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Theory of light-induced drift. III. Models of surface and bulk light-induced drift in one dimension

Frank O. Goodman*
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 3 May 2002; published 30 January 2003!

Light-induced drift~LID ! of a rarefied gas in a cell is studied, and exact analytical closed-form solutions to
the model rate equations, which model the gas motion in one dimension, are obtained for cases of both surface
LID ~SLID! and bulk LID ~BLID !; the special case of the limit of low radiation absorption by the gas is given
particular attention. Similarities and differences among the results for SLID and BLID are discussed. This is
part III of a series of papers, parts I and II having studied LID, but concentrating on SLID, with flat-plate and
circular-cylindrical cell geometries, respectively@F. O. Goodman, Phys. Rev. A65, 064309~2002!; 65, 064310
~2002!#.
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I. INTRODUCTION

In parts I and II~Refs.@1# and@2#! of this series of papers
the phenomenon of light-induced drift~LID ! was discussed
and exact treatments of models of surface LID~SLID!, in
three dimensions, were presented for the cases of flat-p
@1# ~FP! and circular-cylindrical@2# ~CC! geometries, in the
limit of large cell length~and large FP cell width!, and in the
free-molecule limit. Because of considerations of feasibi
and interpretation of possible experimental measureme
and of a desire for relative simplicity, interest is essentia
confined to the limit of low radiation intensity absorptio
Although general Maxwell-Boltzmann rate equatio
~MBREs! were presented@1,2#, no calculations for cases in
volving bulk LID ~BLID ! were made.

Here~‘‘here’’ means ‘‘in the present paper’’!, in the spirit
of parts I and II, we consider models of both~pure! SLID
and ~pure! BLID in order to compare the two phenomen
and we use models in one dimension~1D! in order that the
simplest possible reasonable comparison may be m
SLID ~but not BLID! is strictly impossible in 1D without
some assumption about the transverse molecular motion~in
order that the active surfaces may be deemed to have
tered the molecules during collisions!, and our assumption is
explained below. Specializations analogous to those mad
parts I and II are also made here. We do not want our co
parisons to be jeopardized by uncertainties caused by
proximations~other than the unavoidable use of approxim
MBREs!, and so exact treatments of both SLID and BL
are presented first, with specializations made afterward.

As was the case with part II, in order to understand
material here, it is necessary for readers to have read
understood part I, and an understanding of part II is a
necessary here. References to entities in parts I and II
made here with the notation~I.5.11!, ~II.3.4!, ~I.D1!, and so
on. Symbols used here have the same meanings as in p
unless otherwise indicated.

Our assumption in SLID is that, superimposed on the
molecular motion~along the cell axis!, there is a Maxwellian
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~in thermal equilibrium with the cell! transverse molecula
motion which is not discussed in further detail, but whi
gives rise to molecule-surface collisions with average f
quency per molecule, denoted by^n&m @3,4#, of the same
value as those for Maxwellian gases in parts I and II, that
^n&m5p21/2; this assumption implies that we choose ch
acteristic lengths,c* 5x* with x* 5Z* andR* , respectively
@3,5#. In 1D BLID, where u* is @1# the average inverse
mean-free-path for molecule-buffer particle collisions, w
have^n&m5p21/2u* ,c* 5p21/2u @3,6#; although the choice
u* ,c* 51 for ,c* ~giving u51) may seem at first sight th
most natural@becauseu would not appear in the working an
it gives the same value of^n&m as in SLID#, the choice,c*
5x* ~giving u5u* x* ) is also natural, and we carryu
through the analysis.

It is necessary to discuss the choice of system transm
sion parameterk; for SLID, it seems logical to make the
same choices as made in~I.H5! and ~II.1.2!, respectively,
whereas for BLID, in which active surfaces are not necess
~and not mentioned here!, k51 is a candidate. We simply
use unspecifiedk in the analysis here.

