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Shannon-information entropy sum as a correlation measure in atomic systems

Nicolais L. Guevara, Robin P. Sagar, and Rodolfo O. Esquivel
Departamento de Quı´mica, Universidad Auto´noma Metropolitana, Apartado Postal 55-534, Iztapalapa, 09340 Me´xico D.F., Mexico
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The interpretation of the entropy sum as a correlation measure is demonstrated for isoelectronic series via an
analytical expression that models the asymptotic behavior of the electronic charge density in position space and
the cusp behavior in momentum space. We also develop an expression for the entropy sum in neutral atoms
with an explicit dependence on the ionization energy and the atomic number. The results obtained from these
relations are in qualitative agreement with the behavior observed fromab initio calculations. A connection
between the entropy sum and the correlation energy is obtained for the weakly inhomogeneous electron gas
and demonstrated via calculations for the helium isoelectronic series.
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I. INTRODUCTION

One of the most well known problems in many-electr
atomic physics is electron correlation. It was defined
Löwdin @1# in energetic terms as the difference between
exact nonrelativistic total energy and the Hartree-Fock
proximation. However, there also exists other measure
electron correlation in the literature such as the statist
correlation coefficients introduced by Kutzelnigget al. @2#,
and more recently, the concept of correlation entropy as
troduced by Ziescheet al. @3# as a measure of the correlatio
strength. Liu et al. @4# have also used density-function
theory to relate the correlation energy with the moments^r n&
of the position space density distribution.

The Shannon entropy in position space is defined as

Sr52E r~r !ln r~r !dr , ~1!

wherer(r ) is the electronic charge density. The momentu
space Shannon entropy,Sp , of the electronic momentum
density,p(p), is defined in a fully analogous way with bot
densities normalized toN, the number of electrons in th
system. The Shannon entropy is a measure of the deloca
tion or the lack ofstructurein the underlying distribution.

Gadreet al. @5# have noted some interesting properties
the entropy sum,St5Sr1Sp , for atoms at the Hartree-Foc
level: ~i! St attains a minimum value for the ground state a
~ii ! St is invariant to scaling while the individual entropie
are not. In a study of an isoelectronic series, the numer
value ofSt was noted to increase with the inclusion of ele
tron correlation in the wave function@6#. St has also been
studied as a measure of the basis set quality@5,7,8#. It has
been shown@5# that in the case of neutral atoms there is
complementary behavior between the Shannon entropie
the position and momentum spaces, as has been note
members of an isoelectronic series@6,9,10#. However, Gadre
et al. @5# did note a periodic dependence ofSt in neutral
atoms which was not studied in their paper but will be a
lyzed here.

The importance of the entropy sum is firmly establish
by noting that a stronger version of Heisenberg’s uncerta
1050-2947/2003/67~1!/012507~6!/$20.00 67 0125
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principle may be formulated in these terms for any quant
many-electron system@5,11#,

St5Sr1Sp>3N~11 ln p!22N ln N

5N~6.434222 lnN!. ~2!

Upon analysis of this last equation, it was suggested@5# that
one may use the entropy sum to provide abalancedmeasure
by taking into account the Shannon entropies of both spa

The motivation for this paper is to illustrate and to pr
vide evidence, via an analytical expression using cusp
asymptotic constrained densities, that the entropy sum m
indeed be considered as a correlation measure. This exp
sion is also used to explain theZ-dependent behavior of th
entropy sum in an isoelectronic series. We also presen
expression for the entropy sum in neutral atoms, depend
on the ionization energy and the atomic number, which
able to reproduce the periodic features. Our results for
model entropy sum are in good qualitative agreement w
those obtained from CI~configuration interaction! and HF
~Hartree-Fock! ab initio calculations. Also, a connection be
tween the entropy sum and the correlation energy is obta
for the weakly inhomogeneous electron gas and dem
strated with calculations for the helium isoelectronic serie

II. RESULTS AND DISCUSSION

We begin the analysis of the entropy sum with the si
plest noncorrelated systems, i.e., hydrogenlike atoms. We
the ground-state position space wave functions for the hyd
genlike atoms and obtain the corresponding momen
space wave functions by the Dirac-Fourier transformati
Atomic units are used in this paper.Sr and Sp for these
systems as a function of the atomic numberZ are

Sr532 lnS Z3

p D , ~3!

