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Liouville master equation for multielectron dynamics: Neutralization of highly charged ions
near a LiF surface
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We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface
including the close-collision regime above the surface. The present approach employs a Monte Carlo solution
of the Liouville master equation for the joint probability density of the ionic motion and the electronic
population of the projectile and the target surface. It includes single as well as double particle-hole~de!exci-
tation processes and incorporates electron correlation effects through the conditional dynamics of population
strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical
trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles
and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration
towards the surface and repulsion by an ensemble of positive hole charges in the surface~‘‘trampoline effect’’!.
For Ne101 we find that image acceleration is dominant and no collective backscattering high above the surface
takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In
accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged
negative particles, irrespective of the charge state of the incoming ions.

DOI: 10.1103/PhysRevA.67.012903 PACS number~s!: 34.50.Dy, 34.70.1e, 79.20.Rf
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I. INTRODUCTION

The fabrication of clean surfaces under ultrahigh vacu
conditions has stimulated experimental studies of the in
action of ions with surfaces. Possible technological appli
tions include surface diagnostics and surface modificat
e.g., edging of microstructures. Apart from interpreting e
perimental results, the theory of ion-surface interaction po
an interesting challenge because of its intrinsic many-b
character and its interdisciplinary connections to differ
subfields of physics. Methods from solid-state physics, m
lecular physics~quantum chemistry!, and atomic collision
physics are applied in order to describe the charge excha
between surface and projectile and the ejection of secon
particles @1,2#. Only a few simple model systems are cu
rently amenable to full quantum-mechanicalab initio calcu-
lations ~see, e.g., Refs.@3–5#!. For more complicated sys
tems, the challenge to theory consists in finding realis
simplifications and approximations@6–9#. In the case of a
highly charged ion approaching a metal surface, a class
description of charge transfer within the framework of t
‘‘classical over the barrier’’ model has turned out to be qu
successful@6#.

The interaction of ions with insulator surfaces adds ad
tional degrees of complexity. Electron transfer from an in
lator surface to the projectile ion can lead to a local mic
scopic charge up of the surface. Through self-trapping
electronic defects, the recombination energy of the projec
ion ~i.e., the potential energy that the ion carries into t
collision with the surface! can be converted into kinetic en
ergy of surface atoms and can lead to the ablation of sec
ary particles from the surface~potential sputtering@10#!. Fur-
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thermore, the local positive charge at the surface influen
the projectile dynamics. In fact, Briandet al. @11# put for-
ward the intriguing hypothesis that the repulsive interact
between the holes and the projectile can become stro
than the attractive self-image force and eventually lead to
backscattering of a still multiply charged ion high above t
surface without touching it. This ‘‘trampoline effect’’~Fig. 1!
should be distinguished from the more conventional ba
scattering due to close binary collisions with surface ions
well as from scattering at the macroscopically charged
surfaces. Figure 1 also illustrates that electron capture
large distances from the surface leads to the population
Rydberg states of the projectile. Since some of the in
shells are unoccupied, such a transient state is called a
low atom/ion @12,13#. Since conduction electrons in meta
are delocalized, the system has approximate cylindrical s
metry, and simple analytical estimates of the rates for e
tron transfer over the potential barrier between the surf
and the projectile can be obtained@6#. For ions in front of an
insulator surface such as LiF@Fig. 1~b!#, the modeling of
charge-transfer events is far more involved. In this case,
lence electrons are localized around ionic centers and
lack of symmetry of the electronic potential impedes
simple determination of electron transfer rates. During
approach of the ion to the surface, hollow atoms decay
electron loss to the surface, intra-atomic Auger proces
and level promotion. This, in turn, opens up the possibility
transfer of valence electrons into more tightly bound state
the projectile. The formation of electron holes in the surfa
reduces the capture rate of electrons unless the holes di
through the crystal. Therefore, both the mobility of holes
the crystal and the subsequent capture of more tightly bo
©2003 The American Physical Society03-1
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electrons from the same ionic site have to be included i
realistic description for insulator surfaces.

In this paper, we extend previous analyses@7,14# of ion
neutralization in front of insulator surfaces to include seve
additional processes:~i! multiple sequential electron transfe
of electrons from and to the same fluorine site,~ii ! inter-
atomic Auger transitions, and~iii ! the interplay of hole mo-
bility and charge transfer. Our analysis is based on an
plicit treatment of the multielectron dynamics within th
framework of a Liouville master equation. It allows for a
approximate treatment of the correlated dynamics of h
formation in the solid and multiple excitation in the proje
tile by means of a Monte Carlo event sampling. This desc
tion goes beyond the previously employed rate equations
single-particle expectation values as it deals directly with
joint probability density of projectile and target degrees
freedom. This allows us to make predictions for the existe
of a trampoline effect~or the lack thereof! for LiF as well as

FIG. 1. ~a! Schematic diagram illustrating different possible io
trajectories: penetration, reflection via a binary collision with a to
most atom at the surface, and reflection at large distances due t
repulsion by the holes created at the surface. The figure also i
trates the formation of a hollow atom/ion in front of the surface~the
cloud around the ion corresponds to the charge density of elect
transferred from the surface to the ion!. The ion is attracted to the
surface by the interaction with its own image while the holes in
surface cause a repulsive force onto the projectile nucleus th
only partially screened by the electrons in shells with high quan
numbers.~b! Subset of processes occurring during the approac
a multiply charged ion towards a LiF surface: electron captu
electron loss, hole formation, and hole diffusion.
01290
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for the neutralization of multiply charged ions in grazin
incidence scattering. In Sec. II we give an overview over
theoretical framework of the Liouville master equation. Se
tions III–VI are devoted to the calculation of the interactio
potentials as well as of rates for various electronic proces
controlling the dynamics of ion-surface interactions. Ev
though anab initio calculation of the rates appears not fe
sible at this moment, we attempt to provide estimates of
rates entering our simulation that are free of adjustable
rameters. We also disentangle the processes that were p
ously called ‘‘side feeding.’’ This term was originally intro
duced as an additional mechanism for electron transfer
inner shells in order to explain the rapid neutralization a
relaxation seen in the experiments@15,16#. We identify side
feeding for LiF as originating both from resonant sequen
electron capture from the same F site and from Auger p
cesses. As first applications, we will present in Sec. V
simulations for both vertical and grazing incidence of
highly charged Ne101 ion. Atomic units are used throughou
unless stated otherwise.

II. THEORY

A. Rate equations

We begin by briefly reviewing previously employed ra
equation methods for mean values of observables such a
mean occupationPn5^Pn& of the nth shell of the incident
projectile. For an extensive analysis of the different p
cesses that enter the ion-surface interaction, we refer
reader to earlier reviews~e.g., Refs.@1,2#!. Here, we briefly
recall the generally accepted scenario. At large distan
electrons are transferred from the valence band of the sur
to the projectile by resonant capture(C) into outer shells of
the projectile, leading to a highly unstable hollow ion/ato
This system decays by resonant electron loss(L) to the sur-
face and by intra-atomic Auger decay@autoionization~AI !#.
For light projectiles, radiative decay rates are several ord
of magnitude smaller than typical Auger rates, and can
safely neglected. Close to the surface, additional interato
Auger processes may take place, namely, Auger cap
~AC! and Auger deexcitation~AD!. During AC one electron
from the surface is transferred to an inner shell of the p
jectile and the excess energy transfers another electron
the surface to the continuum. AD denotes the demotion o
electron from a higher projectile state to a lower project
state with the simultaneous emission of an electron from
surface. Finally, for very close distances to the surface, re
nant capture from core electrons may play an important r
As will be described below, for LiF surfaces the latter can
ignored.

The interaction of a highly charged ion with a surface is
true multielectron problem. Drastic approximations a
therefore inevitable to reach a starting point for quantitat
simulations. The first step consists of breaking down
multielectron problem into a sequence of one-electron
two-electron processes. Resonant electron capture and
are one-electron processes~or single electron-hole pair exci
tations!, whereas Auger transitions correspond to tw
electron processes~or double electron-hole pair excitations!.
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Additionally, effects of collective screening by ‘‘passive
electrons need to be included. A second step is the use o
fixed ion approximation~FIA! @17#, within which rates for
all electron processes are calculated in the limit of zero

locity (RẆ 50) of the projectile, i.e., they are assumed to
only parametrically dependent on the position of the ion,RW .
The latter is justified only for slow collisions. As will be
discussed below, grazing incidence scattering with slow p
pendicular but fast parallel motion falls somewhat outside
the scope of the FIA. For surfaces with approximate tran
tional symmetry in the surface plane such as metals,
latter case can be treated within the framework of a Ga
shift of the conduction band@2,18–20#. No such simplifica-
tion is available for ionic crystals. We therefore restrict o
selves to the simulation of collision systems with velocit
v&0.1 a.u. for which the FIA is approximately valid.

