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Quantum discord and Maxwell's demons
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Quantum discord was proposed as an information-theoretic measure of the “quantumness” of correlations.
| show that discord determines the difference between the efficiency of quantum and classical Maxwell's
demons—that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum
operations—in extracting work from collections of correlated quantum systems.
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|. DEMONS mation quantifies the strength of correlations between, say,
the apparatusd and the systens,

Maxwell’s demon[1] was introduced to explore the role
of information and, more generally, to investigate the place [(S:A)=H(S)+H(A)—H(S,A). (8]
of “intelligent observers” in physics. In modern discussions
of the subjec{2], “intelligence” is often regarded as predi- |t measures the difference between the missing information
cated upon or even synonymous with the information pro-about the two objects when they are taken separatg(§)
cessing ability—with computing. Thus, Maxwell's demon is + H(.4), and jointly, H(S,.A) (see Fig. 1 In the extreme

frequently modeled by a Turing machine—a classicalcaseS and .A may be identical—e.g., copies of the same
computer—endowed with the ability to measure and act de-

pending on the outcome. The role of a demon is to imple-

ment an appropriate conditional dynamics—to react to the H (8) H(‘A)
state of the system as revealed through its correlation with
the state of the apparatus.

It is now known that quantum logic—i.e., the logic em-
ployed by quantum computers—is in some applications more
powerful than its classical counterpart. It is therefore intrigu-
ing to enquire whether a quantum demon—an entity that can
measure nonlocal states and implement quantum conditional
operations—could be more efficient than a classical one. |
show that quantum demons can extract more work than clas-
sical demons from correlations between quantum systems,

and that.the difference is given by tlygantum discorda FIG. 1. Information-theoretic measures of the relationship be-
recently introduced3—5] measure of the “quantumness” of tween A and S can be illustrated by means of tvenn diagram
correlations. shown above. Shaded areas represent various uncertainties. Joint

Maxwell's demon sets up a useful conceptual frameworkentropyH (S, A) is the measure of uncertainty about the combined
that provides an operational interpretation of discord. Thestate ofS and.A. Individual circles correspond to the uncertainty
role played by the quantum demon—carrying out conditionabboutS and A. When their states are correlated, the two circles
guantum operations on pairs of systems—could be alsoverlap. Mutual informationi (S:.A) is the area of that overlap.
played by a classical device that can outright measure noronditional entropyH(S].A) is one of the half-moons above—the
local quantum observables. This is especially apparent iane left when the lens corresponding to the mutual informa-
Sec. IV where we alternate between the quantum and clasgion [(S:A) is subtracted fromH(S). Obviously, H(S,A)
cal demon on one hand, and “Alice and Bob” on the other.=H(A) + H(S|A) = H(S) + H(A[S) = H(S) + H(A) — I(S:A).

The real point of employing demons is to draw attention toThese equalities are pre(_jica_ted on the classical assumption that the
the thermodynami¢and information-theoretjccosts of vari- state; ofS and A exist objectively, and,. thus, a measurement need
ous operations and—in a sense—to hold Alice and Bob acdlot disturb them. In quantum theory this is not the case: a measure-

countable for their thermodynamic expenditures which ardnent will, in general, redefine the state of the measured object, even
usually simply ignored for an “outsider” who does not know its outcome. Indeed, for a

generic quantum state of the paird, a measurement ofl alone
would increase the uncertainty of the outsider, i.e., would increase

Il. DISCORD the entropy he attributes to the pair. This is a consequence of the

difference between the nature of joint states in classical physics
Quantum discord 3-5] is the difference between two (where they are represented by Cartesian products of subspaces of

