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Algorithm to derive exact exchange-correlation potentials from correlated densities in atoms
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A simple algorithm is presented to derive accurately the exchange-correlation potential in the density func-
tional theory(DFT) from the electron density. The method, which can be used with any physically acceptable
density as input, is applied here to the densities in atoms obtained from high-level Green’s function calcula-
tions. The resulting potentials show the correct asymptotic behavior and the characteristic intershell peaks. We
illustrate the possible use of these potentials in fitting procedures for new functionals, by investigating the
HCTH functional[F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. RA9s6264
(1998 ]. The potentials derived from Green’s function one-body densities provide a microscopic foundation for
present-day functionals in DFT, and may therefore be helpful in the ultimate goal of constructing functionals
on a fully ab initio basis.
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I. INTRODUCTION is not important for this observable. Yet, other quantities
such as atomic electron affinities and properties related to the
The density functional theoryDFT) for electronic sys- response to an electromagnetic fidkelg., polarizabilities
tems is found on a one-to-one mapping of the external podepend on the asymptotic behavior of the density in a crucial
tential acting on a system dfl electrons and the electron way [9]. Several efforts have been made to find systematic
density in the ground-state configuratidRef. [1]; see, also, tools to improve the functionals in the asymptotic region.
e.g., Refs[2] or[3]). In this way, the density can be regarded One way is to includéfractions of exact exchange in the
as the key observable, from which all other properties of thgunctionals, while fitting the parameters of the functional to
many-body systems are derived. In practical DFT calculaenergetic data onlysee Refs.[10-13). Another route,
tions, the density is determined by solving Sdalinger-like  which is also followed in this paper, is to include not only
equations for single-particle orbitals, the Kohn-Sham equaenergetics in the fit but also xc potentials derived inadn
tions[4]. The Kohn-Sham method, however, depends on ainitio approach’see, e.g., Ref14]). The idea is to calculate
external input, namely the exchange-correlatigo) poten-  the one-body electron density using a very accurate method
tial, in which one tries to fold the effects of the electron- such as Monte Carlo, configuration interaction, coupled-
electron interaction into a one-body potential. Within thecluster or Green’s function techniques. In these methods, the
DFT formalism, this potential is defined as the functionalamount of correlations embodied in the electron density can
derivative of the xc functional. Due to this phenomenologicalbe increased systematically e.g., by taking into account more
input, DFT is computationally fast, but the accuracy of itsinteracting configurations, which of course increases the nu-
predictions largely depends on the quality of the xc potentiamerical cost. It has even been suggested to use experimental
used in the calculation. Since DFT proves only the existencelectron densitief15].
of a unique and universal xc potential, but does not give In previous papers, we performed calculations using self-
clues on how to construct it, a large number of xc functionalsconsistent Green’s function theory for atomic systénfk6—
have been proposed on semiempirical grounds. 18]). More particularly, we solved the Dyson equation self-
Although these functionals are quite successful, they areonsistently up to second order in the two-body interaction.
constructed by a fit to experimental data, which is less satisfhe resulting one-body density extracted using this method
fying from a theoretical point of view. As present-day appli- incorporates a major part of the correlations present in the
cations of DFT become more challenging, there is a growingatomic systems. We then need an algorithm to find the exact
interest in more advanced functionals. Therefore, a more syxc potential that DFT would require to decribe the same
tematic way to improve functionals is desireable from both aatomic density.
theoretical as well as a practical viewpoint. This is the so-called inversion problem and over the years
Many commonly used xc functionals describe correctlyseveral algorithms to solve this problem have been devel-
only the region in space where the electron density is subeped (see, e.g., Refd19-29), though they are sometimes
stantial. However, the asymptotic behavior of the correvestricted to a few small systems like helium, beryllium, and
sponding potential € 1/r) can be errati¢e.g., the LDA5,6] neon atoms. Amongst the more general schemes we mention
or BLYP functional[7,8]). This is not problematic when only in particular the density response scheme of REfg,27,
the total energy is to be predicted since the asymptotic regioand the method of Zhao, Morrison, and P&MP, see, Ref.
[28]). The former technique generates the Kohn-Sham poten-
tial by solving an integral equation for the inverse response
*Corresponding author. Email address: karel.peirs@rug.ac.be function of the Kohn-Sham system, while in the latter the
TCorresponding  author. Email address: dimitri.vannecknoninteracting kinetic energy is minimized under the restric-
@rug.ac.be tion that the Kohn-Sham density equals the input density.
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These methods have a solid physical foundation, but they are [—3V24+0g(r) ] dksi(r) = exsibrsi(r). 2)
rather intricate and can be difficult to implement in a numeri- ’ R
cally stable way. In general, the effective potential of the KS system reads

