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Let HINl=HIdlg...@ HI% be a tensor product of Hilbert spaces andrgbe the closest separable state in
the Hilbert-Schmidt norm to an entangled stage Let7, denote the closest separable statggalong the line
segment from /N to py wherel is the identity matrix. Following A. O. Pittenger and M. H. Rubinnear
Algebr. Appl.346, 75 (2002] a witnessW,, detecting the entanglement pf§ can be constructed in terms lof
79, and7y. If representations of, and7, as convex combinations of separable projections are known, then
the entanglement gf, can be detected by local measuremenidr@et al.[Phys. Rev. 266, 062305(2002)]
obtain the minimum number of measurement settings required for a class of two-qubit states. We use our
geometric approach to generalize their result to the corresponding two-qudit casel vghgrnme and obtain
the minimum number of measurement settings. In those particular bipartite egsé€s,. We illustrate our
general approach with a two-parameter family of three-qubit bound entangled states forryehiehand we
show that our approach works farqubits. We elaborated earligA. O. Pittenger, Linear Algebr. ApB59,
235(2003] on the role of a “far face” of the separable states relative to a bound entangleg stadastructed
from an orthogonal unextendible product base. In this paper the geometric approach leads to an entanglement
witness expressible in terms of a constant tirhesd a separable density, on the far face frompy. Up to a
normalization this coincides with the witness obtained byh@set al. for the particular example analyzed

there.
DOI: 10.1103/PhysRevA.67.012327 PACS nuntber03.67—a, 03.65.Ud
I. MOTIVATION AND NOTATION tum information literature as an “entanglement witness.” A

nice introduction to the subject and an overview of some of

An important question for quantum information theory is the literature can be found {16].
how to determine if a given state is entangled. Physically, In the context of two qubits Gwneet al.in [4] assume the
one would like to do this using local measurements and clasgeneral form of a two-parameter family of densitje/hich
sical communications. Testing for entanglement is closelyncludes a maximally entangled staig. They construct an
related to Bell's inequalitiesl] and subsequent elaborations entanglement witness using the eigenvector of the partial
of Bell's inequalitieg 2]. Recently, other tests have been sug-transpose op with the minimal (negative eigenvalue and
gested, such as that i8] which relies on the theory of find that the resulting witness does not depend on either of
positive operators and on eigenvalue estimation. the parameters. Since the separating hyperplane contains a

An alternative approach, which is experimentally realiz-face of the separable states, ibistimalin the sense that no
able, is to define local correlated measurements motivated byitness detects a strictly larger set of entangled sta&ee
some knowledge of the structure pfitself, and this ap- [7] for the definitions andi8] for an exposition related to the
proach has been elaborated[#]. To describe the problem, approach used in this paper.
we first define the mathematical context. Specifically, we as- In [8], the authors showed how an entanglement witness
sume we are working witm distinct systems so thaiis W, sensing an inseparabig can be constructed if one also
represented as anx N density operating on the tensor prod- knows the nearest separable staje
uct Hilbert spacH!N=H%®- .- @ H[%], The seD of such .
Nx N densities operating oH!N! is a compact convex sub- lpo— ol =int{|lpo—of|: 0 S}.
set of the real Hilbert spadd of NX N Hermitian matrices ) ) )
where the inner product is defined K,B)=TrA'B]. Since the norm is a continuous function and the set of sepa-
(Since the matrices are assumed to be Hermitian, the supdiable densities is compact, exists, although actually com-
script T denoting the Hermitian conjugate appears to be rePuting it is not an easy problem in general. The entanglement
dundant. However, we will have occasion to use the innetvitness is defined by
product for more general matrice$he set of separable den-
sitiesSis defined as the convex hull of the separable projec- Wo= 79+ Col = po, (1)
tions 7,®---® m,,, wherem, is a projection orH!, Since
Sis a compact convex subsetBfone can test for entangle- wherel is the N XN identity matrix and
ment by showing is separated fror by a hyperplane i
[5]. Geometrically the idea is clear. Mathematically it re- Co=Tr(7o(po—70))
duces to finding a Hermitian matrW with the property that
Tr(Wp)<0<Tr(Wo) for every densityc in S The exis- Details and examples of this construction are giveridh
tence of such aV is guaranteed by the general theory of where it is shown thatV is linked to the geometry via the
convex sets in Hilbert spaces, aWdis known in the quan- induced inner product
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((po—70),(p— 7)) =Tr((po— 7o) (p— 70))= — Tr(Wpp). is a density close to the normalized identify;— D || < é.
5 The densityo represents noise that is closeRg, the com-
. i ] 2 pletely random state. The idea is to define a separating hy-
In E)art|cular the separating hyperplane contains the “nearperplaneW, based onpo=2(|00)+|11))((00 +(11) and
est” face of S consisting of separable statessuch thato  jnvestigate what inseparable stageare detected byv,.