Classically identical formulas that measure the informationhe constituentsand quantum physidsvhere they exist in a tensor
content of a pair of quantum systems. Several closely relategroduct of the two Hilbert spacesit has profound effects on the
variants can be obtained starting from the original definitionaccessibility of the information and leads to a difference in the
[3] given in terms of mutual informatiof6]. Mutual infor-  efficiency of Maxwell's demons.
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book, or a state of the apparatus pointeafter a perfect but HA(S,A{‘AQ}) =[H(A)+H(S A)]{‘Ak». (7)

as yet unread measurement 8f Then the joint entropy

H(S,A) is equal toH(A)=H(S), sol(S:A)=H(A). By  where{|A,)} is the eigenbasis of the to-be-measured observ-
contrast, when the two objects are not correlatdS,.A) able of the apparatus. Another acceptable and completely

=H(S)+H(A), andl(S:A)=0. quantum definition of (S:.A) relies on the the von Neumann
The other formula for mutual information employs classi- entropy of the density matrixs 4 describing the joint state.
cal identity for joint entropy{ 6], Then, in bits

H(S,A)=H(A)+H(S|A)=H(S)+H(A|S). 2
(SAZHATHEDZHE FHAS) @ H(S,A)= =Trpsalg pss=—2 psa)lgpsal), (®
Above, H(S].A) is the conditional entropy—e.g., the mea- !
sure of the lack of information about the stateShfgiven the
state ofA. Substituting this in Eq(1) leads to an asymmetric
looking formula for mutual information,

where Ig=log,, and the probabilitieps (1) are the eigen-
values ofpgs 4 that describes the correlated pair. These eigen-
values always exist, but, in general, correspond to entangled
IAS:A) =H(S)+H(A) —[H(A) +H(S|A)]. 3) quantum statefys4(1)) in the joint Hilbert space of and
A. Such states cannot be found out through sequences of
We have refrained from carrying out the obvious cancellatiorlocal measurements starting with just one subsystem of the
above that would have yielded 4(S:.A)=H(S)—H(S|.A) pair—say,A. This fundamental difference between the quan-

for a reason that will be soon apparent. tum and the classical realfwhere such “piecewise” inves-
Discord is defined as tigation is always possible and need not disturb the state of
the paiy is responsible for nonzero discord.
S(SJA)=1(S:A) = 4(S:A) A simple example of this situation is a perfectly entangled
Bell state,
=[H(A)+H(SA)]-H(S,A). 4
Classically, discord disappears as a consequence dqREs- |50 = (10504 +] 151A>)/‘/§' (%a)

information about a collection of classical objects can bec
acquired one object at a time. In quantum theory, howeve
measurements can modify the quantum sfate Thus, in

order to properly define conditional entropy, one must
specify how the apparatus is “interrogated” abdutAftera ~ _ _ C A — .
measurement of the observable with eigenstftag)}, ob- H(&)=1. Consequentif(s:4)=2, but the asymmetric

server’s own description of the pair is the conditional densit mutual information is ,(5:.4) =1. This is because the joint
matrix P P Yinformation H A(S, Agayy) defined with reference to any

measurement on al, Eqg. (5), is a sum ofH(A)=1 and
Psalay = Psiay® A (AL (5 _H(S|A)=O. In our example, both of these quantities are
independent of the basis because of the symmetry of Bell
Given an outcome [Ay), he will attribute pgn,  States. o _ _ o
= Tr (A psAd AYPAK) to S with the probability p 4(k) Readers are invited to verify that a classical correlation in

=Tr(AdpsalA). Even for an outsidefwho has not yet _
found out the outcom)e postmeasurement density matrix Psa= (1050400404 +[1sL4)(1a1s])/12 (9b)
psa usually differs from the premeasuremeny, . This out-  egits in zero discord, but only when the preferred basis

sider’s state of knowledge should be contrasted with th?|Ak>}={|O>,|1)} is employed. The entangled state of Eq.