Sp5 ln~32Z3p2!2
10

3
. ~4!

Upon summing Eqs.~3! and~4!, there is a cancellation of the
Z dependence inSt which yields a constant value of 6.566
©2003 The American Physical Society07-1
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Thus St is not a function of the atomic number in on
electron atomic systems. This behavior is also observed
excited states.

We now analyze the helium isoelectronic series to de
mine if theZ dependence ofSt is present with the inclusion
of electronic interactions. For simplicity, we analyze wa
functions corresponding to the singlet state. Considering
helium series without electronic interactions (Vee50), i.e.,
bare Coulomb field~BCF!, we obtain that the electron den
sity resembles that of the hydrogenlike atoms and thus
entropy sum is constant, as shown in Fig. 1. The same re
is obtained if one uses screened hydrogenic functions. N
we use simple ground-state wave functions, with differ
spatial orbitals for each electron but which allow a part
representation of the electron correlation@19#,

C~r 1 ,r 2!5CN~e2Z1r 1e2Z2r 21e2Z2r 1e2Z1r 2!, ~5!

whereCN is the normalization constant andZ1 and Z2 are
variational parameters. We calculated the values ofZ1 and
Z2 by variationally optimizing the wave functions. Ou
ground-state energy for the helium atom is equal to that
ported by Hylleraas@12# for the same type of function. In
this model, the electron correlations are responsible forZ1
ÞZ2. It is important to remark that when the interelectron
interaction is included andZ→`, thenZ1→Z2→Z and the
entropy sum tends to a constant value that is the same as
for the corresponding BCF atom.

In Fig. 1 we plotSt againstZ for the helium isoelectronic
series with@Eq. ~5!# and without~BCF atoms! interelectronic
interaction. For the case of interelectronic interaction,St was
obtained by summing the individual entropies which we
calculated by numerically integrating the expressions for
spherically averaged densities in the respective spaces@see
Eq. ~1!#. Note that the plot corresponding to the inclusion
electronic interaction looks like a (1/Zn)-type function and is
distinct from the plot corresponding to no electronic intera
tion. If we fit our entropy sum to such a function, withn
equal to 1.47, the correlation coefficient is 0.99. HF ent

FIG. 1. The entropy sum,St , for the helium isoelectronic serie
with ~solid circles! and without~open circles! electronic interaction
using the two-parameter wave function.
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pies, calculated from the Clementi-Roetti functions@13#, and
CI entropies, calculated from accurate Slater-basis CI w
functions for four isoelectronic series, are presented in Ta
I. The reported values ofn were obtained by trial from fits of
the data to (1/Zn) with the criteria that the correlation coe
ficient be greater than 0.99. Important to notice is thatn is
sensitive to the level of calculation and also increases w
more electrons~more electron correlation! are included.

Asymptotic and cusp-constrained model densities h
been used to obtain simple expressions for the Shannon
tropy in position space (Sr

asym,Sr
cusp) and in momentum spac

(Sp
asym,Sp

cusp), respectively, as functions of the first ionizatio
energy,I 1, and the atomic number,Z. The model position
space entropy, which arises from constraining the asympt
behavior in position space,Sr

asym, and the momentum spac
model entropy arising from constraining the cusp conditio
Sp

cusp, were shown to be particularly effective in qualitative
explaining the behavior of the entropies as a function oZ
@14#. Furthermore, it was shown that the inequality for t
entropy sum in Eq.~2! is obeyed for~i! Sr

cusp1Sp
cusp, ~ii !