Rate equations for ion-metal surfaces describe the ev
tion in terms of mean valuesPn5^Pn& of the set$Pn% of
populationsPn of then shells, wheren is the principal quan-
tum number and 0,Pn,2n2. The evolution of Pn is
coupled to that of the average position vectorRW

5(Rx ,Ry ,Rz) and velocity vectorRẆ , of the ion ~we use a
coordinate system whose origin is at a surface F atom s
that thex andy axes are parallel to the surface and thez axis

is perpendicular to the surface!. The dynamics ofRW , RẆ , and
$Pn% is governed by a system of coupled rate equations
volving the transition rates for the various processes,gC, gL,
gAI, gAC, andgAD,

d

dt
Pn5gn

C~RW !1gn
AC~RW !2gn

L~RW !Pn1 (
n8.n

S gn8,n
AD

~RW !Pn8

1
1

2
gn8,n

AI P n8
2 D2 (

n8,n
@gn,n8

AD
~RW !Pn1gn,n8

AI P n
2#,

~2.1!

coupled to Hamilton’s equation for the average ion traj
tory,

d

dt
RW 5RẆ , ~2.2!

d

dt
RẆ 52

1

M
“RW Vp~RW ,$Pn%!, ~2.3!

whereM is the mass of the ion andVp is the effective inter-
action potential of the ion with the surface, which depen
on the set of average populations,$Pn%. Details of the rates
appearing in Eq.~2.1! will be discussed below. One of th
fundamental assumptions underlying Eqs.~2.1!–~2.3! is that
the state of the surface remains unchanged during the
tering process and remains decoupled from the dynamic
the internal state of the projectile. This is based on the
sumptions that~i! holes are refilled quasi-instantaneously a
~ii ! excess charges that enter the conduction band thro
electron-loss processes are carried away equally fast. T
assumptions can be justified for metals with typical sh
01290
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relaxation times of the order of the inverse plasmon f
quencyt r'vp

21 . Clearly, for insulator surfaces such as a
kali halides~LiF! discussed in the following, this approxima
tion breaks down and the coupling of the projectile and tar
electronic degrees of freedom should be taken into acco
The rate equation approach for mean values, i.e., for o
point functions, is clearly inadequate; and instead, a form
lation containing the information on many-point correlatio
is desired.

B. Liouville master equation

We formulate now the problem of conditional dynami
in this multielectron system in terms of the joint phase-sp

probability densityr(t,RW ,RẆ ,$P(P)%,$P(F)%). It depends on

the phase-space coordinates (RW ,RẆ ) of the projectile as well
as on the ‘‘string’’ of integer occupation numbers charact
izing the internal state of the projectile,

$P(P)%5$P1
(P), . . . ,Pnmax

(P) ,PI%, ~2.4!

wherenmax is the maximumn shell considered,

0<Pn
(P)<2n2 ~2.5!

and PI denotes the occupation number of continuum sta
~ionized electrons!. Furthermore, it depends on the strings
occupation numbers of localized hole states in the 2p orbit-
als of the various surface fluorines:

$P(F)%5$P0,0,0
(F) ,P1,0,0

(F) , . . . ,PaW
(F)

%. ~2.6!

Deeper lying shells, e.g., F (2s), are not expected to provid
important contributions because of their increased bind
energy that suppresses over-barrier transitions and, in a
tion, because of their small statistical weight compared
that of the 2p subshell. The subscript denotes the lattice s
aW 5( i , j ,k) of the hole in the sublattice of fluorine sites wit

0<PaW
(F)

<6. ~2.7!

The above description in terms of localized holes holds,
cause the valence band of LiF is, to a good approximat
represented by occupied 2p orbitals of F. Inner-shell contri-
butions can be safely neglected. We, furthermore, neglect
conduction band that lies above the vacuum ionizat
threshold as well as the presence of localized surface e
tonic states. That is, the loss channel included represent
electron lost from the projectile, which recombines with
hole in the valence band. In line with most previous ra
equation models@6,8#, we only distinguish populations o
different principal shells of the projectile,Pn , in Eq. ~2.4!
without differentiating among (nl) subshell populations o
individual configurations (nl,n8l 8, . . . )2s11L ~for an excep-
tion, see Ref.@21#!. Clearly, this is a drastic simplification
that can only be justified in that the extracted observab
contain averages over subshells and relevant transition r
to be discussed below are relatively insensitive to the in
vidual configurations. Because of the dependence ofr on the
3-3
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phase-space coordinates (RW ,RẆ ) of the projectile as well as
the state space variablesPn

(P) ,PaW
(F) rather than only the mea

values, it contains the information on the conditional dyna
ics of the projectile population in the presence of target
citations. In principle, the multielectron dynamics can be
scribed by a hierarchy ofN-point correlation functions, an
example of which are two-point functions^PnPn8&. The in-
formation on the complete set ofN-point correlation func-
tions is included inr. The equation of motion ofr is of the
form of a Liouville master equation

F ]

]t
1RẆ •¹WRW 2

1

M
~¹WRW Vp!•¹WRẆ Gr5Rr, ~2.8!

where the ‘‘relaxation’’~collision! operatorR is given by

Rr5 (
$P8~P!%

(
$P8~F !%

@G~RW j ,$DP(P)%,$DP(F)%!r8

2G~RW j ,$2DP(P)%,$2DP(F)%!r#. ~2.9!

In Eq. ~2.9!, the following shorthand notation for the trans
tion rates between joint projectile and target strings h
been used:

G~RW ,$DP(P)%,$DP(F)%!

5G~RW ,$P8(P) →P(P)%,$P8(F)→P(F)%!,

~2.10a!

G~RW ,$2DP(P)%,$2DP(F)%!

5G~RW ,$P(P)→P8~P! %,$P(F)→P8~F ! % !.

~2.10b!

The transition rates are dependent on the local position of

ion, RW , but are assumed to be independent ofRẆ in line with
the fixed-ion approximation.r8 (r) in Eq. ~2.9! denotes the
density at the~un!primed ‘‘coordinates’’ of the string. The
effective projectile potentialVp that governs the ionic motion
will depend, in general, on the strings as well, i.e.,Vp

5Vp(RW ,$P(P)%,$P(F)%). In the transition ratesG of Eq.
~2.10!, we include single (G (1)) and double (G (2)) particle-
hole ~de!excitation processes,

G~RW ,$DP(P)%,$DP(F)%!5G (1)~RW ,$DP(P)%,$DP(F)%!

1G (2)~RW ,$DP(P)%,$DP(F)%!,

~2.11!

whereG (1) contains the contribution from resonant captu
C, resonant lossL, hole hoppingH, and ionization by pro-
motion through the continuumI, while G (2) includes the con-
tribution from AC, AD, and AI, i.e.,

G (1)5GC1GL1GH1G I , ~2.12!
01290
-
-
-

e

e

G (2)5GAC1GAD1GAI. ~2.13!

We have dropped the arguments for the dependence on
phase space coordinates as well as on the strings for bre
Consider, for example, captureC. In this case, the change o
the strings in the transition rateGC(RW ,$DP(P)%,$DP(F)% are
constrained by

(
n51

nmax

DPn
(P)5 (

n51

nmax

~Pn
(P)2Pn8

(P)!511, ~2.14a!

(
aW

DPaW
(F)

5(
aW

~PaW
(F)

2PaW
8(F)

!521. ~2.14b!

The sum in Eq.~2.14a! extends only up ton<nmax, but
excludes theI component. Constraints analogous to E
~2.14! can be given for all other processes indicated by E
~2.12! and ~2.13! ~see below!. Clearly, determination of this
multitude of rates requires a wide array of additional and
part, drastic approximations discussed in the following s
tions.

C. Monte Carlo solution

Direct integration of the Liouville master equation@Eq.
~2.8!# appears to be extremely difficult in view of the larg
number of degrees of freedom involved. We employ, inste
a Monte Carlo sampling technique for ensembles of stoch
tic realizations of trajectories. We follow a large number
ionic trajectories with identical initial conditions for th
phase-space variablesR,Ṙ as well as for the strings along a
event-by-event sequence of stochastic electronic proce
whose probability laws are governed by the rates of the
derlying Liouville master equation.

In practice, the time integration is carried out by prop
gating the system during small time stepsDt and taking the
limit Dt→0 such that at most a single electronic transiti
can take place during this time period. The probability f
any process with transition rateGa to occur within a time
interval Dt is determined by

Wa~Dt !512exp~2DtGa!. ~2.15!

In order to decide which electronic transition occurs~if any!
during the time periodDt, we use the so-called rejectio
method for the distribution equation~2.15!. A random num-
ber r is generated uniformly in the interval (0,1) for eac
transition. If r ,Wa(Dt), the process is assumed to ta
place andPn

(P) andP(F) are then adjusted,

DPn
(P)5Pn

(P)~ t1Dt !2Pn
(P)~ t !560,1,2,

DPaW
(F)

5PaW
(F)

~ t1Dt !2PaW
(F)

~ t !560,1,2, ~2.16!

depending on the processa under consideration. At the sam
time, the coordinate and velocity of the HCI are propaga
in time according to

RW ~ t1Dt !5RẆ ~ t !Dt, ~2.17!
3-4
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RẆ ~ t1Dt !52
1

M
¹WRW Vp@RW ~ t !,$Pn

(P)~ t !%,$PaW
(F)

~ t !%#Dt.

~2.18!

The resulting functions$Pn
(P)(t)%m and $PaW

(F)(t)%m for a
single stochastic trajectorym are discontinuous functions o
time. After sampling of a large number of trajectories,Nion ,
one obtains ensemble averages, e.g.,

P aW
(F)

~ t !5
1

Nion
(
m51

Nion

@PaW
(F)

~ t !#m ,

P n
(P)~ t !5

1

Nion
(
m51

Nion

@Pn
(P)~ t !#m , ~2.19!

RW ~ t !5
1

Nion
(
m51

Nion

@RW ~ t !#m , RẆ ~ t !5
1

Nion
(
m51

Nion

@RẆ ~ t !#m .

~2.20!

Note that, in general, an additional average over differ
initial lateral coordinatesRW i of the initial vector RW

5(Rz ,RW i) over the surface unit cell of LiF is required
Clearly, the solution of the rate equations@Eq. ~2.1!# repre-
sents a special case of Eqs.~2.19! and ~2.20! when ~i! the
rates entering Eq.~2.8! are physically equivalent to thos
entering Eq.~2.1! and, more importantly,~ii ! the conditional
dynamics, i.e., correlations between the population dynam
of the projectile, the target populations~‘‘strings’’ !, and the
ionic motion can be neglected. In the following sections,
discuss the approximations and assumptions underlying
choice for the input of the Liouville master equation.