— 79 is orthogonal topo— 7. Equation(2) can be used to |t has been shown in a number of places that the closest
show that the extreme separable projections in the convegeparable state tay is

representation ofy must lie in the hyperplane, and that if
any separabler in the nearest face has full rank theéw, is 2 1
optimal. 70=3 Dot 3p0, 5
It was first shown in9] that there is a neighborhood of
the normalized identity or completely random staf®, s that the roles of, and7, coincide.(References and de-

=(LN)I, in which every state is separable. Given that factajis are given in[8].) One computesy=Tr(ro(po— 7o)
it follows from another compactness argument that there is a1 ' and then Eq(1) gives

nearest separable density i along the line segment

[Do,pol: 0 0 0 -1
?O:(l_SO)DO_FSOpO (3) W :l 0 1 0 (6)

"3l 0 0 1 o0

with 0<sy<1. While 7, and7, differ in general, in certain 100 o

examples they are the same, which simplifies the analysis.
Thus we have the following general result.

Theorem 1Supposey is inseparable. Using the notation
above, the Hermitian matrix

This differs from the optimal witness found [@d] only be-
cause of the use of a different Bell state and is a special case
of the general theorem above.

1-s, 1 As an application we have the following result.
Wo=I{co+ N + 79— — 79 Lemma 1A sufficient condition thap=pp,+(1—p)o,
So So where||oc—D||< 8, is not separable is that
is an entanglement witness fpg and is optimal if the near- 1448
est face contains a separable density of full rank. | — | <p.
Thus if one knew the convex representations@and7 4ab+1+44

in terms of tensor products of local projections, one could
define specific coordinated local measurements that would
experimentally detect the entanglemenfpgfvia Tr(poW).
Finding 7, and7 is in general difficult but can be done in a

Proof.

Tr(Wop)=p Tr(Wopa) +(1—p)Tr(WpDo) +(1—p)

variety of special cases. The examples we present include X Tr(Wo(o—Dy))
those analyzed if4] as well as a two-parameter family of
three-qubit bound entangled densities for whighand 7, _—2abp 1

differ. (A bound entangled state is entangled but has positive 3 tgll-p+d-p)

partial transposes.

Another result irf4] is that three sets of coordinated local XTr(Wo(a—Do))
measurements is the minimum number required in their two- —2abp 1 25
qubit context and an explicit representation of the three mea- < 3 + 5(1_ p)+(1—-p) 3
surements was given. It was also asserted that at deadt

such measurements would .be requireq fpr a correspondir‘where we have used the Cauchy-Schwarz inequality in the
dXd. system, but no suggestion for aph|evmg that bound Wapast step. Setting the final expression to be less than 0, we
prowdeql. We show hqw the geometric approach to entangle(Sbtain the desired inequality. Note that #&=0 and a
ment witnesses provides a unifying theme and leads to 2142 we obtain the well-known sufficient condition 1/3
concrete construction for théx d case wherd is prime. <p for inseparability ofopg -+ (1— p)D -
0 0-
Having definedW, we need to show that the measure-