We recall, on the basis of the results~I.2.1!, ~I.2.2!, and
~I.3.1!–~I.3.6!, that all of the important physical conclusion
from the models may be drawn from the three integralsI 1e ,
I xs , and I qd , and, more particularly, from the ratiosI qd /a,
I xs /I qd , andI 1e /I qd ; for example,

Xce /~r /r!5I 1e /I qd , ~1.1!

d/k5~DP/P!/~kr /r!5I xs /I qd , ~1.2!

and we proceed directly to their calculation. The intenti
here is to get as good a comparison of SLID and BLID as
possible using simple models, and not to compare with
perimental results, for example, although a generalized a
log of ~I.5.11! is presented.

II. 1D SLID

A. Exact analysis

With our assumption, explained in Sec. I, about the tra
verse molecular motion, we build our MBREs as follows.
the language of part I, we putuv50 with uvzu and ^uvzu& j
©2003 The American Physical Society10-1
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FRANK O. GOODMAN PHYSICAL REVIEW A67, 013410 ~2003!
equal to^uvzu&m5p21/2, implying thatbz j51, into ~I.2.10!;
in the language of part II, we again putuv50, now withV
and ^V& j equal to^V&m5p1/2/2, implying thatBV j51, into
the analog of~I.2.10!, which replaces@2# uvzu by 2V/p
therein. Then we make the substitution

f j~vx :t !5F j~vx :t !m~vx!, ~2.1!

wherem is the 1D version of~I.B1!,

m~vx!5p21/2e2vx
2
, ~2.2!

and get, in both cases,

p1/2]Fg /]t5cgag1ceaez2agFg1p1/2gFe

2p1/2q~Fg2Fe!, ~2.3a!

p1/2]Fe /]t5ceae~12z!2aeFe2p1/2gFe

1p1/2q~Fg2Fe!, ~2.3b!

wherea j andz stand foras j andzs , respectively@1,2#. Here
we pass directly to the steady-state (]F j /]t50) solution of
Eq. ~2.3!, that is,

F j5
Aj1Bp1/2q1Ejp

1/2g

C1Dp1/2q1Fp1/2g
, ~2.4!

where the eight constantsAj ,B,C,D,Ej ,F are given by
~I.5.2! with b j (5bz j)51.

The definitions here ofa,g are different from those in par
I:

a5p1/2q0Sa/agae , ~2.5a!

g5p1/2g/ae . ~2.5b!

We write ~I.2.4! asq(vx)5q0Dh, with Dh defined by

Dh5h~vx2va!2h~vx2vb! ~2.6!

to get

F j5Sj1
2aXj12Zj

11aDh1g
, ~2.7!

whereSj is defined by

Sj5Aj /C, ~2.8!

Zj by

Zj5gYj , ~2.9!

andXj ,Yj by ~I.E1!.
The vx interval of laser excitation is given by (va<vx

<vb) with va,vb , and it clarifies the analysis ifF j
(in) ,F j

(out)

are defined as the values ofF j ~inside, outside! of this inter-
val:
01341
F j
(in)5Sj1

2Wj

11w
, ~2.10a!

F j
(out)5Sj1

2Zj

11g
, ~2.10b!

with Wj defined by~II.A2!, and not by~I.E7!, and where the
definition ~I.E6! of w is recalled.

The required integrals here areI 1 j ,I q j , andI x j , I z j being
absent because of our 1D assumption, and our analog o
results~I.E9! is as follows:

I 1 j5Sj1
Zj@22d~erf!#

11g
1

Wjd~erf!

11w
, ~2.11a!

I q j5S Sj

2
1

Wj

11wDq0 d~erf!, ~2.11b!

I x j5S Wj

11w
1

Zj

11gDd~exp!

p1/2
. ~2.11c!

The ~exact! solution is now obtained by solving the syste
of ~three! equations

cj5I 1 j , ~2.12a!

cg1ce51, ~2.12b!

for the ~two! quantitiescj : Eq. ~2.12b! must be used with
one or both of Eqs.~2.12a!, and having three equations fo
two quantities gives a good check on the working. Ex
results in closed form for the six integralsI 1e , I qk (k
5e,d), and I xk (k5g,e,s) are presented in Appendix A
(I 1g ,I qg are then obtained fromI 1g1I 1e51, I qg2I qe
5I qd).

