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Geometry of entanglement witnesses and local detection of entanglement
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Let H @N#5H @d1#
^¯^ H @dn# be a tensor product of Hilbert spaces and lett0 be the closest separable state in

the Hilbert-Schmidt norm to an entangled stater0 . Let t̃0 denote the closest separable state tor0 along the line
segment fromI /N to r0 where I is the identity matrix. Following A. O. Pittenger and M. H. Rubin@Linear
Algebr. Appl.346, 75 ~2002!# a witnessW0 detecting the entanglement ofr0 can be constructed in terms ofI,
t0 , and t̃0 . If representations oft0 and t̃0 as convex combinations of separable projections are known, then
the entanglement ofr0 can be detected by local measurements. Gu¨hneet al. @Phys. Rev. A66, 062305~2002!#
obtain the minimum number of measurement settings required for a class of two-qubit states. We use our
geometric approach to generalize their result to the corresponding two-qudit case whend is prime and obtain
the minimum number of measurement settings. In those particular bipartite cases,t05 t̃0 . We illustrate our
general approach with a two-parameter family of three-qubit bound entangled states for whicht0Þt̃0 and we
show that our approach works forn qubits. We elaborated earlier@A. O. Pittenger, Linear Algebr. App.359,
235~2003!# on the role of a ‘‘far face’’ of the separable states relative to a bound entangled stater0 constructed
from an orthogonal unextendible product base. In this paper the geometric approach leads to an entanglement
witness expressible in terms of a constant timesI and a separable densitym0 on the far face fromr0 . Up to a
normalization this coincides with the witness obtained by Gu¨hne et al. for the particular example analyzed
there.

DOI: 10.1103/PhysRevA.67.012327 PACS number~s!: 03.67.2a, 03.65.Ud
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I. MOTIVATION AND NOTATION

An important question for quantum information theory
how to determine if a given state is entangled. Physica
one would like to do this using local measurements and c
sical communications. Testing for entanglement is clos
related to Bell’s inequalities@1# and subsequent elaboration
of Bell’s inequalities@2#. Recently, other tests have been su
gested, such as that in@3# which relies on the theory o
positive operators and on eigenvalue estimation.

An alternative approach, which is experimentally real
able, is to define local correlated measurements motivate
some knowledge of the structure ofr itself, and this ap-
proach has been elaborated in@4#. To describe the problem
we first define the mathematical context. Specifically, we
sume we are working withn distinct systems so thatr is
represented as anN3N density operating on the tensor pro
uct Hilbert spaceH @N#5H @d1#

^¯^ H @dn#. The setD of such
N3N densities operating onH @N# is a compact convex sub
set of the real Hilbert spaceM of N3N Hermitian matrices
where the inner product is defined by^A,B&5Tr@A†B#.
~Since the matrices are assumed to be Hermitian, the su
script † denoting the Hermitian conjugate appears to be
dundant. However, we will have occasion to use the in
product for more general matrices.! The set of separable den
sitiesS is defined as the convex hull of the separable proj
tionsp1^¯^ pn , wherepk is a projection onH @dk#. Since
S is a compact convex subset ofD one can test for entangle
ment by showingr is separated fromSby a hyperplane inM
@5#. Geometrically the idea is clear. Mathematically it r
duces to finding a Hermitian matrixW with the property that
Tr(Wr),0<Tr(Ws) for every densitys in S. The exis-
tence of such aW is guaranteed by the general theory
convex sets in Hilbert spaces, andW is known in the quan-
1050-2947/2003/67~1!/012327~8!/$20.00 67 0123
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tum information literature as an ‘‘entanglement witness.’’
nice introduction to the subject and an overview of some
the literature can be found in@6#.

In the context of two qubits Gu¨hneet al. in @4# assume the
general form of a two-parameter family of densitiesr which
includes a maximally entangled stater0 . They construct an
entanglement witness using the eigenvector of the pa
transpose ofr with the minimal ~negative! eigenvalue and
find that the resulting witness does not depend on eithe
the parameters. Since the separating hyperplane conta
face of the separable states, it isoptimal in the sense that no
witness detects a strictly larger set of entangled states.~See
@7# for the definitions and@8# for an exposition related to the
approach used in this paper.!