Sr
asym1Sp

asym, and~iii ! Sr
asym1Sp

cusp, proving that these mod
els do not violate this uncertainty principle. We would expe
such a result for~i! and ~ii ! since the one-electron wav
functions corresponding to the constrained densities in
respective spaces are related by a Dirac-Fourier transfo
while the result for~iii ! is less obvious since there is no su
relationship between the wave functions. In~i! the Z depen-
dence is canceled while in~ii ! the ionization energy depen
dence is canceled, thus the entropy sum in both of th
cases has a constant value and displays noZ dependence.

In order to obtain theZ dependence of the entropy sum
we consider~iii !, i.e., we model the asymptotic behavior
the densities in the respective spaces. Now we test this m
for the entropy sum. We obtainSr

asym, Sp
cusp, andSt as

Sr
asym52

3

2
N ln I 12N lnS 23/2N

p D13N, ~6!

Sp
cusp53N ln Z1N lnS 32p2

N D2
10

3
N, ~7!

St5Sr
asym1Sp

cusp52
3

2
N ln I rel1N lnF32p3

N2 G2
N

3
, ~8!

whereI rel is the relative ionization energy defined asI 1 /I H,
andI H(5Z2/2) is the ionization energy of the correspondin

TABLE I. Values ofn obtained from fits of calculated values o
the entropy sum to (1/Zn) for different isoelectronic sequences. L
series@9#, Be series@6#, Ne series@10#.

Isoelectronic series n ~HF! n ~CI!

He 1.18 1.48
Li 1.50 1.68
Be 1.80 2.70
Ne 2.80 3.10
7-2
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SHANNON-INFORMATION ENTROPY SUM AS A . . . PHYSICAL REVIEW A67, 012507 ~2003!
hydrogenlike atom. This equation is interesting as it e
presses the entropy sum as a function of the ionization
ergy, atomic number, and the number of electrons.

The quantity ln@Irel# may be considered as a correlatio
measure since it is a logarithmic difference between the
ization energy of a hydrogenlike atom, which corresponds
noncorrelated electrons (Vee50), and the experimental firs
ionization energy, which corresponds to correlated electro
It is clear that when we treat a noncorrelated syst
(ln@Irel#→0), we obtain that the entropy sum is only a fun
tion of N. Thus, for the case of hydrogenlike atoms the e
tropy sum in Eq.~8! tends to the constant values show
above for these systems.

Now we apply the model given in Eq.~8! to the He series.
Thus

St523 ln@ I rel#110.360. ~9!

Physically, for an isoelectronic series the electron correla
tends to zero asZ→`. Our entropy sum tends to a consta
value asZ→`. However, if we define a new correlatio
measure asSt

c5St2St
Z→` , where St

Z→`510.360, then it
will have the same form as a relative correlation energy@3#
~note that this measure is different from other commo
used ones which employ a difference from the HF leve!.
Thus we have more evidence that theZ dependence of the
entropy sum for the helium isoelectronic series can be rela
to the inclusion of electron correlation. As a test, we plot
Fig. 2 the new correlation measure,St

c ~values ofI 1 required
to calculateSt

c were taken from Ref.@15#!, against the abso
lute value of the exact correlation energy,Ec @16#, for the
helium isoelectronic series. One notes that the behavio
the two quantities is similar, but not the same, as seen f
the curvature in the plot. It is also important to note that
curve becomes more linear for larger values ofEc , which
correspond to larger values ofZ.

In our analysis, the ionization energy is an important fa
tor in Sr

asymand hence inSt . In order to obtain an analytica

FIG. 2. The correlation measure,St
c , versus the absolute valu

of the exact correlation energy,Ec ~a.u.!, for the helium isoelec-
tronic series.
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solution in terms of 1/Z for the entropy sum, such as tha
suggested by our numerical results, we will use the cha
expansion of the nonrelativistic ground-state total ene
@12,17#,

E~Z,N!5Z2F«0~N!1S 1

ZD «1~N!1•••1S 1

ZnD «n~N!

