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Shannon-information entropy sum as a correlation measure in atomic systems
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The interpretation of the entropy sum as a correlation measure is demonstrated for isoelectronic series via an
analytical expression that models the asymptotic behavior of the electronic charge density in position space and
the cusp behavior in momentum space. We also develop an expression for the entropy sum in neutral atoms
with an explicit dependence on the ionization energy and the atomic number. The results obtained from these
relations are in qualitative agreement with the behavior observed &wrimitio calculations. A connection
between the entropy sum and the correlation energy is obtained for the weakly inhomogeneous electron gas
and demonstrated via calculations for the helium isoelectronic series.
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[. INTRODUCTION principle may be formulated in these terms for any quantum
many-electron systeifrb,11],
One of the most well known problems in many-electron
atomic physics is electron correlation. It was defined by S$=S,+S;=3N(1+In7)—-2NInN
Lowdin [1] in energetic terms as the difference between the =N(6.4342-2 InN) )
exact nonrelativistic total energy and the Hartree-Fock ap- ' ’

proximation. However, there also exists other measures Qpron analysis of this last equation, it was sugge§sdhat
electron correlation in the literature such as the statisticahne may use the entropy sum to provideadancedmeasure
correlation coefficients introduced by Kutzelniggal. [2],  py taking into account the Shannon entropies of both spaces.
and more recently, the concept of correlation entropy as in-" The motivation for this paper is to illustrate and to pro-
troduced by Zieschet al.[3] as a measure of the correlation yjde evidence, via an analytical expression using cusp and
strength. Liuet al. [4] have also used density-functional asymptotic constrained densities, that the entropy sum may
theory to relate the correlation energy with the moménts  indeed be considered as a correlation measure. This expres-
of the position space density distribution. sion is also used to explain tiedependent behavior of the
The Shannon entropy in position space is defined as  entropy sum in an isoelectronic series. We also present an
expression for the entropy sum in neutral atoms, dependent
on the ionization energy and the atomic number, which is
S,= —f p(NInp(r)dr, (1) able to reproduce the periodic features. Our results for the
model entropy sum are in good qualitative agreement with
those obtained from C(configuration interactionand HF
wherep(r) is the electronic charge density. The momentum(Hartree-Fock ab initio calculations. Also, a connection be-
space Shannon entrop§,, of the electronic momentum tween the entropy sum and the correlation energy is obtained
density,7(p), is defined in a fully analogous way with both for the weakly inhomogeneous electron gas and demon-

densities normalized td\, the number of electrons in the strated with calculations for the helium isoelectronic series.
system. The Shannon entropy is a measure of the delocaliza-

tion or the lack ofstructurein the underlying_distributior_w. Il. RESULTS AND DISCUSSION

Gadreet al. [5] have noted some interesting properties of
the entropy sumS,=S,+S,,, for atoms at the Hartree-Fock ~ We begin the analysis of the entropy sum with the sim-
level: (i) S, attains a minimum value for the ground state andplest noncorrelated systems, i.e., hydrogenlike atoms. We use
(i) S is invariant to scaling while the individual entropies the ground-state position space wave functions for the hydro-
are not. In a study of an isoelectronic series, the numericagenlike atoms and obtain the corresponding momentum
value ofS, was noted to increase with the inclusion of elec-space wave functions by the Dirac-Fourier transformation.
tron correlation in the wave functiof6]. S, has also been Atomic units are used in this pape$, and S, for these
studied as a measure of the basis set quffity,g. It has  systems as a function of the atomic numieare
been shown5] that in the case of neutral atoms there is no
complementary behavior between the Shannon entropies of S =3-1In
the position and momentum spaces, as has been noted for P
members of an isoelectronic ser{@9,10. However, Gadre
et al. [5] did note a periodic dependence 8f in neutral | 3 2 E
atoms which was not studied in their paper but will be ana- Sy=In(322%7%) 3 (4)
lyzed here.