Il. TWO QUBITS ment can be effected by three types of coordinated local

In the two-qubit case, the use of the nearest separabf@€asurements. We combine Eg) and Eq.(5) to obtain

density clarifies some of the methodology and suggests the

generalization to thelx d case. Following Refl4] we take WO:E, —27 (7)
3

p=pPpat(l-p)o. (4) _ _
and then use the representationrgfas a convex combina-
pa is defined by the state|00)+b|11), wherea andb are tion of six separable extreme points in the face of the states
real witha?+b?=1, pis a parameter between 0 and 1, and of Sin the separating hyperplane:
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1[{og+0o, ooto, oo—0, Oo—0y d+1 sets of projections correspond to the coordinated local
T0=g 2 ® 2 2 ® 2 measurements required [i] for local detection of entangle-
ment ofd X d states.
oot oy ogtoy 09— 0y Op— Oy We briefly summarize the necessary properties of these
2 2 + 2 ® 2 d—IeveI_“spin” matrices and relegate proofs to the Appendix.
By definition
+ - - +
(0’0 o, 0g—o0y . go— 0y 0gtoy i1

® ®
2 2 2 2 i
Sj= Z 7" |r(r + k],
(8) r=0

Thus one takes coordinated local measurements along the Where addition is moduld and 7= exp(2i/d).
y, andz axes of the Bloch sphere to compute Wgp) = 2 TS S . ]=ds 6
—2 Tr(7gp). As shown in[4], this is the minimal number of (11.k) =0 2.k2) T1:02% kg

coordinated local measurements that are required. . . .
q expresses orthogonality, and thug is a basis fodxd ma-

trices.
Using tensor products of thgy spin matrices, we find

The approach used above immediately generalizes to tH&at for primed,
bipartite dXd case whend is prime @d#2): we take an d-1 d-1 a1
entangled “base” statepy, for which we can compute the 11 E " 2 E S
nearest separable statg and thusW,. We again consider © d+1|d? &, Sk(d—k.00 <6 | d2 & kD kd=kikk [
the family of densitiep=pp,+(1—p)o, whereo is close

Ill. THE dXd CASE

to the stateD,, and define (10
whereS;; ;=S k®S; |, and it remains to show that each of
d-1 the k summations can be written as a sum of tensor products
pa=|wa){a where |¢a>=2 ay| kk) of complete sets of projections. Whesh is odd andu
k=0 o
=(j,k)#(0,0),
with real a, such thatEkaE=1. po is the state withay 141
=1/\d, and PuN=152 (7'S)"
dm=o
——d D L 9 is a(Hermitian projection, andP(r) : 0<r<d} is a com
0T gr1o0 gr (9) projection, anqP,(r) : 0=

plete set of orthogonal projections. uf=(j,1) andv;=(d

is the closest separable stat8ee[10] for the general result ~J,1) for 0<j<d, then(suppressing the subscript apand

and referencepAgain, 7o coincides withiz,, simplifying the vj)

problem[8,11-13. From Eq.(1) the optimal witness fop 91 d—1

is Wo=2/(1+d)I —drg, wherecy=(d—1)/d(d+1). The e > S(kj)(kd—kj),kk:a > PN® P,(d—r).
k=0 r=0

problem now reduces to finding analogs of the Pauli matrices
that can be used to represeny as an appropriate convex , . L
combination of projections, as in E¢8). Fortunately that The first summatior{10) has an analogous representation if
analysis has already been done. u=(1,0) andv=(d—1,0). _

In Ref. [14] the authors observed that tffeea) Pauli This completes the proof: the entanglement witnéés
matrices can be viewed as discrete Fourier transforms of fof2n be realized in terms of the identity and a separable den-
“computational” basis matrices. Using an analogous basiSity which in turn can be written as a convex combination of

for dxd matrices and the corresponding discrete Fouried® 1 sums of tensor products of complefecal) projec-
transform, one is able to defirg? orthogonal unitary ma- tions. This attains the lower bound for the number of coor-
trices dinated local measurements as asserted jin

As in the two-qubit case, the entanglement witn¥gs
Ug={S, : u=(j,k), 0<jk<dl, detects entanglement for a range of densities of the form
=ppat(1—p)o. The computation is similar to that for

whereS,= S is thedx d identity. (These same matrices Lemma 1, and we omit the details. _
were derived independently and in a different manner by Lemma 2 p=pp,+(1-p)o is inseparable provided
Fivel [15] who used them in a study of Hamiltonians on a L L d-1 5

discrete state space. He also derived several of the properties L P ey B

we include below.As with the two-qubit case, one can de- p 1= tov2dd 1)) = go ak) L

fine sets of tensor products of projections, and it turns out

that 7, can be written as a convex combinationdof 1 such  where|o—D||< 8. Whend=2, this reduces to the inequal-
sets in strict analogy with the representation in @&j. These ity in Lemma 1. [ |
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IV. ATHREE-QUBIT EXAMPLE p(c,d)