III. EFFECTIVE POTENTIALS

The ionic trajectory as well as the charge-transfer dyna
ics in the projectile ion and in the target surface are de
mined by effective potentials that incorporate collecti
screening and polarization effects. Their description requ
a number of simplifying assumptions to be discussed in
following sections.

A. Projectile potential

We consider first the effective interaction potentialVp ,
referred to in the following as the projectile potential, whi
governs the motion of the impinging ion. It can be written

Vp~RW ,$P(P)%,$P(F)%!5Vp
g~RW ,$P(P)%!1Vp

H~RW ,$P(P)%,$P(F)%!

1Vp
SI~Rz ,$P(P)%!. ~3.1!

The three contributions in Eq.~3.1! refer to the interaction
with the surface in its ground state,Vp

g , to the interaction
with the hole excitations in the surface,Vp

H , and the self-
induced polarization~or self-image! of the surface,VSI.
These interaction potentials depend not only on the lo
coordinate of the ion, but also on the internal state of the
and the crystal, i.e., the strings.
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The potentialVp
g contains the interactions of the ion wit

all sites of the LiF crystal with a lattice constantd
53.8 a.u. Two contributions toVp

g need to be considered, th
long-range potentialVionic of the ionic cores with the
charges6q0 of the Li1 and F2 ionic centers~we use the
value q050.86 of Wanget al. @22#! and the short-ranged
atomic potentialVatomic,

Vp
g~RW !5Vp

ionic~RW !1Vp
atomic~RW !, ~3.2!

with

Vp
ionic~RW !5(

aW

ZqaW

uRW 2daW u
5(

Li

Zq0

uRW 2RW Li u
2(

F

Zq0

uRW 2RW Fu
~3.3!

and

Vp
atomic~RW !5(

Li
VLi~ uRW 2RW Li u!1(

F
VF~ uRW 2RW Fu!,

~3.4!

where we have assumed a fully stripped projectile w
nuclear chargeZ ~for a partially screened projectileZ is re-
placed by an effective chargeQe f f defined below!. In Eq.
~3.3!, qaW56q0 anddaW 5RW Li or daW 5RW F denote the position
vectors of the ionic charges in the crystal, and are locate
regular lattice sitesaW 5( i , j ,k). We will use in the following
the same symbolaW for lattice vectors at the surface (k50)
and in the bulk (kÞ0). For the atomic potentialsVLi and
VF, we use a Moliere form@23#. It should be noted that the
ground-state potentialVp

g is short ranged despite the presen
of ionic potentials@Eq. ~3.3!#, because of the overall charg
neutrality. Long-range potentials result from hole excitati
and polarization~virtual collective excitations!.

The effective interactions with the holes are given by t
sum over allF sites at lattice coordinatesaW h with a hole
present,

Vp
H~RW ,$P(P)%,$P(F)%!

5~12x!(
aW h

PaW h

(F)
Qe f f~ uRW 2daW hu,$P(P)%!

uRW 2daW hu
.

~3.5!

The effective distance(D)-dependent charge of the proje
tile, taking into account incomplete screening, is given by

Qe f f~D,$P(P)%!5Z2 (
$n:r n,D%

Pn
(P) , ~3.6!

where the shell radiusr n is approximately given by

r n5n2/qn . ~3.7!

For an effective charge for a given shelln of a projectile,qn ,
we use Slater’s rules@24#:

qn5Z2 (
n8<n

Sn,n8Pn8
~P! , ~3.8!
3-5
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with

Sn,n85H 1 : n8,n21

0.85 : n85n21

0.35 : n85n.

~3.9!

The prefactor (12x) in Eq. ~3.5! represents the partia
screening of the holes due to the polarization of the s
rounding crystal, expressed in terms of the dielectric
sponse functionx. For a detailed discussion ofx, we refer
the reader to Ref.@7#. In line with the FIA, we use the stati
value (v50),

x~v50!5
e~0!21

e~0!11
. ~3.10!

For LiF, e(0)'9.1 andx(0)50.8.
Finally, the highly charged ion polarizes the LiF surfac

which leads to an effective interaction of the projectile w
its own ‘‘image.’’ At large distances from the surface, th
potential takes the proper asymptotic form,

Vp
SI~Rz ,$P(P)%! →

Rz→`

2
xQe f f~Rz ,$P(P)%!

4Rz
. ~3.11!

Close to the surface, Eq.~3.11! becomes invalid. We choos
an interpolation form that leads to a constant value forRz
→0 ~or equivalently, to a vanishing image acceleration! and
to Eq. ~3.11! at large distances,

Vp
SI~Rz ,$P(P)%!52xQe f f~Rz ,$P(P)%!

3F S 1

4Rz0
D 25

1S 1

4Rz
D 25G21/5

.

~3.12!

Equation ~3.12! implicitly contains the information on the
location of the image plane defined as

Rim5 lim
Rz→`

~2Rz@114RzVp
SI~Rz ,$P(P)%!#!50,

~3.13!

i.e., the image plane coincides with the topmost layer of
crystal. The distanceRz0

characterizing the transition be
tween the two limiting forms is chosen to be the distan
between two neighboring F sites,Rz0

5A2d. The physical
reason for this choice is the fact that at distances smaller
the lattice spacing, the buildup of a polarization cha
should saturate. The particular form of the interpolati
function does not influence the results.

B. Effective one-electron potentials

A detailed discussion of effective one-electron potenti
entering the calculation of the electronic transition rates
the present system has been given in Ref.@7#. The extension
to sequential multiple capture requires a few additional
gredients to be discussed in the following. The total effect
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one-electron potential determining the dynamics of the e
tron at a given position of the ion and a given internal st
of the ion and of the surface can be written as

Ve~rW,RW ,$P̃(F)%,$P̃(P)%!5Vte~rW,$P̃(F)%!1Vpe~rW,RW ,$P̃(P)%!

1Vpe
I ~rW,RW ,$P̃(P)%!. ~3.14!

In Eq. ~3.14!, rW denotes the position coordinate of the acti
electron with respect to the active fluorine site~here taken to
be at aW 50W ). The interaction potential between the acti
electron and the target,Vte , can be decomposed as

Vte~rW,$P̃(F)%!.VF~rW,P̃(F)!1Ve
crystal~rW !1Ve

H~rW,$P̃(F)%!,
~3.15!

whereVF describes the binary interaction of the active ele
tron with the active fluorine site,Vcrystal is the interaction
with the crystalline environment, andVe

H is the screened
Coulomb interaction with holes at the passive fluorine si
(aW Þ0W ):

Ve
H~rW,$P̃(F)%!52~12x! (

aW Þ0W

PaW
(F)

urW2daW u
. ~3.16!

The interaction potentials appearing in Eqs.~3.14! and
~3.15! depend on the occupation numbers in both the pro
tile and the target. As this number may change in the proc
we label them by the occupation number of the specta
electrons~i.e., the passive electrons!, P̃, rather than the tota
occupation. For example, in the calculation of capture,
active electron is initially localized at theF site at aW and
P̃aW

(F)
5PaW

(F)
11. Conversely, for lossP̃aW

(F)
5PaW

(F) . Analogous
definitions hold for the interaction potential of the activ
electron with the projectile,Vpe , and with the projectile-
induced image charge,Vpe

I .
For the interaction potential between an electron and

isolated fluorine-ion core, we use the independent-part
model ~IPM! potentials of Ref.@25#. These potentials are
designed such that the eigenenergies of the single-par
Schrödinger equation of all occupied orbitals in the groun
state configuration agree well with the orbital energies of
Hartree-Fock solution of the many-electron problem. The
tential has the following form:

VF~r ,P̃(F)!52
~Zt2 P̃(F)!V~r !

r
2

P̃(F)

r
, ~3.17!

with the screening function

V~r !5@h~er /j21!11#21. ~3.18!

Zt denotes the target nuclear charge (Zt59 for fluorine!, and
the parametersj andh depend on the hole population of th
ion, P̃(F). For example, for F2 ~corresponding to first elec
tron capture from the surface!, j50.8 andh51.888, and for
F0 ~corresponding to capture of a second electron from
same F site!, j50.663 andh51.71 @25#.
3-6



lat

ac
th
th

e

av

ith
.

ve

ce
-

n

c

ly

n

e

-

-
a
ll-
cu-
r
ha-

re-
ning
tric

an
icle
ina-
ex-
one

nd

are
sum

has
-

e

he
the

nish.
ith
d
lo
be

tial
uld
the
ri-

LIOUVILLE MASTER EQUATION FOR MULTIELECTRON . . . PHYSICAL REVIEW A67, 012903 ~2003!
The interaction with the other sites of the crystal,Ve
crystal ,

is decomposed into the Madelung potential of the ionic
tice, VMad , and the correlation contributionVcorr

Ve
crystal~rW !5VMad~rW !1Vcorr~rW !. ~3.19!

The Madelung potential is the sum of the Coulomb inter
tions with all static crystal charges except for the one at
origin. When the active electron is at large distances from
surface, this interaction should behave as

VMad~rW ! →
r→`

2
1

r
, ~3.20!

since a hole is left behind in the solid. To reach this limit w
set the Madelung potential to

VMad~rW !52 (
uaW u51

q01~12q0!/5

urW2daW u
2 (

uaW u.1

qaW

urW2daW u
.

~3.21!

The first sum in Eq.~3.21! runs over the five Li1 ions at the
nearest-neighbor sites of the active fluorine where we h
increased their charge by an amount of (12q0)/5, corre-
sponding to the sharing fraction of the active electron w
the neighboring Li1 ions. In turn, the second sum in Eq
~3.21! runs over all other ionic sites in the solid, which ha
the ionic chargeq0. The particular form ofVMad enforces
charge neutrality, and has the proper limit at large distan

The correlation potentialVcorr accounts for the rearrange
ment of the charge density of the crystal as an electro
removed, and can be expressed as

Vcorr~rW !5Ve
SI~z!1Vscr~r !. ~3.22!

