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Quantum discord and Maxwell’s demons

Wojciech Hubert Zurek
Theory Division, MS B288, LANL, Los Alamos, New Mexico 87545

~Received 3 September 2002; published 29 January 2003!

Quantum discord was proposed as an information-theoretic measure of the ‘‘quantumness’’ of correlations.
I show that discord determines the difference between the efficiency of quantum and classical Maxwell’s
demons—that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum
operations—in extracting work from collections of correlated quantum systems.
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I. DEMONS

Maxwell’s demon@1# was introduced to explore the rol
of information and, more generally, to investigate the pla
of ‘‘intelligent observers’’ in physics. In modern discussio
of the subject@2#, ‘‘intelligence’’ is often regarded as predi
cated upon or even synonymous with the information p
cessing ability—with computing. Thus, Maxwell’s demon
frequently modeled by a Turing machine—a classi
computer—endowed with the ability to measure and act
pending on the outcome. The role of a demon is to imp
ment an appropriate conditional dynamics—to react to
state of the system as revealed through its correlation w
the state of the apparatus.

It is now known that quantum logic—i.e., the logic em
ployed by quantum computers—is in some applications m
powerful than its classical counterpart. It is therefore intrig
ing to enquire whether a quantum demon—an entity that
measure nonlocal states and implement quantum conditi
operations—could be more efficient than a classical on
show that quantum demons can extract more work than c
sical demons from correlations between quantum syste
and that the difference is given by thequantum discord, a
recently introduced@3–5# measure of the ‘‘quantumness’’ o
correlations.

Maxwell’s demon sets up a useful conceptual framew
that provides an operational interpretation of discord. T
role played by the quantum demon—carrying out conditio
quantum operations on pairs of systems—could be a
played by a classical device that can outright measure n
local quantum observables. This is especially apparen
Sec. IV where we alternate between the quantum and cla
cal demon on one hand, and ‘‘Alice and Bob’’ on the oth
The real point of employing demons is to draw attention
the thermodynamic~and information-theoretic! costs of vari-
ous operations and—in a sense—to hold Alice and Bob
countable for their thermodynamic expenditures which
usually simply ignored.

II. DISCORD

Quantum discord@3–5# is the difference between tw
classically identical formulas that measure the informat
content of a pair of quantum systems. Several closely rela
variants can be obtained starting from the original definit
@3# given in terms of mutual information@6#. Mutual infor-
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mation quantifies the strength of correlations between,
the apparatusA and the systemS,

I ~S:A!5H~S!1H~A!2H~S,A!. ~1!

It measures the difference between the missing informa
about the two objects when they are taken separately,H(S)
1H(A), and jointly, H(S,A) ~see Fig. 1!. In the extreme
caseS and A may be identical—e.g., copies of the sam

FIG. 1. Information-theoretic measures of the relationship
tweenA and S can be illustrated by means of theVenn diagram
shown above. Shaded areas represent various uncertainties.
entropyH(S,A) is the measure of uncertainty about the combin
state ofS and A. Individual circles correspond to the uncertain
aboutS and A. When their states are correlated, the two circ
overlap. Mutual informationI (S:A) is the area of that overlap
Conditional entropyH(SuA) is one of the half-moons above—th
one left when the lens corresponding to the mutual inform
tion I (S:A) is subtracted from H(S). Obviously, H(S,A)
5H(A) 1 H(SuA) 5 H(S) 1 H(A uS) 5 H(S ) 1 H(A) 2 I (S:A).
These equalities are predicated on the classical assumption tha
states ofS andA exist objectively, and, thus, a measurement ne
not disturb them. In quantum theory this is not the case: a meas
ment will, in general, redefine the state of the measured object, e
for an ‘‘outsider’’ who does not know its outcome. Indeed, for
generic quantum state of the pairSA, a measurement ofA alone
would increase the uncertainty of the outsider, i.e., would incre
the entropy he attributes to the pair. This is a consequence of
difference between the nature of joint states in classical phy
~where they are represented by Cartesian products of subspac
the constituents! and quantum physics~where they exist in a tenso
product of the two Hilbert spaces!. It has profound effects on the
accessibility of the information and leads to a difference in
efficiency of Maxwell’s demons.
©2003 The American Physical Society20-1
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book, or a state of the apparatus pointerA after a perfect but
as yet unread measurement ofS. Then the joint entropy
H(S,A) is equal toH(A)5H(S), so I (S:A)5H(A). By
contrast, when the two objects are not correlated,H(S,A)
5H(S)1H(A), andI (S:A)50.