The importance of the entropy sum is firmly establishedUpon summing Eqq3) and(4), there is a cancellation of the
by noting that a stronger version of Heisenberg’s uncertainty dependence %, which yields a constant value of 6.5665.
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1060 ' ' ' ' ' ' TABLE I. Values ofn obtained from fits of calculated values of
the entropy sum to (Z") for different isoelectronic sequences. Li
series[9], Be serie6], Ne serieq10].

10.55

Isoelectronic series n (HF) n (Cl)

1050 [ 7 He 1.18 1.48
Li 1.50 1.68
! Be 1.80 2.70
fo4s Ne 2.80 3.10

1040 pies, calculated from the Clementi-Roetti functi¢t8], and
Cl entropies, calculated from accurate Slater-basis Cl wave
000000 00000000000 00000 functions for four isoelectronic series, are presented in Table
s 10 15 2 2 w0 £ I. The reported values af were obtained by trial from fits of

z the data to (12") with the criteria that the correlation coef-

FIG. 1. The entropy sun,, for the helium isoelectronic series ficient be greater than 0.99. Important to notice is tas
with (solid circles and without(open circlek electronic interaction ~ S€Nsitive to the level of calculation and also increases when
using the two-parameter wave function. more electrongmore electron correlatigrare included.
Asymptotic and cusp-constrained model densities have
Thus S; is not a function of the atomic number in one- been used to obtain simple expressions for the Shannon en-
electron atomic systems. This behavior is also observed fdropy in position space;™>",S**h) and in momentum space
excited states. (S2YM S°h | respectively, as functions of the first ionization
We now analyze the helium isoelectronic series to deterenergy,|,, and the atomic numbeg. The model position

mine if theZ dependence d¥, is present with the inclusion space entropy, which arises from constraining the asymptotic
of electronic interactions. For simplicity, we analyze wavebehavior in position spacésf)‘sym, and the momentum space
functions corresponding to the singlet state. Considering thenodel entropy arising from constraining the cusp condition,
helium series without electronic interactiong.(=0), i.e.,  SUP were shown to be particularly effective in qualitatively
bare Coulomb fieldBCF), we obtain that the electron den- explaining the behavior of the entropies as a functiorz of
sity resembles that of the hydrogenlike atoms and thus the14]. Furthermore, it was shown that the inequality for the
entropy sum is constant, as shown in Fig. 1. The same resuihtropy sum in Eq(2) is obeyed for(i) SCUSP SR (i)
is obtained if one uses screened hydrogenic functions. Nexgasym, S, and(jii) S2¥™+ S2*P, proving that these mod-

; ; o A
we use simple ground-state wave functions, with differen|g 4o not violate this uncertainty principle. We would expect
spatial orbitals for each electron but which allow a partialg;,.h 4 result for(i) and (i) since the one-electron wave

representation of the electron correlatid], functions corresponding to the constrained densities in the
5) res_pective spaces are related b_y a D_irac-Fourie_r transform,
while the result for(iii ) is less obvious since there is no such
whereCy is the normalization constant arj andz, are ~ relationship between the wave functions.(inthe Z depen-
variational parameters. We calculated the valuegpfind ~ dence is canceled while ifii) the ionization energy depen-
Z, by variationally optimizing the wave functions. Our dence is canceled, thus the entropy sum in both of these
ground-state energy for the helium atom is equal to that re@S€s has a constant value and display& dependence.
ported by Hylleraag12] for the same type of function. In In order to obtain th&Z dependence of the entropy sum,

this model, the electron correlations are responsiblezfor W€ consideriii), i.e., we model the asymptotic behavior of
#Z,. It is important to remark that when the interelectronicthe densities in the respective spaces. Now we test this model

. . .. Qasym CUsp
interaction is included and—, thenZ,—Z,—Z and the [0 the entropy sum. We obtal8;>", S7***, and$; as
entropy sum tends to a constant value that is the same as that