In this paper, we tackle the inversion problem in coordi- ")
nate space using a new scheme, that is simple, numerically ,Prs(r’
robust and applicable to any atomic input density. The basic vs(r)=v0(r)+f d°r r—r'] +uxelr), )
principles underlaying the scheme are quite general and we
therefore expect the scheme to work for systems withouand consists of the external potentig), the Hartree repul-
spherical symmetry as well. The procedure, which uses agjonv,,, and the xc potentiab,.. We restrict our study to
iterative local update of the exchange-correlation potential, igpherically symmetric atomic systems without additional ex-
similar to the procedure proposed in REZ5] but seems to  ternal fields, i.e.po(r) = —Z/r, whereZ is the atomic num-
be numerically more stable. As indicated above, we will aper. As a consequence, only the radial degree of freedom is
ply this algorithm to electron-densities obtained from relevant.
Green’s function calculations. The potentials generated by |n our algorithm the inversion problem is solved using an
the scheme show the correct asymptotic behavior and thigerative scheme. All terms ing(r) that are known exactly
characteristic intershell peaks. are kept fixed over the iterations, i.e., only the xc potential is
We can then use these potentials in fitting procedures fogaried. The Hartree potential in E() is evaluated using the

existing or new functionals, along with energetic date resultinput densityp,.¢(r). We initialize the xc potential by means
ing from the same Green'’s function calculation. In this way,of the Dirac potentia[6]:

a microscopic study of current functionals can be performed,

providing anab initio basis for these functionals. This may ©)/ o1 _

result in model potentials with e.g., improved asymptotic be- Ve (1=~

havior such that some properties, like polarization quantities,

are predicted with larger accuracy. Efforts along this path cahe Dirac potential provides a reasonable approximation for

lead to more fundamental guidelines to derive functionalsthe exchange part, which is the dominant contribution to the

thereby hopefully increasing the predictive power of DFT.xc potential.

We illustrate this procedure in a preliminary study of a recent Suppose that we have the xc potential of iteratipthen

functional proposed by Hamprecht al. (the HCTH func-  we solve the KS equationf®) corresponding to this potential

tional, see, Ref[30]). in coordinate space and construct the KS electron density
The outline of this paper is as follows. In Sec. Il, the N

inversion algorithm is presented that determines the xc po- M= | ) 2

tential corresponding to a given input one-body density. sz(r)_i=l | bisi(I% ®)

Though this section is mainly numerical in nature, we point

out the underlaying physical principles of the algorithm The xc potential of the next iteration is found by applying the

where possible. In Sec. IV, we discuss the potentials foundollowing correction:

for some closed-shell atonigle, Be, Ne, Mg, and Arand

open-shell atom$B, C, N, O, and F using the densities as v D) =0 @)+ arf[pEAr) = prer(r)]

derived from our self-consistent Green’s function scheme. n _

An example of i i : i : T[ZTks— Zresl(r). (6)

ple of the microscopic analysis of functionals is

given in Sec. V, where we present some preliminary resultﬁ.he last term in Ea(6) contains the ionization enerdii)
of our study on the HCTH functional. Finally, a survey of the _ ~ " q®) 9

(n) i i
L N X €Ks.ion» Whereeys o, is the energy of the highest occu-
key features in this paper is given in Sec. V. pied Kohn-Sham orbital in iteratiom The ionization energy

7.t determines unambiguously to the asymptotic behavior of
II. INVERSE-PROBLEM ALGORITHM the input density. Its role will be explained in the next para-

The algorithm will be presented in a spin-restricted for-9raphs, along with the parameters3 and the functiorf(r).
malism: the spin-polarized version of the expressions can be With the updaté6) for the xc potential, the KS equations
found by simply adding the spin-indax. Atomic units are &€ solved anew and this process is repeated until conver-
used throughout the paper. gence. As the convergence criterion we impose a condition

For a giverN-electron input density,«((r), the inversion  ©n the integrated density deviation,
problem consists of determining the unique local potential
vy(r) that generates this density through the Kohn-Sham 4wf drr?|ple(r) — pres(r)| <A, (7)

(KS) equations. Stated otherwise, we must have that

1/3

4

3
;pref(r)

N where A=10"°. For the open-shell inversion, the conver-
_ _ 2 gence condition is imposed on both spin densities separately
prei()=prs(N) =2, |xsi(N% D SndA.—5X10 6
The effective KS potentialg is only determined up to an
where the Kohn-Sham orbitals in E€.) are lowest-energy additive constant by Eq$l) and(2), and can be fixed com-
solutions of pletely by the requirement that it vanishes at infinity. Due to
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the fact that our initial guesghe Dirac potentialin Eq. (4) G 1is calculated using finite basis-set expansions for the
vanishes asymptotically, and due to the structure of the uppotential and/or the KS orbitals, severe problems may arise
date scheme Ed86), this requirement is automatically ful- [22,23. These are not encountered in the grid-based method
filled for the converged solution as well. of Ref. [27], where it was found, however, that spurious
Any reasonable electron-densipy.;(r) can be used as oscillations appear in the converged potential if the input
input in the algorithm. However, in order to get good density does not have the correct asymptotic behavior. This
asymptotic properties for the xc potential it is of course re-indicates the sensitivity of the potential even to spatial re-
quired that the input density itself has the correctgions where the density is very small, as will be further

exponential-type decay for a neutral at¢&i], discussed in Sec. IV.
2wty 2(UK)—1] The second correction term in E) is not strictly nec-
Pref(r)~€ r ' ® essary to obtain convergence to an xc potential with correct

N L ... asymptotic behaviofsee Sec. IY. Without the second term,
wherex=y2T,er. Note that the ionization energy is in prin- however, the highest occupied KS eigenvalue may be some-

ciple determined by the asymptotic region of the input den'what off the value forZ,.; corresponding to the tail of the

sity prei- We employed the highly correlated densities aS\nut density. This is due to the fact that in the asvmptotic
obtained from our Green’s function calculatiofsee, Refs. npu . FIIS 1S CU ! ympltot

[16—18). but the scheme can also be applied on densitieregion’ the first correction terrfeven with the extra factor