The other formula for mutual information employs clas
cal identity for joint entropy@6#,

H~S,A!5H~A!1H~SuA!5H~S!1H~AuS!. ~2!

Above, H(SuA) is the conditional entropy—e.g., the me
sure of the lack of information about the state ofS, given the
state ofA. Substituting this in Eq.~1! leads to an asymmetri
looking formula for mutual information,

JA~S:A!5H~S!1H~A!2@H~A!1H~SuA!#. ~3!

We have refrained from carrying out the obvious cancellat
above that would have yieldedJA(S:A)5H(S)2H(SuA)
for a reason that will be soon apparent.

Discord is defined as

d~SuA!5I ~S:A!2JA~S:A!

5@H~A!1H~SuA!#2H~S,A!. ~4!

Classically, discord disappears as a consequence of Eq.~2!—
information about a collection of classical objects can
acquired one object at a time. In quantum theory, howe
measurements can modify the quantum state@7#. Thus, in
order to properly define conditional entropy, one mu
specify how the apparatus is ‘‘interrogated’’ aboutS. After a
measurement of the observable with eigenstates$uAk&%, ob-
server’s own description of the pair is the conditional dens
matrix,

rSAuAk&5rSuAk& ^ uAk&^Aku. ~5!

Given an outcome uAk&, he will attribute rSuAk&

5TrA^AkurSAuAk&/pA(k) to S with the probability pA(k)
5Tr^AkurSAuAk&. Even for an outsider~who has not yet
found out the outcome!, postmeasurement density matr
rSA8 usually differs from the premeasurementrSA . This out-
sider’s state of knowledge should be contrasted with
viewpoint of the insider who made the measurement. Ins
knows that the apparatus is in the stateuAk&. Outsider does
not, so he obtains his postmeasurementrSA8 by averaging
over the outcomes,

rSA8 5(
k

pA~k!rSuAk& ^ uAk&^Aku. ~6!

Outsider’s description of the pair is unaffected by the ins
ers measurements—rSA8 5rSA—only when the measured ob
servable commutes withrSA . We shall find outsider’s view-
point useful because it represents a statistical ensemble o
possible outcomes.

In quantum physics, one definition denoted
JA(S:A$uAk&%) is thelocally accessible mutual information. It
uses Eq.~3! with the joint entropy given by
01232
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HA~S,A$uAk&%!5@H~A!1H~SuA!#$uAk&% . ~7!

where$uAk&% is the eigenbasis of the to-be-measured obse
able of the apparatus. Another acceptable and comple
quantum definition ofI (S:A) relies on the the von Neuman
entropy of the density matrixrSA describing the joint state
Then, in bits

H~S,A!52Tr rSAlg rSA52(
l

pSA~ l !lg pSA~ l !, ~8!

where lg5 log2, and the probabilitiespSA( l ) are the eigen-
values ofrSA that describes the correlated pair. These eig
values always exist, but, in general, correspond to entan
quantum statesucSA( l )& in the joint Hilbert space ofS and
A. Such states cannot be found out through sequence
local measurements starting with just one subsystem of
pair—say,A. This fundamental difference between the qua
tum and the classical realm~where such ‘‘piecewise’’ inves-
tigation is always possible and need not disturb the state
the pair! is responsible for nonzero discord.

A simple example of this situation is a perfectly entangl
Bell state,

ucSA&5~ u0S0A&1u1S1A&)/A2. ~9a!