Attempts were made to present experiment-friendly
sults, in the limit of smalla, for the caseg50, z.0 in
~I.5.11! and ~I.3.4!, and for the casez50, g.0 in ~I.5.15!,
the last case being trivial in part II. With hindsight, it wou
perhaps have been better to first present the analogs of t
results for the general case, with no restrictions on the
rameters, with specializations made later. This could be
portant because, with the occasional necessary interpreta
the results are independent of cell geometry and of whe
SLID or BLID is being considered, as follows:

DP* /mPa

r * mm2/mW
'511.3k

I xs

I qd
S m*

30 amuD
1/2S T*

300 KD 1/2

3S l*

10 mmD , ~2.13!
0-2
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1000ce

r * mm2/mW
'5.113

I 1e

I qd
S Pa

P*
D S 100x*

X*
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD ,

~2.14!

100a

r * mm2/mW
'

0.5113

~ I qd /a! S Pa

P*
D S 100x*

X*
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD .

~2.15!

The quantities of importance are clear from Eqs.~2.13!–
~2.15!, that is,I qd /a, I xs /I qd , andI 1e /I qd , and they must be
calculated for each particular case. In Eq.~2.13!, k must be
interpreted as an appropriate choice,k5ks , of transmission
parameter. Curious readers may ask why ‘‘5113’’ appe
regularly in these results, the answer being that

~10mm mW!@~300 K!~30 amu!b* !] 1/2

~21/2\* v* l* !~mm2mPa!
'511.32.

~2.16!

B. Physically motivated special cases

As in part II, there is no problem here with the two limi
a→0, g→0, because they commute. Because our defini
~2.5a! of a, in terms of the important physical quantityq0,
for SLID is different from that~3.3a! below for BLID, we
useq0 instead ofa where necessary for clarity from now on
Where

dv5vb2va , ~2.17!

the most useful results, in view of Eqs.~2.13!–~2.15!, are as
follows:

I qd

q0dv

q0→
0

d~erf!

2dv

dv→
0

e2vL
2

p1/2
, ~2.18!

I xs

I qd

5
Dad~exp!

~11g!agaed~erf!
~2.19a!

dv→
0

p1/2vLDa

~11g!agae

, ~2.19b!

I 1e

I qd
5

p1/2

~g1z!ae

. ~2.20!

The casesg50, z.0 andz50, g.0 are trivially obtained
from these results.
01341
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III. 1D BLID

A. Exact analysis

In the language of parts I and II, we setuvzu50 andV
50, respectively, for simplicity but bearing in mind the re
ervation concerning this~incorrect! procedure expressed i
part I; with Eqs.~2.1! and ~2.2!, the analog of Eq.~2.3! is

]Fg /]t5~cgagbg1ceaezbe!uv2aguvFg

1gFe2q~Fg2Fe!, ~3.1a!

]Fe /]t5ceae~12z!beuv2aeuvFe2gFe

1q~Fg2Fe!, ~3.1b!

wherea j ,b j , andz stand forab j ,bv j , andzb , respectively,
andv5uvxu.

The steady-state solution of Eq.~3.1! may be written

F j5
Ajv1Bq1Ejg

Cv1Dq1Fg
, ~3.2!

where the five constantsB,D,Ej ,F are given by~I.5.2c,
I.5.2e, I.5.2f, I.5.2g, I.5.2h!; the three constantsAj ,C are
given by~I.5.2a, I.5.2b, I.5.2d! except that they now carry a
factoru, for exampleC5agaeu. These differences result in
the following different definitions ofa,g:

a5q0Sa/agaeu, ~3.3a!

g5g/aeu. ~3.3b!