The first contribution is the self-image potential of the ele
tron with the asymptotic behavior

Ve
SI~z! →

z→`

2
x

4z
. ~3.23!

The second contribution toVcorr in Eq. ~3.22! is the ‘‘screen-
ing’’ of the hole left in the solid, which tends asymptotical
to

Vscr~r ! →
r→`

x

r
. ~3.24!

In the opposite limit (r→0), one can estimate the correlatio
potential from Ve

crystal and the work function of LiF,W
.12 eV @26#. The work function should correspond to th
sum of the~negative! electron affinity of the ‘‘active’’ fluo-
rine, Ea f f53.4 eV @27#, shifted downwards by the interac
tion with the remainder of the crystal,Ve

crystal(rW50). In
other words,

Ve
crystal~0!.2W1Ea f f . ~3.25!
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At small distances, Eq. ~3.21! yields VMad(0)5
211.3 eV. Equations~3.22! and ~3.25! imply a correlation
energy of

Ecorr5Vcorr~0!52W1Ea f f2VMad~0!52.7 eV.
~3.26!

We note parenthetically that the present choice ofVe
crystal

differs slightly from that of Ref.@7# ~our results are insensi
tive to this change!. The present choice is motivated by
direct identification of the correlation energy. It is a we
known fact of band-structure theory that Hartree-Fock cal
lations, which ~due to their intrinsic mean-field characte!
neglect correlation, yield a valence-band edge for alkali
lides, which is too low by 1–3 eV@28,29#. However, the use
of the dielectric response via Eq.~3.22! allows for the inclu-
sion of correlation effects that are due to the collective
sponse of the valence-band electrons. The physical mea
of the positive correlation energy is that, due to the dielec
response of the surface, it takes less energy to remove
electron than estimated solely from the independent-part
potentials. Or, expressed the other way around, recomb
tion of an electron with the hole yields less energy than
pected from the independent-particle potentials because
has to ‘‘undo’’ the relaxation of the remaining valence-ba
electrons. The specific forms of the potentialsVe

SI and Vscr

used in our simulations are analogous to that of Eq.~3.12!.
They have the proper behavior at large distances and
smoothly extrapolated at small distances such that their
yields the constant valueEcorr at the origin. We note that we
have neglected any dependence ofVe

crystal on the hole exci-
tation.

The interaction between the electron and the projectile
been described in detail in Ref.@7#. Therefore, we just sum
marize the contributions introduced in Eq.~3.14!. For
Vpe(rW,RW ,$P(P)%), we adopt a Coulomb interaction using th
effective charge introduced in Eq.~3.6!,

Vpe~rW,RW ,$P(P)%!52
Qe f f~Rz ,$P(P)%!

urW2RW u
. ~3.27!

In turn, the interaction of the electron with the image of t
ion is chosen such that at large distances of the ion to
surface, it behaves as

Vpe
I ~rW,RW ! →

Rz→`

xQe f f~Rz ,$P(P)%!

A~x2Rx!
21~y2Ry!21@sgn~z!z1Rz#

2
,

~3.28!

where sgn(z) denotes the sign ofz. At small values ofRz ,
we use again the functional form of Eq.~3.12!, such thatVpe

I

approaches a constant value and the associated forces va
We complete the discussion of effective potentials w

the discussion of an effective ‘‘blocking’’ potential require
within the framework of classical trajectory Monte Car
~CTMC! simulations for the one-electron transfer rates to
presented in the following section. Note that this poten
does not enter the Liouville master equation itself and wo
be dispensable in many-body quantum calculations of
ratesG. Its necessity originates from the negative singula
3-7
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ties of VMad at lithium sites. In a CTMC simulation, thi
leads to a high probability that the electron becomes attac
to the lithium ions instead of to the fluorine sites. The lack
a proper many-body quantum ground state and of the
thogonality to core states in a classical simulation leads
spurious access of classically available phase space nea
Li ion. In the reduction from a many-body problem to
one-electron problem, ‘‘blocking’’ is frequently simulate
quantum mechanically using pseudopotentials for vale
electrons. The pseudopotentials cut off the attractive sing
potential and, fors-wave functions, may even display a r
pulsive well. In order to enforce blocking and simulate
pseudopotential for the classical electron motion, we ‘‘c
off’’ the Coulomb singularity of Li atr c52.6 a.u. and fit a
function of the form f (r )5a1br6 such that the potentia
and its derivative are continuous atr c . The value ofr c co-
incides approximately with the corresponding cutoff rad
for the pseudopotential for a 2s electron in Li given in Ref.
@30#. Figure 2 illustrates the effect of the blocking potent
on the total surface potentialVte . Without blocking of the
lithium sites, an electron in the valence band~also depicted
in the figure! could easily cross the potential barrier towar
the neighboring Li ions. After inclusion of a blocking pote
tial, a valence-band electron is spatially constricted to a n
row region~indicated by a gray shaded area! around the ac-
tive F site. Note that the pseudopotential also preve
electrons with energies in the gap between valence and
duction band from entering the solid at places other than
active fluorine sites carrying a hole.

IV. ONE-ELECTRON CAPTURE AND LOSS RATES

Capture and loss rates entering the Liouville master eq
tion ~2.8! are calculated using a CTMC method@31,32#. The
CTMC method used for calculating rates should be clea
distinguished from the Monte Carlo method for integrati

FIG. 2. Interaction potentialVte between the active electron an
a LiF surface plotted along the (x,0,0) axis: potential including
blocking of the Li sites~solid line! and without blocking potentia
~dashed line!. The horizontal dashed~dash-dotted! line represents
the upper~lower! edge of the valence band. The shaded area co
sponds to the allowed region of the classical valence electron in
E-x plane.
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Eq. ~2.8!. In principle, full quantum calculations for rate
could be used and would be preferable which, however
most cases are not feasible. It should also be stressed tha
present CTMC method for rates in the FIA is different fro
the conventional CTMC method originally developed for t
calculation of electron transfer and ionization cross secti
in ion-atom collisions involving one active electron@31#.
While in the standard CTMC method, the probability~or
cross section! for a given process is determined from th
classical phase-space distribution at infinite distances of
collision partners (R→`), or equivalentlyt→`, we extract
rates for a given electronic process from the differen
change of the electronic phase-space distribution at a fi
positionRW of the projectile. Moreover, we extend our trea
ment to the transfer of more than one electron from a give
site at the surface.

The CTMC treatment of electronic transitions involvin
many electrons is still an open problem. One major obsta
is the fact that a classical many-electron atom spontaneo
autoionizes. The root of the problem is the lack of a ‘‘qua
tum ground state’’ in a Coulomb well in classical mechan
and of the exclusion principle. Recipes to partly incorpor
these quantum features in classical dynamics have been
gested@9,33# and recently incorporated in a few numeric
simulations for solids@9,34#. However, such simulations ar
computationally quite demanding for many electrons and
still under development. Due to these limitations, many cl
sical simulations of a system with more than one elect
have resorted to utilizing static or time-dependent screen
potentials@35# ~rather than describing electron-electron inte
actions explicitly!, much like in the IPM@36#. The basic idea
consists of reducing an intrinsic many-body problem to a
of many one-electron problems. In addition to selecti
proper screening potentials, IPM calculations require
choice of binding energies for all active electrons involved
the simulations. The orbital binding energies of electrons
an atom are set equal to the sequential ionization poten
of the atom@32#, suggesting that electrons are removed
quentially. Additional many-electron features can be appro
mately incorporated as discussed below.

For a LiF surface, we consider the six 2p electrons per
fluorine negative ion, which can be successively captured
the projectile. The binding energies of these electrons co
spond to atomiclike sequential ionization potentials for
oms embedded in a crystal. While we ‘‘enforce’’ the classic
localization of the electron through the effective interacti
potentials, we take the valence-band width into account
preparing an ensemble of initial conditions of the outerm
most loosely bound 2p electron of F2 with energies corre-
sponding to the density of states in the LiF valence band

A. Initial configuration

Unlike in a typical simulation for ion-atom collisions in
which the electron is initially in a stationary atomic eige
state of the target at large distances between the proje
and target nuclei, within the fixed-ion approximation@17# the
initial state of the system corresponds to a ‘‘molecular’’ sta
in which the active electron is localized between the surf

e-
he
3-8
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LIOUVILLE MASTER EQUATION FOR MULTIELECTRON . . . PHYSICAL REVIEW A67, 012903 ~2003!
fluorine and the projectile ion. The construction of the init
electronic phase-space distributionr i(rW,pW ) proceeds as fol-
lows: A stationary molecular phase-space distribution
given by

rstationary~rW,pW !5 f ~H2Ei !5 f „H~rW,pW !2Ei…, ~4.1!

with

H5
p2

2
1Ve~rW !, ~4.2!

and whereVe(rW) denotes the total electronic potential~3.14!
with all additional dependences that are constant parame
within a given CTMC run not explicitly shown, andp is the
momentum of the electron. The distribution functionf peaks
at the shifted binding energyEi at the intermolecular dis
tanceR and possesses a state-dependent width. For the
loosely bound ‘‘outer’’ electron, we choose forf (E) the den-
sity of states of the LiF valence band@37#. In turn, for the
‘‘inner’’ subsequent target electrons and projectile states,
representf (E) by a narrow rectangular function with a rela
tive width dEi /Ei50.1. Figure 3 presents cuts through t
potential surface for a stationary state of an electron wit
width corresponding to that of the valence band of LiF. If t
energy of the band is higher than the potential barrier
tween the surface and HCI, the stationary ensemble of in
conditions is clearly molecular in character.