Clearly, rSA5ucSA&^cSAu is pure—the pair is in the stat
ucSA&. Hence, in accord with Eq.~8!, H(S,A)50. On the
other hand,rA(S)5TrS(A)rSA51A(S)/2, where1 is the unit
matrix in the appropriate Hilbert space, so thatH(A)
5H(S)51. Consequently,I (S:A)52, but the asymmetric
mutual information isJA(S:A)51. This is because the join
information HA(S,A$uAk&%) defined with reference to an

measurement on aA, Eq. ~5!, is a sum ofH(A)51 and
H(SuA)50. In our example, both of these quantities a
independent of the basis because of the symmetry of
states.

Readers are invited to verify that a classical correlation

rSA5~ u0S0A&^0A0Su1u1S1A&^1A1Su!/2 ~9b!

results in zero discord, but only when the preferred ba
$uAk&%5$u0&,u1&% is employed. The entangled state of E
~9a! could be converted into the mixture of Eq.~9b! through
einselection of the preferred~pointer! basis@4,8–11# or—and
this is why decoherence can be regarded as monitoring
the environment—through a measurement with an un
closed outcome carried out in the same pointer basis$uAk&%
5$u0&,u1&%.

In general, the ignorance of the outsider cannot decre
~but may increase! as a result of a measurement of a know
observable~by the insider!, as the outsider does not know th
outcome@12#. Hence,

d~SuA$uAk&%!5HA~S,A$uAk&%!2H~S,A!>0. ~10!

Discord disappears only whenrSA remains unaffected by a
partial measurement of$uAk&% on theA end of the pair—
when the information is locally accessible.
0-2
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III. DEMONS AND DISCORD

The relevance of the discord for the performance of M
well’s demon can be now appreciated. Demons are insid
They use the acquired information to extract work from th
surroundings. The traditional scenario starts with an inter
tion establishing initial correlation between the system a
the apparatus. The demon then reads off the state ofA, and
uses so acquired information aboutS to extract work by
letting S expand throughout the available phase~or Hilbert!
space of volume~dimension! dS while in contact with the
thermal reservoir at temperatureT @1,2,13–19#. This yields

W15kB2
T@ lg dS2H~SuA!# ~11!

of work obtained at a price,

W25kB2
TH~A!. ~12!

Above, kB2
is the Boltzmann constant adapted to deal w

the entropy expressed in bits andT is the temperature of the
heat bath. The net gain is then

W5kB2
T$ lg dS2@H~A!1H~SuA!#%. ~13a!

The priceW2 is the cost of restoring the apparatus to t
initial ready-to-measure state. The significance of this ‘‘c
of erasure’’ for the second law was pointed out in the sem
paper of Szilard@13#. Its relevance in the context of infor
mation processing was elucidated and codified by Landa
@14#.

It is now accepted that, because of the cost of eras
neither classical@15–17# nor quantum@18–21# demons can
violate the second law. However, a demon with a supply
empty memory~used to store measurement outcomes! can
extract, on the average,W1 of work per step from a therma
reservoir. This strategy works, because, in effect, the dem
is using its empty memory as a zero entropy~and, hence,T
50) reservoir. A memory block of sizedA is used up with
each new measurement. This is expensive~and wasteful! and
only fraudulent accounting~uncovered by Szilard and Land
auer! that ignores thermodynamic cost of empty memory c
create appearance of a violation of the second law.

To optimize performance, demon should use memory
A more efficiently. The obvious strategy here is to compr
bits of the data after a sequence of measurements, freein
unused block ofDm bits. Demon can compress dataAk to
the size given byK(Ak), their algorithmic complexity@22#.
With compressionDm5 lg dA2K(Ak) memory bits per
cycle are saved. Moreover, one can show that for long
quences of data the approximate equality^K(Ak)&.H(A)
becomes exact, so that the saved up memory is on the a
age Dm5 lg dA2H(A). By being frugal, classical Max
well’s demon can gain, per step, net work of@17,21#

W5kB2
T$ lg dSdA2@H~A!1H~SuA!#%. ~13b!

