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Theory of light-induced drift. 1ll. Models of surface and bulk light-induced drift in one dimension
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Light-induced drift(LID) of a rarefied gas in a cell is studied, and exact analytical closed-form solutions to
the model rate equations, which model the gas motion in one dimension, are obtained for cases of both surface
LID (SLID) and bulk LID (BLID); the special case of the limit of low radiation absorption by the gas is given
particular attention. Similarities and differences among the results for SLID and BLID are discussed. This is
part lll of a series of papers, parts | and Il having studied LID, but concentrating on SLID, with flat-plate and
circular-cylindrical cell geometries, respectivél; O. Goodman, Phys. Rev.@5, 064309(2002; 65, 064310
(2002].
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I. INTRODUCTION (in thermal equilibrium with the celltransverse molecular
motion which is not discussed in further detail, but which

In parts | and Il(Refs.[1] and[2]) of this series of papers, gives rise to molecule-surface collisions with average fre-
the phenomenon of light-induced driftID) was discussed, quency per molecule, denoted By), [3,4], of the same
and exact treatments of models of surface LIELID), in value as those for Maxwellian gases in parts | and Il, that is,
three dimensions, were presented for the cases of flat-plate’ym= 7 "% this assumption implies that we choose char-
[1] (FP) and circular-cylindrica[2] (CC) geometries, in the acteristic lengthg? = x* with x* =Z* andR*, respectively
limit of large cell length(and large FP cell widthand inthe [3,5]. In 1D BLID, where 6* is [1] the average inverse
free-molecule limit. Because of considerations of feasibilitymean-free-path for molecule-buffer particle collisions, we
and interpretation of possible experimental measurementbave(v), =7 126* €* = 7~ 124 [3,6]; although the choice
and of a desire for relative simplicity, interest is essentiallyg* ¢ =1 for ¢% (giving #=1) may seem at first sight the
confined to the limit of low radiation intensity absorption. most naturalbecause would not appear in the working and
Although general Maxwell-Boltzmann rate equationsit gives the same value dfv),, as in SLID], the choicet?
(MBRESs) were presentefil,2], no calculations for cases in- =y* (giving 6= 6* y*) is also natural, and we carrg
volving bulk LID (BLID) were made. through the analysis.

Here (*here” means “in the present papey;'in the spirit It is necessary to discuss the choice of system transmis-
of parts | and Il, we consider models of botbure SLID  sjon parametex; for SLID, it seems logical to make the
and (pure BLID in order to compare the two phenomena, sagme choices as made {hH5) and (I1.1.2), respectively,
and we use models in one dimensidD) in order that the  \yhereas for BLID, in which active surfaces are not necessary

simplest possible reasonable comparison may be madgyng not mentioned herex=1 is a candidate. We simply
SLID (but not BLID) is strictly impossible in 1D without |, unspecified in the analysis here.

some assumption about the transverse molecular mgtion We recall, on the basis of the resuli2.1), (1.2.2), and
order that the active surfaces may be deemed to have scgj-3 1)—(1.3.6), that all of the important physical conclusions
tered the molecules during collisiopgnd our assumption is  from the models may be drawn from the three integtals
explained below. Specializations analogous to those made i|r}<s, andl 4, and, more particularly, from the ratidgy/a,
parts | and Il are also made here. We do not want our Comfxs/lqd, a?]dlle“qd; for example,

parisons to be jeopardized by uncertainties caused by ap-

proximations(other than the unavoidable use of approximate Xcel(rlp)=1l1e/lqq, (1.9
MBRESs), and so exact treatments of both SLID and BLID
are presented first, with specializations made afterward. 6l k=(APIP)/(krlp)=Ilys/lqq, 1.2