1•••G . ~10!

Its relationship with the original form of the density
functional theory@18# valid for large Z and N ~Thomas-
Fermi theory@19#! was studied by March and White@20#,
and the asymptotic form of the coefficients«n(N) for suffi-
ciently largeN was given by«n(N);AnNn11/3. If we wish
to obtain a similar expansion for the ionization energy, it
necessary to use the definition of ionization energy asI 1
5E(N21)2E(N), and using Eq.~10! we obtain

I 1~Z,N!5Z2(
n50

`

«n8~N!Z2n, ~11!

where the coefficients«n8 are given by«n(N21)2«n(N).
Substituting Eq.~11! into Eq. ~8! and considering the

large-Z region using the MacLaurin expansion for ln(12x),
wherex is the second most important contribution (n51) in
Eq. ~11!, we may express the entropy sum for any isoel
tronic series as

St;A1B(
n50

`
B8~n!

~n11!Zn11
, ~12!

where B is (23/2)N and A and B8(n) are constants tha
depend analytically on the parameters of Eqs.~8! and ~11!.
These terms may be obtained by fitting Eq.~12! to the
known ~calculated! entropy sum of any isoelectronic serie
It is important to note that including more than two terms
Eq. ~11! will yield the exact expression as in Eq.~12! but
with different values for the constants. Though the pres
result is only valid in the limit of largeZ, it is interesting to
determine whether it may be generalized to a wider range
atomic number, since it is the first analytical expression
the entropy sum reported in the literature as a function oZ
and N. Note that based on our numerical results, this eq
tion verifies our conjecture that the entropy sum behaves
(1/Zn)-type function. Fitting by least squares the entro
sum of Eq.~12! to values obtained from CI calculations an
considering two terms in the summation yields correlat
coefficients greater than 0.99 for all the isoelectronic se
studied. These fits are reported in Table II. With the inclus
of more terms in the expansion, we observed that the co
lation coefficients moved closer to 1.

According to our model displayed in Eq.~8!, we obtain
for neutral atoms (N5Z)

St52
3

2
Z ln@ I rel#22Z ln@Z#16.5665Z. ~13!
7-3
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GUEVARA, SAGAR, AND ESQUIVEL PHYSICAL REVIEW A67, 012507 ~2003!
Note that forZ51 in the above equation, we recover th
exact value of 6.5665 for the hydrogen atom. In Fig. 3,
present plots ofSt versus Z for neutral atoms, from H
through Kr, calculated from the model, along with corr
sponding values obtained from CISD~configuration interac-
tion single and double excitations! calculations with a
6-311G Gaussian-type orbital basis set. One observes
our proposed model exhibits the same behavior as theab
initio values. Note also that our model with its explicit d
pendence onI 1 and Z is able to reproduce the periodic b
havior present inSt , especially the behavior around th
noble gas atoms. We may also define a relative correla
measure, but now for neutral atoms, asSt

C5St2St
H , where

St
H is the total entropy corresponding to a hydrogenic den

which is normalized to the number of electrons. Substitut
in Eq. ~13! yields St

C52 3
2 Z ln@Irel#. In Fig. 4, we plotSt

C

versusEc for neutral atoms, from He through Ar. One o
serves that overall there is no obvious relationship betw
the two quantities, however one notes that the relationsh
more intimate within a particular shell where a rough line
ity is observed. Thus, on comparison to Fig. 2, it would se
that St

c is more suitable as a correlation measure for isoe
tronic series thanSt

C is for neutral atoms when both are com
pared to the correlation energy.

Gadre@21# has computed the information entropies for t
Thomas-Fermi atoms as a prototype for atomic systems

TABLE II. Values of parameters and the correlation coefficie
R resulting from fits@a(1/Z)1b(1/Z)21c# of calculated values of
the entropy sum in different isoelectronic series (N52,3,4,10). Li
series@9#, Be series@6#, Ne series@10#.