In @8#, the authors showed how an entanglement witn
W0 sensing an inseparabler0 can be constructed if one als
knows the nearest separable statet0 :

ir02t0i5 inf$ir02si :sPS%.

Since the norm is a continuous function and the set of se
rable densities is compact,t0 exists, although actually com
puting it is not an easy problem in general. The entanglem
witness is defined by

W05t01c0I 2r0 , ~1!

whereI is theN3N identity matrix and

c05Tr„t0~r02t0!….

Details and examples of this construction are given in@8#
where it is shown thatW0 is linked to the geometry via the
induced inner product
©2003 The American Physical Society27-1
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^~r02t0!,~r2t0!&[Tr„~r02t0!~r2t0!…52Tr~W0r!.

~2!

In particular the separating hyperplane contains the ‘‘ne
est’’ face of S consisting of separable statess such thats
2t0 is orthogonal tor02t0 . Equation~2! can be used to
show that the extreme separable projections in the con
representation oft0 must lie in the hyperplane, and that
any separables in the nearest face has full rank thenW0 is
optimal.

It was first shown in@9# that there is a neighborhood o
the normalized identity or completely random state,D0
5(1/N)I , in which every state is separable. Given that fa
it follows from another compactness argument that there
nearest separable density tor0 along the line segmen
@D0 ,r0#:

t̃05~12s0!D01s0r0 ~3!

with 0,s0,1. While t0 and t̃0 differ in general, in certain
examples they are the same, which simplifies the analy
Thus we have the following general result.

Theorem 1. Supposer0 is inseparable. Using the notatio
above, the Hermitian matrix

W05I S c01
12s0

Ns0
D1t02

1

s0
t̃0

is an entanglement witness forr0 and is optimal if the near-
est face contains a separable density of full rank. j

Thus if one knew the convex representations oft0 andt̃0
in terms of tensor products of local projections, one co
define specific coordinated local measurements that wo
experimentally detect the entanglement ofr0 via Tr(r0W0).
Findingt0 and t̃0 is in general difficult but can be done in
variety of special cases. The examples we present inc
those analyzed in@4# as well as a two-parameter family o
three-qubit bound entangled densities for whicht0 and t̃0
differ. ~A bound entangled state is entangled but has posi
partial transposes.!

Another result in@4# is that three sets of coordinated loc
measurements is the minimum number required in their t
qubit context and an explicit representation of the three m
surements was given. It was also asserted that at leastd11
such measurements would be required for a correspon
d3d system, but no suggestion for achieving that bound w
provided. We show how the geometric approach to entan
ment witnesses provides a unifying theme and leads t
concrete construction for thed3d case whend is prime.

II. TWO QUBITS

In the two-qubit case, the use of the nearest separ
density clarifies some of the methodology and suggests
generalization to thed3d case. Following Ref.@4# we take

r5pra1~12p!s. ~4!

ra is defined by the stateau00&1bu11&, wherea and b are
real witha21b251, p is a parameter between 0 and 1, ands
01232
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is a density close to the normalized identity,is2D0i,d.
The densitys represents noise that is close toD0 , the com-
pletely random state. The idea is to define a separating
perplaneW0 based onr05 1

2 (u00&1u11&)(^00u1^11u) and
investigate what inseparable statesr are detected byW0 .

It has been shown in a number of places that the clo
separable state tor0 is

t05
2

3
D01

1

3
r0 , ~5!

so that the roles oft0 and t̃0 coincide.~References and de
tails are given in@8#.! One computesc05Tr„t0(r02t0)…
5 1

6 , and then Eq.~1! gives

W05
1

3 S 0 0 0 21

0 1 0 0

0 0 1 0

21 0 0 0

D . ~6!

This differs from the optimal witness found in@4# only be-
cause of the use of a different Bell state and is a special c
of the general theorem above.

