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Algorithm to derive exact exchange-correlation potentials from correlated densities in atoms

K. Peirs,* D. Van Neck,† and M. Waroquier
Laboratory of Theoretical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

~Received 19 July 2002; revised manuscript received 1 October 2002; published 23 January 2003!

A simple algorithm is presented to derive accurately the exchange-correlation potential in the density func-
tional theory~DFT! from the electron density. The method, which can be used with any physically acceptable
density as input, is applied here to the densities in atoms obtained from high-level Green’s function calcula-
tions. The resulting potentials show the correct asymptotic behavior and the characteristic intershell peaks. We
illustrate the possible use of these potentials in fitting procedures for new functionals, by investigating the
HCTH functional @F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys.109, 6264
~1998!#. The potentials derived from Green’s function one-body densities provide a microscopic foundation for
present-day functionals in DFT, and may therefore be helpful in the ultimate goal of constructing functionals
on a fully ab initio basis.

DOI: 10.1103/PhysRevA.67.012505 PACS number~s!: 31.15.Ew, 31.25.2v
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I. INTRODUCTION

The density functional theory~DFT! for electronic sys-
tems is found on a one-to-one mapping of the external
tential acting on a system ofN electrons and the electro
density in the ground-state configuration~Ref. @1#; see, also,
e.g., Refs.@2# or @3#!. In this way, the density can be regard
as the key observable, from which all other properties of
many-body systems are derived. In practical DFT calcu
tions, the density is determined by solving Schro¨dinger-like
equations for single-particle orbitals, the Kohn-Sham eq
tions @4#. The Kohn-Sham method, however, depends on
external input, namely the exchange-correlation~xc! poten-
tial, in which one tries to fold the effects of the electro
electron interaction into a one-body potential. Within t
DFT formalism, this potential is defined as the function
derivative of the xc functional. Due to this phenomenologi
input, DFT is computationally fast, but the accuracy of
predictions largely depends on the quality of the xc poten
used in the calculation. Since DFT proves only the existe
of a unique and universal xc potential, but does not g
clues on how to construct it, a large number of xc function
have been proposed on semiempirical grounds.

Although these functionals are quite successful, they
constructed by a fit to experimental data, which is less sa
fying from a theoretical point of view. As present-day app
cations of DFT become more challenging, there is a grow
interest in more advanced functionals. Therefore, a more
tematic way to improve functionals is desireable from bot
theoretical as well as a practical viewpoint.

Many commonly used xc functionals describe correc
only the region in space where the electron density is s
stantial. However, the asymptotic behavior of the cor
sponding potential (21/r ) can be erratic~e.g., the LDA@5,6#
or BLYP functional@7,8#!. This is not problematic when only
the total energy is to be predicted since the asymptotic reg
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is not important for this observable. Yet, other quantit
such as atomic electron affinities and properties related to
response to an electromagnetic field~e.g., polarizabilities!
depend on the asymptotic behavior of the density in a cru
way @9#. Several efforts have been made to find system
tools to improve the functionals in the asymptotic regio
One way is to include~fractions of! exact exchange in the
functionals, while fitting the parameters of the functional
energetic data only~see Refs.@10–13#!. Another route,
which is also followed in this paper, is to include not on
energetics in the fit but also xc potentials derived in anab
initio approach~see, e.g., Ref.@14#!. The idea is to calculate
the one-body electron density using a very accurate met
such as Monte Carlo, configuration interaction, couple
cluster or Green’s function techniques. In these methods,
amount of correlations embodied in the electron density
be increased systematically e.g., by taking into account m
interacting configurations, which of course increases the
merical cost. It has even been suggested to use experim
electron densities@15#.

In previous papers, we performed calculations using s
consistent Green’s function theory for atomic systems~ @16–
18#!. More particularly, we solved the Dyson equation se
consistently up to second order in the two-body interacti
The resulting one-body density extracted using this met
incorporates a major part of the correlations present in
atomic systems. We then need an algorithm to find the ex
xc potential that DFT would require to decribe the sam
atomic density.

This is the so-called inversion problem and over the ye
several algorithms to solve this problem have been de
oped ~see, e.g., Refs.@19–29#!, though they are sometime
restricted to a few small systems like helium, beryllium, a
neon atoms. Amongst the more general schemes we men
in particular the density response scheme of Refs.@22,27#,
and the method of Zhao, Morrison, and Parr~ZMP, see, Ref.
@28#!. The former technique generates the Kohn-Sham po
tial by solving an integral equation for the inverse respon
function of the Kohn-Sham system, while in the latter t
noninteracting kinetic energy is minimized under the restr
tion that the Kohn-Sham density equals the input dens

k
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These methods have a solid physical foundation, but they
rather intricate and can be difficult to implement in a nume
cally stable way.

In this paper, we tackle the inversion problem in coor
nate space using a new scheme, that is simple, numeri
robust and applicable to any atomic input density. The ba
principles underlaying the scheme are quite general and
therefore expect the scheme to work for systems with
spherical symmetry as well. The procedure, which uses
iterative local update of the exchange-correlation potentia
similar to the procedure proposed in Ref.@25# but seems to
be numerically more stable. As indicated above, we will a
ply this algorithm to electron-densities obtained fro
Green’s function calculations. The potentials generated
the scheme show the correct asymptotic behavior and
characteristic intershell peaks.