The geometric approach also works for a particular two-
parameter family of three qubits which have positive partial p+ 0

transforms but are inseparable. Since these densities are n ' P .,
generated by complete unextendible product b@dEB)
sets, itis not clear that other techniques can be used to defin £ ___ L * %o
an appropriate entanglement witness. T - S
Let —1/8<c, d=1/8, and define the three-qubit density 0 \
matrix A
\\\ P+
¥ 0 O O O 0 0 1 P, \ 122
0O 18 0 0 0 0 18 0 ‘\.
0O 0 18 0 0 ¢ 0 O Do
d) = 0 0 0O 18 d 0 0 0 FIG. 1. The plane containing,, 7, and the four separable
p(c.d)= 0O O O d 18 0 O o] densities of Eq(3) is illustrated. The separable states lie below the
plane and the random stabg, is shown.
0O 0O ¢c O o0 18 0 O
0O 1/8 0 O O o0 18 O As it happens, a study of them=0 case is key to the
78 0 0 O O 0 0 1 analysis, and we take as a candidate7g(O,t) the normal-

ization of the first part op(0t):

It is convenient to identifyp(c,d) with the four-vector 11
(d,c,1/8,1/8 defined by the negative diagonal. We will use = (0t)= S (PY 4 Po 4 At (Po ot P }
this notation for densities with analogous structure. Further, 7o(00) = Tgp | 3 (Paart Pazd +4t(Porat Prog) |
it simplifies calculations to usen=(c+d)/2 and t=(c (12)
—d)/2, and we abuse notation by writing(m,t) for the _ ) )
same density andm—t,m+t,1/8,1/8 for its four-vector. 70(0,t) is obviously separable but not SO obviously the last
The following result is proved ifi6] for analogous densities Separable state ofDo,p(01)]. We confirm that property
p(c,d) for n qubits defined by the 2! vector with equal later. To see ifrp(0,t) lies in the same face a&(01), we
numbers of’s andd’s in the interval —1/2",1/2"] and 22~2  take normalized combinations of the foBr, in the equa-
entries of 1/2, (d,...,d,c,...,c,1/2",...,1/2"). tions above and minimize the distancepi®,t), finding the

In thedx d cases analyzed above, the line segment from ttlot
Dy to pg was orthogonal to the nearest separable face, and 2'2° 2’
lost when one goes to three systems and the nearest separabl¢t/4)W,, where
stater, to pg on the line segmeritD,pq] does not coincide

| =
|
N| —~

Proposition 1 p(c,d) has positive partial transposes separable density with four-vector
that property characterizeq},, the nearest separable density

and is completely separable if and onlyci=d (t=0). W
to po. Unfortunately, as shown i8], that perpendicularity is  Using this for 7,(0t) we find co(0t)=t/4 and W,(0,)

with the closest separable statg. However, one can still -1 0 0 0 0o -2
take advantage of the geomepyovided7, lies in the near- 0 -1 0 0 0 -2 0
est separable face .
To pursue this idea fop(c,d), we need some additional c 0 -1 0 0 -2 0 O
notationd. YVithout loss (;)f generality we t;lk»d sg thatt 0 0 0o -1 2 0 0 0
>0, and letey =0y ando,=0oy. Let oy denote the X2 Wp=
identity and define 0 0 2 -1.0 0 0
0 0o -2 0 0O -1 o0 0
L1
Pj‘k|=§[cro®00®aoi Ti®o®oy], (11 0 -2 0 0 0 0 -1 0
-2 0 0 0 0 0 0 -1
wherej, k, and| will take the values 1 or 2. It is an easy o ) )
exercise to represent suckP.'fi, as an average of four pro- These heuristics work splendidly, and we also find that
jections and to confirm that W, detects the entanglement of allc,d) with d<c. This is

illustrated in Fig. 1 where the separating plane is shown. Of

1 1 course, the geometry is more complicated because the hyper-
p(m,t)=(§+4m) Pt > 4m) Poort 4t(Popo+ Pl plane is not two dimensional. As decreases to Qp(0t)
moves to the center of the line segmémt;,,P,,]. As t
—8tDy. becomes negatival(>c), 7o and7, move onto a new plane,
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whereP,,, and P, replaceP,;, and P},,. Recall thatD, Fo=(1—5¢)Do+ Sopo (14
lies at the center o[Pﬁk ,Pij]. The casem+0 is easily
visualized. =50A+(1-50)Q, (15