As an application we have the following result.
Lemma 1. A sufficient condition thatr5pra1(12p)s,

whereis2D0i,d, is not separable is that

S 114d

4ab1114d D,p.

Proof.

Tr~W0r!5p Tr~W0ra!1~12p!Tr~W0D0!1~12p!

3Tr„W0~s2D0!…

5
22abp

3
1

1

6
~12p!1~12p!

3Tr„W0~s2D0!…

<
22abp

3
1

1

6
~12p!1~12p!

2d

3
,

where we have used the Cauchy-Schwarz inequality in
last step. Setting the final expression to be less than 0,
obtain the desired inequality. Note that ifd50 and a
51/& we obtain the well-known sufficient condition 1/
,p for inseparability ofpr01(12p)D0 . j

Having definedW0 we need to show that the measur
ment can be effected by three types of coordinated lo
measurements. We combine Eq.~1! and Eq.~5! to obtain

W05
2

3
I 22t0 ~7!

and then use the representation oft0 as a convex combina
tion of six separable extreme points in the face of the sta
of S in the separating hyperplane:
7-2
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t05
1

6 F S s01sz

2
^

s01sz

2 D1S s02sz

2
^

s02sz

2 D
1S s01sx

2
^

s01sx

2 D1S s02sx

2
^

s02sx

2 D
1S s01sy

2
^

s02sy

2 D1S s02sy

2
^

s01sy

2 D G .
~8!

Thus one takes coordinated local measurements along tx,
y, andz axes of the Bloch sphere to compute Tr(W0r)5 2

3

22 Tr(t0r). As shown in@4#, this is the minimal number o
coordinated local measurements that are required.

III. THE dÃd CASE

The approach used above immediately generalizes to
bipartite d3d case whend is prime (dÞ2): we take an
entangled ‘‘base’’ stater0 for which we can compute the
nearest separable statet0 and thusW0 . We again consider
the family of densitiesr5pra1(12p)s, wheres is close
to the stateD0 , and define

ra5uca&^cau where uca&5 (
k50

d21

akukk&

with real ak such that(kak
251. r0 is the state withak

51/Ad, and

t05
d

d11
D01

1

d11
r0 ~9!

is the closest separable state.~See@10# for the general resul
and references.! Again,t0 coincides witht̃0 , simplifying the
problem@8,11–13#. From Eq.~1! the optimal witness forr0
is W052/(11d)I 2dt0 , where c05(d21)/d(d11). The
problem now reduces to finding analogs of the Pauli matri
that can be used to representt0 as an appropriate conve
combination of projections, as in Eq.~8!. Fortunately that
analysis has already been done.

In Ref. @14# the authors observed that the~real! Pauli
matrices can be viewed as discrete Fourier transforms of
‘‘computational’’ basis matrices. Using an analogous ba
for d3d matrices and the corresponding discrete Fou
transform, one is able to defined2 orthogonal unitary ma-
trices

Ud[$Su : u5~ j ,k!, 0< j ,k,d%,

whereSe5S(0,0) is thed3d identity. ~These same matrice
were derived independently and in a different manner
Fivel @15# who used them in a study of Hamiltonians on
discrete state space. He also derived several of the prope
we include below.! As with the two-qubit case, one can d
fine sets of tensor products of projections, and it turns
thatt0 can be written as a convex combination ofd11 such
sets in strict analogy with the representation in Eq.~8!. These
01232
he

s

ur
is
r

y

ies

t

d11 sets of projections correspond to the coordinated lo
measurements required in@4# for local detection of entangle
ment ofd3d states.

We briefly summarize the necessary properties of th
d-level ‘‘spin’’ matrices and relegate proofs to the Append
By definition

S~ j ,k!5 (
r 50

d21

h j r ur &^r 1ku,

where addition is modulod andh5exp(2pi/d).

Tr@S~ j 1 ,k1!
† S~ j 2 ,k2!#5dd j 1 , j 2

dk1 ,k2

expresses orthogonality, and thusUd is a basis ford3d ma-
trices.