10.35
0

W(ry,r,)=Cy(e “1e %22+ g 22117 4112),

for the corresponding BCF atom. asym_ _ EN Inl:—N In( 2 +3N (6)
In Fig. 1 we plotS; againstZ for the helium isoelectronic P 2 ' ’

series with Eq. (5)] and without(BCF atom$ interelectronic

interaction. For the case of interelectronic interacti®nyas usp 27%\ 10

obtained by summing the individual entropies which were S;*=3NInZ+Nin N3N ()

calculated by numerically integrating the expressions for the

spherically averaged densities in the respective splsms 3 32731 N

Eq. (1]. Note that the plot corresponding to the inclusion of S, =S SPUSP— — N In 1™+ N In T —, (8

electronic interaction looks like a (@7)-type function and is ? N 2 N2 | 3

distinct from the plot corresponding to no electronic interac-
tion. If we fit our entropy sum to such a function, with  wherel™ is the relative ionization energy defined lag1",
equal to 1.47, the correlation coefficient is 0.99. HF entro-andl"(=Z?/2) is the ionization energy of the corresponding
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' ' ' ' ] solution in terms of X for the entropy sum, such as that
25 [ ] suggested by our numerical results, we will use the charge

I 1 expansion of the nonrelativistic ground-state total energy
[12,17,

20

A ] E(Z,N)=2?

1 1
80(N)+(z)81(N)+ ceet Z_ 8n(N)

'_ f . (10

Its relationship with the original form of the density-
05 1 . functional theory[18] valid for large Z and N (Thomas-
[ . : . . ] Fermi theory[19]) was studied by March and Whife0],
0.042 0.043 g 0™ 0.045 0.04 and the asymptotic form of the coefficientg(N) for suffi-

‘ ciently largeN was given bys,(N)~A,N"* 2 If we wish

FIG. 2. The correlation measurgS, versus the absolute value t0 obtain a similar expansion for the ionization energy, it is

of the exact correlation energ§, (a.u), for the helium isoelec- necessary to use the definition of ionization energyl as
tronic series. =E(N—-1)—E(N), and using Eq(10) we obtain

hydrogenlike atom. This equation is interesting as it ex-
presses the entropy sum as a function of the ionization en-
ergy, atomic number, and the number of electrons.

The quantity Ifi"™] may be considered as a correlation where the coefficients; are given bys,(N—1)—z,(N).
measure since it is a logarithmic difference between the ion- Substituting Eq.(11) into Eq. (8) and considering the
ization energy of a hydrogenlike atom, which corresponds tqargeZ region using the MacLaurin expansion for Ir(%),
noncorrelated electrond/(.=0), and the experimental first wherex is the second most important contributiam=1) in

ionization energy, which corresponds to correlated electrongq. (11), we may express the entropy sum for any isoelec-
It is clear that when we treat a noncorrelated systenronic series as

(In[I"®"]—0), we obtain that the entropy sum is only a func-
tion of N. Thus, for the case of hydrogenlike atoms the en-
tropy sum in Eq.(8) tends to the constant values shown S~A+B
above for these systems.

Now we apply the model given in E¢B) to the He series.
Thus

|1(z,N)=222O el(N)Z™", (11)

oo

B'(n)

A=0 (n+1)Z"+1 12
where B is (—3/2)N and A and B'(n) are constants that
depend analytically on the parameters of E@.and (11).
These terms may be obtained by fitting E42) to the
known (calculated entropy sum of any isoelectronic series.
It is important to note that including more than two terms in
Physically, for an isoelectronic series the electron correlatiorEq. (11) will yield the exact expression as in E(L2) but
tends to zero a&—<. Our entropy sum tends to a constant yijth different values for the constants. Though the present
value asZ—. However, if we define a new correlation result is only valid in the limit of larg&, it is interesting to
measure ass{=S,—S{ ", where §{*=10.360, then it determine whether it may be generalized to a wider range of
will have the same form as a relative correlation end@ly  atomic number, since it is the first analytical expression of
(note that this measure is different from other commonlythe entropy sum reported in the literature as a functiod of
used ones which employ a difference from the HF lgvel andN. Note that based on our numerical results, this equa-
Thus we have more evidence that elependence of the tion verifies our conjecture that the entropy sum behaves as a
entropy sum for the helium isoelectronic series can be relate¢/z") -type function. Fitting by least squares the entropy
to the inclusion of electron correlation. As a test, we plot insum of Eq.(12) to values obtained from Cl calculations and
Fig. 2 the new correlation measu®, (values ofl; required  considering two terms in the summation yields correlation
to calculateS; were taken from Ref.15]), against the abso- coefficients greater than 0.99 for all the isoelectronic series
lute value of the exact correlation enerds, [16], for the  studied. These fits are reported in Table Il. With the inclusion
helium isoelectronic series. One notes that the behavior aff more terms in the expansion, we observed that the corre-
the two quantities is similar, but not the same, as seen frorfation coefficients moved closer to 1.
the curvature in the plot. It is also important to note that the According to our model displayed in E¢8), we obtain
curve becomes more linear for larger valueskgf, which  for neutral atoms = Z)
correspond to larger values df