viewpoint of the insider who made the measurement. Insidefgg) could be converted into the mixture of E@b) through
knows that the apparatus is in the stgd). Outsider does ainselection of the preferre@ointed basis[4,8—11 or—and

not, so he obtains his postmeasuremgfii by averaging this is why decoherence can be regarded as monitoring by

learly, psa=|¥sa){ sl is pure—the pair is in the state
r|’¢5A>. Hence, in accord with Eq8), H(S,.4)=0. On the
other handp 4.5 =Tr g4 Psa= Las)/2, wherel is the unit
matrix in the appropriate Hilbert space, so thd{.A)

over the outcomes, the environment—through a measurement with an undis-
closed outcome carried out in the same pointer b@gig)}
Psa= 2 PaK)Psiay® I AN(AY. e =101} , .
gt A0 oA In general, the ignorance of the outsider cannot decrease

(but may increaseas a result of a measurement of a known

Outsider’s description of the pair is unaffected by the insid-gpservabldby the insidey, as the outsider does not know the
ers measurementspg = ps4—0nly when the measured ob- outcome[12]. Hence,

servable commutes withg 4. We shall find outsider’s view-
point useful because it represents a statistical ensemble of all 5(S| Afagp) =HAS Agayy) —H(S, A)=0. (10
possible outcomes.

In quantum physics, one definition denoted by piscord disappears only whers, remains unaffected by a
JA(S'A{\Ak)}) is theloca”y accessible mutual informatioit partia| measurement c{ﬂAk>} on the A end of the pair_
uses Eq(3) with the joint entropy given by when the information is locally accessible.
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[ll. DEMONS AND DISCORD W= kBZT{lg dgd 4, —H(S,A)}. (130

The relevance of the discord for the performance of Max-

well's demon can be now appreciated. Demons are insiderVe note that the efficiency is ultimately determined by the

They use the acquired information to extract work from theirinformation aboutS and.A accessibleéo the demon, and that

surroundings. The traditional scenario starts with an interacthe same equation would have followed if we simply re-

tion establishing initial correlation between the system andyarded theSA pair as a composite system, and the demon

the apparatus. The demon then reads off the staié, aind  used it all up as a fuel.

uses so acquired information abofitto extract work by The efficiency of demons is then determined by the ac-

letting S expand throughout the available phdee Hilberty ~ cessible information about the paftA—the relevant joint

space of volumgdimension dg while in contact with the ~entropy—and we have already seen in EF$.and(8) that

thermal reservoir at temperatufe 1,2,13—19. This yields ~ in quantum physics it depends on how the information about
the pair is acquired. A classical demon is local—it operates

W+:kBZT[Ig ds—H(S|A)] (1)  on the correlated quantum paitd one system at a time. In
this case the above sketch of the “standard operating proce-
of work obtained at a price, dure” applies with one obviousaveat It needs to be com-
pleted by the specification of the basis demon measures in
W~ =kg,TH(A). (120 A. The cost of erasure is still given by E(l2), also for

classical demons extracting work from quantum systems

Above, kg is the Boltzmann constant adapted to deal with[11—13, although the relevarti(A) may increase as a re-
the entro 2 exoressed in bits afids the temperature of the sult of decoherence that converts quantum entanglement into
heat bathpyThepnet ain is then P classical dat§23]. Thus classical demons operating on pairs

‘ 9 of quantum systems gain net work of

W=ke,TlIgds~[H(ATHISAL. - (133 WE/kg T=lgdg,—[H(A) +HSIATgay - (14

The priceW™ is the cost of restoring the apparatus to the

initial ready-to-measure state. The significance of this “cost! "€ Only difference between the classical Efa and the

of erasure” for the second law was pointed out in the seminafil@ntum Eq.(14) is the obvious dependence on the basis
paper of Szilarq13]. Its relevance in the context of infor- 1A} demon selects to measure. The expression in square

mation processing was elucidated and codified by Landaud¥ackets is the measure of the remainingnditiona) igno-