Using tensor products of theUd spin matrices, we find
that for primed,

t05
1

d11 F 1

d2 (
k50

d21

Sk~d2k!,001 (
j 50

d21 S 1

d2 (
k50

d21

S~k j !~kd2k j !,kkD G ,

~10!

whereSi j ,kl5Si ,k^ Sj ,l , and it remains to show that each o
thek summations can be written as a sum of tensor produ
of complete sets of projections. Whend is odd and u
5( j ,k)Þ(0,0),

Pu~r ![
1

d (
m50

d21

~h rSu!m

is a ~Hermitian! projection, and$Pu(r ) : 0<r ,d% is a com-
plete set of orthogonal projections. Ifuj5( j ,1) andv j5(d
2 j ,1) for 0< j ,d, then~suppressing the subscript onuj and
v j )

1

d2 (
k50

d21

S~k j !~kd2k j !,kk5
1

d (
r 50

d21

Pu~r ! ^ Pv~d2r !.

The first summation~10! has an analogous representation
u5(1,0) andv5(d21,0).

This completes the proof: the entanglement witnessW0
can be realized in terms of the identity and a separable d
sity which in turn can be written as a convex combination
d11 sums of tensor products of complete~local! projec-
tions. This attains the lower bound for the number of co
dinated local measurements as asserted in@4#.

As in the two-qubit case, the entanglement witnessW0
detects entanglement for a range of densities of the formr
5pra1(12p)s. The computation is similar to that fo
Lemma 1, and we omit the details.

Lemma 2. r5pra1(12p)s is inseparable provided

12p

p S 12
1

d
1dA2d~d21! D,S (

k50

d21

akD 2

21,

whereis2D0i,d. Whend52, this reduces to the inequa
ity in Lemma 1. j
7-3
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IV. A THREE-QUBIT EXAMPLE

The geometric approach also works for a particular tw
parameter family of three qubits which have positive par
transforms but are inseparable. Since these densities ar
generated by complete unextendible product base~UPB!
sets, it is not clear that other techniques can be used to d
an appropriate entanglement witness.

Let 21/8<c, d<1/8, and define the three-qubit densi
matrix

r~c,d!51
1/8 0 0 0 0 0 0 1/8

0 1/8 0 0 0 0 1/8 0

0 0 1/8 0 0 c 0 0

0 0 0 1/8 d 0 0 0

0 0 0 d 1/8 0 0 0

0 0 c 0 0 1/8 0 0

0 1/8 0 0 0 0 1/8 0

1/8 0 0 0 0 0 0 1/8

2 .

It is convenient to identifyr(c,d) with the four-vector
^d,c,1/8,1/8& defined by the negative diagonal. We will us
this notation for densities with analogous structure. Furth
it simplifies calculations to usem5(c1d)/2 and t5(c
2d)/2, and we abuse notation by writingr(m,t) for the
same density and̂m2t,m1t,1/8,1/8& for its four-vector.
The following result is proved in@16# for analogous densitie
r(c,d) for n qubits defined by the 2n21 vector with equal
numbers ofc’s andd’s in the interval@21/2n,1/2n# and 2n22

entries of 1/2n, ^d,...,d,c,...,c,1/2n,...,1/2n&.
Proposition 1. r(c,d) has positive partial transpose

and is completely separable if and only ifc5d (t50). j

In the d3d cases analyzed above, the line segment fr
D0 to r0 was orthogonal to the nearest separable face,
that property characterizedt0 , the nearest separable dens
to r0 . Unfortunately, as shown in@8#, that perpendicularity is
lost when one goes to three systems and the nearest sepa
statet̃0 to r0 on the line segment@D0 ,r0# does not coincide
with the closest separable statet0 . However, one can stil
take advantage of the geometryprovidedt̃0 lies in the near-
est separable face tor0 .

To pursue this idea forr(c,d), we need some additiona
notation. Without loss of generality we takec.d so thatt
.0, and lets15sx and s25sy . Let s0 denote the 232
identity and define

Pjkl
6 5

1

8
@s0^ s0^ s06s j ^ sk^ s l #, ~11!

where j, k, and l will take the values 1 or 2. It is an eas
exercise to represent such aPjkl

6 as an average of four pro
jections and to confirm that

r~m,t !5S 1

2
14mD P111

1 1S 1

2
24mD P221

2 14t~P212
2 1P122

1 !