WhenS andA are classically correlated so that Eq.~2! ap-
plies, this can be written as
01232
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W5kB2
T$ lg dSdA2H~S,A!%. ~13c!

We note that the efficiency is ultimately determined by t
information aboutS andA accessibleto the demon, and tha
the same equation would have followed if we simply r
garded theSA pair as a composite system, and the dem
used it all up as a fuel.

The efficiency of demons is then determined by the
cessible information about the pairSA—the relevant joint
entropy—and we have already seen in Eqs.~7! and ~8! that
in quantum physics it depends on how the information ab
the pair is acquired. A classical demon is local—it opera
on the correlated quantum pairSA one system at a time. In
this case the above sketch of the ‘‘standard operating pro
dure’’ applies with one obviouscaveat: It needs to be com-
pleted by the specification of the basis demon measure
A. The cost of erasure is still given by Eq.~12!, also for
classical demons extracting work from quantum syste
@11–13#, although the relevantH(A) may increase as a re
sult of decoherence that converts quantum entanglement
classical data@23#. Thus classical demons operating on pa
of quantum systems gain net work of

WC/kB2
T5 lg dSA2@H~A!1H~SuA!#$uAk&% . ~14!

The only difference between the classical Eq.~13a! and the
quantum Eq.~14! is the obvious dependence on the ba
$uAk&% demon selects to measure. The expression in sq
brackets is the measure of the remaining~conditional! igno-
rance and of the cost of erasure. We shall be interested in
$uAk&% that maximizeWC.

A quantum demon can typically extract more work—g
away with lower costs of erasure—because its measurem
can be carried out in a global basis in the combined Hilb
space ofSA corresponding to observables that commu
with the initial rSA and avoid increase of entropy associat
with decoherence@4,8–11,23#. The work that can be ex
tracted after the apparatus gets reset to its ready-to-mea
state is

WQ/kB2
T5 lg dSA2H~S,A!. ~15!

The other way to arrive at Eq.~15! is to use quantum demo
in its capacity of a universal quantum computer, which,
definition, can transform any state in the Hilbert space i
any other state~see Fig. 2 for an example of a model dem
that operates on pairs of qubits!. This allows the quantum
demon to reversibly evolve entangled eigenstates of an a
trary knownrSA into product states of somer̃SA with the
same eigenvalues, and, hence, same entropy. ThisrSA can be
then manipulated in a local basis that does not perturb
eigenstates, and, hence, as viewed by the outsider, it will
suffer any additional increase of entropy. The work extrac
by the optimal quantum demon is limited simply by th
basis-independent joint von Neumann entropy of the ini
rSA , Eq. ~8!.

The difference between the efficiency of the quantum a
classical demons can be now immediately characterized
0-3
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D5DW/kB2
T5@H~A!1H~SuA!#$uAk&%2H~S,A! ~16!

or

DW5kB2
Td~SuA$uAk&%!. ~17!

Equation ~17! relating the extra workDW5WQ2WC to
quantum discord—to the difference of the accessible jo
entropy of classical~local! and quantum~global! demons—is

FIG. 2. A simple model of information processing built o
the controlled-NOT ~c-NOT! logical gates illustrates the origin o
the difference between the efficiencies of the classical
quantum versions of Maxwell’s demon. The aim of this dem
~whose memory is marked byD) is to use the correlation
betweenS and A to purify their individual states, so that the
can be used individually as fuel. To this end, the demon~a! finds
out the state of the apparatusA; ~b! uses this information aboutA
and the ‘‘promise’’ of the correlation—prior knowledge about t
form of rSA embodied in the logical circuit above—to decrea
entropy of S, so that W15kB2

T@12H(SuA)# work can be
extracted fromS; ~c! resets his own memory to the initial ready-t
measure state, so that the same sequence of actions can be c
out cyclically on a whole ensemble of identicalSA pairs. Thus,
a quantum demon operating on an initially entangled state
result in an evolution,