As was the case with part Il, in order to understand the
material here, it is necessary for readers to have read ar@hd we proceed directly to their calculation. The intention
understood part I, and an understanding of part Il is alsdere is to get as good a comparison of SLID and BLID as is
necessary here. References to entities in parts | and Il afeossible using simple models, and not to compare with ex-
made here with the notatioh.5.11), (11.3.4), (I.D1), and so  perimental results, for example, although a generalized ana-
on. Symbols used here have the same meanings as in partog of (1.5.11) is presented.
unless otherwise indicated.
Our assumption in SLID is that, superimposed on the 1D Il. 1D SLID
molecular motionalong the cell axig there is a Maxwellian )
A. Exact analysis
With our assumption, explained in Sec. I, about the trans-
*Also with Department of Physics, University of Waterloo, and verse molecular motion, we build our MBREs as follows. In
the Guelph-Waterloo Physics Institute, Ontario, Canada. the language of part |, we putv =0 with |v,| and(|v,]);
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equal to{|v,|}m= 72 implying that8,;=1, into (1.2.10);
in the language of part Il, we again pét =0, now withV
and(V); equal to(V) =742, implying thatBy;=1, into
the analog of(1.2.10, which replace§?2] |v,| by 2V/=@
therein. Then we make the substitution

fi(vx: ) =Fj(v:t)m(vy), (2.1
wherem is the 1D version ofl.B1),
m(v,) = V2% vx, 2.2
and get, in both cases,
Wl/Z(?Fg [t=cgag+ CoeZ— agF + m2yF
- Wl/zq(Fg_ Fe)s (2.39
TY29F o1 9t = Coare(1—2) — agF o— m2yF o
+mq(Fy—Fo), (2.3b

wherea; andz stand forag; andzs, respectively{1,2]. Here
we pass directly to the steady-staté=(/Jt=0) solution of
Eqg. (2.3, that is,
_A+Ba gt E 'y
" c+DaV+Fat?y ]

(2.4)

where the eight constants;,B,C,D,E;,F are given by

The definitions here o, g are different from those in part

I
(2.539

(2.5b

a= wllzqoza/agae,

1/2

g=7"yla,.

We write (1.2.4) asq(vy) =qoAh, with Ah defined by

Ah=h(vy,—v,) —h(vy—vy) (2.6
to get
1+aAh+g
wheres; is defined by
S;=Aj/C, (2.9
Z; by
Z;=9Y;j, (2.9

andX;,Y; by (LED).

The v, interval of laser excitation is given byw{=<uv,
<wvp) With v,<vy,, and it clarifies the analysis #{" ,F ("
are defined as the values Bf (inside, outsidgof this inter-
val:
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FW=s+ W (2.103
1+w’ ’

FoW=g+ — 2, (2.10H
1+g '

with W, defined by(ll.A2), and not by(l.E7), and where the
definition (1.E6) of w is recalled.

The required integrals here arg,l4;, andl,;, I,; being
absent because of our 1D assumption, and our analog of the
results(I.E9) is as follows:

Zj[2—d(erf)] +Wjd(erf)

1475 1+g trw (2118
SJ
Iqj—(§ 1+w go d(erf), (2.11b
W, Z. \d(exp
_ J J
IXJ'_(1~I—W+1+g| al2 (2.119

The (exac} solution is now obtained by solving the system
of (three equations

Cjzllj ’ (2123

CgtcCe=1, (2.12b

for the (two) quantitiesc;: Eq. (2.12h must be used with
one or both of Eqs(2.123, and having three equations for
two quantities gives a good check on the working. Exact
results in closed form for the six integralse, g (K
=e,d), andl,, (k=g,e,s) are presented in Appendix A
(I1g,1qg are then obtained fromlg+1=1, lgg—lge
=lqa)-

,g\ttempts were made to present experiment-friendly re-
sults, in the limit of smalla, for the caseg=0, z>0 in
(1.5.11) and(1.3.4), and for the case=0, g>0 in (1.5.15),
the last case being trivial in part Il. With hindsight, it would
perhaps have been better to first present the analogs of these
results for the general case, with no restrictions on the pa-
rameters, with specializations made later. This could be im-
portant because, with the occasional necessary interpretation,
the results are independent of cell geometry and of whether
SLID or BLID is being considered, as follows:

AP*/mPa Ixs M* L)UZ( T* )1/2
————~b511.% —
r* mmé/mw lqq! 30 am 300 K

(2.13

X

A*
10 ,um)’
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100@, l,o[ Pa\ [ 100¢*
——F— =511 —
r* mm?/mw qd \ P* X*

" /‘L* 1/2 T* 1/2 \*
30 am 300 K 10 um/’
(2.19

100a 0.5113( Pa\ [ 100x*

r*mm?/mw (Iqa/@) \ p* X*

( M* 1/2 T* )1/2( A*
“130amy 300 K |10 um/-
(2.15

The quantities of importance are clear from E({513—

(2.19, thatis,l y4/@, Ixs/1qq, andl ¢/l 44, and they must be

calculated for each particular case. In E2.13, « must be
interpreted as an appropriate choiees k¢, of transmission
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I1l. 1D BLID
A. Exact analysis