28tD0 .
01232
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As it happens, a study of them50 case is key to the
analysis, and we take as a candidate fort̃0(0,t) the normal-
ization of the first part ofr(0,t):

t̃0~0,t !5
1

118t F1

2
~P111

1 1P221
2 !14t~P212

2 1P122
1 !G .

~12!

t̃0(0,t) is obviously separable but not so obviously the la
separable state on@D0 ,r(0,t)#. We confirm that property
later. To see ift0(0,t) lies in the same face ast̃0(0,t), we
take normalized combinations of the fourPjkl

6 in the equa-
tions above and minimize the distance tor(0,t), finding the
separable density with four-vector

K 2
t

2
,

t

2
,
1

8
2

t

2
,
1

8
2

t

2L .

Using this for t0(0,t) we find c0(0,t)5t/4 and W0(0,t)
5(t/4)W0, where

W051
21 0 0 0 0 0 0 22

0 21 0 0 0 0 22 0

0 0 21 0 0 22 0 0

0 0 0 21 2 0 0 0

0 0 0 2 21 0 0 0

0 0 22 0 0 21 0 0

0 22 0 0 0 0 21 0

22 0 0 0 0 0 0 21

2 .

These heuristics work splendidly, and we also find th
W0 detects the entanglement of allr(c,d) with d,c. This is
illustrated in Fig. 1 where the separating plane is shown.
course, the geometry is more complicated because the hy
plane is not two dimensional. Ast decreases to 0,r(0,t)
moves to the center of the line segment@P111

1 ,P221
2 #. As t

becomes negative (d.c), t0 andt̃0 move onto a new plane

FIG. 1. The plane containingt0 , t̃0 and the four separable
densities of Eq.~3! is illustrated. The separable states lie below t
plane and the random stateD0 is shown.
7-4
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whereP212
1 and P122

2 replaceP212
2 and P122

1 . Recall thatD0

lies at the center of@Pi jk
1 ,Pi jk

2 #. The casemÞ0 is easily
visualized.

Proposition 2. Let d,c. Then t0(m,t) with four-vector
^m2t/2,m1t/2,1/82t/2,1/82t/2& is the closest separabl
density tor(m,t). W0 is an entanglement witness for eve
density in$r(c,d) : 21/8<d,c<1/8%.

Proof. Set m50 and let p5p1^ p2^ p3 denote any
separable projection. Since Tr„W0r(0,t)…,0 by construc-
tion, it suffices to confirm that Tr(W0m)>0. Defining pk
5uck&^cku, where

uck&5F cosuk

eifk sinuk
G ,

we obtain

2 Tr~W0m!522sin~2u1!sin~2u2!sin~2u3!C~w1 ,w2 ,w3!,

~13!

where

C~w1 ,w2 ,w3!5cos~w11w21w3!1cos~w11w22w3!

1cos~w12w21w3!2cos~w12w22w3!.

The phase angleswk can take any value while 0<uk<p/2.
Confirming that the right side of Eq.~13! is non-negative is a
familiar Bell-inequality computation and proves the assert
when m50. It follows from comments after Eq.~2! that
t̃0(0,t) has to lie in the separating plane and is thus
closest separable state tor(0,t) along @D0 ,r(0,t)#, justify-
ing the notation and the assumption made earlier.

The generalization to nonzerom is straightforward. Using
the asserted form fort0(m,t), it is easy to check tha
t0(m,t) is separable, that r(m,t)2t0(m,t)5r(0,t)
2t0(0,t), and also thatc0(m,t)5t/4. It follows thatt0(m,t)
is the closest separable state tor(m,t) and W0(m,t)
5W0(0,t), completing the proof. j

From r(m,t)5(118t) t̃0(m,t)28tD0 and the form of
t0(m,t) we can express the entanglement witness in term
the identity and explicit separable states:

W0~0,t !5tF5

4
I 22~P111

1 1P221
2 1P212

2 1P122
1 !G .