~au0S0A&1bu1S1A&)u0D&5au0S0D0A&1bu1S0D1A&

⇒aau0S0D0A&1bu1S1D1A&

⇒bau0S0D0A&1bu0S1D1A&

⇒cau0S0D0A&1bu0S0D1A&

5u0S&u0D&~au0A&1bu1A&),

disentangling S from A. However, a demon whose memo
decoheres—e.g., entangles with the environment—w
not be able to take advantage of the quantum correlations
the state ofSA pair. Decoherence leading to the einselection of
basis $u0D&,u1D&% in the memory of the demon can b
represented by anotherCNOT that acts betweenD influencing
the state of the environmentE ~not shown in the figure!. As a
consequence, following theCNOT ~a! interaction with the environ-
ment leads to (au0S0D0A&1bu0S1D1A&)u«0&⇒au0S0D0A&u«0&
1bu0S1D1A&u«1&. Thus, when all the otherC-NOT’s are carried out,
u0S&u0D&(au0A&u«0&1bu1A&u«1&) obtains, leading to the same pu
states of the system and the demon, but~in effect! a mixed state
of the apparatus,rA5TrE(au0A&u«0&1bu1A&u«1&)(a* ^0Au^«0u
1b* ^1Au^«1u) 5 uau2u0A&^0Au1ubu2u1A&^1Au, providing that
^«0u«1&50. In this case, decoherence that turns demon’s per
mance from quantum to classical makes it impossible to extrac
of the thermodynamic benefit from quantum correlations. We le
it as an exercise for the reader to show that the classical correla
betweenS and A @Eq. ~9b!# leads to the same final state, thu
proving that a classical demon can extract all of the work presen
a classical correlation.
01232
t

the principal result of our paper. It answers an interest
‘‘demonic’’ question while simultaneously providing an op
erational interpretation of discord.

To gain further insight into implications of the above, l
us first note that discord is, in general, basis dependent.
cord disappears iff the density matrix has the ‘‘po
decoherence’’~or ‘‘postmeasurement’’! form, Eq. ~6!, al-
ready before the measurement. Given the ability of classical
demons to match quantum performance standard in this c
basis$uAk&% that allows for the disappearance of discord
the presence of nontrivial correlation can be deemed class
@3–5#. We note thatrSA in the locally diagonal form, Eq.~6!,
may emerge as a consequence of the coupling ofA with the
environment@8–11#. The preferredpointer basisis a result
of einselection.

A typical rSA does not have the form of Eq.~6!, however.
In that case, discord does not completely disappear for
basis. The least discord,

d̂~SuA!5 min
$uAk&%

@H~A!1H~SuA!#$uAk&%2H~S,A!, ~18!

corresponds to maximum efficiency of a classical dem
Note that to get the right answer we had to minimize the s
of the two terms contributing to the joint entropy, rather th
each of them separately. The alternative]̂(SuA)5H(A)
1min$uAk&%

H(SuA) $uAk&%2H(SA) would have followed if the
cancellation in Eq.~3! was carried out. The difference be
tween them is obvious, andd̂(SuA)>]̂(SuA).

IV. LOCALLY ACCESSIBLE INFORMATION AND
DISCORD

Discord is not symmetric between the two ends of t
correlation. In general,d̂(SuA)Þd̂(AuS). In particular, for
density matrices that emerge following einselection inA
d̂(SuA) will vanish but d̂(AuS) may remain finite. Such lo-
cally accessible correlations areone-way classical. They are
characterized by a preferred direction—fromA to S—in
which more information about the joint state can be a
cessed. Thus, when a local demon can choose betwee
two ‘‘ends’’ of the SA pair, it may be more efficient than
one-way demon. Indeed, one could define polarization,

Ã~SuA!5 d̂~SuA!2 d̂~AuS! ~19!

to quantify this directionality.
One can generalize discord to collections of several c

related quantum systems. By analogy with the case o
single pair we define it as a difference between the jo
entropy accessible through a particular sequence of~possibly
conditional! measurements—that is, the obvious generali
tion of Eq. ~7!—and the joint von Neumann entropy of th
unmeasured density matrix. The least discord of such a
lection of systems is a minimum over all possible sequen
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of all possible measurements. This corresponds to the de
having a choice of the end of the pair it can measure firs