We can then use these potentials in fitting procedures
existing or new functionals, along with energetic data res
ing from the same Green’s function calculation. In this w
a microscopic study of current functionals can be perform
providing anab initio basis for these functionals. This ma
result in model potentials with e.g., improved asymptotic b
havior such that some properties, like polarization quantit
are predicted with larger accuracy. Efforts along this path
lead to more fundamental guidelines to derive functiona
thereby hopefully increasing the predictive power of DF
We illustrate this procedure in a preliminary study of a rec
functional proposed by Hamprechtet al. ~the HCTH func-
tional, see, Ref.@30#!.

The outline of this paper is as follows. In Sec. II, th
inversion algorithm is presented that determines the xc
tential corresponding to a given input one-body dens
Though this section is mainly numerical in nature, we po
out the underlaying physical principles of the algorith
where possible. In Sec. IV, we discuss the potentials fo
for some closed-shell atoms~He, Be, Ne, Mg, and Ar! and
open-shell atoms~B, C, N, O, and F! using the densities a
derived from our self-consistent Green’s function schem
An example of the microscopic analysis of functionals
given in Sec. V, where we present some preliminary res
of our study on the HCTH functional. Finally, a survey of th
key features in this paper is given in Sec. VI.

II. INVERSE-PROBLEM ALGORITHM

The algorithm will be presented in a spin-restricted fo
malism: the spin-polarized version of the expressions can
found by simply adding the spin-indexs. Atomic units are
used throughout the paper.

For a givenN-electron input densityr re f(r ), the inversion
problem consists of determining the unique local poten
vs(r ) that generates this density through the Kohn-Sh
~KS! equations. Stated otherwise, we must have that

r re f~r !5rKS~r !5(
i 51

N

ufKS,i~r !u2, ~1!

where the Kohn-Sham orbitals in Eq.~1! are lowest-energy
solutions of
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2 ¹21vs~r !#fKS,i~r !5eKS,ifKS,i~r !. ~2!

In general, the effective potential of the KS system reads

vs~r !5v0~r !1E d3r 8
rKS~r 8!

ur2r 8u
1vxc~r !, ~3!

and consists of the external potentialv0, the Hartree repul-
sion vH , and the xc potentialvxc . We restrict our study to
spherically symmetric atomic systems without additional e
ternal fields, i.e.,v0(r )52Z/r , whereZ is the atomic num-
ber. As a consequence, only the radial degree of freedo
relevant.

In our algorithm the inversion problem is solved using
iterative scheme. All terms invs(r ) that are known exactly
are kept fixed over the iterations, i.e., only the xc potentia
varied. The Hartree potential in Eq.~3! is evaluated using the
input densityr re f(r ). We initialize the xc potential by mean
of the Dirac potential@6#:

vxc
(0)~r !52F 3

p
r re f~r !G1/3

. ~4!

The Dirac potential provides a reasonable approximation
the exchange part, which is the dominant contribution to
xc potential.

Suppose that we have the xc potential of iterationn, then
we solve the KS equations~2! corresponding to this potentia
in coordinate space and construct the KS electron densi

rKS
(n)~r !5(

i 51

N

ufKS,i
(n) ~r !u2. ~5!

The xc potential of the next iteration is found by applying t
following correction:

vxc
(n11)~r !5vxc

(n)~r !1ar b@rKS
(n)~r !2r re f~r !#

1@I KS
(n)2Ire f# f ~r !. ~6!

The last term in Eq.~6! contains the ionization energyI KS
(n)

52eKS,ion
(n) , whereeKS,ion

(n) is the energy of the highest occu
pied Kohn-Sham orbital in iterationn. The ionization energy
Ire f determines unambiguously to the asymptotic behavio
the input density. Its role will be explained in the next par
graphs, along with the parametersa,b and the functionf (r ).

With the update~6! for the xc potential, the KS equation
are solved anew and this process is repeated until con
gence. As the convergence criterion we impose a condi
on the integrated density deviation,

4pE drr 2urKS
(n)~r !2r re f~r !u,D, ~7!

where D51025. For the open-shell inversion, the conve
gence condition is imposed on both spin densities separa
andDs5531026.

The effective KS potentialvs is only determined up to an
additive constant by Eqs.~1! and~2!, and can be fixed com
pletely by the requirement that it vanishes at infinity. Due
5-2
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ALGORITHM TO DERIVE EXACT EXCHANGE- . . . PHYSICAL REVIEW A 67, 012505 ~2003!
the fact that our initial guess~the Dirac potential! in Eq. ~4!
vanishes asymptotically, and due to the structure of the
date scheme Eq.~6!, this requirement is automatically ful
filled for the converged solution as well.

Any reasonable electron-densityr re f(r ) can be used as
input in the algorithm. However, in order to get goo
asymptotic properties for the xc potential it is of course
quired that the input density itself has the corre
exponential-type decay for a neutral atom@31#,

r re f~r !;e22kr r 2[(1/k)21], ~8!

wherek5A2Ire f. Note that the ionization energy is in prin
ciple determined by the asymptotic region of the input d
sity r re f . We employed the highly correlated densities
obtained from our Green’s function calculations~see, Refs.
@16–18#!, but the scheme can also be applied on densi
found by other methods~e.g., quantum Monte Carlo calcu
lations!.

Let us now have a closer look at the update scheme in
~6!. The physical significance of the first correction term
that if the KS density of iterationn is larger than the refer
ence densityr re f(r ) in some region in space, then the x
potential of the next iteration will become more repulsive
that region. In this way, the KS density of iteration (n11)
should be closer to the input density.

In expression~6!, the value of the~positive! parametersa
andb is in general not crucial for the final converged for
of the potential, but can have an important influence on
number of iterations required to reach convergence. The
rametera determines the overall weight of the local corre
tion to the xc potential due to the difference between the
and input density. The parameterb increases the weight o
the large-r region, for which the correction would otherwis
be very small.