Again we have shown that local detection of entanglem
can be defined using the explicit representations oft0 andt̃0
as convex combinations of separable projections.

V. GENERALIZATION TO N QUBITS

In Ref. @16# t̃0 was computed for ther0 generated from
the n-qubit Greenberger-Horne-Zeilinger GHZ state defin
by

r05uc0&^c0u, where uc0&5
1

&
~ u0̃&1u1̃&),

and j̃ 5( j ,...,j ). It was shown that
01232
n
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t̃05~12s0!D01s0r0 ~14!

5s0D1~12s0!Q, ~15!

wheres051/(2n2111), D5 1
2 (u0̃&^0̃u1u1̃&^1̃u), andQ is a

2n32n matrix with entries 1/2n on the diagonal and in the
upper and lower corners. It is clear thatD is a convex com-
bination of two separable states. In@16# Q was expressed in
terms of 2n21 separable states. In@8# we also computedt0
and it can be shown thatt0 can be expressed as a conv
combination ofD andQ. This is another example of a cas
whent0Þt̃0 but both densities lie on the near face. Applyin
Theorem 1 the optimal entanglement witness can be wri
as

W05aI2bD2cQ ~16!

with a, b, and c positive. In the two-qubit case this resu
reduces to Eq.~6!.

VI. FAR-FACE CONSTRUCTIONS

There are cases when an entanglement witness ca
defined in terms of the identity and a separable state with
computing the nearest separable density explicitly. In@17# a
technique is described for the construction of insepara
densities with positive partial transposes, using orthogo
unextendible product bases. This clever approach assum
set of m separable orthonormal statesB5$uwk&,1<k<m%
where eachuwk& is a tensor product of states in their respe
tive Hilbert spaces and where the orthogonal spaceB' con-
tains no separable projections. Ifmk5uwk&^wku and one de-
fines

m05
1

m (
k51

m

mk , ~17!

then

r05
N

N2m
D02

m

N2m
m0

can be shown to be an inseparable density with positive
tial transpose. A number of examples of orthogonal UPBs
given in @17# and in subsequent papers such as@18# and@19#.
The ideas in@4# also apply in this context and are illustrate
there using the two-qutrit example ‘‘TILES’’ of@17#.

In @20# some consequences of the geometric structure
plicit in this approach are developed. For example, it is cl
from the equation above thatD0 lies on the line segmen
@m0 ,r0#. If one denotes byF0 the face of the separabl
densitiesS containingm0 , then, in the context of the rea
Hilbert spaceM, F0 is orthogonal to that line. It is shown in
@6# by a compactness argument that there is a positivee such
that

0,
e

m
5 inf$Tr@m0s#, sPS%
7-5



ne

is
-

n
wi
se

d

d

e
-

s
ru

y

d
-
th
n-

s

en-
PB
uc-
is
not

an

n-
nts.
the

n-

try
of

s-
-
, the
enta-

ch

y

A. O. PITTENGER AND M. H. RUBIN PHYSICAL REVIEW A67, 012327 ~2003!
and thus that the faceG0[$sPS : Tr@m0s#5e/m% is non-
empty. In this context it is shown in@20# that

0,s0[12
eN

m
,1.

A consequence of this approach is that a separating wit
W0 for r0 can be defined using Eq.~1! with

t̂05~12s0!D01s0r0 .

In this constructiont̂0 is not necessarily separable but
defined by the intersection of@m0 ,r0# and a hyperplane con
taining the ‘‘near face’’G0 . Since bothr0 and t̂0 can be
written explicitly in terms ofm0 , which is separable, the
oncee is known we can again express the entanglement
ness in terms of the identityI and a separable density who
convex representation is known:

W05
eN

N2m S m02
e

m
I D .

