figs. 2 and 3. Figure 2 shows exact result
1D BLID as a function ofvb for three values ofva , and Fig.
3, which contains analogous results in 3D BLID, sho
clearly how the curves separate smoothly in the realistic
case.

Figure 4 shows analogous results in 3D BLID for t
other important ratioI 1e /I qd for z51 (c50), wherez is the
fraction of excited-state molecules that are quenched to
ground state during diffuse scattering. The corner that is
dent in the curve forva50 looks suspicious at first, but i
consistent with the following result, which is exact for suf
ciently small udvu in the double limit (g,q0)→(0,0) with
va50:

TABLE III. Analog of Table II for (va ,vb)5(0,̀ ).

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC

Iqd

q0
1/2 1/2 1/2 1/2

agae

Da

Ixs

Iqd

1

2u

1

u
1

p

2

ae

I1e

Iqd

~1/2!c12p21/2

u
c1p1/2 c1

p3/2

2

01341
-
-

-

in

D

e
i-

uaeI 1e /I qd5 1
2 c1p1/22udvu1O„~dv !2

…. ~3.1!

As with the models presented@1–3# in parts I–III, nu-
merical results may be obtained by iteration of the analyti
steady-state equations, and, independently, by integratio
the Maxwell-Boltzmann rate equations with respect to tim
Implementation of these procedures is described most t
oughly in part I, and is not discussed further here.

We conclude that, as attractive as it seems at first si
the 1D model@3# is not generally useful for calculations o
BLID, although it may be qualitatively correct in speci
cases, as in some results~Table III! for (va ,vb)5(0,̀ ), for
example. Physically, this situation is related to the fact th
as we have already discussed in Sec. II, the 1D model~as
opposed to annD model with n.1) is very special: the
single velocity componentvx both ~i! is completely respon-
sible for the molecule–buffer-particle collisions~of fre-
quencyuuvxu) and ~ii ! contains the laser excitation interva
(va<vx<vb); with n.1, it is v, rather than justvx , that is
responsible for the collisions~of frequencyuv) giving quali-
tatively different results generally.

The same is not true of the 1D model of SLID@3#, in
which motion orthogonal tovx must be superimposed artifi

FIG. 1. The functionf(v) defined by Eq.~2.9!. We note that
f(v) is an odd function ofv with the expansions~2.10! as shown.
1-3
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cially ~in order to get molecule-surface collisions!. In this
sense, a true 1D model of SLID cannot be made, but the
one@3# does give results that are quite similar to those of
3D model@2# ~for CC geometry!.
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APPENDIX A: DEFINITIONS USED HERE

In the following definitions,j stand fora, g, or w :

c5p1/2~12z!/z, ~A1!

vL5~vb1va!/2, ~A2!

dv5vb2va , ~A3!

Gj5G~j!, ~A4!

Gcj5G~vc ,j!, c[a or b, ~A5!

FIG. 2. Exact results~Table II! for I xs /I qd in 1D BLID as a
function of vb with va521, 0, 1, in the double limit (g,q0)
→(0,0). All other parameters are arbitrary.

TABLE IV. Analog of Table II for (va ,vb)5(v2dv/2,v
1dv/2) with the additional limitdv→0. We note thatv in this
table stands forvL in the text. The limitq0→0 is not in fact needed
in the second entry for 1D BLID in this case.

Quantity 3D BLID 1D BLID 1D SLID 3D SLIDCC

Iqd

q0dv
e2v2

p1/2

e2v2

p1/2

e2v2

p1/2

e2v2

p1/2

agae

Da

I xs

I qd

f~v !

u

sgn~v!

u
p1/2v

p3/2v
2

ae

I 1e

I qd

~1/2!c1f~v !/v
u

c1p1/2 c1
p3/2

2

01341
ke
e

n-

dGj5Gbj2Gaj , ~A6!

d~v2!5vb
22va

2, ~A7!

d~erf!5erfvb2erfva , ~A8!

d~exp!5e2va
2
2e2vb

2
, ~A9!

D~erf!5erfuvbu2erfuvau, ~A10!

D~v exp!5uvaue2va
2
2uvbue2vb

2
, ~A11!

d~v erfC!5vb~12erfuvbu!2va~12erfuvau!, ~A12!

d~v2 erfC!5vb
2~12erfuvbu!2va

2~12erfuvau!, ~A13!

d~expC sgn!5~12e2vb
2
!sgn~vb!2~12e2va

2
!sgn~va!,

~A14!

where the order of thea, b terms in Eqs.~A9! and ~A11!
must be noted; this unusual~and, with hindsight, unfortu-
nate! ordering originated in part I in order to maked(exp)
.0 when 0<va,vb ~case~A! here!.

FIG. 3. As Fig. 2 except that 3D BLID is considered.

FIG. 4. As Fig. 3 except that exact results forI 1e /I qd with z
51 are shown.
1-4
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Some explanation of the origins of the names used in
definitions ~A10!–~A14! will help readers to remembe
them. The use of capitalD for D(erf) in Eq. ~A10! and
D(v exp) in Eq.~A11! alludes to the fact that the absolu
valuesuvau,uvbu must be used. The notation erfc(z) is stan-
dard for the complementary error function (12erfz), and
capitalizing the ‘‘c’’ to ‘‘C’’ in Eqs. ~A12! and~A13! alludes
to the fact that the argument is now an absolute value; thv
and v2 are appended for the obvious reason. Simila
exp C(z) could be used for a complementary exponen
function (12e2z2

), with the ‘‘sgn’’ appended in~A14!,
again for the obvious reason.

APPENDIX B: RESULTS FOR THE INTEGRALS FOR
CASE A, THAT IS, 0ÏvaËvb

With the 12 definitions

I j0
~1!5Gaj , ~B1a!

I j0
~2!5dGj , ~B1b!

I j0
~3!5Gj2Gbj, ~B1c!

I j1
~1!5erfva2I j0

~1! , ~B2a!

I j1
~2!5d~erf!2I j0

~2! , ~B2b!

I j1
~3!512erfvb2I j0

~3! , ~B2c!
01341
e

,
l

I j2
~1!5p21/2~12e2va

2
!2jI j1

~1! , ~B3a!

I j2
~2!5p21/2d~exp!2jI j1

~2! , ~B3b!

I j2
~3!5p21/2e2vb

2
2jI j1

~3! , ~B3c!

I j3
~1!5 1

2 erfva2p21/2vae2va
2
2jI j2

~1! , ~B4a!

I j3
~2!5 1

2 d~erf!1p21/2D~v exp!2jI j2
~2! , ~B4b!

I j3
~3!5 1

2 ~12erfvb!1p21/2vbe2vb
2
2jI j2

~3! , ~B4c!

the results may be written as follows:

I 1 j5Sj12Wj~ I w2
~2!2vaI w1

~2!1dvI w1
~3!!12Zj~2I g2

~1!1I g2
~2!

1vaI g1
~2!12I g2

~3!2dvI g1
~3!!, ~B5!

I q j5@ 1
2 Sjd~erf!12Wj~ I w2

~2!2vaI w1
~2!1dvI w1

~3!!#q0 ,
~B6!

I v j52p21/2Sj12Wj~ I w3
~2!2vaI w2

~2!1dvI w2
~3!!

12Zj~2I g3
~1!1I g3

~2!1vaI g2
~2!12I g3

~3!2dvI g2
~3!!, ~B7!

I x j5Wj@ I w3
~2!2va

2I w1
~2!1d~v2!I w1

~3!#2Zj@ I g3
~2!2va

2I g1
~2!

1d~v2!I g1
~3!#. ~B8!
g
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