We obtained convergence fora ranging from 0.5 to 3.5
a.u., while the value ofb could be varied between zero an
three, at least for all closed-shell atoms in this study. In
open-shell case, the tuning of theb parameter turned out to
be more delicate, however, and it was found that its va
should preferably be selected aroundb'2 for B and C,
while we obtained good results withb'1.5 for N, O, and F.

It is clear that the first correction term is related to t
idea that a minor change in the one-body density induce
linear-response reaction in the effective KS potential. T
exact expression for this response is nonlocal,

dvs~r !5E dr 8G21~r ,r 8!dr~r 8!, ~9!

where the density response function of the KS system
defined as~for a closed-shell system!

G~r ,r 8!52 (
i (occ.)

(
j (unocc.)

f i* ~r !f j* ~r 8!f i~r 8!f j~r !

e i2e j
1c.c.

~10!

Equations~9! and ~10! have been used@22,23,27# to deter-
mine the effective KS potential by iteratively determining t
inverseG(r ,r 8)21 of the response function. If the invers
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G21 is calculated using finite basis-set expansions for
potential and/or the KS orbitals, severe problems may a
@22,23#. These are not encountered in the grid-based met
of Ref. @27#, where it was found, however, that spuriou
oscillations appear in the converged potential if the inp
density does not have the correct asymptotic behavior. T
indicates the sensitivity of the potential even to spatial
gions where the density is very small, as will be furth
discussed in Sec. IV.

The second correction term in Eq.~6! is not strictly nec-
essary to obtain convergence to an xc potential with cor
asymptotic behavior~see Sec. IV!. Without the second term
however, the highest occupied KS eigenvalue may be so
what off the value forIre f corresponding to the tail of the
input density. This is due to the fact that in the asympto
region, the first correction term~even with the extra factor
r b) is small, and a very large number of iterations would
required to obtain an accurate matching for the ionizat
energies. To alleviate this problem, we added the sec
term: it ensures that the absolute value of the energy of
highest occupied KS level coincides with the ionization e
ergyIre f . The factorf (r ) in the second term has the follow
ing form:

f ~r !5u~12r !r g1
u~r 21!

r d
. ~11!

The step functions@u(x)# allow for a continuous transition
between the two terms at a distance of one atomic u
Again, the parametersg andd only affect the speed of con
vergence of the scheme; we only require their value to
positive. In our calculations, we used forg'5 for the
closed-shell atoms andg'1 for the open-shell cases. Th
parameterd can be takend'3 in all cases. Both parameter
however, can be varied within a wide range without affecti
the final form of the converged potential.

III. NUMERICAL TEST OF THE SCHEME

The inversion algorithm as presented in the preceding s
tion was first tested at the exchange-only level, us
Hartree-Fock~HF! input densities calculated in coordina
space~see Refs.@16–18#!. Note that the coordinate-space H
scheme automatically leads to the correct asymptotic beh
ior of Eq. ~8!. As an example, we show in Fig. 1 the effectiv
exchange potential corresponding to the neon HF densit
is seen to be extremely close to the optimized effective
tential exchange-only potential of Ref.@32#, which is the
local potential that generates orbitals which minimize the
energy functional.

It is also interesting to compare the iterative procedure
Eq. ~6! with that introduced by van Leeuwen and Baeren
@25#, henceforth called the LB scheme. The LB scheme
solving the inversion problem uses a different local upda

vel
(n11)~r !5U (n)~r !vel

(n)~r !, ~12!

U (n)~r !5
rKS

(n)~r !

r re f~r !
, ~13!
5-3
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K. PEIRS, D. VAN NECK, AND M. WAROQUIER PHYSICAL REVIEW A67, 012505 ~2003!
where vel(r )5vH(r )1vxc(r ) the electron-electron part o
the KS potential.1 The update factorU(r )5rKS(r )/r re f(r )
must be kept within reasonable bounds, e.g., by impos
@25#

12e<U~r !<11e, ~15!

wheree;0.05, or by considering@26#

U~r !5
rKS~r !1a

r re f~r !1a
, ~16!

wherea;0.5 atomic units.
Note that a local update scheme in terms of a multipli

tive factor with fixed sign@like the ratio of thenth iteration
density and the target density in Eq.~13!# is problematic in
the sense that it cannot change the local sign of the unkn
potential from its initial estimate. While this hardly matte
for electron systems—one can isolate thevel part which has
a fixed sign—it can be unworkable in other problems, e.g.
nuclear physics. So on general grounds an iterative sch
like Eq. ~6!, where the unknown potential can change
local sign during iterations, is to be prefered.

1In the original sciheme appearing in Ref.@25#,

vs
(n11)~r!5

rKS
(n)~r!

rref~r!
vs

(n)~r!, ~14!

obviously some printing error has occurred; it is defined in
unstable direction since the total KS potentialvs(r ) is usually nega-
tive. The stable direction would involve the local update fac
r re f(r )/rKS

(n)(r ). In later papers by the Amsterdam group and c
workers it is clear that they advocate updating, according to
~13!, the electron-electron part of the KS potential only, which is
positive quantity.