[14] rance and of the cost of erasure. We shall be interested in the
. - C

It is now accepted that, because of the cost of erasura)Ak} that maximizew®. _

neither classical15—17 nor quantur{18—21 demons can A quantum demon can typically extract more work—get

violate the second law. However, a demon with a supply ofWay with lower costs of erasure—because its measurement
empty memory(used to store measurement outcoynesn  Can be carried out in a g!obal basis in the combined Hilbert
extract, on the averagé/* of work per step from a thermal SPace ofSA corresponding to observables that commute
reservoir. This strategy works, because, in effect, the demoW!th the initial p, and avoid increase of entropy associated
is using its empty memory as a zero entrdpyd, henceT with decoherencd4,8—11,23. The work t.hat can be ex-
—0) reservoir. A memory block of sizé , is used up with tracteq after the apparatus gets reset to its ready-to-measure
each new measurement. This is expensgarel wastefyland ~ State IS
only fraudulent accountinguncovered by Szilard and Land- 9
aue) that ignores thermodynamic cost of empty memory can W /szT: Igdss—H(S,A). (15
create appearance of a violation of the second law.
To optimize performance, demon should use memory offhe other way to arrive at E¢15) is to use quantum demon
A more efficiently. The obvious strategy here is to compressn its capacity of a universal quantum computer, which, by
bits of the data after a sequence of measurements, freeing definition, can transform any state in the Hilbert space into
unused block ofA u bits. Demon can compress dada to  any other statésee Fig. 2 for an example of a model demon
the size given byK(A,), their algorithmic complexityf22].  that operates on pairs of qubitsThis allows the quantum
With compressionAu=Igd,—K(A,) memory bits per demon to reversibly evolve entangled eigenstates of an arbi-
cycle are saved. Moreover, one can show that for long setrary knownpg, into product states of somgs4 with the
quences of data the approximate equa{i§(A,))=H(A)  same eigenvalues, and, hence, same entropy.gEhisan be
becomes exact, so that the saved up memory is on the avehen manipulated in a local basis that does not perturb its
age Au=Ilgd,—H(A). By being frugal, classical Max- eigenstates, and, hence, as viewed by the outsider, it will not
well's demon can gain, per step, net work[af7,21] suffer any additional increase of entropy. The work extracted
by the optimal quantum demon is limited simply by the
W=kg, T{lgdsd4—[H(A) +H(S[A)T}. (13D  pasis-independent joint von Neumann entropy of the initial

psa, EQ.(8).
When S and A are classically correlated so that B8) ap- The difference between the efficiency of the quantum and
plies, this can be written as classical demons can be now immediately characterized,
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“demonic” question while simultaneously providing an op-

S the principal result of our paper. It answers an interesting
la lc i [ i i
erational interpretation of discord.
\V

D ~ b To gain further insight into implications of the above, let
A us first note that discord is, in general, basis dependent. Dis-
AL cord disappears iff the density matrix has the “post-
FIG. 2. A simple model of information processing built of decoherence’(or postmeasuremenb form.,. Eq. (6), a_l-
the controlled~oT (c-NoT) logical gates illustrates the origin of ready before the measuremeftiven the ability of c!asspal
the difference between the efficiencies of the classical anéjemons to match quantum perfo_rmance standard |r_1 this Case'
quantum versions of Maxwell's demon. The aim of this demonbasis{|A,)} that allows for the disappearance of discord in
(whose memory is marked byD) is to use the correlation the presence of nontrivial correlation can be deemed classical
betweenS and A to purify their individual states, so that they [3—5]. We note thap g, in the locally diagonal form, Ed6),
can be used individually as fuel. To this end, the derf@rfinds ~ may emerge as a consequence of the coupling efith the
out the state of the apparatuk (b) uses this information about ~ environmen{8—11]. The preferrechointer basisis a result
and the “promise” of the correlation—prior knowledge about the of einselection.
form of ps4 embodied in the logical circuit above—to decrease A typical ps4 does not have the form of E¢6), however.
entropy of S, so that W*=kg T[1-H(S|A)] work can be In that case, discord does not completely disappear for any
extracted fromsS; (c) resets his own memory to the initial ready-to- basis. The least discord,
measure state, so that the same sequence of actions can be carried
out cyclically on a whole ensemble of identic8)4 pairs. Thus,