In order to construct now our nonstationary states for
calculation of the rates, we project this stationary state o
the initial states centered at a fluorine,r i

F , or the projectile,
r i

P,

r i
F~rW,pW !5C1f ~H2Ei

F!R~rW !, ~4.3!

r i
P~rW,pW !5C2f ~H2Ei

P!@12R~rW !#, ~4.4!

FIG. 3. Cut along thez axis for y50 andx between25 and 0
a.u. of the potential-energy surfaceVe for a bare projectile withQ

510 atRW 5(0,0,8) a.u. The area between the two dashed lines
resents the shifted valence band.
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whereC1 andC2 are normalization constants andR(rW) is a
projection function that becomes unity when the electron
ascribed to the surface and zero when it belongs to the H
This function can be determined from the total forceFW (rW)
52¹WrWVe(rW) acting on the electron. If the projection of th
force onto the straight line connecting the electron with
active fluorine is larger than the projection onto the strai
line connecting the electron with the projectile,R(rW)51,
otherwise it is attributed to the projectile, i.e.,R(rW)50.

Random initial conditions can be easily generated for a
of these ensembles using the rejection method. The cent
the bands ofEi

F or Ei
P are shifted with respect to the value

for the isolated surface or the isolated projectile,Ei0
F and

Ei0
P ,

Ei
F5Ei0

F 1DE0
F , ~4.5!

Ei
P5Ei0

P 1DE0
P , ~4.6!

where theDE0’s are given in first-order perturbation theor
by

DE0
F5Vpe~0!1Vpe

I ~0!, ~4.7!

DE0
P5Vte~rW5RW !. ~4.8!

The energy levels of electrons initially in the fluorine corr
spond to the ionization potentialsEIP

F of the isolated F ion
shifted by the interaction with the crystal,

Ei0
F 5EIP

F 1Ve
crystal~0!. ~4.9!

B. Calculation of capture and loss rates

In the CTMC method, the Hamiltonian-Liouville equatio

]r

]t
5$H,r% ~4.10!

governs the electronic dynamics. This Hamiltonian form o
Liouville equation for the one-electron dynamics should
distinguished from the Liouville master equation for an op
system approach~2.8! coupled to the electronic many-bod
system. The time evolution of the initial distributionr i is
calculated by Eq.~4.10! at fixed values of the ionic position
R and fixed occupation strings$P(P)% and$P(F)%. The results
are one-electron transition rates that depend parametric
on R, as well as the population strings$P(P)% and $P(F)%.
These rates are, in turn, used as input to the Liouville ma
equation~2.8!. Equation~4.10! is solved by a Monte Carlo
technique. A finite sample ofNtra j phase-space points dis
tributed according to the initial density is taken, and the tim
evolution of each point is calculated by solving numerica
the Hamilton equations of motion. The projectorR, used to
construct the target-centered and projectile-centered in
ensembles, is applied during the time propagation of
electron to determine whether the electron is still localized
the same center it originally was, or has been transferre

p-
3-9
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WIRTZ, REINHOLD, LEMELL, AND BURGDÖRFER PHYSICAL REVIEW A67, 012903 ~2003!
the other center, i.e., has crossed the barrier. The probab
for electron transfer as a function of time is given by

P~ t !5
Na~ t !

Ntra j
, ~4.11!

whereNa(t) is the number of trajectories that have cross
the saddle within the time interval (0,t). Figure 4 shows an
example ofPa(t) for the case of electron capturePC ~i.e.,
the electron is initially at the surface,a5C). The resulting
function can be easily fitted by

PC~ t !5Pmax
C ~12e2gt!, ~4.12!

involving two parametersPmax
C andg. Even though the elec

tron is energetically high above the barrier~see Fig. 3!, the
capture probability does not converge towards unity at
→`, but saturates at a lower value. The reason for this
havior is that the energy hypersurface of the classical e
tron contains regular islands~i.e., approximately conserve
quantities! that remain disconnected from the saddle reg
within which transitions occur@38#. The parameterg in Eq.
~4.12! is therefore not a direct measure of the electro
transfer rate. Instead, the one-electron rates are determ
from the initial slope,

lim
t→0

d

dt
Pa~ t !5Pa~ t !Ga , ~4.13!

with Ga5gPmax
a , and a standing for either capture (a

5C) from the fluorine or loss (a5L) from the projectile to
the fluorine site that features a hole. The approximation
the initial slope is justified by the fact that the rates are g
erally so high that subsequent transfers take place on a
scale before the deviation from the linear slope becomes
portant. The resulting ratesGa are functions in a high-
dimensional parameter space and depend on the string$P%

FIG. 4. Time evolution of the capture probability of the out
electron of a fluorine site at the origin for a projectile withQe f f

510 atRz510 a.u. incident on the (0,0) zone: result of the CTM
simulation ~full line!, least-squares fit with the functional form
PC(t)5Pmax

C (12e2gt) of Eq. ~4.12! ~dotted line!, and function 1

2e2Gct using the short time rateGC5gPmax
C ~dashed line!.
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as well as onRW . In order to reduce the effort of tabulation t
a manageable size, we note that the one-electron tran
rates depend on the projectile populations$P(P)% only
through Qe f f(Rz ,$P(P)%). Therefore, the rates for captur
and loss can be tabulated as a function ofQe f f . Furthermore,
we reduce the tabulation of the vectorialRW dependence to a
Rz and aW dependence~for k50), where (Rx ,Ry) is uni-
formly averaged over the zones associated with the fun
mental surface unit cell around each lattice siteaW of a fluo-
rine ion in the surface~Fig. 5!. Finally, the rates depend o
the initial and final states of the electron. Since we use
fixed-ion approximation, the total energy of the electron
conserved during resonant transfer. Thus, the rates only
pend on the total electronic energy. In other words, the fi
state of the electron is determined by its initial state~or vice
versa! and both correspond to either target- or projecti
shifted states@see Eqs.~4.5! and ~4.6!#,

Ef
F5Ei

P , ~4.14a!

Ef
P5Ei

F . ~4.14b!

Identifying the projectile final-state occupation of the ca
tured electron requires the mapping of the final class
atomic energyEf 0

P onto a quantum shellnf , with orbital
energy enf

through energy binning@39#. nf is determined
from the condition

S nf21

nf21/2D
2

enf21,Ef 0
P ,S nf

nf11/2D
2

enf
, ~4.15!

where the orbital energyenf
is calculated using Slater’s rule

@24#. That is, the orbital energy is the difference between
total energy of the N-electron atom ~ion! projectile
Etot

P ($P(P)%) with and without one electron added to thenf

shell:

enf
5Etot

P @P1 ,P2 , . . . ,~Pnf
11!, . . . #

2Etot
P @P1 ,P2 , . . . ,Pnf

, . . . #, ~4.16!

FIG. 5. Zones of the surface lattice centered around F2 ions at

lattice sitesaW 5( i , j ,0). Since the third lattice coordinate is zero

the surface, we use the notationaW 5( i , j ). The open~full ! circles
denote fluorine~lithium! ions.
3-10
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LIOUVILLE MASTER EQUATION FOR MULTIELECTRON . . . PHYSICAL REVIEW A67, 012903 ~2003!
where

Etot
P ~$Pn%!52(

n
Pn

qnuqnu

2n2
, ~4.17!

with the shell chargesqn defined in Eq.~3.8! @for simplicity,
here and in the following we drop the superscript(P) for
shell occupation numbers; i.e.,Pn[Pn

(P)] . We useqnuqnu
rather thanqn

2 in order to assign shells with negative-char
positive energies~i.e., energies in the continuum!. Note that
in contrast to standard Slater rules for neutral atoms@24#, we
do not account for quantum defects. By comparison w
Hartree-Fock calculations we have found that, overall,
scheme yields more realistic energies for hollow atoms
this work we will consider only electron loss to the grou
state of the solid. Therefore,Ei

P is required to coincide with
the shifted ground state energy of the solid~otherwise the
process is blocked!. Furthermore, the one-electron loss ra
depends on the hole population of the active site,PaW

(F) . In
summary, the one-electron capture ratesG1

C and loss ratesG1
L

are calculated as a function of (Qe f f ,Rz ,PaW
(F)), whereaW is

the lattice vector in the surface of the active fluorine site
capture or loss.

The effective capture and loss rates appearing in the L
ville master equation@Eq. ~2.8!# can be, in turn, constructe
from the one-electron rates, by incorporating certain ma
electron features. Two effects can be easily treated. On
the energy shift due to the many-hole interactions. That
the resonance conditions for capture@Eq. ~4.14!# can be,
within the Monte Carlo solution of the Liouville maste
equation, modified to

Ei0
F 1DE0

F1Ve
H~0,$P(F)%!5Ef 0

P 1DE0
P1Ve

H~RW ,$P(F)%!,
~4.18!

whereVe
H denotes the screened interaction potential betw

the active electron and the holes at sites different from tha
the active fluorine site present at the instant of transfer. T
correction leaves the tabulated one-electron rates uncha
while modifying the final-state assignment for capture.
small distances, the level shifts should saturate as the e
tron becomes completely shared between the ion and
surface. We estimate the saturation distance using the v
of Pmax

C and we assume that the level shift is constant
values ofRz such thatPmax

C .0.8 @see Eq.~4.12!#. While the
specific choice for the cutoff inPmax

C is somewhat arbitrary, a
large value forPmax

C is required to assure effective quasim
lecular sharing.

A second feature of the many-body dynamics can be
corporated in terms of the multiplicity of the initial-sta
population and the number of open final-state channels
analogy to multiplicity and blocking factors of the collisio
term in a quantum Boltzmann equation, we set

sGC~RW ,DPn51,DPaW
(F)

511!