Isoelectronic series a b c R

He 0.0856 0.2878 10.3644 0.9999
Li 0.3160 2.3846 16.1467 0.9996
Be 21.1542 8.9122 20.1766 0.9984
Ne 298.2344 837.9538 40.5624 0.998

FIG. 3. The entropy sum,St , for neutral atoms, from H through
Kr, obtained fromab initio calculations (St

calc, solid circles! and
from the cusp-asymptotic constrained model (St

M , open circles!.
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conjectured that the information entropies for atomic syste
may be represented by the formS5N(a1b ln N), wherea
and b can be fitted using mathematical methods. We n
propose another prototype for the information entropy
atomic systems using the expressions forSp

cusp, Sr
asym, andSt

in Eqs.~6!–~8!. In this case, our expression forSp is of the
same form as that used by Gadre, while our expressions
St andSr are different and take the general form

St,r5N~a ln I 11b ln N1c!. ~14!

The difference between our atomic prototype and the
reported by Gadre, and hence its novelty, is the inclusion
the term with its dependence on the ionization energy, t
allowing the explanation of the observed periodic behav
Fitting the values for the neutral atoms (1<Z<36) obtained
from the CISD calculations to Eq.~14!, we obtain a correla-
tion coefficient very close to 1, which indicates that o
model is indeed a good representation of the actual beha
~see Table III!.

It is also interesting to compare our prototype to the o
in the Thomas-Fermi approximation as reported by Ga
@21#. In this way, we test our model in the asymptotic limit
a large number of electrons. For this approach, it is neces
to consider the asymptotic form of the coefficient«n(N) in
the expression for the ionization energy@Eq. ~11!#. Thus,
ln(I1);2.333 ln(Z)1k, wherek is a constant that depends o
the solution of the Thomas-Fermi problem. If we substitu

t

FIG. 4. The correlation measure,St
C , versus the absolute valu

of the exact correlation energy,Ec ~a.u.!, for neutral atoms, from He
through Ar.

TABLE III. Values of parameters and the correlation coefficie
R resulting from linear fits ofSr , Sp , and St to S5N(a ln I1

1b ln N1c) for neutral atoms (1<Z<36). Note that the missing
value is not included since Eq.~7! has no lnI1 dependence.

a b c R

Sr 20.4235 21.7676 3.8526 0.9909
Sp 0.7380 2.2180 0.9680
St 20.2158 20.9966 6.2086 0.9953
7-4
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SHANNON-INFORMATION ENTROPY SUM AS A . . . PHYSICAL REVIEW A67, 012507 ~2003!
this last expression into Eq.~13!, we reproduce the genera
forms of the information entropies as reported by Gad
This result corroborates that our new expressions are fu
tionally equal to those of the Thomas-Fermi approximat
in the limit of largeN.

It would also be interesting to examine the relations
between the entropy sum and the correlation energy. Gr
et al. @22#, for a weakly inhomogeneous electron gas, ha
connectedSr to the correlation energy using the work
Gell-Mann and Brueckner~GB! @23# and obtained the ex
pression

Ec
GB5ASr1BN, ~15!

where A and B are constants, equal to 0.010 36 an
20.062 85, respectively, andN is the number of electrons
Thus we see an interesting physical link betweenSr and the
correlation energy.

We may refine Eq.~15! by noting that this expression o
any of the local-spin-density~LSD! type in the correlation
functional overestimates the correlation energy by a facto
2. The most important physical effect that causes this pr
lem in the LSD approximation is the self-interaction that c
be avoided using the procedures of Perdewet al. @24# or
Stoll et al. @25#. Perdewet al. @24# removed the spurious
orbital self-correlation using a simple scheme of se
interaction correction~SIC!,

Ec
SIC5Ec

LSD@r↑ ,r↓#2(
as

Ec
LSD@ras,0#, ~16!

whereras is the density of the occupied orbitalas. Stoll
et al. @25# proposed the correction only for antiparallel-sp
correlation as

Ec
Stoll5Ec

LSD@r↑ ,r↓#2Ec
LSD@r↑,0#2Ec

LSD@r↓,0#. ~17!