Fﬁ) is small, and a very large number of iterations would be
}(gtli‘ggs)by other methodee.g., quantum Monte Carlo calcu- required to obtain an accurate matching for the ionization

. _energies. To alleviate this problem, we added the second
Yerm: it ensures that the absolute value of the energy of the
Shighest occupied KS level coincides with the ionization en-
ergyZ..¢. The factorf(r) in the second term has the follow-
ing form:

(6). The physical significance of the first correction term i
that if the KS density of iteratiom is larger than the refer-
ence densityp,e;(r) in some region in space, then the xc
potential of the next iteration will become more repulsive in
that region. In this way, the KS density of iteration+1) o(r—1)
should be closer to the input density. f(r)=0(1—r)r"+
In expression(6), the value of thépositive) parametersy
and g8 is in general not crucial for the final converged form . . .
of the potential, but can have an important influence on thd "€ Step functiong#(x)] allow for a continuous transition

number of iterations required to reach convergence. The p2etween the two terms at a distance of one atomic unit.

rametera determines the overall weight of the local correc-~9ain. the p;arhametre;rg and o onlyl affect the ip?ed (I)f con- b
tion to the xc potential due to the difference between the KS/€r9ence of the sclerrlle: we only reqLélr(? t~e|r \f/a ueh to be
and input density. The parametgrincreases the weight of POSItive. In our calculations, we used for~5 for the

the larger region, for which the correction would otherwise €l0S€d-shell atoms angi~1 for the open-shell cases. The
be very small. paramete® can be taked~3 in all cases. Both parameters,

We obtained convergence far ranging from 0.5 to 3.5 however, can be varied within a wide range without affecting

a.u., while the value of could be varied between zero and the final form of the converged potential.
three, at least for all closed-shell atoms in this study. In the
open-shell case, the tuning of tifeparameter turned out to IIl. NUMERICAL TEST OF THE SCHEME

be more delicate, however, and it was found that its value Tne inversion algorithm as presented in the preceding sec-
should preferably be selected aroupd=2 for B and C,  {on was first tested at the exchange-only level, using
while we obtained good results wii~1.5 for N, O, and F. " yariree-Fock(HF) input densities calculated in coordinate

It is clear that the first correction term is related to thespace(see Refs[16—18). Note that the coordinate-space HF
idea that a minor change in the one-body density induces g:heme automatically leads to the correct asymptotic behav-
linear-response reaction in the effective KS potential. Thggy, of Eq.(8). As an example, we show in Fig. 1 the effective

T (12)

exact expression for this response is nonlocal, exchange potential corresponding to the neon HF density. It
is seen to be extremely close to the optimized effective po-
5vs(r):f dr'G = (r,r")dp(r’), 9) tential exchange-only potential of Rdf32], which is the

local potential that generates orbitals which minimize the HF
gnergy functional.

It is also interesting to compare the iterative procedure in
Eq. (6) with that introduced by van Leeuwen and Baerends

where the density response function of the KS system i
defined agfor a closed-shell system

BF (N (r')i(r') (1) [25], henceforth called the LB scheme. The LB scheme for
G(rr)=2 > — +c.c.  solving the inversion problem uses a different local update,
i(occ.) j(unocc) €T €
(10 v§ (N =UO) (), (12
Equations(9) and (10) have been usef22,23,27 to deter- -
mine the effective KS potential by iteratively determining the UM (r)= prs(r) (13

inverseG(r,r’) " of the response function. If the inverse Pref(r)’
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FIG. 1. Exchange-only potential generated from the neon 0.7 __
Hartree-Fock density in Fig. 3. L
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where v (r)=vy(r) +vy(r) the electron-electron part of ,
the KS potenna} The update faCtOU(r):pKS(r)/Pref(r) 0.6 ol Lol Lol Ll L1
must be kept within reasonable bounds, e.g., by imposinc 1 10 107 10° 10*
[25] iteration number

FIG. 2. Comparison of convergence properties of the present
method in Eq.(6) and the LB method of Eqg12) and (13). The
neon HF density was used as input. Full line: present method. Dot-
dashed line: LB method. Upper panel: integrated density deviation
of Eq. (7) versus iteration number. Lower panel: KS ionization en-
(16) ergy (in atomic unit$ versus iteration number.

1-e<U(r)<1+e, (15)
wheree~ 0.05, or by considerin§26]

pks(r)+a

v pref(r)+a’
) ) Another practical remark is that the LB method seems to
wherea~0.5 atomic units. be much more sensitive to the initial estimate for the xc
tive factor with fixed sigr{like the ratio of thenth iteration  achieve convergence for the neon Hartree-Fock density. We

density and the target density in E.3)] is problematic in  gjid obtain convergent results usitgee Ref[27]) an initial
the sense that it cannot change the local sign of the unknowgstimate

potential from its initial estimate. While this hardly matters
for electron systems—one can isolate the part which has

3 1/3
a fixed sign—it can be unworkable in other problems, e.g., in U(x%)(r) == [;pref(r)

+Zfs(pref(r)v|vpref(r)|)a

nuclear physics. So on general grounds an iterative scheme (17)
like Eg. (6), where the unknown potential can change its
local sign during iterations, is to be prefered. where €2 is the Becke[7] gradient correction to the ex-

change energy density; the latter term imposes the correct
asymptotic— 1/r behavior of the initial estimate. Note that in