In our analysis, the ionization energy is an important fac-
tor in S¥™and hence ir§; . In order to obtain an analytical

Si=—3 In[1"™]+10.360. ©)

S=-— gZIn[I’e']—ZZIn[Z]+6.5665. (13)
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TABLE Il. Values of parameters and the correlation coefficient 160 [ ' ' ' ' '
R resulting from fits[a(1/Z) + b(1/Z)2+c] of calculated values of
the entropy sum in different isoelectronic seri&6<2,3,4,10). Li 140
series[9], Be serie§6], Ne serie§10].

120
Isoelectronic series a b [ R wo F ]
He 0.0856 0.2878 10.3644 09999 w F _
Li 0.3160 2.3846 16.1467 0.9996 ]
Be —1.1542 8.9122 20.1766 0.9984 60 [ 1
Ne —908.2344 837.9538 40.5624 0.9987 [ ]
w F ]

Note that forZ=1 in the above equation, we recover the *
exact value of 6.5665 for the hydrogen atom. In Fig. 3, we . s s s s s

present plots ofS;, versusZ for neutral atoms, from H ° 04 02 03 o4 05 08
through Kr, calculated from the model, along with corre-
sponding values obtained from ClSPonfiguration interac- FIG. 4. The correlation measurg; , versus the absolute value

tion single and double excitationscalculations with a  of the exact correlation enerdy, (a.u), for neutral atoms, from He
6-311G Gaussian-type orbital basis set. One observes thtrough Ar.

our proposed model exhibits the same behavior asathe

initio values. Note also that our model with its explicit de- conjectured that the information entropies for atomic systems
pendence on; andZ is able to reproduce the periodic be- may be represented by the for&=N(a+bInN), wherea
havior present inS;, especially the behavior around the andb can be fitted using mathematical methods. We now
noble gas atoms. We may also define a relative correlatioRropose another prototype for the information entropy of
measure, but now for neutral atoms, $s=S,— S, where ~ atomic systems using the expressionsSpf, ST, andS;

St is the total entropy corresponding to a hydrogenic density? Eds.(6)—=(8). In this case, our expression f6r, is of the
which is normalized to the number of electrons. Substitutionrs@me form as that used by Gadre, while our expressions for
in Eq. (13) yields S[C= —3ZIn[I"™. In Fig. 4, we pIotS[C S andS, are different and take the general form

versusE,. for neutral atoms, from He through Ar. One ob-
serves that overall there is no obvious relationship between

the two quantities, however one notes that the relationship i‘T‘he difference between our atomic prototype and the one
more intimate within a particular .shell Whgzre a_rough Iinear'reported by Gadre, and hence its novelty, is the inclusion of
Ity Is (gl?served. Thus, on comparison to Fig. 2, it WOUI.d S€Mhe term with its dependence on the ionization energy, thus
thatS; is more suitable as a correlation measure for |soelecé”0ng the explanation of the observed periodic behavior.
tronic series thaIStC is_ for neutral atoms when both are com- Fitting the values for the neutral atoms<Z<36) obtained
pared to the correlation energy. , _ from the CISD calculations to E¢14), we obtain a correla-
Gadre[21] has computed the information entropies for thetjon coefficient very close to 1, which indicates that our
Thomas-Fermi atoms as a prototype for atomic systems. Hg,oqe| is indeed a good representation of the actual behavior
, , (see Table II).
w0 [ 1 wo It is also interesting to compare our prototype to the one
in the Thomas-Fermi approximation as reported by Gadre
[21]. In this way, we test our model in the asymptotic limit of
] a large number of electrons. For this approach, it is necessary
m to consider the asymptotic form of the coefficien(N) in