Perdewet al. @27# fitted the Ceperley-Alder correlation ene
gies per electron,« @26#, to the simple expressions

«~r/2,r/2!50.0311 lnr s20.04810.0034r sln r s20.0116r s ,
~18!

«~r,0!50.015 55 lnr s20.026910.0013r sln r s20.0048r s ,
~19!

with an error of 1%.r s is defined in terms of the density a
r5(4pr s

3/3)21. These expressions are valid for high den
ties (0,r s,5), i.e., those of the greatest importance in
oms.

Using both of the above procedures, and considering
in typical atomic densities the first two terms in each of E
~18! and ~19! are dominant@27#, we may substitute thes
expressions into Eqs.~16! and ~17!, respectively, and using
Eq. ~1!, we rewrite the correlation energy in terms of th
Shannon entropy as

Ec
(SIC)5A8Sr1B8N, ~20!

Ec
(Stoll)5A8Sr1B9N, ~21!
01250
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where A850.005 18, B852(0.028 5210.005 18 lnN), and
B9520.032 12. In Fig. 5, we present the exact correlat
energy@16# andEc calculated from Eqs.~15!, ~20!, and~21!
for neutral atoms whereSr was obtained from the CISD
calculations. One observes a similarity among these qua
ties, however one notes that the behavior ofEc

(SIC) andEc
(Stoll)

is closer to the exact correlation energy than that ofEc
GB. We

shall use the expression in Eq.~21! because of its simplicity
and the fact that it reproduces well the values of atom
correlation energies. A reasonable question would be the
of the asymptotic model forSr in Eqs.~15!, ~20!, and~21!.
This form, with its I 1 dependence, would provoke a high
periodic behavior which is not present in the actual corre
tion energy, as can be seen in Fig. 5.

We substituteSr5St2Sp in the previous expression an
use for the momentum space entropy the cusp model
sented in Eq.~7!. We now focus on the helium isoelectron
series. For simplicity, instead of Eq.~7!, we use its fit to CI
calculations (Sp56.6246 lnZ11.9617),@28# which yields

Ec
(Stoll)5A8St20.0343 lnZ20.0743. ~22!

This equation gives the correlation energy in terms of
entropy sum. There is one aspect of Eq.~22! that deserves
attention. In light of the connection between the entropy s
and the correlation energy in Eq.~22!, it is not surprising that
we obtained the relationship in Eq.~12! ~substantiated by
calculations presented in Table II! that is similar to the 1/Z
expansion for the correlation energy. Hence we note that
entropy sum in an isoelectronic series would tend to a c
stant value asZ is increased~for non-near-degenerate sy
tems! in a similar fashion to that observed for the correlati
energy@16#.

We may use the last expression as a guide to examine
connection between the correlation energy and entropy s
In Fig. 6, we present values of the exact correlation energ
of the helium isoelectronic series@16# against the entropy
sum obtained from CI calculations. One notes the linear

FIG. 5. The absolute value of the exact correlation energy,Ec

~solid squares!, Ec
(SIC) ~solid circles!, Ec

(Stoll) ~open squares!, Ec
GB

~solid diamonds!, and St ~open circles!, for neutral atoms. Values
for the correlation energies are in atomic units.
7-5
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GUEVARA, SAGAR, AND ESQUIVEL PHYSICAL REVIEW A67, 012507 ~2003!
havior, with small deviations occurring for the points at t
extreme right-hand side of the plot. These points corresp
to smallZ, precisely where the largeZ criteria used to con-
struct the 1/Z expansion of the entropy sum in Eq.~12!, and
hence the connection to the correlation energy, would be
valid. In Fig. 5, for neutral atoms, we also compare the
havior of the entropy sum with the exact correlation ener
where one can note a similarity in their behavior with t

FIG. 6. The absolute value of the exact correlation energy,Ec

~a.u.!, versusSt , the entropy sum obtained from CI wave function
for the helium isoelectronic series.
d

a
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ys
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, J

el
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largest differences in behavior occurring at the noble
atoms.