YIn the original sciheme appearing in RE25], the present schenié) this behavior is built up automatically
) SR : - , .
v(n+1)(r):pKS(r) oO0) 14 dL;]r_lnr?_lteratlons, _evltlandwnh an initial estimate like He)
s PG which is exponentially decaying.

obviously some printing error has occurred: it is defined in the N the upper panel of Fig. 2 we compare, for the case of
unstable direction since the total KS potentig(r) is usually nega- the neon HF density, the convergence speed of the density
tive. The stable direction would involve the local update factordeviation in Eq.(7) for the LB and the present scheme. For
pret(1)1pL(r). In later papers by the Amsterdam group and co-the LB scheme expressiof16) was used witha=3 a.u.;
workers it is clear that they advocate updating, according to Eqsmaller values o, or the use of expressidd5), both led to

(13), the electron-electron part of the KS potential only, which is ainstabilities in the recursion scheme. For the present scheme
positive quantity. (6) parameter valuea=3.5, =1, y=5, 6=3 have been
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taken. In both cases the initial estimdf€’) was used. The
present scheme seems to converge faster for this case. Mor
over, the ionization energy consistent with the input HF den-?
sity for Ne, 1,.+=0.850 a.u., is reached very rapidly,
be seen in the lower panel of Fig. 2. The LB scheme yields%
an ionization energy which is approaching the correct one,é}1 1
but convergence is slow. :

u.)

1

ty (o
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n
)
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>
) d

IV. RESULTS

The inversion algorithm was next applied at the full ex-
changeplus correlation level using input densities resulting < 10 ¢
from Green’s function calculations in which Dyson’s equa- &
tion is solved self-consistently up to second-order in the two-
body interaction. As was demonstrated in Ref€—18, this
so-called Dyso(2) scheme incorporates the most important
correlations in many-electron systems, providing a good re- 5
production of e.g., ionization energies, electron affinities, and 3 .
total energies. T FEUTE DT PR T PR A W T

The Dysori2) scheme uses a HF basis set, which is con- ° 08 1 ds 2283 38 4 48 (au)_;,
structed by solving the HF equations in coordinate space o
[Dyson(1) schemg Inherent to the method is a discretization  FIG. 3. Hartree-Fockdashey, Dysor(2) (dot-dashel and cor-
of the continuum part of the energy spectrum by adding aected Dysot®?) (full line) density for neon.
parabolic potential wall to the HF hamiltonian. This wall is
switched on only at a large distan¢krger than approxi-

yson(2) and corrected

Hartree—Fo!

telv th ¢ th | here th body d At convergence, we not only reproduce the input density
mately three a.y.from the nucleus, where the one-body €Min an accurate way, but also the highest occupied KS eigen-

sity is already in its asymptotic regime. Although the ener- S . L .
getic aspects of the calculations are not influenced by thi\s/alue coincides with the Dys@d) ionization energywith an

discretization scheme, the parabolic potential does affect thaceuracy of about 10 a.u. or bgtte)r Moreover, the. poten-
asymptotic region of the density. In view of the sensitivity of tals _ShOW f[he correct asymptotlc_behavml'— ir. T_h's fea-
the inversion procedure an entirely correct asymptotic behaure is notimposed on the potential by hand, but is generated
ior is required, and therefore the Dyg@hdensities had to be @utomatically, probably due to the feedback mechanism be-
corrected at large distances. tween the update of the potential, the KS orbitals, and the
Near the point where the wall was applied, we imposedPhysical input density having the correct lang&ehavior of
the correct asymptotic behavior as given in E8), where  Ed. (8). Let us consider an electron of a neutral atom at a
T..¢ is the first ionization energy as predicted by thevery large distance from the nucleus. As is well-known, the
Dyson(2) scheme. Because small errors in the density ar€lectron experiences a nuclear potential, shielded by the
greatly magnified by the inversion procedure, it is crucial toother —1) electrons. The influence of the nucleus on the
apply this correction in a very smooth way by ensuring thatelectron is expressed by 1/r. The nuclear potentiat-Z/r
the first, second, and third derivative of the density are conand the Hartree fieldd®r’p(r’)/[r—r’|, however, cancel
tinuous in the extrapolation region. This sensitivity is noteach other at large distances, such that the resieisl
intrinsic to our scheme but has also been observed in othgrotential must be generated by the xc potential.
inversion algorithmgsee Ref[33]). In Figs. 4—6, we group the xc potentials from our scheme
The extrapolation procedure sketched above is illustratetbor the closed-shell systems. The upper part shows the po-
in Fig. 3, where the HF, Dys@8), and corrected Dys@B) tential itself, while the lower part involvesv,.(r) in order
densities for neon are shown. The asymptotic regimes of thi illustrate in a more transparent way the correct asymptotic
HF and DysofR2) densities differ because the ionization en- behavior of the potential. For comparison, we also include a
ergy as predicted by the two schemes is not equal. high-level xc potential for He obtained by Umrigar and
The algorithm of Sec. Il is applied to a number of light Gonze[34], as well as quantum Monte Carl@MC) results
atoms: the closed-shell systems He, Be, Ne, Mg, and Ar antbr Be and Ne obtained by the same authf85] and by
the open » shell atoms B, C, N, O, and F. We reached fastFilippi, Gonze and Umriga33]. These high-level potentials
convergencdgaccording to the criterion Eq7)] for each  have also been used in Ref8—38. It is clear that our
atom in our study. This means that we have found a basis-se¢sults agree very well with these potentials, especially in the
free representation of the KS xc potential, and that we obease of helium. There our potential only differs from the
tained the unique potential corresponding to our Dy&pn high-level potential at the origifin the lower part of Fig. 4
input densities, up to some arbitrary constant. Note that it isvith rv,.(r) the two curves practically coincidle
not guaranteed that the scheme will converge for an arbitrary The spin-up and spin-down potentials for the open-shell
input density, since in principle there may be densities thaB, C, N, O, and F atoms are displayed in Figs. 7—11. Note
are not noninteracting-representablg25]. that the spin-up and spin-down potentials fo(Ftg. 11) are
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FIG. 4. Exchange-correlation potentialg.(r) (upper pant and FIG. 6. Potentials of present work for Mdull line) and Ar