FIG. 1. Exchange-only potential generated from the ne
Hartree-Fock density in Fig. 3.
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Another practical remark is that the LB method seems
be much more sensitive to the initial estimate for the
potential, e.g., using the Dirac expression~4! we failed to
achieve convergence for the neon Hartree-Fock density.
did obtain convergent results using~see Ref.@27#! an initial
estimate

vxc
(0)~r !52F 3

p
r re f~r !G1/3

12ex
B
„r re f~r !,u¹r re f~r !u…,

~17!

where ex
B is the Becke@7# gradient correction to the ex

change energy density; the latter term imposes the cor
asymptotic21/r behavior of the initial estimate. Note that i
the present scheme~6! this behavior is built up automatically
during iterations, even with an initial estimate like Eq.~4!
which is exponentially decaying.

In the upper panel of Fig. 2 we compare, for the case
the neon HF density, the convergence speed of the den
deviation in Eq.~7! for the LB and the present scheme. F
the LB scheme expression~16! was used witha53 a.u.;
smaller values ofa, or the use of expression~15!, both led to
instabilities in the recursion scheme. For the present sch
~6! parameter valuesa53.5, b51, g55, d53 have been

e

r
-
q.

n

FIG. 2. Comparison of convergence properties of the pres
method in Eq.~6! and the LB method of Eqs.~12! and ~13!. The
neon HF density was used as input. Full line: present method. D
dashed line: LB method. Upper panel: integrated density devia
of Eq. ~7! versus iteration number. Lower panel: KS ionization e
ergy ~in atomic units! versus iteration number.
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ALGORITHM TO DERIVE EXACT EXCHANGE- . . . PHYSICAL REVIEW A 67, 012505 ~2003!
taken. In both cases the initial estimate~17! was used. The
present scheme seems to converge faster for this case. M
over, the ionization energy consistent with the input HF d
sity for Ne, I re f50.850 a.u., is reached very rapidly, as c
be seen in the lower panel of Fig. 2. The LB scheme yie
an ionization energy which is approaching the correct o
but convergence is slow.

IV. RESULTS

The inversion algorithm was next applied at the full e
changeplus correlation level using input densities resultin
from Green’s function calculations in which Dyson’s equ
tion is solved self-consistently up to second-order in the tw
body interaction. As was demonstrated in Refs.@16–18#, this
so-called Dyson~2! scheme incorporates the most importa
correlations in many-electron systems, providing a good
production of e.g., ionization energies, electron affinities, a
total energies.

The Dyson~2! scheme uses a HF basis set, which is c
structed by solving the HF equations in coordinate sp
@Dyson~1! scheme#. Inherent to the method is a discretizatio
of the continuum part of the energy spectrum by addin
parabolic potential wall to the HF hamiltonian. This wall
switched on only at a large distance~larger than approxi-
mately three a.u.! from the nucleus, where the one-body de
sity is already in its asymptotic regime. Although the en
getic aspects of the calculations are not influenced by
discretization scheme, the parabolic potential does affect
asymptotic region of the density. In view of the sensitivity
the inversion procedure an entirely correct asymptotic beh
ior is required, and therefore the Dyson~2! densities had to be
corrected at large distances.

Near the point where the wall was applied, we impos
the correct asymptotic behavior as given in Eq.~8!, where
Ire f is the first ionization energy as predicted by t
Dyson~2! scheme. Because small errors in the density
greatly magnified by the inversion procedure, it is crucial
apply this correction in a very smooth way by ensuring t
the first, second, and third derivative of the density are c
tinuous in the extrapolation region. This sensitivity is n
intrinsic to our scheme but has also been observed in o
inversion algorithms~see Ref.@33#!.

The extrapolation procedure sketched above is illustra
in Fig. 3, where the HF, Dyson~2!, and corrected Dyson~2!
densities for neon are shown. The asymptotic regimes of
HF and Dyson~2! densities differ because the ionization e
ergy as predicted by the two schemes is not equal.

The algorithm of Sec. II is applied to a number of lig
atoms: the closed-shell systems He, Be, Ne, Mg, and Ar
the open 2p shell atoms B, C, N, O, and F. We reached fa
convergence@according to the criterion Eq.~7!# for each
atom in our study. This means that we have found a basis
free representation of the KS xc potential, and that we
tained the unique potential corresponding to our Dyson~2!
input densities, up to some arbitrary constant. Note that
not guaranteed that the scheme will converge for an arbit
input density, since in principle there may be densities t
are not noninteractingv-representable@25#.
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At convergence, we not only reproduce the input dens
in an accurate way, but also the highest occupied KS eig
value coincides with the Dyson~2! ionization energy~with an
accuracy of about 1027 a.u. or better!. Moreover, the poten-
tials show the correct asymptotic behavior;21/r . This fea-
ture is not imposed on the potential by hand, but is genera
automatically, probably due to the feedback mechanism
tween the update of the potential, the KS orbitals, and
physical input density having the correct large-r behavior of
Eq. ~8!. Let us consider an electron of a neutral atom a
very large distance from the nucleus. As is well-known, t
electron experiences a nuclear potential, shielded by
other (Z21) electrons. The influence of the nucleus on t
electron is expressed by21/r . The nuclear potential2Z/r
and the Hartree field*d3r 8r(r 8)/ur2r 8u, however, cancel
each other at large distances, such that the residual21/r
potential must be generated by the xc potential.

In Figs. 4–6, we group the xc potentials from our sche
for the closed-shell systems. The upper part shows the
tential itself, while the lower part involvesrvxc(r ) in order
to illustrate in a more transparent way the correct asympt
behavior of the potential. For comparison, we also includ
high-level xc potential for He obtained by Umrigar an
Gonze@34#, as well as quantum Monte Carlo~QMC! results
for Be and Ne obtained by the same authors@35# and by
Filippi, Gonze and Umrigar@33#. These high-level potentials
have also been used in Refs.@36–38#. It is clear that our
results agree very well with these potentials, especially in
case of helium. There our potential only differs from th
high-level potential at the origin@in the lower part of Fig. 4
with rvxc(r ) the two curves practically coincide#.