Proposition 2 Let d<c. Then 7o(m,t) with four-vector
(m—t/2m+1/2,1/8-1/2,1/8-1/2) is the closest separable wheresy=1/(2" +1), A=1(|0)(0|+[1)(1|), andQis a
density top(m,t). W, is an entanglement witness for every 2nx 2" matrix with entries 1/2 on the diagonal and in the
density in{p(c,d) : —1/8sd<c<1/8}. upper and lower corners. It is clear thitis a convex com-

Proof. Setm=0 and let 7=m,® m,® w3 denote any pination of two separable states.[t6] Q was expressed in
separable projection. Since (Wop(0t))<O by construc-  terms of 2! separable states. (8] we also computed,
tion, it suffices to confirm that TW/ou)=0. Defining m,  and it can be shown that, can be expressed as a convex
=), where combination ofA and Q. This is another example of a case
when ry# 7o but both densities lie on the near face. Applying
Theorem 1 the optimal entanglement witness can be written
as

cos6y
e' Pk sin 6,

[y =

we obtain Wy=al—bA—cQ (16)

2 Tr(Wopu) = 2=sin(26,)SIN(267)SIN(263) C(¢1, 02, 03), with a, b, and ¢ positive. In the two-qubit case this result
(13 reduces to Eq(6).

where

VI. FAR-FACE CONSTRUCTIONS
C(@1,92,93)=C0L @1+ @p+ @3) +COL @1+ @2~ @3) _
There are cases when an entanglement witness can be

+CoS @1~ @ot¢3) —COL 1~ 2~ ¢3). defined in terms of the identity and a separable state without
computing the nearest separable density explicith.1M a
technique is described for the construction of inseparable
densities with positive partial transposes, using orthogonal
Nunextendible product bases. This clever approach assumes a
set of m separable orthonormal stat&={|¢),1<k<m}
Svhere eachey) is a tensor product of states in their respec-
tive Hilbert spaces and where the orthogonal sg&tceon-

tains no separable projections.gf=|¢,){¢,| and one de-
fines

The phase angleg, can take any value while96,=<x/2.
Confirming that the right side of E413) is non-negative is a
familiar Bell-inequality computation and proves the assertio
when m=0. It follows from comments after Eq2) that
7o(0t) has to lie in the separating plane and is thus th
closest separable state #60,t) along[Dg,p(0,t)], justify-
ing the notation and the assumption made earlier.

The generalization to nonzemis straightforward. Using
the asserted form forrg(m,t), it is easy to check that
To(m,t) is separable, that p(m,t)— ro(m,t)=p(0})

- 70(0t), and also that,(m,t) =t/4. It follows thatro(m,t) ho=— E Lk (17)
is the closest separable state pgm,t) and Wy(m,t) Mmi=1
=W,(0,t), completing the proof. |

From p(m,t)=(1+8t)7,(m,t)—8tD, and the form of then

To(M,t) we can express the entanglement witness in terms of

the identity and explicit separable states: _ N Do m
POTNTm"° N—m™o

5
_+ 2 + - - +
Wo(OH)=t 7! 2(P1art Paart Paizt Pz | can be shown to be an inseparable density with positive par-

. _ tial transpose. A number of examples of orthogonal UPBs are
Again we have shown that local detection of entanglemengiven in[17] and in subsequent papers such®8] and[19].
can be defined using the explicit representations,aind7,  The ideas irf4] also apply in this context and are illustrated

as convex combinations of separable projections. there using the two-qutrit example “TILES” dfL7].
In [20] some consequences of the geometric structure im-
V. GENERALIZATION TO N QUBITS plicit in this approach are developed. For example, it is clear

from the equation above th&, lies on the line segment
Mo,pPo]. If one denotes by, the face of the separable
densitiesS containing xq, then, in the context of the real
by Hilbert spaceM, F is orthogonal to that line. It is shown in
[6] by a compactness argument that there is a posétigch
that