rvy(r) (lower par} for He and Be as obtained in this work and in (dashefl[v,.(r) (upper partandrov,.(r) (lower par}].
Refs.[34,39: full line, He (this work); dashed line, Hehigh-level
calculation[34]); dotted line, Be(this work); dot-dashed line, Be atically reveals the correct asymptotic behavior of the xc
(QMC [39)). potential. Also, we find that the xc potential has a finite value
at the origin, as was already suggested by Morrison and Zhao
very alike, as the atom approaches a closed-shell configurg40]. Therv,.(r) curves provide a very sensitive look at the
tion. long-range behavior of the xc potentials. Comparing, for the
A characteristic feature, present in all xc potentials, is thecase of Ne in Fig. 5, the present result with the QMC result
appearance of the intershell peaks. They can be partly relatedis clear that two spurious extrema appear in the potential
to a jump of the exchange hole from one shell to another ibased on the Dys@®) density. Such artificial structure is
the reference position crosses the border region between tigesent for the xc potentials of the other atoms as well, and is
two shells(see Refs[41-43). related to the extrapolation procedure in the asymptotic re-
The lower part of each figure displayimg,.(r) system- gion of the density. Though we take care to extrapolate in a
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FIG. 5. Potentials for Nev,.(r) (upper pant and rv,.(r) FIG. 7. Exchange-correlation potentialg.(r) (upper partand
(lower par}]: full line is this work, dashed line is the QMC poten- ruv,.(r) (lower par} of present work for B: majority spin in full
tial [39]. line, minority spin in dashed line.
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FIG. 8. Exchange-correlation potentialg.(r) (upper pant and
ruy(r) (lower pany of present work for C: majority spin in full
line, minority spin in dashed line.

smooth manner, the procedure still affe¢tsildly) the xc

potential near the extrapolation point. The effect is entirel

due to imperfections in the extrapolated Dy&)rinput den-

sity, and not to the used inversion procedure, since we do not
encounter it when we use HF input densities or the QMC,g

neon density, communicated to us by Gof26]. This ob-

servation is similar to the appearance of spurious oscillation
in the xc potential reported by Schipper, Gritsenko, an
Baerendq 27] when a Gaussian-type input density is used.
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FIG. 9. Exchange-correlation potentialg.(r) (upper part and
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Here we impose on the input density the correct asymptotic
ybehavior by extrapolation, leading to less pronounced and

more localized oscillations near the extrapolation point.

Since the xc potential constructed with the presented al-
orithm results in an almost perfect reproduction of the input
density, one may assume that all correlations involved in the
gensity are also present in the xc potential. Therefore, the xc
Opotentials obtained in the present study incorporate all
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FIG. 11. Exchange-correlation potentialg(r) (upper pantand
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Dyson(2) correlations, i.e., all correlations of the self- whether any analytical formulation will be able to include
consistent Green’s function scheme up to second order in thiais phenomenon.
Coulomb interaction. It was observed by Tozer and Hanf#,14] that general-
The generated xc potentials can be used in a variety aked gradient approximatiofGGA) functionals could more
applications. In this paper, we consider the use of these xeasily be fitted to exact xc potentials if they left room for a
potentials in a fitting procedure for an existing functional system-dependent constant in the fit. They interpreted this as
parametrization. The resulting parameter set can then be coan indication that the GGA potentials represent an average of
sidered to be derived on a fully microscopic basis, i.e., with-the electron-deficient and electron-abundant limit of the ex-
out fitting to experimental data. This will be illustrated in the act xc potential. The same method was used by Hamprecht
following section with some preliminary results. et al. [30], who fitted their model xc potential to both ener-
getic data and accurate xc potentials obtained in the ZMP
scheme. To include the derivative discontinuity to some ex-
V. USE OF THE POTENTIALS IN FITTING PROCEDURES tent in the functional, they allowed for a system-dependent
As mentioned in the introduction, the asymptotic regionconstant shift of the input potentials. This shift does not enter

of the xc potential becomes more and more prerequisite ithe parameters of the functional explicitely, but has an indi-
present-day applications of DFT. Including exact xc poten-€Ct (_effect on _the value of the parameters. However, the ex-
tials in the fitting procedure for a model functional providesPansion defining the so-called HCTH functional leads to a
more detailed information on how the model potential shoulgPotential that does not go to a constant but vanishes asymp-
behave, which may result in improved asymptotic densitiedotically. , ' _
and more accurate optimized geometries. It should be noted !N order to illustrate the use of the xc potentials resulting
that good structural predictions can also be obtained by inffom our Dysori2) calculations, we have made a refit of the

cluding exact exchange in the functional, and fitting to enerHCTH functional. Currently, our traini_ng set only consists of
getic data solely. the closed- and open-shell systems in our study, and results