With the definitions~2.8! and~2.9!, the analog of Eq.~2.7! is

F j5Sj1
2aXj12Zj

v1aDh1g
, ~3.4!

and of Eq.~2.10! is

F j
(in)5Sj1

2Wj

v1w
, ~3.5a!

F j
(out)5Sj1

2Zj

v1g
, ~3.5b!

again with Wj defined by~II.A2! and with the definition
~I.E6! of w recalled.

Now we need the integralsI 1 j ,I q j ,I v j , and I x j , and the
analysis is more complicated than that for SLID in Sec.
@becausev appears in Eq.~3.5! but not in Eq.~2.10!#. We
need a generalization of the functionG(u) defined by~I.D1!,
that is, a functionG(s,u) of two variables defined by

G~s,u!5
2u

p1/2E0

s

dx
e2x2

uxu1u
~3.6!

with G(s,0)50, and we stretch somewhat the meaning
‘‘closed-form functions’’ by includingG(s,u) among them.
We see thatG(s,u) is an odd function ofs, and is related to
G(u) by
0-3
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G~u!5G~`,u!. ~3.7!

The following extension of our definition~I.4.10! of d(erf)
and additional definitions of quantitiesdGj ,DGj are useful
in presenting results of the analysis@7,8#:

D~erf!5erfuvbu2erfuvau, ~3.8!

dGj5G~vb ,j!2G~va ,j!, ~3.9a!

DGj5G~ uvbu,j!2G~ uvau,j!. ~3.9b!

For example, the analog of Eq.~2.10! may now be written as
follows:

I 1 j5Sj1Yj~2Gg2dGg!1WjdGw /w, ~3.10a!

I q j5@Sjd~erf!/21WjdGw /w#q0 , ~3.10b!

I v j5p21/2Sj1Zj~2Hg1dGg!2WjdGw

1aXjd~erf!, ~3.10c!

I x j5ZjDGg2WjDGw1aXjD~erf!. ~3.10d!

The ~exact! solution is now obtained by solving the syste
of ~five! equations

cj5I 1 j , ~3.11a!

cjb j5p1/2I v j , ~3.11b!

cg1ce51 ~3.11c!

for the~four! quantitiescj ,b j : Eq. ~3.11c! must be used with
three or all of Eqs.~3.11a! and~3.11b! and having five equa
tions for four quantities gives a good check. Exact results
closed form, that is, the analogs of those in Appendix A,
presented in Appendix B, with the definition~I.F2! of y re-
called, and the basic results~2.13!–~2.15! apply here also. In
Eq. ~2.13!, k must now be interpreted as another appropri
choice,k5kb , of transmission parameter.

B. Physically motivated special cases

There is a problem here, analogous to that found in pa
with I 1e andI xs , with the two limitsa→0 andg→0 of I 1e .
If vx50 is in the excitation interval@va ,vb#, that is, if va
<0<vb @9#, then there is a logarithmic divergence, of t
type occurring in part I, in the result forI 1e . Essentially, the
problem is that the limit ofGw /w as a→0, g→0 or vice
versa may be needed. Of course, limg→0(Gw /w)5Ga /a and
lima→0(Gw /w)5Gg /g, and taking the next limit in eithe
case gives the problem.

We let (dGj /j)0 stand for (dGa /a)0 and (dGg /g)0 @7#,
which in turn stand for the leading terms, up to but exclud
those ofO(a) andO(g), respectively, in the expansions o
dGa /a and dGg /g. Where an exponential integralE(z) is
defined by@10#
01341
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g

E~z!5E
z

`

dxe2x/x, ~3.12!

it follows from Eq. ~3.6! that the required results are as fo
lows:

vavb.0:~dGj /j!05p21/2@E~va
2!2E~vb

2!#sgn~va!,

~3.13a!

vavb50:~dGj /j!052p21/2@2 lnj1s1E~va
21vb

2!#,

~3.13b!

vavb,0:~dGj /j!052p21/2@4 lnj12s1E~va
2!1E~vb

2!#,

~3.13c!

where it is understood that the next term in each of the th
expansions isO(j).