This last situation allows one to address questions ra
in a recent paper on the work that can be extracted by lo
and global observers from correlated pairs of quantum s
tems @24#. The authors show that a global observer will
able to extract more work from a pair of quantum syste
than ‘‘Alice and Bob,’’ who can carry out local operation
and communicate classically~‘‘LOCC’’ ! with each other, and
the differenceD ~in units of kB2

T) is bounded from below,

D>Ď5max
A,S

@H~A!,H~S!#2H~A,S!. ~20!

This lower bound is illustrated in Fig. 3 along with our resu
given by d̂ for Werner states. In this case, discord yields
work deficit, D5 d̂. Indeed, our arguments throughout t
paper show thatd̂ gives the difference in efficiencies whe
only one-way classical communication is allowed. Ob
ously, allowing for a two-way communication between Alic
and Bob can only help, sod̂>D is an upper bound on th
difference of the efficiencies, and there are cases~e.g.,
Werner states of Fig. 3! where this upper bound is saturate

This leads to an interesting question. When does two-w
communication provide a significant advantage? Doe
single round of two-way communication always suffice, or
it possible that many iterations may help even more? T
nested density matrix of the form

FIG. 3. Discordd̂(z), Eq. ~17!, and the lower bound on the

work deficit Ď(z), both in bits, for Werner states,rSA5(12z)/4
11zucSA&^cSAu, where ucSA&5(u0S0A&1u1S1A&)/A2. In this
simple case both discord~which is equal to the work deficit! and the
lower bound on the work deficit derived in Ref.@24# are indepen-
dent of the basis and the same for both ‘‘ends’’ of the correla
pair. As argued here, there are cases where discord will actu
play a role of an upper bound on the work deficit, as it is deriv
under the assumption of one-way classical communication.
01232
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rA,B,C, . . . ,S5(
i

pA( i )rB,C, . . . ,SuAi &
^ uAi&^Ai u, ~21a!

rB,C, . . . ,SuAi &
5(

j
pB

( i )( j )rC, . . . ,SuAi ,B
j
( i )&

^ uBj
( i )&^Bj

( i )u, . . . , etc., ~21b!

where every second of the subsystems~i.e., A,C,E, . . . are
on Alice’s side, while the complementsB,D, . . . are on
Bob’s side! settles these questions. When the conditio
density matricesrB,C, . . . ,SuAi &

, rC, . . . ,SuAi ,Bj &
, etc., are not co-

diagonal in the relevant Hilbert spaces describi
B,C,D, . . . Alice and Bob will have to exchange data aft
each measurement to decide what to measure next if they
to extract all of the potentially accessible information. This
an example of a situation where a number of back-and-fo
exchanges equal to the number of ‘‘nestings’’ is necessar
extract all of the work—to access all of the locally accessi
information. It is tempting to suggest that such nested d
sity matrices could be used to restrict access to informa
by hiding it in some sufficiently deep layer~e.g.,S), acces-
sible only if two ~or many! parties cooperate in its retrieva

V. SUMMARY

First hints of the quantum underpinnings of the unive
emerged over a century ago in a thermodynamic setting
volving black body radiation. We have studied here implic
tions of quantum physics—and, in particular, of the quant
aspects of correlations—for classical and quantum M
well’s demons. We have seen that discord is a measure o
advantage afforded by the quantum conditional dynam
and shown how this advantage is eliminated by decohere
and the ensuing einselection. Our discussion sheds ligh
the problem of transition between quantum and classica
leads to an operational measure of the quantum aspec
correlations. As was already pointed out@3–5#, the aspect of
quantumness captured by discord is not the entanglem
Rather, it is related to the degree to which quantum supe
sitions are implicated in a state of a pair~or of a collection!
of quantum systems. We expect it to be relevant in questi
involving quantum theory and thermodynamics, but disco
may be also of use in characterizing multiply correlat
states that find applications in quantum computation.
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