As far as aymptotics is concerned, there are actually twé'e therefore preliminary. _
problems with current popular xc functionals. First, the ma- 1he HCTH xc functional can be written as
jority of the potentials decreases in an exponential way in-
stead of as—1/r. This means that the potentials are less
attractive than the exact one at lamgeThere have been a Exc[P]:zi: Cij filpy.&yopy,¢dr, (18)
number of efforts to correct the behavior at largeOne of
the first attempts was made by van Leeuwen and Baerends ) _ )
[25], who introduced a model potential with an improved Wherep, is the one-body spin density,=|Vp,|, and the
asymptotic behavior. However, the potential cannot be de€xpansion functions; are described in Refi30]. In the
rived as the derivative of a functional and provides a les§1CTH functional, 15 functions; have been considered. The
accurate description of the region close to the nucleus. 15 expansion coefficients are optimized in a least-squares
The second problem is more of an abstract nature anfit with an objective function() that consists of two parts
concerns the extension of DFT that also deals with system@=Qy+Qg. The first part(),, involves the potentials
consisting of a fractional number of electrons. As indicated

in Sec Il the exact KS potential, defined as the local potential atoms
that generates the exact density through Etjsand (2), is Q=2 > 477f drr? v (1) +KS
only determined up to an additive constant. If one considers o A

an ensemble-based extension of DFT and its KS formulation

to noninteger electron number one can also define the KS > cul(r)
potential as the functional derivative of the underlying exact !

xc energy functional, valid for integer and noninteger elec-

tron number. This seemingly removes the freedom of th@/vherevﬁ{;,ut(r) is the xc potential for atonA as derived
additive constant by relating it to the total energy, but this isysing our inversion algorithmk? is the constant shift al-
not correct: at integer electron number the derivative is ill5\vad for this potentialuiA"(r) is the potential derived from

defined, and the exact KS potentlal_ Jumps by a systemg, o functionfiA(r) by functional derivation with respect to
dependent constant when taking the limit to an integer from o3

the electron-deficient or electron-abundant gitie so-called Pac(r), andpps(r) is an appro_prla_te welgh_tlng factor.
derivative discontinuity[44]). So at integer electron number The s_econd tere in the objective function involves the
the exact KS potential is again defined up to an additivenergetic data,

constant, and it can be showsee, e.g., Ref$9,14]) that an

xc potential which vanishes asymptotically corresponds to
taking the limit from the electron-deficient side. Earlier dis- Qe= 2 Wa
cussions on this topic can be found in RgF1] (asymptotic A
behavior of xc potentiajsand[45] (constant shift of the po-

tentia). None of the currently implemented functionals de- The xc energieEfC can be determined from the well-known
scribes this derivative discontinuity, and it is doubtful expression for the total energy in DFT,

2
pA(r), (19

atoms

2
Ef— 47>, cif fi’*(r)rzdr} . (20
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TABLE |. Parameters of the HCTH functional: the first numerical column collects the original values, the
next columns present the sets obtained using the Dgs@mergies and xc potentials in the fit for different
weightsw, of the energetic part of the objective function. Parameters are displayed which are obtained when
varying only the exchang&) parameters as well as varying both the exchange and the first three orders in
correlation k+c).

x only X+c
Coefficient  Referencf30] w,=10 w,=100 w,=1000 wp=10 wa=100 w,=1000

(o8] 1.09320 1.089 1.089 1.078 1.091 1.059 1.051
Cy 0.222601 1.921 1.231 2.164
C3 0.729974 —1.513 0.6931 1.029
Cy —0.744056 —0.9258 —0.9038 —0.8424 —0.6457 —0.4957 —0.6129
Cs —0.0338622 —0.6577 —0.3981 —0.4234
Cg 3.35287 0.2933 —2.679 —3.602
Cy 5.59920 6.956 7.057 8.599 7.414 6.818 6.719
Cg —0.0125170 0.7298 —0.0519 —-0.7304
Cy —11.5430 —11.90 —11.258 —10.03
Cio —6.78549 —-9.693 —11.09 —19.67 —10.39 —-9.601 —-1041
e —0.802496
C 8.08564
Ci3 4.49357 7.168 8.443 17.42 7.746 7.119 8.869
Cua 1.55396
Cus —4.47857

p Na ,

Exc[PA]:EO(A)_i(;C) exs,iTILpal KY: Z AA(TJCJ--FE; M§=:1 An . K =Bag,
(o

ar3 [ aroul (Dpan. @D A=L ... Na, 24
whereN, andN, are the numbers of parameters and atoms,
where Eq,) is the ground-state energy of systeéincorre-  respectively. The matriced and 3 are given by

sponding to the one-body density as determined in our a
Green’s function calculations, while the KS eigenvalegs; A=>
are generated by the inversion scheme. Furtherndpye, ] . =
is the Hartree part of the two-electron interaction:

Jdrr2 N (0ol (1)p%s (1)

1 M pa(r’ +477wa drrzf-N(r)f drr2f(r) |,
J[pA]Z—f drdr,PA( )pal ), (22 i i
2 [r=r’|
. . : A drrzoMe’ (r)p22 (1),
with pa(r)=pa;(r)+pa (r). The weightsw, in Eq. (20) M, = v; PMo

balance the influence of the potential and energetic part in

the fit. - 23

In the original derivation of the HCTH function&B0], Bi:z, Nzl ”d”zlenput(r)v (N (1)
Hamprechtet al. introduced a self-consistent technique to 7
determine the value of the system-dependent H{if{see,
also, Ref[14]). In the present paper, we found no need for
this procedure, but simply minimized the objective function
with respect to both the functional parametécg and the for ¢; and
constant shift{kz}. The conditions j

drr

r?Q_O_ (7Q_O 23
aci kg

+WNExc[pN]f d”zfiN(r)], (29

)