In order to write analogs of Eq.~2.19b!, that is, results for
the casedv→0, we need to make the following interpreta
tions:

D~erf!/d~erf!→sgn~vL!, ~3.14a!

sgn~vL!DGj /d~erf!→dGj /d~erf! ~3.14b!

→j/~ uvLu1j!, ~3.14c!

~dGj /j!0 /d~erf!→uvLu21, ~3.14d!

which follow from ~I.4.10!, ~3.8!, ~3.9! and~3.13a!. We may
now write the analogs of Eqs.~2.18!–~2.20! as follows:

I qd

q0dv

q0

→
0

d~erf!

2dv

dv
→
0

e2vL
2

p1/2
, ~3.15!

I xs

I qd

q0

→
0

~D~erf!2DGg!Da

agaeu d~erf!
~3.16a!

dv
→
0

vLDa

~ uvLu1g!agaeu
, ~3.16b!

I 1e

I qd

q0

→
0

dGg /g1cHg d~erf!

~11gcHg!aeu d~erf!
~3.17a!

dv
→
0

~ uvLu1g!211cHg

~11gcHg!aeu
, ~3.17b!

wherec is defined by

c5y/z5p1/2~12z!/z, ~3.18!

and where we note that Eq.~3.15! has the same form as Eq
~2.18!.
0-4



e
e

r

n
r-

e

of

ey
lize
d
a-

te

-
n

THEORY OF LIGHT-INDUCED DRIFT. III. MODELS . . . PHYSICAL REVIEW A 67, 013410 ~2003!
Use of Eq.~3.13! would be necessary if, for example, th
small-g behavior of Eq.~3.17a! were studied. For the cas
g50, z.0, applied in Eq.~3.16! and~3.17! before the lim-
its are taken, the results are

I xs

I qd

q0
→
0

D~erf! Da

agaeu d~erf!
~3.19a!

dv
→
0

sgn~vL!Da

agaeu
, ~3.19b!

I 1e

I qd

q0
→
0

~dGa /a!01c d~erf!

aeu d~erf!
~3.20a!

dv
→
0

uvLu211c

aeu
. ~3.20b!

Mainly in order to check the peculiar-looking result~3.20a!
combined with~3.13b! with j5a, which is forg50, that is,
g50 from Eq.~3.3b!, we present in Fig. 1 exact results, fo
several values ofg, for the ratio I 1e /I qd with va50, vb
5`, z51, for which Eq.~3.20a! with Eq. ~3.13b! reduces to

h
a
→
0

1, ~3.21!

whereh is defined by

FIG. 1. Exact results from BLID on the dependence ofh, de-
fined by Eq.~3.21!, on g and a. The parameters areva50, vb

5`, zb51, andabe50.999; the results are independent ofabg and
u. The vertical solid line at log10a'20.13 shows wherea
5e2s/2, which is where the curve for every value ofg has a ver-
tical asymptote. The meanings of the symbols are as follows:h is
defined by Eq.~3.22!, g is the spontaneous decay rate parame
@va ,vb# is the interval ofvx in which the laser excitation function
q(vx) equalsq0 , a is defined by Eq.~3.3a!, zb is the diffuse-
scattering quenching fraction,abg,e are the ground- and excited
state accommodation coefficients,u is the average inverse mea
free path for molecule-buffer particle collisions, ands ('0.58) is
Euler’s constant.
01341
h5
2p1/2aeu

~2 lna1s!

I 1e

I qd

. ~3.22!

For theg50 curve in Fig. 1, we see thath is essentially
indistinguishable from unity fora less than about 0.001, in
nice agreement with Eq.~3.21!.

IV. COMPARISON OF SLID AND BLID

From Eqs. ~2.18!–~2.20! and ~3.15!–~3.17!, with sub-
scripts (s,b)[ ~SLID, BLID! attached to variables in a
obvious notation, we get the following results for the impo
tant quantities, withu[ub :

~ I qd /q0!b

~ I qd /q0!s

q0
→
0

1, ~4.1!