The spin-up and spin-down potentials for the open-sh
B, C, N, O, and F atoms are displayed in Figs. 7–11. N
that the spin-up and spin-down potentials for F~Fig. 11! are

FIG. 3. Hartree-Fock~dashed!, Dyson~2! ~dot-dashed!, and cor-
rected Dyson~2! ~full line! density for neon.
5-5
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K. PEIRS, D. VAN NECK, AND M. WAROQUIER PHYSICAL REVIEW A67, 012505 ~2003!
very alike, as the atom approaches a closed-shell config
tion.

A characteristic feature, present in all xc potentials, is
appearance of the intershell peaks. They can be partly rel
to a jump of the exchange hole from one shell to anothe
the reference position crosses the border region between
two shells~see Refs.@41–43#!.

The lower part of each figure displayingrvxc(r ) system-

FIG. 4. Exchange-correlation potentialsvxc(r ) ~upper part! and
rvxc(r ) ~lower part! for He and Be as obtained in this work and
Refs.@34,39#: full line, He ~this work!; dashed line, He~high-level
calculation@34#!; dotted line, Be~this work!; dot-dashed line, Be
~QMC @39#!.

FIG. 5. Potentials for Ne@vxc(r ) ~upper part! and rvxc(r )
~lower part!#: full line is this work, dashed line is the QMC poten
tial @39#.
01250
ra-

e
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if
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atically reveals the correct asymptotic behavior of the
potential. Also, we find that the xc potential has a finite va
at the origin, as was already suggested by Morrison and Z
@40#. Thervxc(r ) curves provide a very sensitive look at th
long-range behavior of the xc potentials. Comparing, for
case of Ne in Fig. 5, the present result with the QMC res
it is clear that two spurious extrema appear in the poten
based on the Dyson~2! density. Such artificial structure i
present for the xc potentials of the other atoms as well, an
related to the extrapolation procedure in the asymptotic
gion of the density. Though we take care to extrapolate i

FIG. 6. Potentials of present work for Mg~full line! and Ar
~dashed! @vxc(r ) ~upper part! and rvxc(r ) ~lower part!#.

FIG. 7. Exchange-correlation potentialsvxc(r ) ~upper part! and
rvxc(r ) ~lower part! of present work for B: majority spin in full
line, minority spin in dashed line.
5-6
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ALGORITHM TO DERIVE EXACT EXCHANGE- . . . PHYSICAL REVIEW A 67, 012505 ~2003!
smooth manner, the procedure still affects~mildly! the xc
potential near the extrapolation point. The effect is entir
due to imperfections in the extrapolated Dyson~2! input den-
sity, and not to the used inversion procedure, since we do
encounter it when we use HF input densities or the QM
neon density, communicated to us by Gonze@39#. This ob-
servation is similar to the appearance of spurious oscillati
in the xc potential reported by Schipper, Gritsenko, a
Baerends@27# when a Gaussian-type input density is use

FIG. 8. Exchange-correlation potentialsvxc(r ) ~upper part! and
rvxc(r ) ~lower part! of present work for C: majority spin in full
line, minority spin in dashed line.

FIG. 9. Exchange-correlation potentialsvxc(r ) ~upper part! and
rvxc(r ) ~lower part! of present work for N: majority spin in full
line, minority spin in dashed line.
01250
y
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d
.

Here we impose on the input density the correct asympt
behavior by extrapolation, leading to less pronounced
more localized oscillations near the extrapolation point.

Since the xc potential constructed with the presented
gorithm results in an almost perfect reproduction of the in
density, one may assume that all correlations involved in
density are also present in the xc potential. Therefore, the
potentials obtained in the present study incorporate

FIG. 10. Exchange-correlation potentialsvxc(r ) ~upper part!
andrvxc(r ) ~lower part! of present work for O: majority spin in full
line, minority spin in dashed line.

FIG. 11. Exchange-correlation potentialsvxc(r ) ~upper part! and
rvxc(r ) ~lower part! for F: inversion scheme, majority spin of F
~full !; minority spin of F~dashed!; HCTH functional with new ex-
change parameters, majority spin of F~dotted!; and minority spin of
F ~dot-dashed!.
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Dyson~2! correlations, i.e., all correlations of the se
consistent Green’s function scheme up to second order in
Coulomb interaction.

The generated xc potentials can be used in a variety
applications. In this paper, we consider the use of these
potentials in a fitting procedure for an existing function
parametrization. The resulting parameter set can then be
sidered to be derived on a fully microscopic basis, i.e., w
out fitting to experimental data. This will be illustrated in th
following section with some preliminary results.

V. USE OF THE POTENTIALS IN FITTING PROCEDURES

As mentioned in the introduction, the asymptotic regi
of the xc potential becomes more and more prerequisit
present-day applications of DFT. Including exact xc pote
tials in the fitting procedure for a model functional provid
more detailed information on how the model potential sho
behave, which may result in improved asymptotic densi
and more accurate optimized geometries. It should be n
that good structural predictions can also be obtained by
cluding exact exchange in the functional, and fitting to en
getic data solely.

As far as aymptotics is concerned, there are actually
problems with current popular xc functionals. First, the m
jority of the potentials decreases in an exponential way
stead of as21/r . This means that the potentials are le
attractive than the exact one at larger. There have been a
number of efforts to correct the behavior at larger. One of
the first attempts was made by van Leeuwen and Baere
@25#, who introduced a model potential with an improve
asymptotic behavior. However, the potential cannot be
rived as the derivative of a functional and provides a l
accurate description of the region close to the nucleus.