In the language of parts | and Il, we det,|=0 andV
=0, respectively, for simplicity but bearing in mind the res-
ervation concerning thigincorrec} procedure expressed in
part I; with Egs.(2.1) and(2.2), the analog of Eq(2.3) is

dFgldt=(CqayByt CoaeZBe) v — gt Fg

+yFe—q(Fg—Fe), (3.1a
IFlot=Ceao(1—2)Bebv — acvF— yFq
+q(Fg—Fo), (3.1b
whereq;,8;, andz stand foray,;,8,;, andz,, respectively,

andv =|v,.
The steady-state solution of E(.1) may be written
_ AJU + Bq+ EJ Y

I~ Cu+Dg+Fy’ 3.2

parameter. Curious readers may ask why “5113" appears

regularly in these results, the answer being that

(10um mW)[(300 K)(30 amyb*)]?
(2Y25* w* \* ) (mmPmPa

~511.32.
(2.19

B. Physically motivated special cases

As in part Il, there is no problem here with the two limits

where the five constant,D,E;,F are given by(l.5.2c,
1.5.2e, 1.5.2f, 1.5.2g, 1.5.2h the three constants,;,C are
given by(1.5.2a, 1.5.2b, |.5.2fexcept that they now carry a
factor 6, for exampleC= aya6. These differences result in
the following different definitions o#,g:

(3.3a
(3.3b

a=(o2 a/ agaeb,

0=yl a.b.

a—0, g—0, because they commute. Because our definitioVith the definitions(2.8) and(2.9), the analog of Ec(2.7) is

(2.53 of a, in terms of the important physical quantity,
for SLID is different from that(3.3a below for BLID, we

useqq instead ofa where necessary for clarity from now on.

Where
(2.17

dv=v,—vg,

the most useful results, in view of Eq2.13—(2.15), are as
follows:

g o d(erf) dv g-of

— , 2.1
godv 6 2dv 0 @2 (219
Ixs Aad(exp (2.194
lgg  (1+9)agaed(erf) '
dv 7Y% Aa (2.199
0 (1+g)agae’ '
Ile_ 71_1/2 (2 2@
laa  (g+2)ae '

The caseg=0, z>0 andz=0, g>0 are trivially obtained
from these results.

Fos 2aX;+2Z; 3.4
ST T asnT g 54
and of Eq.(2.10 is
. 2W;
(N_gy -1
Fi=8+—. (3.59
27,
(out)_ . J
FI=S+ o g (3.5b

again with W; defined by(Il.A2) and with the definition
(I.E6) of w recalled.

Now we need the integrals;,lq;,l,j, andly;, and the
analysis is more complicated than that for SLID in Sec. Il
[becausey appears in Eq(3.5 but not in Eq.(2.10]. We
need a generalization of the functi@{u) defined by(1.D1),
that is, a functionG(s,u) of two variables defined by

G(su)= 2 Fd e
S,U)=—— Xi———
( a2)o x| +u

with G(s,0)=0, and we stretch somewhat the meaning of
“closed-form functions” by includingG(s,u) among them.
We see thaG(s,u) is an odd function o, and is related to
G(u) by

(3.6
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G(u)=G(x,u). (3.7

The following extension of our definitiofl.4.10 of d(erf)
and additional definitions of quantitielG,,DG, are useful
in presenting results of the analy$is8]:

D(erfy=erflvy| —erflv |, (3.9
dG;=G(vp,8) —G(va,), (3.9a
DG,=G(|vp|,é)—G(|val,£). (3.9b

For example, the analog of E®.10 may now be written as
follows:

PHYSICAL REVIEW A67, 013410 (2003

E(z)= Lwdxe"‘/x, (3.12

it follows from Eq. (3.6) that the required results are as fol-
lows:

VaUp>0:(dG, /€)= YIE(v3) —E(vd)]sgnva),

(3.133
va0p=0:(dG/E)o=—m Y2 Iné+ o +E(vi+v)],

(3.13h
VaUp<0:(dG;/€)o=—m Y44 In¢+20+E(v2) +E(vd)],

(3.130

11j=5+Y;(2G¢g—dGy) +W;dG,, /w, (3.10a  where it is understood that the next term in each of the three
expansions i©(¢§).
l4j=[S;d(erf)/2+W;d G, /w]dy, (3.10b In order to write analogs of E¢2.19b), that is, results for
the casedv—0, we need to make the following interpreta-
l,j=m Y2Sj+Z;(2H4+dGy) —W,dG,, tions:
+aX;d(erf), (3.109 D(erf)/d(erf)—sgnv,), (3.14a
lxj=Z;DGy—W,DG,+aX;D(erf). (3.109 sgn(v )DG,/d(erf)—dG,/d(erf) (3.14b
The (exac) solution is now obtained by solving the system —&l(lo | +8), (3.149
of (five) equations
(dG/&)o/d(erh)— v |7, (3149
Cjzllj , (3113
which follow from (1.4.10), (3.8), (3.9) and(3.13a3. We may
8= w12 o s (3.119  now write the analogs of Eq$2.18—(2.20 as follows:
CgtCe=1 (3.119 lqd i’ d(erf) ij efvE 315
12 :
for the (four) quantitiesc; , 8; : Eq.(3.119 must be used with Godv o 2dv o 7
three or all of Eqs(3.119 and(3.11b and having five equa-
tions for four quantities gives a good check. Exact results in .. 9% p —DG.A
closed form, that is, the analogs of those in Appendix A, are g (D(er gha (3.16a
presented in Appendix B, with the definitidhF2) of y re- lgg 0 agaefd(erf)
called, and the basic result3.13—(2.15 apply here also. In
Eqg. (2.13, k must now be interpreted as another appropriate dv
choice, k= ky,, of transmission parameter. R v Ae ’ (3.16H
0 (|UL|+g)agae0
B. Physically motivated special cases
_There is a problem here, analogous to that found in part | 1o do dGy/g+ yH,d(erf
with 1, andl,g, with the two limitsa—0 andg—0 of | ;. — — (3.173
If v,=0 is in the excitation intervdlv,,vp], that is, ifv, lqa 0 (1+gyHg)acbd(er)
<0<=vy, [9], then there is a logarithmic divergence, of the
type occurring in part |, in the result fég, . Essentially, the dv o] +g)" 1+ yH
problem is that the limit oiG,,/w asa—0, g—0 or vice — (foil+9) YHq (3.17h
versa may be needed. Of course,ding(G,,/w) =G, /a and o (1+gyHg)acb
lim,_o(Gw/W)=Gq4/g, and taking the next limit in either
case gives the problem. where s is defined by
We let (dG;/§), stand for G,/a), and @Gg/9)o [7],
which in turn stand for the leading terms, up to but excluding y=ylz=mYA(1-2)lz, (3.18

those ofO(a) andO(g), respectively, in the expansions of
dG,/a anddGy/g. Where an exponential integrél(z) is
defined by[10] (2.18.

013410-4

and where we note that E3.15 has the same form as Eq.



THEORY OF LIGHT-INDUCED DRIFT. Ill. MODELS . ..
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log ] o( a)

FIG. 1. Exact results from BLID on the dependencespfde-
fined by Eq.(3.21), on y and a. The parameters are,=0, v,
=, 7,=1, anda,=0.999; the results are independentgf, and
0. The vertical solid line at loga~—0.13 shows wherea

=e

ol2

, which is where the curve for every value gfhas a ver-

tical asymptote. The meanings of the symbols are as follows:
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For the y=0 curve in Fig. 1, we see thaj is essentially
indistinguishable from unity foa less than about 0.001, in
nice agreement with Eq3.21).

IV. COMPARISON OF SLID AND BLID

From Egs.(2.189—(2.20 and (3.15—(3.17), with sub-
scripts 6,b)= (SLID, BLID) attached to variables in an
obvious notation, we get the following results for the impor-
tant quantities, withf=6,,:

(Iqa/d0)b % 1

4.1
(1qa/90)s O @

(Ixs/lqa)p 30 (1+go)[D(erf) ~DGgy] asgtse Aary

defined by Eq(3.22, v is the spontaneous decay rate parameter,
[va,vp] is the interval ofv, in which the laser excitation function
g(vy) equalsqqg, a is defined by Eq.3.39, z, is the diffuse-
scattering quenching fractiony,, . are the ground- and excited-
state accommodation coefficient®,is the average inverse mean

(Ixs“qd)s 0 6 d(exp Apglpe Aag
(4.29
CE)} 72 (1+9s) asgase Aay
0 0 (|UL|+gb) Aphgipe Aas,
(4.2b

free path for molecule-buffer particle collisions, and ~0.58) is
Euler’s constant.