~ I xs /I qd!b

~ I xs /I qd!s

q0
→
0

~11gs!@D~erf!2DGgb#

u d~exp!

asgase

abgabe

Dab

Das
~4.2a!

dv
→
0

p21/2

u

~11gs!

~ uvLu1gb!

asgase

abgabe

Dab

Das

,

~4.2b!

~ I 1e /I qd!b

~ I 1e /I qd!s

q0
→
0

~zs1gs!@dGgb /gb1cbHgb d~erf!#

p1/2~11gbcbHgb!u d~erf!

ase

abe

~4.3a!

dv
→
0

~zs1gs!@~ uvLu1gb!211cbHgb#

p1/2~11gbcbHgb!u

ase

abe

,

~4.3b!

where use of Eq.~3.13! would again be made to study th
small-gb behavior of Eq.~4.3a!. For the casegs5gb50,
zszb.0, the analog of Eq.~4.2! is trivially obtained (DGgb
50), while that of Eq.~4.3! is

~ I 1e /I qd!b

~ I 1e /I qd!s

q0

→
0

@zb~dGab /ab!01yb d~erf!#

p1/2u d~erf!

zsase

zbabe

~4.4a!

dv
→
0

~zbuvLu211yb!

p1/2u

zsase

zbabe

. ~4.4b!

If, as may be expected,u is of order unity, the results for
SLID and BLID are very similar for comparable values
the parameters, as is clear to a large extent from Eqs.~4.1!–
~4.4!; in fact, some of the results are more similar than th
may appear to be at first sight. For example, let us specia
to the case (va ,vb)5(0,̀ ) which has been commonly use
before @11,1,2#, and consider the extreme values of the p
rameterszs ,zb with gsgb.0. The results~4.1! and~4.2a! are
independent ofzs ,zb , while ~4.2b! and ~4.3b! do not apply
(dv5`); for zs5zb50, Eq. ~4.3a! becomes simply

r,
0-5
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~ I 1e /I qd!b

~ I 1e /I qd!s

q0
→
0

gs

gb

, ~4.5!

and, forzs5zb51,

~ I 1e /I qd!b

~ I 1e /I qd!s

q0
→
0

S ase

p1/2
1gsD Ggb

gb

, ~4.6!

in both of which we have used the definitions~2.5b! and
~3.7b!.

These similarities are illustrated in Figs. 2 and 3: Fig
shows exact results forI xs /I qd for both SLID and BLID as
functions ofg with gs5gb5g andzs5zb50; Fig. 3 shows
analogous results forI 1e /I qd , but with zs5zb51.

FIG. 2. Comparison of exact results from SLID and BLID o
the dependence of the ratioI xs /I qd on g. The parameters areva

50, vb5`, q050.001, asg5abg51.0, ase5abe50.999, gs

5gb5g, zs5zb50, andu51. The meanings of the symbols a
as in Fig. 1, withzs andasg,e the analogs for SLID ofzb andabg,e ,
andgs,b the values ofg used for SLID,BLID.

FIG. 3. As in Fig. 2, except that the ratioI 1e /I qd is shown, and
zs5zb51.
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V. CONCLUSIONS

Given the model equations~2.10! @1# for LID in one di-
mension, with our transverse-molecular-motion assump
for SLID, we have shown how exact solutions may be o
tained for both SLID and BLID; exact solutions for SLID~in
three dimensions! were presented in parts I and II.

Numerical results may be obtained by iteration of the a
lytical steady-state equations, and, independently, by inte
tion of the MBREs with respect to time, using procedur
analogous to those described in Secs. IV A and IV B, resp
tively, of part I and, implicitly, in Sec. II of part II. These
numerical calculations are important, if only because th
give rigorous checks on the working; however, they are a
enjoyable, particularly the study, via the integration proc
dure, of the relaxation to steady state. Overall, if a numer
procedure is desired, then iteration is probably the best
cause it is easy to program, is very fast, and produces re
to arbitrary accuracy. It is~hopefully! clear from part I how
to implement these procedures, which is the reason why
have not discussed them in detail here.