, _ Aa m =9 5,,fdrr2 2B (),
with Q=0+ Q¢ then lead to the least-squares equations AoMor TAM e Pag (1)

Pac

p Na
Ci: jZ]_ AijCj'i‘; |\/|2=1 AiMu_/k‘[\TA :Bi , i=1,... ’Np f drrZ 2/3(r U|nput(r) (26)
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TABLE II. Total energy for the closed-shell systems as predicted by the HCTH functional fitted to
Dyson(2) quantities, for different values of the weight, in the fit. The last two rows respectively represent
the total energies of the Dys(®) scheme and the HCTH functional using the original paramé¢gis Also
listed are results for Ca, which was not included in the training set. For Ca the Qyswediction is not
available, and the energy is taken from a G3 calculaftit]. All results are in atomic units.

Wy He Be Ne Mg Ar Ca
10 —2.918 —14.662 —128.875 —199.973 —527.430 —677.468
100 —2.913 —14.651 —128.870 —199.970 —527.436 —677.480
1000 —2.913 —14.642 —128.879 —199.977 —527.432 —677.471
Dyson2) —2.899 —14.628 —128.888 —199.948 —527.422 —677.38450
HCTH —2.918 —14.670 —128.962 —200.096 —527.678 —677.765
for kjz . have a relatively important influence in an atom as calcium.

In this preliminary fit we have substantially less fitting These corrections were not included in our DySrstudy.
data(potentials and total energies of only ten atoiian in ~ The results using the original parametrization of the HCTH
the original parametrization by Hampredital.[30], which ~ functional are listed as well. Mind, however, that the HCTH
involved basically the G2 training set. As a result some cofunctional was fitted to experimental energiasnongst other
efficientsc; tend to oscillate when allowed to vary freely in quantitie$ and not toab initio energies as in the present
the fit. Therefore, we fixed the coefficients corresponding tcstudy.
the correlation terms in the expansion and applied a least- In Tables IV and V the first ionization energies are pre-
squares fit on the exchange parameters ¢indy, the coeffi- sented along with the Dys@®) ionization energies, and the
cientscy, ¢4, C7, C1p, andcy3) along with the system- constant shift«, of the atoms in our training set. In Table V,
dependent shiftkg . In Table I, we collect the original values only the shift of the potential that corresponds to the spin
of the parameter$30] together with our values for a few which determines the first-ionization level is reported. The
choices of the weightw, . For simplicity, the weight is kept ~shift of the potential corresponding to the other spin polar-
constant for all atoms. We also include the parameters ojzation is of a similar value. The ionization energy is calcu-
tained when allowing the exchange and the first three corrdated according to Ref30]
lations orders to vary. We see that some parameters tend to A -
differ substantially from the original parametrization, which Ia=~ €ksjont Ka- (27)

we a?trlbute to _the reduced Siz€ of our training set. In thel\lote that the ionization energies were not included in the fit.
remainder of this paper, we will therefore report only reSUItSNevertheless we notice a good agreement with the Digson
that are obtained with the parameter set in which merely thEuantities. We observe that all shifts are positive and of the

exchange parameters were opti_m.ized, while the correlatio xpected order of magnitude: theoretical considerafitds
parameters were fixed on the original HCTH value.

The total energies as predicted using the HCTH functional tagLE |v. Upper part: closed-shell first-ionization energigs
(with the new exchange parameters of Tabléot the atoms  gptained with the HCTH functional, for the three sets of parameters
of the training set and also for calcium are listed in Tables llcorresponding to the weights,= 10, 100, 1000 in Table I, and the
and Ill. All results were obtained by solving the KS equa- Dyson(2) ionization energy. Lower part: the constant shifs of
tions in coordinate space. The Dy¢@nenergies used in the the potentials as determined by the fit, and the Dy&owalue for
fitting procedure are given for comparison, as well as thahe hardness. All results are in atomic units.
outcome of a G3 calculation for calciuid6]. Note that this

G3 calculation involves relativistic corrections, which can, He Be Ne Mg Ar
TABLE Ill. Total energy for the open-shell systems as predicted Vs
by the HCTH functional fitted to Dysd8) quantities, for different 10 0.900 0.347 0.763 0.243 0.561
values of the weightv, in the fit. See also caption of Table II. 100 0.900 0.347 0.764 0.242 0.561
1000 0.902 0.346 0.766 0.243 0.563
W B C N 0 F
Dyson(2) 0.906 0.320 0.763 0.274 0.585
10 —24.631 —37.813 —54.557 —75.012 —99.669 K
100 —24.619 —37.801 —54.545 —75.003 —99.662 10 0.321 0.144 0.274 0.075 0.184
1000 —24.612 —37.797 —54.539 —75.006 —99.671 100 0.321 0.143 0.272 0.073 0.183
Dyson2) —24.600 —37.789 —54.543 —75.010 —99.678 1000 0.322 0.142 0.276 0.072 0.187
HCTH —24.645 —37.837 —54.593 —75.063 —99.737 Hardness 0.453 0.160 0.381 0.137 0.293
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TABLE V. Upper part: open-shell first-ionization energiesb- the new exchange parameters, we chose those in Table |
tained with the HCTH functional and Dys( ionization energy.  corresponding to the weighi,=100. The HCTH potential
Lower part: the constant shiftg and Dysofi2) hardness. Only the has the correct qualitative behavior in the region where the
shift of the potential that determines the ionization level is consid-gtomic density is substantial, but it breaks down in the
ered; the shift of the potential corresponding to the other spin pozsymptotic region.
larization is about the same value. All results are in atomic units.