Use of Eq.(3.13 would be necessary if, for example, the
smallg behavior of Eq.(3.179 were studied. For the case

g=0, z>0, applied in Eq(3.16 and(3.17) before the lim-
its are taken, the results are

l,s 90 D(erf)Aa

e (3.193

ad 0 aga.6d(erf)

Mainly in order to check the peculiar-looking res(®.203
combined with(3.13b with £&=a, which is forg=0, that is,

vy=0 from Eq.(3.3b, we present in Fig. 1 exact results, for

several values ofy, for the ratiol¢/l4q with v,=0, vy
=00, z=1, for which Eq.(3.203 with Eq. (3.13b reduces to

— 1, (3.20)
70

where 7 is defined by

(/1 g % (z5+ g9 [dGgn/gn+ tioHgn d(erh)] ace

(Ile“qd)s 0 771/2(l+gb¢ngb)0d(erﬂ Qpe
(4.339
d _
_l)) (Zs+gs)[(|UL|+gb) 1+¢ngb] Gse
0 AL+ GopHgn) 0 ave
(4.3b

where use of Eq(3.13 would again be made to study the
smallg, behavior of Eq.(4.39. For the caseg;=g,=0,

dv sgnv A« z,2,>0, the analog of Eq(4.2) is trivially obtained DGy,
o, (3.19B  =0), while that of Eq.(4.3) is
0 agaeb
1. 90 (4G, Ja)e+ wrd(erh (I1e/lq0)s ©° [26(dGab/a5)0+ Yo d(erf)] zease
= T (3.208 (e/led)e 0 7120 d(erf) Zya
lqa O a0 d(erf) leflqd)s 0 b%be
(4.43
dv 1
|UL| + dv -1
L I z +Vp) Z
6’ b . (3.20p . ( b|UL| Yb) sase. (4.4b)

0 ’771/20 Zpape

If, as may be expected] is of order unity, the results for
SLID and BLID are very similar for comparable values of
the parameters, as is clear to a large extent from &q¥—
(4.4); in fact, some of the results are more similar than they
may appear to be at first sight. For example, let us specialize
to the cased,,v,) =(0,2) which has been commonly used
before[11,1,2, and consider the extreme values of the pa-
rametersg,z, with gsg,>0. The result$4.1) and(4.2g are
independent ofs,z,, while (4.2b and(4.3b do not apply
(dv=0); for z;=2,=0, Eq.(4.39 becomes simply

013410-5
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1000 Ixs flqd

i \.;‘T‘T':‘T.T“'»

0.0 T T T

FIG. 2. Comparison of exact results from SLID and BLID on

the dependence of the ratlgs/144 on .

=0, vp==», (p=0.001, asg=ap,=1.0,
z,=0, and#=1. The meanings of the symbols are

=TV LT

The parameters are,
age= ape=0.999, 7,

as in Fig. 1, withzg and a4 . the analogs for SLID of, andayg e,
and vy, the values ofy used for SLID,BLID.

(1e/1qa)s % ¥

, (4.9
(Ile“qd)s 0 7
and, forzs=2,=1,
Lo/l qa)p 90 G
S P
(Ile“qd)s 0 \m Vb

in both of which we have used the definitiof®.5b and

(3.7b.
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V. CONCLUSIONS

Given the model equation®.10 [1] for LID in one di-
mension, with our transverse-molecular-motion assumption
for SLID, we have shown how exact solutions may be ob-
tained for both SLID and BLID; exact solutions for SLIih
three dimensionswere presented in parts | and Il.

Numerical results may be obtained by iteration of the ana-
lytical steady-state equations, and, independently, by integra-
tion of the MBREs with respect to time, using procedures
analogous to those described in Secs. IVA and IV B, respec-
tively, of part | and, implicitly, in Sec. Il of part Il. These
numerical calculations are important, if only because they
give rigorous checks on the working; however, they are also
enjoyable, particularly the study, via the integration proce-
dure, of the relaxation to steady state. Overall, if a numerical
procedure is desired, then iteration is probably the best be-
cause it is easy to program, is very fast, and produces results
to arbitrary accuracy. It ishopefully) clear from part | how
to implement these procedures, which is the reason why we
have not discussed them in detail here.