The similarities of the results for SLID and BLID
brought out, discussed, and illustrated in Sec. IV and Fig
and 3, are interesting, but, with hindsight, perhaps not un
pected. Contact of the work here with experiments and ot
work is best made using the basic results~2.13!–~2.15! to-
gether with appropriate values of the important quantit
I qd /a, I xs /I qd , and I 1e /I qd . Questions of the effects o
model dimensionality on the results, particularly for BLID
are obviously important, but must wait to be answered
future papers.
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APPENDIX A: EXACT RESULTS FOR THE CASE OF 1D
SLID

The results may be written with the notation~I.F1! as
follows:

I 1e
(num)5~11g!aag d~erf!, ~A1!

I qe
(num)5@2~g1z!1~12z! d~erf!#

3a2ag
2ae d~erf!, ~A2!

I qd
(num)5~11g!~z1g!aagae d~erf!, ~A3!

I xg,e,s
(num)5~z1g!a~2ae ,ag ,Da! d~exp!, ~A4!

I 1e
(den)52~11w!~g1z!Sa

1~2ag1gDa2zSa!a d~erf!, ~A5!

I qe
(den)/~2Sa!5I qd

(den)5I xk
(den)5p1/2I 1e

(den). ~A6!
0-6
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APPENDIX B: EXACT RESULTS FOT THE CASE OF 1D
BLID

With the definitions

T5w d~erf!2a dGw , ~B1!
,

x
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U52Hg1dGg , ~B2!

and, again with the notation~I.F1!, we may write the results
as follows:
I 1e
(num)/~aag!52zdGw2y@aUdGw2~wU2gdGw!d~erf!#, ~B3!

I qe
(num)/~a2ag

2aeu!52zdGw1y$gdGw@U2d~erf!#2w@dGw2d~erf!#d~erf!%, ~B4!

I qd
(num)/~aagaeu!5yg@UT2g dGw d~erf!#12zT, ~B5!

I xg,e,s
(num)/~aw!5$2z@D~erf!2DGw#1yg@DGg dGw2UDGw1~U2dGw!D~erf!2~DGg2DGw!d~erf!#%

3~2ae ,ag ,Da!, ~B6!

I 1e
(den)5I qe

(den)/Sa5I qd
(den)5I xk

(den)5y„2g@w~U22dGw!1gdGw#Sa2a2dGw@4ag1~U22!Da#1$4wag1@w~U22!

2gdGw#Da%a d~erf!…12z~2wSa1adGwDa!. ~B7!
n
ge

l
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@3# Remember that~unstarred, starred! variables are~dimension-

less, dimensionful!.
@4# Remember the notation̂j&m introduced in~I.B2a!.
@5# In 3D SLID with a cell of uniform, but otherwise arbitrary

cross section having areaA and perimeterP, the average
molecule-surface collision frequency per molecule of a Ma
wellian gas is given from 2p1/2A^n&m5P. With ,c* 5Z* in FP
geometry,A5Y, P52(Y11)'2Y, and hencên&m'p21/2;
with ,c* 5R* in CC geometry@2#, A5p, P52p, and hence
^n&m5p21/2.
-

@6# In nD BLID, the average molecule-buffer particle collisio
frequency per molecule of a Maxwellian gas, with avera
inverse mean free pathu (n), is given from G(n/2)^n (n)&m

5G„(n11)/2…u (n). In 1D BLID, then,p1/2^n&m5u.
@7# Remember thatj is a dummy variable.
@8# Note that, ifva>0 @9#, thenD(erf)5d(erf) andDGj5dGj .
@9# Remember thatva,vb .

@10# Our E(z) is denoted byE1(z) in Handbook of Mathematica
Functions, edited by M. Abramowitz and I.A. Stegun~Dover,
New York, 1972!, formula 5.1.1.

@11# M.A. Vaksman and I. Podgorski, Can. J. Phys.74, 25 ~1996!.
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