The second problem is more of an abstract nature
concerns the extension of DFT that also deals with syst
consisting of a fractional number of electrons. As indica
in Sec II the exact KS potential, defined as the local poten
that generates the exact density through Eqs.~1! and ~2!, is
only determined up to an additive constant. If one consid
an ensemble-based extension of DFT and its KS formula
to noninteger electron number one can also define the
potential as the functional derivative of the underlying ex
xc energy functional, valid for integer and noninteger ele
tron number. This seemingly removes the freedom of
additive constant by relating it to the total energy, but this
not correct: at integer electron number the derivative is
defined, and the exact KS potential jumps by a syste
dependent constant when taking the limit to an integer fr
the electron-deficient or electron-abundant side~the so-called
derivative discontinuity,@44#!. So at integer electron numbe
the exact KS potential is again defined up to an addit
constant, and it can be shown~see, e.g., Refs.@9,14#! that an
xc potential which vanishes asymptotically corresponds
taking the limit from the electron-deficient side. Earlier d
cussions on this topic can be found in Ref.@31# ~asymptotic
behavior of xc potentials! and@45# ~constant shift of the po-
tential!. None of the currently implemented functionals d
scribes this derivative discontinuity, and it is doubtf
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whether any analytical formulation will be able to includ
this phenomenon.

It was observed by Tozer and Handy@9,14# that general-
ized gradient approximation~GGA! functionals could more
easily be fitted to exact xc potentials if they left room for
system-dependent constant in the fit. They interpreted thi
an indication that the GGA potentials represent an averag
the electron-deficient and electron-abundant limit of the
act xc potential. The same method was used by Hampr
et al. @30#, who fitted their model xc potential to both ene
getic data and accurate xc potentials obtained in the Z
scheme. To include the derivative discontinuity to some
tent in the functional, they allowed for a system-depend
constant shift of the input potentials. This shift does not en
the parameters of the functional explicitely, but has an in
rect effect on the value of the parameters. However, the
pansion defining the so-called HCTH functional leads to
potential that does not go to a constant but vanishes asy
totically.

In order to illustrate the use of the xc potentials resulti
from our Dyson~2! calculations, we have made a refit of th
HCTH functional. Currently, our training set only consists
the closed- and open-shell systems in our study, and res
are therefore preliminary.

The HCTH xc functional can be written as

Exc@r#5(
i

ciE f i~r↑ ,z↑ ,r↓ ,z↓!dr , ~18!

wherers is the one-body spin density,zs5u“rsu, and the
expansion functionsf i are described in Ref.@30#. In the
HCTH functional, 15 functionsf i have been considered. Th
15 expansion coefficientsci are optimized in a least-square
fit with an objective functionV that consists of two parts
V5VV1VE . The first partVV involves the potentials

VV5(
s

(
A

atoms

4pE drr 2Fv input
As ~r !1kA

s

2(
i

civ i
As~r !G2

rAs
2/3~r !, ~19!

where v input
As (r ) is the xc potential for atomA as derived

using our inversion algorithm,kA
s is the constant shift al-

lowed for this potential,v i
As(r ) is the potential derived from

the function f i
A(r ) by functional derivation with respect to

rAs(r ), andrAs
2/3(r ) is an appropriate weighting factor.

The second termVE in the objective function involves the
energetic data,

VE5 (
A

atoms

wAFExc
A 24p(

i
ciE f i

A~r !r 2drG2

. ~20!

The xc energiesExc
A can be determined from the well-know

expression for the total energy in DFT,
5-8
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TABLE I. Parameters of the HCTH functional: the first numerical column collects the original values
next columns present the sets obtained using the Dyson~2! energies and xc potentials in the fit for differe
weightswA of the energetic part of the objective function. Parameters are displayed which are obtained
varying only the exchange~x! parameters as well as varying both the exchange and the first three ord
correlation (x1c).

x only x1c
Coefficient Reference@30# wA510 wA5100 wA51000 wA510 wA5100 wA51000

c1 1.09320 1.089 1.089 1.078 1.091 1.059 1.051
c2 0.222601 1.921 1.231 2.164
c3 0.729974 21.513 0.6931 1.029
c4 20.744056 20.9258 20.9038 20.8424 20.6457 20.4957 20.6129
c5 20.0338622 20.6577 20.3981 20.4234
c6 3.35287 0.2933 22.679 23.602
c7 5.59920 6.956 7.057 8.599 7.414 6.818 6.719
c8 20.0125170 0.7298 20.0519 20.7304
c9 211.5430 211.90 211.258 210.03
c10 26.78549 29.693 211.09 219.67 210.39 29.601 210.41
c11 20.802496
c12 8.08564
c13 4.49357 7.168 8.443 17.42 7.746 7.119 8.869
c14 1.55396
c15 24.47857
ou

t

to

fo
on

s

Np Na

s,
Exc@rA#5E0(A)2 (
i (occ)

eKS,i1J@rA#

14p(
s

E drr 2v input
As ~r !rAs~r !, ~21!

where E0(A) is the ground-state energy of systemA corre-
sponding to the one-body density as determined in
Green’s function calculations, while the KS eigenvalueseKS,i
are generated by the inversion scheme. Furthermore,J@rA#
is the Hartree part of the two-electron interaction:

J@rA#5
1

2E drdr 8
rA~r !rA~r 8!

ur2r 8u
, ~22!

with rA(r )5rA↑(r )1rA↓(r ). The weightswA in Eq. ~20!
balance the influence of the potential and energetic par
the fit.