a quantum demon operating on an initially entangled state will S5(S|A) = min[H(A)+H($|A)]{|Ak>}—H(S,.A), (18
result in an evolution, {1A0}
(a]0s0_4) + Bl 151 4))|0p) = {05050 1) + B| 1s0pL 4)
=2a]04050 4) + Bl1s1pl ) corresponds to maximum efficiency of a classical demon.
=¢|050,50 )+ B|0sLpl L) Note that to get the right answer we had to minimize the sum

of the two terms contributing to the joint entropy, rather than
=a|0,050.4)+ B|0s0p1.9) N e
—109)[0,) (|0 + BI1.0) each of them separately. The aternat|ﬂeS|A)—H_(A)
SIED A AT +m|n{|Ak>}H(S|A){‘Ak>}—H(SA) would have followed if the
disentanglingS from .A. However, a demon whose memory cancellation in Eq(3) was carried out. The difference be-

decoheres—e.g., entangles with the environment—wiIItWeen them is obvious an?&(S|A)>?9(S|A)
not be able to take advantage of the quantum correlations in ' '

the state ofSA pair. Decoherence leading to the einselection of the

basis {|0p),|1p)} in the memory of the demon can be IV. LOCALLY ACCESSIBLE INFORMATION AND
represented by anotheznoT that acts betweerD influencing DISCORD

the state of the environmer& (not shown in the figune As a . . .

consequence, following thenoT (8) interaction with the environ- Discord is not symmetric between the two ends of the

ment leads to 05050 )+ 8051l ))|eq)=a|05050)]eo)  correlation. In generald(S|.A)# 5(A|S). In particular, for
+B|0s1p1 4)|e1). Thus, when all the other-noT's are carried out, density matrices that emerge following einselection.An
105)|0p)(@]0.9)|e0) + B|1 p|e1)) obtains, leading to the same pure 55| 4) will vanish but 5(.4|S) may remain finite. Such lo-
states of the system and the demon, bnteffec a r'l'xed state  ca|ly accessible correlations apee-way classicalThey are

of the appari‘tus’gf\:Trf(“|0A>|280>+B|1A>|sl>)(,“,<OA|<80| characterized by a preferred direction—frash to S—in
B (Lal(ea]) = al*0,)(04 +1BI*La)(Lal, providing that \ieh more information about the joint state can be ac-

=0. In thi heren h m mon’ rfor-
(eole2)=0 this case, dec‘.) erence that tu s.de ons pe olcfessed. Thus, when a local demon can choose between the
mance from quantum to classical makes it impossible to extract al

of the thermodynamic benefit from quantum correlations. We IeavéWO endsd of the IS"(;l pzlr, It may Ibdedm?re eff|IC|e_nttt_han a
it as an exercise for the reader to show that the classical correlatiog'€"Way demon. indeed, one cou efine polarization,
betweenS and A [Eq. (9b)] leads to the same final state, thus

proving that a classical demon can extract all of the work present in ~ ~
a classical correlation. w(S]A)= (S| A)—3(A|S) (19

A=AW/kg, T=[H(A) +H(SA)]jan—H(S,A) (16) 1o quantify this directionality.
One can generalize discord to collections of several cor-
or related quantum systems. By analogy with the case of a
single pair we define it as a difference between the joint
AW=Kg, TS(S| Afayy)- (170 entropy accessible through a particular sequendpaxsibly