5~62PaW
(F)

!S 12
Pn

2n2D G1
C~Qe f f ,Rz ,PaW

(F)
!,

~4.19!
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GL~RW ,DPn511,DPaW
(F)

521!5Pn

PaW
(F)

6
G1

L~Qe f f ,Rz ,PaW
(F)

!,

~4.20!

where n is the active shell of the ion andaW denotes the
position of the active F site. Figure 6 shows the effect
capture rates per target electron,GC/6, into bare ions
($P(P)50%) from a completely filled fluorine shell (PaW

(F)

50) at different active sitesaW 5( i , j ) as a function of the
distanceRz between the surface and projectile and for se
eral values of the effective chargeQe f f. For Qe f f510, the
critical distance for the onset of capture isRz;13 a.u. For
decreasing projectile charge, the critical distance and
capture rates decrease. Figure 6 also shows that the rate
capture from neighboring sites are considerably~order of
magnitude! smaller than for capture from the closest fluori
ion directly ‘‘underneath’’ the projectile ataW 5(0,0). Never-
theless, capture processes from other zones@aW Þ(0,0)# play
an important role for neutralization of multiply charged io
at vertical incidence. The reason is that after the first cap
from aW 5(0,0), the process competing with capture fro
other sites for the next step in sequential neutralization
capture from a more tightly bound electron from the sa
site. The latter has also a much reduced rate such that ca
from more distant sites becomes competitive. Figure 7 d

FIG. 6. Capture rate per electron from a fully occupied fluori
ion (P(F)50) as a function of the ion-surface distanceRz and as-
suming an empty final shell of the HCI:~a! rates for the (0,0) zone
and different charge states of the ion and~b! rates for a fixed charge
state (Qe f f510) but with the ion in different zones.
3-11
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WIRTZ, REINHOLD, LEMELL, AND BURGDÖRFER PHYSICAL REVIEW A67, 012903 ~2003!
plays the loss rates per electron (GL/Pn) to different fluorine
sites with one vacancy (PaW

(F)
51) and for different ion

charges. Overall, loss rates decrease as a function ofRz and
eventually vanish. The dependence onRz is, however, not
always monotonic. This unusual behavior is due to the f
that the resonance condition~4.14! leads to an implicit de-
pendence on the initialn level from which the electron is
lost. The critical distance for electron loss decreases w
decreasing ion charge because the saddle height incre
much like that for electron capture. However, the rate
small distances increases with decreasing ion charge,
cause the available phase space for an electron with a g
energy is smaller for lower ion charges. In general, the l
rates are small compared to the corresponding capture
~see Fig. 6!. Only for small ion charges are the loss rates
the same order of magnitude. In addition to the depende
on the effective projectile chargeQe f f and on the zone in
which the electron is localized, the rates depend also on
number of holes present. This dependence is most
nounced for holes localized at the active fluorine site~Fig.
8!. The capture rates quickly decrease with increasing h
number because the remaining electrons are increasi
more tightly bound. As expected, the loss rates show
opposite behavior; it increases with increasing number
holes.

C. Electron promotion to the continuum

In addition to electron loss, electrons in the projectile i
can be removed by promotion to the continuum. This c

FIG. 7. Loss rate per electronGL/Pn from the projectile a fluo-
rine ion with one vacancy (P(F)51) as a function of the ion-surfac
distanceRz . ~a! Rates for the (0,0) zone and different charge sta
of the ion and~b! rates for a fixed charge state (Qe f f510) but with
the ion in different zones.
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occur for two reasons:~a! filling of inner shells and~b!
single-particle level promotion. In order to account for the
processes, we analyze the shifted energy of every orbita
the ion,

En
P5en1DE0

P1Ve
H~RW ,$P(F)%!, ~4.21!

after every time step. IfEn
P crosses the ionization thresho

(En
P.0), one electron is removed from then shell and

placed in the continuum at timet I . The corresponding rate
can be expressed as

G I~R,DPn521,DPI51!5d~ t2t I !. ~4.22!

By setting the threshold toEn
P50, we neglect the fact tha

the bottom of the unperturbed conduction band of LiF
about 2 eV above the vacuum threshold. This choice can
justified by the fact that a considerable fraction of the ioniz
low-energy electrons remain outside the LiF surface.

V. TWO-ELECTRON RATES

In addition to the one-electron processes described in
preceding section, the internal state of the projectile c
change due to two-electron Auger processes. We disting
between intra-atomic and interatomic Auger processes.
former leave the internal state of the solid intact whereas
latter involve changes in both the projectile and the targe
considerable amount of quantitative information exists ab

s

FIG. 8. Analysis of the capture~top panel! and loss rates~bot-
tom panel! as in Figs. 6 and 7 for different hole occupation numbe
of the active fluorine center site and an ion impinging on the (0
zone.
3-12
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LIOUVILLE MASTER EQUATION FOR MULTIELECTRON . . . PHYSICAL REVIEW A67, 012903 ~2003!
intraatomic Auger processes, which has been previously
corporated into many simulations of the neutralization
highly charged ions in front of surfaces. On the other ha
comparatively little information is available on interatom
Auger rates involving highly charged ions. Nonetheless,
teratomic Auger processes have been found to play an
portant role close to the surface and for low ion charg
@40,41#. Here we extend our previous modeling of intr
atomic Auger rates in order to estimate interatomic Au
rates. The goal of the present analysis is primarily to g
order-of-magnitude estimates for Auger rates valid for va
ous ions and electronic configurations.

A. Intra-atomic Auger decay

Our estimates of intra-atomic Auger rates are an exten
of previous estimates introduced in Ref.@6#, which are based
on calculations of Auger rates using theCOWAN code@42,43#
for isolated ions. It was found that the first allowed a
dominant Auger decay for twos electrons in an upper shelln
decaying into an empty lower shelln8 can be fitted with
considerable accuracy to the functional form@6#

GAI~ns2→n8s!5
5.0631023 a.u.

~n2n8!3.46
5

2.131014 sec21

~n2n8!3.46
.

~5.1!

The remarkable aspect of this expression is that it is valid
all n andn8 levels and that it is independent of the nucle
charge of the ion. Figure 9~a! illustrates the validity of Eq.
~5.1! for the first energetically allowed transitions, i.e., t
transition from a givenn to the highestn8 consistent with an
above-ionization-threshold energy of the second ioni

FIG. 9. Auger transition ratesGAI(ns2→n8s) for Ne81(ns2)
ions as a function ofDn5n2n8. ~a! First allowed transitions~open
squares! and ~b! all Auger transitions forn52 ~open squares!, n
53 ~solid triangles!, n54 ~open triangles!, n55 ~stars!, and n
57 ~solid circles!.
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electron. This transition is, in general, the fastest decay ch
nel for the initial n level. Moreover and more surprisingly
Fig. 9~b! shows that Eq.~5.1! can be used as an estimate f
Auger transitions to energy levels lower than to the first
lowed. In the simulations of the Liouville master equatio
however, the latter do not play an important role since
relaxation of the ion proceeds predominantly as a seque
of the fastest processes.

Another important observation regarding Eq.~5.1! is that
it can be used to calculate Auger rates for ions carrying m
than two electrons, provided that one accounts for the m
tiplicity of the initial n shell and the number of vacancies
the finaln8 shell in analogy to a quantum Boltzmann col
sion term. The first step in the determination of the Aug
rate between many-electron levels consists of the selec
whether or not the Auger transition is allowed. To this en
we first calculate the total initial and final electronic energ
Ei

P and Ef
P using Slater’s rules@Eq. ~4.17!# including the

shift of the projectile energy levels (4.8). The initial config
ration includesPn and Pn8 electrons in then andn8 shells,
while the final arrangement involvesPn22 andPn811 elec-
trons in then and n8 shells. If Ei

P2Ef
P,0, the Auger pro-

cess is energetically prohibited. Otherwise, the transition
allowed and we use as the corresponding rate

GAI~R,DPn522,DPn8511,DPI511!

5MAI~Pn!BAI~Pn8!GAI~ns2→n8s!, ~5.2!

FIG. 10. ~a! LMM Auger transition rates as a function of th
population of theL shell. The solid symbols have been obtain
using a 3s2 configuration of theM shell and an averaged configu
ration with P2 electrons in theL shell. The open symbols corre
spond to averaged configurations of both the upper and lower
els. ~b! LMM Auger rate for an emptyn52 shell and a
configuration average of the upper shell withins andp orbitals. For
comparison, also the multiplicity factor of Ref.@44# is shown.
3-13
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whereMAI andBAI are the multiplicity and blocking factor
for initial and final states, respectively. Different factors f
different systems have been previously suggested@6,44#. In
order to determine an optimized functional form for neo
we have performed a large number of calculations for diff
ent configurations using theCOWAN code @43#. Figure 10
displays the comparison of the numerically determin
blocking factors with the standard Pauli blocking factor o
quantum Boltzmann collision term (12Pn8/2n82) in terms
of a number of available unoccupied final states. We find t
a more appropriate choice is

BAI~Pn8!5Cn8S 12
Pn8

2n82D 2

, ~5.3!

i.e., with the square of the Pauli blocking factor, whereC1
50.38 andCn851 for n8.1. The factorCn8 has been in-
troduced to account for the absence of the initial angu
momentum state in the final shell, i.e.,l .(n821), which
leads to a reduction of the rate~5.3!. The largest correction
for Ne ions is found forKLL transitions since 2p states
cannot decay efficiently to a 1s state. Nevertheless, usin
Cn8;1 becomes quite accurate for highern shells, starting
already for LMM transitions. The additional factor (1
2Pn8/2n82) in Eq. ~5.3! whose origin is not due to Pau
blocking can be qualitatively understood in terms of the
duction of orbital overlap and of available phase space of
emitted electron when the populationPn8 enhances the
screening in the final shelln8.