Thus, the required coordinated local measurements are
fined explicitly by the original setB and there will be no
more thanm different settings. GeometricallyW0 is ex-
pressed in terms of the identity andm0 , which lives in the far
faceF0 , on the ‘‘other side’’ ofD0 from r0 . In the special
case discussed in@4#, this is the same witness as derive
there, up to a multiplicative constant.

Consider separable densitiesmb5Skpkmk in the faceF0
that are also close tom0 . Let b denote the reciprocal of th
largest of the coefficientspk . Then it is easy to define in
separable densities

rb5
ND02bmb

N2b

with positive partial transposes that are on the boundary
the set of densitiesD and are close tor0 . Moreover,W0 can
also serve as an entanglement witness for these densitie
fact, using the same notation as above, one can get a ‘‘f
tum’’ of states of the form

r5~12p!s1prb

which lie in D on ther0 side of the hyperplane defined b
W0 , provided

p~m2b!

N2b
1

12p

N
1

~12p!d

Am
,

e

m
, ~18!

where is2D0i,d. We omit the details, repeating instea
that the Euclidean geometry ofM provides an extremely use
ful context for examining questions of this sort and that
use of Eq.~1! gives a unifying geometric approach for co
structing entanglement witnesses.

We should note that the effect of dropping the hypothe
that the states inB are orthogonal is also discussed in@20#,
and weaker conditions on the states inB are given which
01232
ss

t-

e-

of

. In
s-

e

is

allow the construction above of inseparable states to be g
eralized. In particular, one can perturb the orthogonal U
case, losing orthogonality but preserving enough of the str
ture to allow the analysis to go through. The cost of th
generalization, however, is that the resulting states do
automatically have positive partial transposes.

VII. SUMMARY

In this paper we have used a geometric definition of
entanglement witnessW0 detecting an inseparable stater0 to
show thatW0 always has a representation leading to e
tanglement detection using coordinated local measureme
This approach gives essentially the same witnesses and
same coordinated local measurements as derived in@4# for
their particular two-qubit case. When coupled with the ge
eralized ‘‘spin’’ matrices defined in@14#, it also achieves the
lower bound asserted in@4# for the number of coordinated
local measurements for the analogousd3d case, at least
whend is prime. We also illustrated the use of the geome
by applying the methodology to a two-parameter family
three-qubit bound entangled states for whicht0 andt̃0 differ.
The strength of the geometrical approach is further illu
trated by applying it to then-qubit case. In the case of in
separable densities constructed using orthogonal UPBs
geometric approach also applies, but produces a repres
tion using a ‘‘far-face’’ separable density.
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APPENDIX

By definition theS( j ,k) ‘‘spin’’ matrix is

S~ j ,k!5 (
r 50

d21

h j r ur &^r 1ku,

where addition is modulod andh5exp(2pi/d). If u denotes
~j,k!, thenSu has trace 0 unlessu equalse[(0,0). Orthogo-
nality follows from:

Tr@S~ j 1 ,k1!
† S~ j 2 ,k2!#

5TrF(
r

(
s

h2 j 1rh j 2s~ ur 1k1&^r u!~ us&^s1k2u!G
5TrF(

r
h~ j 22 j 1!r ur 1k1&^r 1k2uG

5dd j 1 , j 2
dk1 ,k2

.

Similarly, one can calculate some useful relations su
as S0,1S1,05hS1,0S0,1, Sj ,k5(S1,0)

j (S0,1)
k, (Sj ,k)

m

5h jkm(m21)/2Sm j,mk , and Sj ,k
† 5h jkSd2 j ,d2k . Unlike the

Pauli matrices, theSu are not necessarily Hermitian, but the
7-6
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are unitary and can play a role analogous to that played
the Pauli matrices.

Any d3d densitya can thus be written as a linear com
bination of these spin matrices, and we have

a5
1

d FSe1 (
uÞe

suSuG ,
where we useu5( j ,k) in

su5Tr@Su
†a#5(

r
h2 j r a r ,r 1k .