conditiona) measurements—that is, the obvious generaliza-

Equation (17) relating the extra workAW=W®—WFC to tion of Eq. (7)—and the joint von Neumann entropy of the
guantum discord—to the difference of the accessible joinunmeasured density matrix. The least discord of such a col-
entropy of classicallocal) and quantuniglobal) demons—is lection of systems is a minimum over all possible sequences
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08F PA,B,C,...,S:Zi pA(i)pB,C,...,S\Ai)®|Ai><Ai|v (219
. 06
0 04
and 3 .
A 02} ] i, _
A PB,C,...,S|Ai):; p%)(J)Pc ..... $|Ai,BJ(')>
0.2 ) ] ®[BOWBY, ..., etc.,  (21b
-0.4 A 7 1
-0.6 .
08 ] where every second of the subsystefims., A,C,E, ... are
) ‘ . ‘ . ‘ ‘ on Alice’s side, while the complement8,D, ... are on
-1 0 0.2 0.4 0.6 0.8 1 Bob’s side settles these questions. When the conditional

density matricepz - . | Sl Pe, ... SiA; By etc., are not co-

diagonal in the relevant Hilbert spaces describing

FIG. 3. Discordd(z), Eq. (17), and the lower bound on the B,C,D, ... Alice and Bob will have to exchange data after
work deficit A(z), both in bits, for Werner statep,s,=(1—2)/4 each measurement to decide what to measure next if they are
1+ 2| s ) sal, Where |s)=(]000)+|1s1,))/y2. In this toextractall of the potentially accessible information. This is
simple case both discof@hich is equal to the work defigiand the ~ an example of a situation where a number of back-and-forth
lower bound on the work deficit derived in R¢R4] are indepen- exchanges equal to the number of “nestings” is necessary to
dent of the basis and the same for both “ends” of the correlatedextract all of the work—to access all of the locally accessible
pair. As argued here, there are cases where discord will actuallinformation. It is tempting to suggest that such nested den-
play a role of an upper bound on the work deficit, as it is derivedsity matrices could be used to restrict access to information
under the assumption of one-way classical communication. by hiding it in some sufficiently deep layée.g.,S), acces-

. . sible only if two (or many parties cooperate in its retrieval.
of all possible measurements. This corresponds to the demon

having a choice of the end of the pair it can measure first.
This last situation allows one to address questions raised V. SUMMARY
in a recent paper on the work that can be extracted by local
and global observers from correlated pairs of quantum sys
tems[24]. The authors show that a global observer will be
able to extract more work from a pair of quantum system
than “Alice and Bob,” who can carry out local operations
and communicate classical{.OCC”" ) with each other, and
the differenceA (in units of kBZT) is bounded from below,

z

First hints of the quantum underpinnings of the universe
emerged over a century ago in a thermodynamic setting in-
volving black body radiation. We have studied here implica-
ions of quantum physics—and, in particular, of the quantum
aspects of correlations—for classical and quantum Max-
well's demons. We have seen that discord is a measure of the
advantage afforded by the quantum conditional dynamics,
and shown how this advantage is eliminated by decoherence
A=A= max{H(A),H(S)]-H(A,S). (20) and the ensuing eingelection. Our discussion sheds I[ght on

AS the problem of transition between quantum and classical: It
leads to an operational measure of the quantum aspect of
correlations. As was already pointed ¢8t-5], the aspect of
quantumness captured by discord is not the entanglement.
given by & for Werner states. In this case, discord yields theRather it is related to the degree to which quantum superpo-
work deficit, A=5. Indeed, our arguments throughout the sitions are implicated in a state of a pé&r of a collection
paper show thab gives the difference in efficiencies when of quantum systems. We expect it to be relevant in questions
only one-way classical communication is allowed. Obvi-involving quantum theory and thermodynamics, but discord
ously, allowing for a two-way communication between Alice may be also of use in characterizing multiply correlated
and Bob can only help, sé=A is an upper bound on the states that find applications in quantum computation.

difference of the efficiencies, and there are cageg.,
Wern(_ar states of Fig.)aNher_e this upper bound is saturated. ACKNOWLEDGMENTS

This leads to an interesting question. When does two-way
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This lower bound is illustrated in Fig. 3 along with our result
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