S,,=N(alnl;+bInN+c). (14

.M L 1 s the expression for the ionization ener@igq. (11)]. Thus,
8™ ] In(1,)~2.333In@)+k, wherek is a constant that depends on
w [ 0 the solution of the Thomas-Fermi problem. If we substitute

TABLE lIl. Values of parameters and the correlation coefficient

1 100 R resulting from linear fits ofS,, S;, and S; to S=N(alnl,
] +bIn N+c) for neutral atoms (¥£Z=<36). Note that the missing
o [ value is not included since E¢7) has no In; dependence.
\ . , , , , \ 1
0 5 10 15 20 25 30 35 40 a b Cc R
Atomic Numb
tomie Number S, ~04235 17676 3.8526 0.9909
FIG. 3. The entropy sun§,, for neutral atoms, from H through S_ 0.7380 2.2180 0.9680
Kr, obtained fromab initio calculations §2°, solid circleg and s, —0.2158 —0.9966 6.2086 0.9953

from the cusp-asymptotic constrained moc@{l"( open circles
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this last expression into Eq13), we reproduce the general 14 [ 7~ ©— © © T T T T T T T
forms of the information entropies as reported by Gadre. ]
This result corroborates that our new expressions are func 12 [ b
tionally equal to those of the Thomas-Fermi approximation ]
in the limit of largeN. 1o [ ] %0
It would also be interesting to examine the relationship ]
between the entropy sum and the correlation energy. Grass °® | 1
et al. [22], for a weakly inhomogeneous electron gas, have® i {8
connectedS, to the correlation energy using the work of  °° 1 %
Gell-Mann and Brueckne(GB) [23] and obtained the ex- i ]
pression 04 1
ESP=AS,+BN, (15 oz ]
10

where A and B are constants, equal to 0.01036 and oo s s ; s u 1 1 1
—0.062 85, respectively, and is the number of electrons. Atomic Number
Thus we see an interesting physical link betw&rand the

- FIG. 5. The absolute value of the exact correlation enegy,
correlation energy.

X ) ) ) (solid squares ES'® (solid circles, ES" (open squargs ESB
We may refine E_q(15) by noting that _thls EXPressIon O (sqjig diamondsy and S, (open circleg for neutral atoms. Values

any Qf the Iocal-s_pln-densan_SD) type in the correlation o the correlation energies are in atomic units.

functional overestimates the correlation energy by a factor of

lem in the LSD approximation is the self-interaction that cangr— _ 93212 In I,:ig. 5, we present the exact correlation

be avoided using the procedures of Perdewal. [24] or energy[16] andE,, calculated from Eqg(15), (20), and(21)
Stoll et al. [25]. Perdewet al. [24] removed the SpUrious o neytral atoms wher&, was obtained from the CISD
orbital self-correlation ‘using a simple scheme of self-;50\jations. One observes a similarity among these quanti-
interaction correctionSIC), ties, however one notes that the behavioEgH®) ande>*"
is closer to the exact correlation energy than thai?ﬂ‘. We
ESC=E-Sp1 01— 2 ES 0000l (16)  shall use the expression in E@1) because of its simplicity

«T and the fact that it reproduces well the values of atomic
correlation energies. A reasonable question would be the use
of the asymptotic model fo§, in Egs.(15), (20), and(21).
This form, with its|, dependence, would provoke a highly
periodic behavior which is not present in the actual correla-

Stoll_ =LSD LSD, LSD, tion energy, as can be seen in Fig. 5.