To represent a density such ast0 defined in Eq.~9! on the
tensor product spaceH @d#

^ H @d#, we use the set of tenso
products of the spin matrices as an orthogonal basis. A di
calculation or an invocation of Eq.~16! of Ref. @14# gives

t05
1

d2 F d

d11
S00,001

1

d11 (
k50

d21

(
i 50

d21

Si ~d2 i !,kkG ,

whereSi j ,kl5Si ,k^ Sj ,l . It is at this point that we required
be prime. Then for giveni andkÞ0 there is a uniquej such
that i 5 jk ~mod d!, and we can rewritet0 in the form

t05
1

d11 F d

d2 S00,001
1

d2 (
i 50

d21

Si ~d2 i !,00

1
1

d2 (
k51

d21

(
j 50

d21

S~k j !~kd2k j !,kkG
5

1

d11 F 1

d2 (
k50

d21

Sk~d2k!,00

1 (
j 50

d21 S 1

d2 (
k50

d21

S~k j !~kd2k j !,kkD G .

It remains to show that each of the expressions involv
a k summation is a summation of tensor products of proj
tions from a complete set of orthogonal projections. That
each summation corresponds to correlated local meas
ments, andt0 is realized byd11 such summations.

We begin by defining a complete set of projections
terms of the spin matrices, a construction which correspo
to that in the spin 1/2 context.

Lemma 3. Let d.2 be prime and leteÞu5( j ,k). Then if

Pu~r ![
1

d (
m50

d21

~h rSu!m5
1

d (
m50

d21

hmrh jkm~m21!/2Smu ,

$Pu(r ) : 0<r ,d% is a complete set of trace-1, orthogon
~Hermitian! projections@14#.
01232
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Proof. Pu(r ) has trace 1 since the only term with no
zero trace is them50 term. From the definition

Pu~r !Pu~s!

5
1

d2 (
m50

d21

(
n50

d21

hmr1nsh jk@m~m21!1n~n21!#/2SmuSnu

5
1

d2 (
m50

d21

(
n50

d21

h~m1n!rh jk@m~m21!1n~n21!#/2h jkmn

3S~m1n!uhn~s2r !.

Make the substitutiont5m1n in the last expression an
collect terms to obtain

Pu~r !Pu~s!5S 1

d (
n50

d21

hn~s2r !D 1

d (
t50

d21

h trh jkt~ t21!/2Stu ,

thereby obtaining both the orthogonality andPu(r )Pu(r )
5Pu(r ). Finally,

~Pu~r !!†5
1

d (
m50

d21

h2mr~Su
†!m5

1

d (
m50

d21

h2mr~h jkS2u!m

5
1

d (
m50

d21

h2mr1m jk1 jkm~m21!/2S2mu

5
1

d (
n50

d21

hnr1 jkn~n21!/2Snu5Pu~r !.

These steps actually introduce a factor of the fo
h jkd(d21)/2 which equals 1 for odd integers. However, ifd is
even andj andk are odd,h jkd(d21)/2Þ1, and the definition of
Pu(r ) must be modified. j

Having defined complete sets of projections, we are re
for the final technical result.

Proposition 3. Let uj5( j ,1) andv j5(d2 j ,1) for 0< j
,d. Then

1

d (
r 50

d21

Puj
~r ! ^ Pv j

~d2r !5S 1

d2 (
k50

d21

S~k j !~kd2k j !,kkD .

If x5(1,0) andy5(d21,0), then

1

d (
r 50

d21

Px~r ! ^ Py~d2r !5
1

d2 (
k50

d21

Sk~d2k!,00.

Proof. The proof is just a matter of navigating the not
tion. Suppressing the subscript,
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1

d (
r 50

d21

Pu~r ! ^ Pv~d2r !

5
1

d3 (
k,n

~Su!k
^ ~Sv!n(

r
h~k2n!r

5
1

d2 (
k

Sku^ Skvh@ jk~k21!/21~d2 j !k~k21!/2#
ic

4.
.

A

ys

in

01232
5
1

d2 (
m

Sku^ Skv

5
1

d2 (
k50

d21

S~k j !~kd2k j !,kk

as required. The proof of the remaining assertion is simi
and we omit the details. j
.
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