Wa B C N O F VI. SUMMARY

7 In this paper, a scheme is proposed to derive the exact
10 0.302 0.409 0.529 0.494 0.619 exchange-correlation potential in density functional theory
100 0.302 0.409 0.529 0.495 0.620 from a high-level electron density. The proposed iterative
1000 0.303 0.409 0.527 0.502 0.623 scheme is easier to implement than other methods, such as
Dysor(2) 0305 0415 0537 0484 0619 the density-response schentsee Refs.[22,27) or the

method of Zhao-Morrison-Paf28], and numerically more

Ka stable than the related inversion method in H&E]. We
10 0.162 0.190 0.226 0.246 0.253 applied the scheme on some closed-shell at@iies Be, Ne,
100 0.160 0.189 0.225 0.244 0.251 Mg, and Ap and on a number of open-shell atoms from the
1000 0159 0190 0227 0242 0252 second row of the periodic syste(B, C, N, O, and It The
Hardness 0.149 0.185 0.268 0.226 0.046 One-body densities we used as input to the algorithm were

obtained from self-consistent Green’s function calculations,
and embody a large part of the correlations in many-electron
- . . systems. The resulting potentials were found to display the
indicate that this shift ShOL.'Id be less than or equgl to th‘:(':orrect asymptotic behavior and showed the characteristic
hardness1—.A4)/2, whereA is the electron affinity. Similar e rshell peaks. In this way, we have found a basis-set free
values of the shifts were obtained in Refé7,48 using  ronresentation of the exchange-correlation potential in the

thQr funcftiohnals. In Table_:s I;]/ and V, Wehalso giv_e the rF]’re'Kohn-Sham formalism. Since the ideas that underlay the al-
dictions of the hardness in the Dys@nscheme. Since the  qithm are quite general, we believe it to be applicable on
closed-shell systems that were considered cannot bind an eX;,1ecules as well. Extension of the inversion scheme to di-

tra electron, the hardness equals half the ionization energy;,mic molecules, where the cylinder symmetry still allows a
This observation also holds for nitrogen. As was pointed outqqginate-grid method, will be the topic of future work.

in Ref.[14], in the closed-shell case the shift should be less The generated xc potentials can be used in a variety of
tf;]aTl the hardness, ?Ut equal to the hardn(re]ss fr?r ?he, OP€Bhplications. One application, addressed in this paper, is the
shell systemdsee, also, Refl49]). We see that the fitting e of the xc potentials in fitting procedures for new func-
procedure indeed reveals this trend: the shift of the closed; 45 The advantage of using potentials along with ener-
shell systems is always less than the Dy&rhardness, gatic data when fitting functionals is that the corresponding
while the shift of the open-shell systems is close 1o it. Ofp,qe| exchange-correlation potential receives more accurate
course, the fitting scheme does not reproduce the open-shgl,mation on how the exact potential should behave, which

hardness exactly, but it is clear that the predicted shifts OSmay lead to more accurate optimized geometries. As an ex-

cillate about the exact value. The larger deviation of the Niample we have used the energies from the Green’s function

trogen value may be due to the fact that in this system on@gcjations that produced the input densities employed in
2p spin orbital is assumed fully occupied, while the otherye jnyersion scheme, along with the corresponding poten-
one is completely empty. As pointed out by Perdew angyig 1o refit the HCTH functional in a fullab initio way.

Burke in Ref.[49], the constant shift equals the hardnesstpe correlations present in the Green’s function calculation,
whenever thg ground state_of the pos_|t|ve and negatlv_e iONShich can be easily defined using Feynman diagrams, are
can be obtained by removing or adding an electron in theyypedded in the exchange-correlation potentials derived in
same highest occupied KS level of the neutral atom. Sincg,r scheme. In this way, a microscopic basis can be provided
this is not the case in the spinunrestricted treatment of nitrog,, present-day functionals, which may lead to a more fun-

gen, we can understand that the shift is below the hardnesg, mental understanding of exchange-correlation functionals

for this atom. _ _ _ _ . in density functional theory.
It was also mentioned in Refl14] that a shift which dif-

fers significantly from the hardness indicates that kinetic-
energy effects give an important contribution to the deriva-
tive discontinuity of the xc potential of the corresponding
atom. In future work we intend to study the correlation con- We gratefully acknowledge Dr. X. Gonze for supplying us
tribution to the DFT kinetic energy in more detail. with the high-level exchange-correlation potentials for He,

Apart from a discussion of the energetic predictions of theBe, and Ne. Also, we wish to thank Professor C.J. Umrigar
HCTH functional with the new exchange parameters, we caand Dr. C. Filippi for the interesting communications. This
also compare the HCTH potential with those derived in thestudy was supported by the Fund for Scientific Research—
inversion scheme. This is illustrated for fluor in Fig. 11. For Flanders(FWO).
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