In the original derivation of the HCTH functional@30#,
Hamprechtet al. introduced a self-consistent technique
determine the value of the system-dependent shiftkA

s ~see,
also, Ref.@14#!. In the present paper, we found no need
this procedure, but simply minimized the objective functi
with respect to both the functional parameters$ci% and the
constant shifts$kA

s%. The conditions

]V

]ci
50;

]V

]kA
s

50, ~23!

with V5VV1VE then lead to the least-squares equation

ci : (
j 51

Np

Ai j cj1(
s8

(
M51

Na

AiM s8
kM

s85Bi , i 51, . . . ,Np
01250
r

in

r

kA
s : (

j 51
AAs j cj1(

s8
(

M51
AAsMs8

kM
s85BAs ,

A51, . . . ,Na , ~24!

whereNp andNa are the numbers of parameters and atom
respectively. The matricesA andB are given by

Ai j 5(
s8

(
N51

Na F E drr 2v i
Ns8~r !v j

Ns8~r !rNs8
2/3

~r !

14pwNE drr 2f i
N~r !E drr 2f j

N~r !G ,
AiM s8

52E drr 2v i
Ms8~r !rMs8

2/3
~r !,

Bi5(
s8

(
N51

Na H E drr 2v input
Ns8 ~r !v i

Ns8~r !rNs8
2/3

~r !

1wNExc@rN#E drr 2f i
N~r !J , ~25!

for ci and

AAs j52E drr 2rAs
2/3~r !v j

As~r !,

AAsMs8
5dAMdss8E drr 2rAs8

2/3
~r !,

BAs52E drr 2rAs
2/3~r !v input

As ~r !, ~26!
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TABLE II. Total energy for the closed-shell systems as predicted by the HCTH functional fitte
Dyson~2! quantities, for different values of the weightwA in the fit. The last two rows respectively represe
the total energies of the Dyson~2! scheme and the HCTH functional using the original parameters@30#. Also
listed are results for Ca, which was not included in the training set. For Ca the Dyson~2! prediction is not
available, and the energy is taken from a G3 calculation@46#. All results are in atomic units.

wA He Be Ne Mg Ar Ca

10 22.918 214.662 2128.875 2199.973 2527.430 2677.468

100 22.913 214.651 2128.870 2199.970 2527.436 2677.480

1000 22.913 214.642 2128.879 2199.977 2527.432 2677.471

Dyson~2! 22.899 214.628 2128.888 2199.948 2527.422 2677.38450

HCTH 22.918 214.670 2128.962 2200.096 2527.678 2677.765
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In this preliminary fit we have substantially less fittin
data~potentials and total energies of only ten atoms! than in
the original parametrization by Hamprechtet al. @30#, which
involved basically the G2 training set. As a result some
efficientsci tend to oscillate when allowed to vary freely
the fit. Therefore, we fixed the coefficients corresponding
the correlation terms in the expansion and applied a le
squares fit on the exchange parameters only~i.e., the coeffi-
cients c1 , c4 , c7 , c10, and c13) along with the system-
dependent shiftskA

s . In Table I, we collect the original value
of the parameters@30# together with our values for a few
choices of the weightswA . For simplicity, the weight is kep
constant for all atoms. We also include the parameters
tained when allowing the exchange and the first three co
lations orders to vary. We see that some parameters ten
differ substantially from the original parametrization, whic
we attribute to the reduced size of our training set. In
remainder of this paper, we will therefore report only resu
that are obtained with the parameter set in which merely
exchange parameters were optimized, while the correla
parameters were fixed on the original HCTH value.

The total energies as predicted using the HCTH functio
~with the new exchange parameters of Table I! for the atoms
of the training set and also for calcium are listed in Table
and III. All results were obtained by solving the KS equ
tions in coordinate space. The Dyson~2! energies used in the
fitting procedure are given for comparison, as well as
outcome of a G3 calculation for calcium@46#. Note that this
G3 calculation involves relativistic corrections, which c

TABLE III. Total energy for the open-shell systems as predic
by the HCTH functional fitted to Dyson~2! quantities, for different
values of the weightwA in the fit. See also caption of Table II.

wA B C N O F

10 224.631 237.813 254.557 275.012 299.669

100 224.619 237.801 254.545 275.003 299.662

1000 224.612 237.797 254.539 275.006 299.671

Dyson~2! 224.600 237.789 254.543 275.010 299.678

HCTH 224.645 237.837 254.593 275.063 299.737
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have a relatively important influence in an atom as calciu
These corrections were not included in our Dyson~2! study.
The results using the original parametrization of the HCT
functional are listed as well. Mind, however, that the HCT
functional was fitted to experimental energies~amongst other
quantities! and not toab initio energies as in the presen
study.

In Tables IV and V the first ionization energies are pr
sented along with the Dyson~2! ionization energies, and th
constant shiftskA of the atoms in our training set. In Table V
only the shift of the potential that corresponds to the s
which determines the first-ionization level is reported. T
shift of the potential corresponding to the other spin pol
ization is of a similar value. The ionization energy is calc
lated according to Ref.@30#

IA52eKS,ion
A 1kA

s . ~27!