The similarities of the results for SLID and BLID,
brought out, discussed, and illustrated in Sec. IV and Figs. 2
and 3, are interesting, but, with hindsight, perhaps not unex-
pected. Contact of the work here with experiments and other
work is best made using the basic resy2s13—-(2.15 to-
gether with appropriate values of the important quantities
lqa/@, Ixs/lqq, andlie/lqq. Questions of the effects of
model dimensionality on the results, particularly for BLID,
are obviously important, but must wait to be answered in
future papers.
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FIG. 3. As in Fig. 2, except that the ratig. /I 44 is shown, and

zs=27,=1.

APPENDIX A: EXACT RESULTS FOR THE CASE OF 1D
SLID

The results may be written with the notatighF1) as
follows:

I(lréum):(1+g)aagd(erf), (A1)
1MM=[2(g+2)+(1-2) d(erf]
xa’agacd(erf), (A2)
10™=(1+9)(z+g)aagaed(erf), (A3)
1M = (z+ g)a(— ae,aq,Aa) d(exp),  (A4)
1{9eM=2(1+w)(g+2)Sa
+(2agt+gAa—zZa)ad(erf), (AB)
18 (25 @) = 1 557M= 1 (o= 7t/ (o). (A6)

013410-6



THEORY OF LIGHT-INDUCED DRIFT. Ill. MODELS . .. PHYSICAL REVIEW A 67, 013410(2003

APPENDIX B: EXACT RESULTS FOT THE CASE OF 1D U=2Hg+dGg, (B2)
BLID

With the definitions o ] i
and, again with the notatiofi.F1), we may write the results

T=wd(erf)—a dG,, (B1)  as follows:
|
1™ (acrg) =22dG, ~y[aUdG, — (wU—gdG,)d(erh], (B3)
1 5™ (a2 ) = 22d G, +y{gd G,[ U —d(erf)] - w[dG,,—d(erf) ]d(erh)}, (B4)
1™ (aagae)=yg[UT—g dG, d(erf)] + 22T, (B5)

1M/ (aw) ={2Z[D(erf) —DG,]+yg[DG,dG,—UDG,+(U—dG,)D(erf) — (DGy—DG,)d(erd)]}

Xg,e,s
X(—ae,ag,Aa), (B6)

1= 100s a=1 0= 1 )=y (29[ w(U — 2dG,,) + 9d G, ]S @ — a?d G, [ 4ag + (U — 2) Aa] +{4warg + [w(U - 2)

—gdG,JAcatad(er))+2z(2wS a+adG,Aa). (B7)
[1] F.O. Goodman, Phys. Rev. @5, 063409(2002. [6] In nD BLID, the average molecule-buffer particle collision
[2] F.O. Goodman, Phys. Rev. &5, 063410(2002. frequency per molecule of a Maxwellian gas, with average
[3] Remember thatunstarred, starrg@dvariables argdimension- inverse mean free patd™, is given from I'(n/2){»M)
less, dimensionful =I'((n+1)/26™. In 1D BLID, then, 7¥% v) = 6.
[4] Remember the notatiof¥), introduced in(l.B2a). [7] Remember thaf is a dummy variable.

[5] In 3D SLID with a cell of uniform, but otherwise arbitrary, 8] Note that, ifv,=0 [9], thenD (erf)=d(erf) andDG,=dG,.
cross section having ared and perimeterP, the average 9] Remember that ,<uv,, .
molecule-surface collision frequency per molecule of a Max-110] our E(z) is denoted byE,(z) in Handbook of Mathematical
wellian gas is given from &"A(v)p=P. With €5 =Z* in FP Functions edited by M. Abramowitz and I.A. SteguiDover,
geometry A=Y, P=2(Y+1)~2Y, and hencd v),~= 2 New York, 1973, formula 5.1.1.

H * __ * 7 — —
‘<""t>h e =R" in CC geometry2], A=, P=2m, and hence ;9\ A vaksman and I. Podgorski, Can. J. Phyd, 25 (1996.
Vyp=1 %
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