BT =B e o] =B o 01 B, 01 (17 We su%ititutépzst—sw in the gé)revious expression and
Perdewet al.[27] fitted the Ceperley-Alder correlation ener- Use for the momentum space entropy the cusp model pre-
gies per electrong [26], to the simple expressions sented in Eq(7). We now focus on the helium isoelectronic

series. For simplicity, instead of E¢), we use its fit to Cl
£(pl2,p/2)=0.0311 Inr g— 0.048+ 0.0034 (Inr—0.0116 ¢, calculations §,=6.6246 InZ+1.9617),[28] which yields
(18)

wherep,, is the density of the occupied orbitalo. Stoll
et al. [25] proposed the correction only for antiparallel-spin
correlation as

ESN=A’S—0.0343InZ—0.0743. (22)
¢(p,0)=0.015 55 Irr .— 0.0269+ 0.0013 JIn r.— 0.0048
(199  This equation gives the correlation energy in terms of the
) ] ] ] ) entropy sum. There is one aspect of E2R) that deserves
with an error of 1%r is defined in terms of the density as attention. In light of the connection between the entropy sum
p=(4mr2/3)"*. These expressions are valid for high densi-and the correlation energy in EQ2), it is not surprising that
ties (0<rs<5), i.e., those of the greatest importance in at-we obtained the relationship in El2) (substantiated by
oms. calculations presented in Table that is similar to the &
Using both of the above procedures, and considering thaéxpansion for the correlation energy. Hence we note that the
in typical atomic densities the first two terms in each of Egs.entropy sum in an isoelectronic series would tend to a con-
(18) and (19) are dominan{27], we may substitute these stant value ag is increasedfor non-near-degenerate sys-
expressions into Eq¢16) and (17), respectively, and using temsg in a similar fashion to that observed for the correlation
Eq. (1), we rewrite the correlation energy in terms of the energy[16].
Shannon entropy as We may use the last expression as a guide to examine the
connection between the correlation energy and entropy sum.

(SIC)_ A1 ’ X ” i
EcT=A'S,TB'N, (20 In Fig. 6, we present values of the exact correlation energies

(Stol)_ A+ , of the helium isoelectronic serigd6] against the entropy
ECT=A"S,+B"N, (21)  sum obtained from CI calculations. One notes the linear be-
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N ' ' ' ' ' largest differences in behavior occurring at the noble gas
0.0455 . atoms.

o0 » IIl. CONCLUSIONS
00445 . In conclusion, theZ dependence of the entropy sum ap-
oouo F ] pears when the electron-electron interaction is switched on or

E correlation is taken into account. We obtain a relationship for

00435 [ . ] the entropy sum in terms of the logarithmic difference be-

tween the experimental first ionization energy and the ion-

0.0430 ization energy of the corresponding hydrogenlike atom. This

expression illustrates and provides evidence that the entropy

sum may be used as a correlation measure. An analytical

L L expression in terms of a Z/expansion for larg&Z may be

- - - - ' ' obtained for the entropy sum in isoelectronic series using the
1o 1040 fo4z To4a 1048 1048 charge expression for the nonrelativistic ground-state total
energy. In the limit of largeéN, our new atomic prototype for
FIG. 6. The absolute value of the exact correlation endfgy, S is similar to that of the Thomas-Fermi model reported by

(a.u), versusS;, the entropy sum obtained from Cl wave functions, Gadre. We also obtain a connection between the entropy sum

for the helium isoelectronic series. and the correlation energy in a weakly inhomogenous elec-

tron gas which is demonstrated with calculations for the he-

havior, with small deviations occurring for the points at theIIum |soeIe_ct(on|c series. Also, for neutral atoms, we have
extreme right-hand side of the plot. These points corresponﬁhown a similar tendency between the exact correlation en-
to smallZ, precisely where the large criteria used to con- ergy and the entropy sum.

struct the 1Z expansion of the entropy sum in E¢.2), and
hence the connection to the correlation energy, would be less
valid. In Fig. 5, for neutral atoms, we also compare the be- This research was supported in part by the Consejo Na-
havior of the entropy sum with the exact correlation energygional de Ciencia y TecnologiMexico(CONACyT) through
where one can note a similarity in their behavior with theGrant No. 29286E.

0.0425

0.0420
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