Note that the ionization energies were not included in the
Nevertheless, we notice a good agreement with the Dyso~2!
quantities. We observe that all shifts are positive and of
expected order of magnitude: theoretical considerations@14#

TABLE IV. Upper part: closed-shell first-ionization energiesI
obtained with the HCTH functional, for the three sets of parame
corresponding to the weightswA510, 100, 1000 in Table I, and the
Dyson~2! ionization energy. Lower part: the constant shiftskA of
the potentials as determined by the fit, and the Dyson~2! value for
the hardness. All results are in atomic units.

wA He Be Ne Mg Ar

I
10 0.900 0.347 0.763 0.243 0.561

100 0.900 0.347 0.764 0.242 0.561

1000 0.902 0.346 0.766 0.243 0.563

Dyson~2! 0.906 0.320 0.763 0.274 0.585

kA

10 0.321 0.144 0.274 0.075 0.184

100 0.321 0.143 0.272 0.073 0.183

1000 0.322 0.142 0.276 0.072 0.187

Hardness 0.453 0.160 0.381 0.137 0.293
5-10
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indicate that this shift should be less than or equal to
hardness (I2A)/2, whereA is the electron affinity. Similar
values of the shifts were obtained in Refs.@47,48# using
other functionals. In Tables IV and V, we also give the p
dictions of the hardness in the Dyson~2! scheme. Since the
closed-shell systems that were considered cannot bind an
tra electron, the hardness equals half the ionization ene
This observation also holds for nitrogen. As was pointed
in Ref. @14#, in the closed-shell case the shift should be le
than the hardness, but equal to the hardness for the o
shell systems~see, also, Ref.@49#!. We see that the fitting
procedure indeed reveals this trend: the shift of the clos
shell systems is always less than the Dyson~2! hardness,
while the shift of the open-shell systems is close to it.
course, the fitting scheme does not reproduce the open-
hardness exactly, but it is clear that the predicted shifts
cillate about the exact value. The larger deviation of the
trogen value may be due to the fact that in this system
2p spin orbital is assumed fully occupied, while the oth
one is completely empty. As pointed out by Perdew a
Burke in Ref. @49#, the constant shift equals the hardne
whenever the ground state of the positive and negative
can be obtained by removing or adding an electron in
same highest occupied KS level of the neutral atom. Si
this is not the case in the spinunrestricted treatment of ni
gen, we can understand that the shift is below the hardn
for this atom.

It was also mentioned in Ref.@14# that a shift which dif-
fers significantly from the hardness indicates that kine
energy effects give an important contribution to the deri
tive discontinuity of the xc potential of the correspondi
atom. In future work we intend to study the correlation co
tribution to the DFT kinetic energy in more detail.

Apart from a discussion of the energetic predictions of
HCTH functional with the new exchange parameters, we
also compare the HCTH potential with those derived in
inversion scheme. This is illustrated for fluor in Fig. 11. F

TABLE V. Upper part: open-shell first-ionization energiesI ob-
tained with the HCTH functional and Dyson~2! ionization energy.
Lower part: the constant shiftskA

s and Dyson~2! hardness. Only the
shift of the potential that determines the ionization level is cons
ered; the shift of the potential corresponding to the other spin
larization is about the same value. All results are in atomic uni

wA B C N O F

I
10 0.302 0.409 0.529 0.494 0.619

100 0.302 0.409 0.529 0.495 0.620

1000 0.303 0.409 0.527 0.502 0.623

Dyson~2! 0.305 0.415 0.537 0.484 0.619

kA
s

10 0.162 0.190 0.226 0.246 0.253

100 0.160 0.189 0.225 0.244 0.251

1000 0.159 0.190 0.227 0.242 0.252

Hardness 0.149 0.185 0.268 0.226 0.246
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the new exchange parameters, we chose those in Tab
corresponding to the weightwA5100. The HCTH potential
has the correct qualitative behavior in the region where
atomic density is substantial, but it breaks down in t
asymptotic region.

VI. SUMMARY

In this paper, a scheme is proposed to derive the ex
exchange-correlation potential in density functional theo
from a high-level electron density. The proposed iterat
scheme is easier to implement than other methods, suc
the density-response scheme~see Refs.@22,27#! or the
method of Zhao-Morrison-Parr@28#, and numerically more
stable than the related inversion method in Ref.@25#. We
applied the scheme on some closed-shell atoms~He, Be, Ne,
Mg, and Ar! and on a number of open-shell atoms from t
second row of the periodic system~B, C, N, O, and F!. The
one-body densities we used as input to the algorithm w
obtained from self-consistent Green’s function calculatio
and embody a large part of the correlations in many-elect
systems. The resulting potentials were found to display
correct asymptotic behavior and showed the character
intershell peaks. In this way, we have found a basis-set
representation of the exchange-correlation potential in
Kohn-Sham formalism. Since the ideas that underlay the
gorithm are quite general, we believe it to be applicable
molecules as well. Extension of the inversion scheme to
atomic molecules, where the cylinder symmetry still allow
coordinate-grid method, will be the topic of future work.

The generated xc potentials can be used in a variety
applications. One application, addressed in this paper, is
use of the xc potentials in fitting procedures for new fun
tionals. The advantage of using potentials along with en
getic data when fitting functionals is that the correspond
model exchange-correlation potential receives more accu
information on how the exact potential should behave, wh
may lead to more accurate optimized geometries. As an
ample we have used the energies from the Green’s func
calculations that produced the input densities employed
the inversion scheme, along with the corresponding pot
tials to refit the HCTH functional in a fullyab initio way.
The correlations present in the Green’s function calculati
which can be easily defined using Feynman diagrams,
embedded in the exchange-correlation potentials derive
our scheme. In this way, a microscopic basis can be provi
for present-day functionals, which may lead to a more fu
damental understanding of exchange-correlation function
in density functional theory.
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