In Ref.[16] 7, was computed for the, generated from
the n-qubit Greenberger-Horne-Zeilinger GHZ state define

1 -
po=|wo){Wol, where [i)= E(|0>+|1>)'

6 -
andj=(j,....j). It was shown that O<fp=InH{Trlrool, o<}
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and thus that the facB,={oeS: Tr[ugo]=€e/m} is non-  allow the construction above of inseparable states to be gen-
empty. In this context it is shown if20] that eralized. In particular, one can perturb the orthogonal UPB
case, losing orthogonality but preserving enough of the struc-
ture to allow the analysis to go through. The cost of this
generalization, however, is that the resulting states do not
automatically have positive partial transposes.

A consequence of this approach is that a separating witness
W, for pgy can be defined using E¢L) with

eN
0<sp=1-——<1.
m

VIl. SUMMARY

70=(1—50)Do+Sopo- In this paper we have used a geometric definition of an

. . ) . entanglement witnesa/, detecting an inseparable staigto
In 'ghls constru_ctlonro is not necessarily separable but is gt thatW, always has a representation leading to en-
defined by the intersection pfro,po] and a hyperplane con- tanglement detection using coordinated local measurements.
taining the *near face’G,. Since bothp, and 7o can be  This approach gives essentially the same witnesses and the
written explicitly in terms ofuo, which is separable, then same coordinated local measurements as derivdd]ifor
oncee is known we can again express the entanglement Witgnejr particular two-qubit case. When coupled with the gen-
ness in terms of the identityand a separable density whose g,5jized “spin” matrices defined ifiL4], it also achieves the

convex representation is known: lower bound asserted if] for the number of coordinated
N . local measurements for the analogadisd case, at least

W,= pwo— —I ) whend is prime. We also illustrated the use of the geometry

N—m m by applying the methodology to a two-parameter family of

i . three-qubit bound entangled states for whigland7, differ.
Thus, the required coordinated local measurements are dgy,e strength of the geometrical approach is further illus-

fined explicitly 'by the origi.nal seB and there wiII' be no  {rated by applying it to the-qubit case. In the case of in-
more thanm different settings. GeometricallW, is ex-  separable densities constructed using orthogonal UPBs, the

pressed in terms of the identity apd, which lives inthe far - geometric approach also applies, but produces a representa-
faceFy, on the “other side” ofD, from pg. In the special tjgn using a “far-face” separable density.

case discussed if], this is the same witness as derived
there, up to a multiplicative constant.
Consider separable densitigg =3 ,pyuy in the faceF, ACKNOWLEDGMENTS
that are also close tp,. Let b denote the reciprocal of the This work was supported in part by NSF and ONR.
largest of the coefficientp,. Then it is easy to define in-

separable densities

APPENDIX
NDy—b _ . -
pb:l\?fblub By definition theS;; , “spin” matrix is

d-1
with positive partial transposes that are on the boundary of i
" S('k):E 7 r)(r+k,

the set of densitieB and are close tp,. Moreover,W, can b=

also serve as an entanglement witness for these densities. In

fact, using the same notation as above, one can get a “fru%here addition is moduld and 7= exp(2ri/d). If u denotes
tm” of states of the form (,k), thenS, has trace 0 unless equalse=(0,0). Orthogo-

p=(1—p)o+ppy nality follows from:

which lie in D on thepq side of the hyperplane defined by Tr[ngl'kl)S(jz,kz)]
W,, provided
— —Jqr S
pm=b)  1-p (1-p)d_e " —TY[Z g 7 1 y)2 (|r+k1><r|)(|8><8+kzl)}
N—b N Jm m
=Tr[2 702710 r 4+ kg ) (r + kg
where|loc—Dg| < 8. We omit the details, repeating instead r
that the Euclidean geometry bf provides an extremely use- _ d5j1,125k1,k2-

ful context for examining questions of this sort and that the
use of Eq.(1) gives a unifying geometric approach for con-

structing entanglement witnesses. Similarly, one can calculate some useful relations such
We should note that the effect of dropping the hypothesi®s  Sp1S10= 7S10501:  Sx=(S10/(SeD*  (S"
that the states i are orthogonal is also discussed[0], = 7™M V25 .\ and S =7*Sy_; 4_¢. Unlike the

and weaker conditions on the statesBnare given which  Pauli matrices, th&, are not necessarily Hermitian, but they
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are unitary and can play a role analogous to that played by Proof. P,(r) has trace 1 since the only term with non-
the Pauli matrices. zero trace is then=0 term. From the definition