III. CONCLUSIONS

In conclusion, theZ dependence of the entropy sum a
pears when the electron-electron interaction is switched o
correlation is taken into account. We obtain a relationship
the entropy sum in terms of the logarithmic difference b
tween the experimental first ionization energy and the i
ization energy of the corresponding hydrogenlike atom. T
expression illustrates and provides evidence that the ent
sum may be used as a correlation measure. An analy
expression in terms of a 1/Z expansion for largeZ may be
obtained for the entropy sum in isoelectronic series using
charge expression for the nonrelativistic ground-state t
energy. In the limit of largeN, our new atomic prototype for
St is similar to that of the Thomas-Fermi model reported
Gadre. We also obtain a connection between the entropy
and the correlation energy in a weakly inhomogenous e
tron gas which is demonstrated with calculations for the
lium isoelectronic series. Also, for neutral atoms, we ha
shown a similar tendency between the exact correlation
ergy and the entropy sum.
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@8# M. Hô, R.P. Sagar, J.M. Pe´rez-Jorda, V.H. Smith, Jr., and R.O

Esquivel, Chem. Phys. Lett.219, 15 ~1994!.
@9# R.O. Esquivel, A.N. Tripathi, R.P. Sagar, and V.H. Smith, Jr.

Phys. B25, 2925~1992!.
@10# A.N. Tripathi, V.H. Smith, Jr., R.P. Sagar, and R.O. Esquiv

Phys. Rev. A54, 1877~1996!.
@11# I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys

44, 129 ~1979!.
@12# E.A. Hylleraas, Z. Phys.54, 347 ~1929!.
@13# E. Clementi and C. Roetti, At. Data Nucl. Data Tables14, 177

~1974!.
@14# R.P. Sagar, J.C. Ramirez, R.O. Esquivel, M. Hoˆ, and
le,

,

.

.

,

V.H. Smith, Jr., Phys. Rev. A63, 022509~2001!.
@15# CRC Handbook of Chemistry and Physics, 80th edited by D.R.

Lide ~CRC Press, New York, 1999!.
@16# S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parp

and C.F. Fischer, Phys. Rev. A47, 3649~1993!.
@17# D. Layser, Ann. Phys.~N.Y.! 8, 271~1959!; E.A. Hylleraas, Z.

Phys.65, 209 ~1930!.
@18# R. G. Parr and W. Yang,Density Functional Theory of Atom

and Molecules~Oxford, New York, 1989!.
@19# See, e.g., the review by N.H. March, Adv. Phys.6, 1 ~1957!;

N. H. March,Self-Consistent Fields in Atoms~Pergamon, Ox-
ford, 1975!.

@20# N.H. March and R.J. White, J. Phys. B5, 466 ~1972!.
@21# S.R. Gadre, Phys. Rev. A30, 620 ~1984!.
@22# A. Grassi, G.M. Lombardo, N.H. March, and R. Pucci, Int.

Quantum Chem.69, 721 ~1998!.
@23# M. Gell-Mann and K.A. Brueckner, Phys. Rev.106, 364

~1957!.
@24# J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
@25# H. Stoll, C.M.E. Pavlidou, and H. Preuss, Theor. Chim. Ac

49, 143 ~1978!.
@26# D.M. Ceperley and B.J. Alder, Phys. Rev. Lett.45, 566~1980!.
@27# J.P. Perdew, E.R. McMullen, and A. Zunger, Phys. Rev. A23,

2785 ~1981!.
@28# The correlation coefficient of this linear fit is 0.9998.
7-6