The initial-state multiplicity factorMAI(Pn) is well ap-
proximated by the standard binomial expression@6#
01290
,
-

d

at

r-

-
e

MAI~Pn!5
Pn~Pn21!

2
, ~5.4!

where we have also shown for comparison the choiceMAI

5Pn/2, which has been obtained from calculations of Aug
rates in the bulk of metals@44#. Obviously, Eq.~5.4! appears
better suited for atomic Auger transitions above the surfa

B. Auger deexcitation and Auger capture

In contrast to metal surfaces~e.g., Refs.@41,45#!, little
information is available on interatomic Auger rates near
sulators. Thus, our estimates for interatomic Auger rates
resent, perhaps, the most uncertain input into our simulat
The main goal is to analyze their relative importance in a f
neutralization sequence. We therefore attempt to provide
per bounds of their actual values. Our approach employs
fact that valence electrons of the target are well localiz
near fluorine sites with lattice vectorsaW . We cast the problem
in terms of an interatomic Auger process in the transi
quasimolecule composed of the active fluorine site and
projectile, taking into account that interatomic and intr
atomic Auger processes within the same molecule should
intimately related to each other@46#. In fact, when the dis-
tance between the ion and the active site (D5udaW 2RW u), is
small, electrons in the molecules are ‘‘shared,’’ and int
atomic and intra-atomic Auger rates become nearly indis
guishable from each other. Molecular sharing sets in wh
the resonance condition@Eq. ~4.14!# is met. Accordingly, for
distances smaller than the sharing distanceDs , the effective
Auger rates adopt the form
ic

t

GAC@D<Ds ,DPaW
(F)

522,DPn8511,DPI511#5MAC~PaW
~F !!BAI~Pn8!G

AI~ns2→n8s!, ~5.5!

GAD@D<Ds ,DPaW
(F)

521,DPn521,DPn8511,DPI511#5MAD~PaW
~F !!BAI~Pn8!G

AI~ns2→n8s!, ~5.6!

with multiplicity factors corresponding to the number of pairs of electrons available in the initial configuration,

MAD5Pn~62PaW
(F)

!, ~5.7!

MAC5
1

2
~62PaW

(F)
!~52PaW

(F)
!. ~5.8!

Note that inMAD andMAC, the number of electrons rather than the number of holes of F2 enter. The initial-shell quantum
numbern appearing in Eq.~5.5! is determined through the quasimolecular resonance condition@Eq. ~4.14!#. The effective
sharing distanceDs is determined from the tabulated capture probabilitiesPmax

C , and we setDs to the distance below which
Pmax

C .0.8. To extend Eqs.~5.5! and ~5.6! to distancesD.Ds , we build in the large-distance behavior of the interatom
Auger rates known for metals@41# and molecules@47#. The Auger deexcitation rates should decrease asD23, whereas the
Auger capture rate should decrease very rapidly~nearly exponentially! following the available probability density of targe
electrons extending out into the vacuum. We therefore extrapolate to larger distances as

GAC@D.Ds ,DPaW
(F)

522,DPn8511,DPI511#5r~D !
Ds

D
GAC~D5Ds , . . . !, ~5.9!

GAD@D.Ds ,DPaW
(F)

521,DPn521,DPn8511DPI511#5
1

2 F S Ds

D D 3

1r~D !GGAD~D5Ds , . . . !, ~5.10!
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wherer(D)5exp@22A22Ei0
F (D2Ds)# and Ei0

F is the or-
bital energy of a fluorine ion embedded in the crystal
defined in Eq.~4.9!. While the smooth transitions of the rate
from the molecular (D,Ds) to the asymptotic regime (D
@Ds), as implied by Eqs.~5.9! and ~5.10!, are certainly an
oversimplification, the present functional form should pr
vide a correct order-of-magnitude estimate.

VI. HOLE DYNAMICS

The dynamics of the holes in the valence band created
multiple capture is of crucial importance for the neutraliz
tion dynamics. It represents one important aspect of the
many-body nature of the neutralization process. The corr
tion between particles and holes enters the Liouville ma
equation twofold. For one, the hole mobility determines
speed with which valence-band electrons are replenished
ter electrons have been transferred from the surface to
projectile, and therefore influence effective capture and l
rates @Eqs. ~4.19! and ~4.20!#. Moreover, the many-body
resonance condition controlling resonant transfer molec
sharing @Eq. ~4.14!# is determined by the strength of th
electron-hole interaction for the distribution of holes in t
surface at a given point in time.

For an estimate of the ‘‘hole-hopping time,’’ we follow
the argument given in Ref.@10# and assume a tight-bindin
dispersion relation for the F2p valence band along the@011#
direction of the form

E~k!5E02b cos~kdA2!, ~6.1!

whereE0 is the energy at the center of the band. This form
the band structure is a good interpolation of the photoem
sion data by Himpselet al. @37# who obtain a band half-
width b51.75 eV. The velocity with which holes travel i
the absence of strong lattice distortions is given by

vh~E!52
dE~k!

dk
5bdA2sin~kdA2!

56vh
hotA12S E2E0

b D 2

. ~6.2!

A ‘‘hot’’ hole that is created in the center of the band has
speed ofvh

hot5bdA2'0.3 a.u., i.e., comparable to metall
Fermi velocities. A ‘‘cold’’ hole produced with a spectra
width of about 1 eV near the top of the valence band has
average value ofvh

cold'0.1 a.u. We treat the hole kinetics a
an unbiased, force-free random walk. That is, the backac
of the multiply charged ion as well as of the ensembles
holes previously formed on the hole distribution by Coulom
repulsion is neglected. Therefore, our estimate for the h
speed can be considered to be a lower limit of the ac
speed. Within the Monte Carlo simulation of the Liouvil
master equation, we follow the random walk of an ensem
of holes. The random velocity of a given stochastic h
trajectory is taken from the probability density of hole v
locities,
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rLiF~vh!5C̃
dE

dvh
DLiF@E~vh!#, ~6.3!

where C̃ is a normalization constant andDLiF(E) denotes
the density of states of the LiF valence band@37#. From the
velocity of a given hole, the nearest-neighbor site-to-s
hopping rate is estimated as

Ghop5
1

12thop
, ~6.4!

where

thop5
dA2

vh
~6.5!

is the average time for hole hopping to a neighboring F s
The factor 1/12 in Eq.~6.4! accounts the presence of 1
nearest-neighbor F sites in the bulk. We account for the
duced number of target sites available in the random wal
the surface. The time scale of the hole hopping is in agr
ment with the recent coupled cluster approach of Boris
et al. @48#. Based on a self-consistent-field calculation of t
hopping integral between neighboring F2 ions, they have
calculated the time evolution of the hole population at t
surface site. Within 50 a.u., the probability that the hole
still at its origin has decreased to 30%, which correspo
approximately to the hole-hopping time for a cold hole w
vh

cold'0.1 a.u.
Since little is known about the interaction between hol

we assume that holes diffuse independently of each ot
Hole-hole correlation is taken into account only in terms
blocking a given hole site for another hole with the sam
charge, i.e., multiple hole formation at a given site by ho
hopping is suppressed. However, capture of subsequent
trons from the same fluorine site may lead to the format
of double and triple holes. Conversely, electron capture fr
neighboring fluorine sites can lead to the decay of a dou
hole into two single holes. For such events, we use the s
rate as for the hole diffusion.

VII. RESULTS AND DISCUSSION

In this section we present results of the solution of t
Liouville master equation@Eq. ~2.8!# with the input as de-
scribed in Secs. III–VI for the interaction of Ne101 with a
LiF surface in either vertical or grazing incidence. In th
simulation for vertical incidence, we focus on the existen
~or absence! of the trampoline effect. We therefore start th
ensemble of projectile trajectories at a distance ofRz(t50)
520 a.u. from the surface~which is outside the critical dis-
tance for capture!, approaching the surface with a speed c
responding to a local kinetic energy ofEkin51 a.u.
527 eV. This value is a lower bound for the kinetic ener
due to the self-image acceleration of the Ne101 projectile
during its approach to the surface from larger distances@Rz
>Rz(t50)#. Equivalently, we set the asymptotic incide
kinetic energy to zero. Furthermore, to enhance the chan
for observing the trampoline effect, we increase in some
3-15



le
g

n

id

ve
m
no
em
a
o

re
o
i
t

bu
pi
ct
ex
ng
u
o
n

d
e
en
in

n

e
nt
th
is

id

ef-

ile
av-
is-
pi-

n
ells
-
rds

y
ing

a

ly
nly
e
be-
uble
lec-
its

h
ls
r o
es

nd
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the test calculations the strength of the repulsive ho
projectile interaction@Eq. ~3.5!# by neglecting any screenin
of the holes~i.e., we setx50 in that equation!. Figure 11
displays the charge-state evolution of the projectile as a fu
tion of the distance from the surface,Rz . Starting at the
critical distance of about 14 a.u., the charge state rap
decreases and complete neutralization~but not relaxation! is
reached at about 5 a.u. The presence of the positi
charged background given by the holes even allows for
tion of a transient negatively charged Ne ion that would
exist in the case of an isolated Ne atom. Figure 11 also d
onstrates the efficiency of the different transient channels
their contributions to electron emission. The total charge
the holes created is about three times as high as the dec
in the projectile charge. This is due to the large number
electrons emitted during the autoionization by intra-atom
Auger decay. Auger deexcitation significantly contributes
neutralization and emission of electrons, while the contri
tion of Auger capture is barely noticeable due to the ra
exponential decrease of the rate as a function of the proje
distance. Despite the significant contribution of Auger de
citation to the neutralization, we found that the resulti
charge-state evolution is insensitive to the AD rate. A sim
lation without AD yields an almost identical result. The res
lution of this apparent puzzle is that Auger deexcitation a
the two-step process of resonant electron capture followe
intra-atomic Auger decay~AI ! are competing processes. Th
reduction of the Auger deexcitation rates leads to an
hanced number of capture events and, in turn, via the
crease in the initial-state multiplicityMAI @Eq. ~5.4!#, to a
higher probability for intra-atomic Auger decay. In additio
to Auger processes~AD or AI !, electron promotion is an
alternative pathway for electron emission, i.e., filling of inn
shells leads to a weaker binding of outer shells that eve
ally become unstable. Figure 11 shows, however, that
contribution of promotion to the total electron emission
insignificant, the reason being that outer shells are rap

FIG. 11. Average asymptotic charge stateQ of an incoming
Ne101 ion impinging on a LiF surface in vertical incidence wit
Ekin51 a.u. as a function of the distance from the surface. A
shown are the total charge of the hole distribution, the numbe
promoted electrons, and the number of electrons emitted as a r
of the different Auger processes@autoionization~AI !, Auger deex-
citation ~AD!, and Auger capture~AC!#.
01290
–

c-

ly

ly
a-
t
-

nd
f
ase
f

c
o
-
d
ile
-

-
-
d
by

-
-

r
u-
e

ly

depopulated by autoionization before promotion becomes
ficient.