Any dXd density« can thus be written as a linear com-
bination of these spin matrices, and we have

1 Pu(r)Pu(s)
a':a Se‘l‘l;e SuSuls 1 d_
alfmz Z mr+ns ]k[m(m 1)+n(n— 1)]/2Sm S’l
where we usel=(j,k) in o1 d
| :émzo 2 77(m+n)rnjk[m(mf1)+n(n71)]/27]jkmn
ZTF[SEOI]:Z 777]ra'r,r+k-
><S(m-%—n)u77n(3ﬁr)-

To represent a density such ag defined in Eq.(9) on the
tensor product spacel9l@HY we use the set of tensor
products of the spin matrices as an orthogonal basis. A dire
calculation or an invocation of Eq16) of Ref.[14] gives

Make the substitutiot=m+n in the last expression and
&ollect terms to obtain

d-1
1 .
u(r)Pu(S ( E n(s—r))azo 77tr ant(t_l)/ZSm,

1| d L« =0
0= 42 d+1soooo+d+12 Z —i),kk| s
thereby obtaining both the orthogonality amy,(r)P,(r)
whereS;; (=S ®S; . It is at this point that we requird =P,(r). Finally,
be prime. Then for givenandk+0 there is a uniqug such
thati=jk (modd), and we can rewrite, in the form 41 d-1
T -mryqhym_ 1 —-mr/ jk m
(Py(r)=5 E 7 M(S)=5 2 7 (7S
g1 m m:0
1 |d 1 d-1
TO:d+1 ?SOO'WL?;; S‘(d’i)'oo EE —mr+mijk+jkm(m— 1)/23
.2 _
g d-rdot
+ S 1¢ A
aszl ; (kj)(kd—Kkj) kk} HZ nr+]kn(n—1)/28nuzpu(r)_
1 [q192 N
Cd+1| 2 Skig-10.00 These steps actually introduce a factor of the form
a1 01 k=D \which equals 1 for odd integers. Howeverdifs
Jkd(d=1)/2- 1 and the definition of
+ S even and andk are 9_dd,77 #1,an
jzo d? 2 (k) (kd=kj), kk” P,(r) must be modified. [ ]

Having defined complete sets of projections, we are ready

It remains to show that each of the expressions involvind®" the final technical result. _ _
a k summation is a summation of tensor products of projec- Froposition 3 Let uj=(j,1) andv;=(d—j,1) for 0<j

tions from a complete set of orthogonal projections. That i s~ <d. Then
each summation corresponds to correlated local measure-
ments, andr is realized byd+1 such summations. 19- 19471
We begin by defining a complete set of projections in ar r)®P (d ykEo Sikj)(kd—kj),kk | -

terms of the spin matrices, a construction which corresponds
to that in the spin 1/2 context.
Lemma 3Letd>2 be prime and lee#u=(j,k). Thenif  |f x=(1,0) andy=(d—1,0), then

d-1 14-1 d-1 d-1

1 1
2 (7'S,)"== 2 77mrnjkmm l/ZSmur arzo PX(r)®Py(d—r)=?kZO Si(d—k),00-

Q.Il—‘

Pu(r)=

{P,(r) : 0=<r<d} is a complete set of trace-1, orthogonal Proof The proof is just a matter of navigating the nota-
(Hermitian projections[14]. tion. Suppressing the subscript,
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d-1

1 1
42 PuN©P(d-T) ~ 72 Sa®Sq
1 41
:@% (Su)k®(sv)n2 plkmr :?go S(kj)(kd— ki), kk
:iz Sy ® Sy, KK~ DI2+ (A= k(k=1)2] as required. The proof of the remaining assertion is similar,
g2 T and we omit the details. [ |
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