More detailed insights into the relaxation of the project
towards its neutral ground state can be gained from the
erage shell occupation as a function of the projectile d
tance, shown in Fig. 12. The first electron is captured ty
cally into the shell n58. At slightly lower distances,
electrons are captured inton57. As soon as the populatio
exceeds two electrons, Auger decay towards lower sh
(n55) becomes possible while then57 shell becomes de
populated. Meanwhile, as the projectile proceeds towa
smaller distances, lowern shells are directly populated b
resonant capture and by Auger decay from higher-ly
shells. At distances smaller than 8 a.u., the shellsn51 and
n52 can be reached directly by Auger deexcitation. At
distance of 3 a.u. from the topmost layer, theK andL shells
are, on average, half filled. The atom is still in a high
excited state with the residual electrons populating mai
the M and N shells. As the ion is in close proximity to th
surface, resonant capture of more tightly bound electrons
comes possible. One consequence is the formation of do
and triple holes, i.e., resonant capture of subsequent e
trons from the same fluorine site. Figure 13 illustrates

o
f
ult

FIG. 12. Average shell occupations of an incoming Ne101 ion
impinging on a LiF surface in vertical incidence withEkin51 a.u.
as a function of the distance from the surface.

FIG. 13. Average number of single, double, and triple holes, a
of the charge state of the incoming Ne101 ion during its interaction
with a LiF surface in vertical incidence withEkin51 a.u.
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contribution. If there were no hole mobility, the formation
multiple holes would be the only pathway to neutralizati
of the incoming projectile. However, since the holes quic
diffuse away from the site where they were created, the
mation of multiple holes plays only a minor—though no
negligible—role by allowing target electrons to be captur
into deeper levels of the ion.

Focusing now on the evolution of the projectile spee
Fig. 14 displays the average velocity component perpend
lar to the surface as a function of the distance. The averag
always negative withṘz,0 because it is calculated durin
the incoming part of the trajectory~a negative value of the
velocity means movement towards the surface!. At distances
larger than the critical distance for first electron capture,
projectile is accelerated by the self-image interaction.
electron capture begins to contribute, the acceleration is
duced because the charge state of the projectile and its im
is reduced and because of the repulsion due to holes ge
ated by capture. At around 11 a.u., the hole repulsion star
dominate over the image acceleration, and the projec
slows down. The repulsive force is strong enough to sl
down the projectile to a velocity lower than the initial valu
at the distanceRz(t50)520 a.u., i.e., the repulsion can of
set the image acceleration. However, it is, on average,
strong enough to lead to a complete stop and to a revers
the projectile above the surface. Only 2% of all trajector
are reflected at distances larger than 3 a.u. from the topm
layer and no turning point was observed at a distance la
than 3.5 a.u. Such small distances of closest approach c
spond already to the fringes of the soft binary collision
gime and imply an~almost! complete neutralization of the
highly charged ion. The charge-state distribution of the
reflected from the close-collision regime is centered at l
charge states (Q'1) and is significantly different from the
notion of a trampoline-reflected ion withQf inal'Qinitial /2.
The overwhelming fraction of 98% of the projectile traject
ries reach the surface and eventually penetrate it or are
flected due to hard binary collisions with surface ions. It
noteworthy that we have performed the present simula

FIG. 14. Evolution of the average vertical velocityṘz of a
Ne101 ion with an initial energyEkin51 a.u. at a distance of 20 a.u
as a function of the distance from the surface. Solid line: with h
hopping as described in the text. Dashed line: hole hopp
switched off. We neglect the screening of the holes in both sim
tions in order to enhance the hole repulsion.
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under the extreme assumption that the repulsive Coulo
potential of the holes in the surface is unscreened. Tak
screening into account would further reduce the repuls
force considerably. In addition, we have not included t
repulsion of holes by the projectile that may lead to an
creased diffusion rate. Thus, we conclude that for a Ne101

vertically incident on a LiF surface, the trampoline effe
i.e., the above surface reflection leaving the ion in a multi
charged state, does not exist. Our findings coincide wit
recent experiment for the large angle scattering of multi
charged ions with CsI, where no signature of the trampol
effect could be detected@49#. However, Fig. 14 demonstrate
that the situation could change dramatically if the hole d
fusion through the crystal is suppressed. In this case,
neutralization of the projectile is incomplete and all trajec
ries are reflected at distances larger than 4 a.u. Therefore
potential existence of the trampoline effect for a given m
terial depends on the hole mobility. Only for very low o
vanishing hole mobility, a partial reflection of multipl
charged ions due to the trampoline effect could occur. T
present simulation suggests that the hole mobility in suc
case could be determined from the fraction of trampolin
reflected ions.

As a second example for a solution of the Liouville ma
ter equation by Monte Carlo sampling, we present a simu
tion for the neutralization in grazing incidence scattering
O81 at a LiF surface~Fig. 15!. For simplicity, we employ a
planar average@23# of the Moliere potential asVp

atomic in Eq.
~3.4!. This simplification is justified in view of the fact tha
the charge-state fractions have been shown to be almos
dependent of the azimuthal angle relative to the direction
the axial channel. We find that neutralization or relaxation
close to complete when the projectile reaches the turn
point. Shell occupation and charge distribution~Fig. 15! in-
dicate that the projectile is mostly in its neutral ground st
or in its negative-ion state. This is in agreement with expe
ments by Meyeret al. @50# who measured high fractions o
neutral and negatively charged outgoing ions and atoms
the same angle of incidence and projectile velocity. T

e
g
-

FIG. 15. Interaction of an O81 ion approaching a LiF surface
with v50.1 a.u. in grazing incidence~angle relative to the surface
1°). Shown in the figure are the average trajectory of the ion,
average charge state of the ion, and the average shell occupatio
the ion.
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ratio between neutrals and negatively charged ions
strongly dependent on parallel-velocity effects, which are
glected in the present simulation. Thus, only the sum of
fractions of neutrals and negatively charged particles can
compared with experiments. This sum exceeds 0.95 in ag
ment with the experiment. Our simulations explain the h
probability for complete neutralization and relaxation
multiply charged ions in grazing incidence collision with
LiF surface, independent of the initial charge state of the i
It is instructive to extract from Fig. 15 the absolute tim
scales for neutralization and relaxation. Counting the ti
from the first electron capture, neutralization~without relax-
ation! is reached for the experimental parameters from R
@50# at Tn.30 fs, relaxation to the ground state atTn
.50 fs.

It should be pointed out, however, that the good agr
ment with experimental data is currently restricted to lo
parallel velocitiesv i'0.1. At higher parallel velocities, the
present FIA needs to be modified. While nonadiabatic effe
due to the explicit time dependence of the interaction
still be neglected for smallv' , the effect of the Galilei shift
between target frame and projectile frame on charge
change must be taken into account. For metals, this ca
accomplished within the framework of kinematic resonan
@18–20# due to the Galilei-shifted Fermi sphere. For insu
tors, however, no comparably simple description is curren
available. As a consequence, the experimentally observed
crease of the fraction of negative and neutral particles w
higher projectile velocities cannot be reproduced by
present simulation. In that case, kinematic effects on the n
tralization would have to be included.

In summary, we have presented a Monte Carlo simula
for stochastic trajectories representing an ensemble solu
of the Liouville master equation for the many-electron d
d,
R
in

li
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namics in the neutralization of highly charged ions incide
on an LiF insulator surface. The rates for one-electron a
two-electron processes entering the transport equation w
estimated using CTMC calculations within the framework
the fixed-ion approximation and atomic structure codes
Auger processes. While the estimates for some of the r
obtained from data from other experiments or model cal
lations carry a considerable uncertainty, they represent a
ori fixed input. The calculation itself does not involve an
adjustable parameter. Within these limitations, our mo
provides for a realistic neutralization scenario. For verti
incidence of a slow Ne101 ion, our simulations suggest tha
the projectile is largely neutralized~half filled K andL shells!
when it comes within close range of the surface~3 a.u. of the
topmost layer!. The trampoline effect, i.e., the backscatteri
of a multiply charged ion above the surface, does not t
place for this system. For grazing incidence and slow
velocities (!1 a.u.), our calculations demonstrate that m
reflected ions are completely neutralized—or even sin
negatively charged—and in their electronic ground state
accordance with experiments. Further extensions of our
proach should address nonadiabatic effects at larger par
velocities.
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