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Quantum cryptography based on qutrit Bell inequalities
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We present a cryptographic protocol based upon entangled qutrit pairs. We analyze the scheme under a
symmetric incoherent attack and plot the region for which the protocol is secure and compare this with the
region of violations of certain Bell inequalities.

DOI: 10.1103/PhysRevA.67.012310 PACS number~s!: 03.67.Dd
he
b-

t
v

ad
y

r.
an

te
iti
f

in

co
n
in
tu
on
n
lly

r

in

po
tte
bi-
in

e
a
n-
ua
he
i

it
y an
the

on
ed

e
ch
n

utrit

ign-
Ref.
ket
s

d

es

e
are
The need to communicate secretly has always been
important issue for military strategists during wartime. T
one-time pad~Vernam cipher! has been shown to be an a
solutely secure means of encrypting a message provided
key is truly random, is long as the message, and is ne
reused@1#. However, a major problem with the one-time p
is the establishment of a secure key between the two ph
cally separated parties without the services of a courie
recent proposal in this direction is to apply the laws of qu
tum mechanics to establish this crucial key@2#. One such
protocol is based on entangled pairs of particles and de
ing the presence of an eavesdropper using Bell inequal
@3#. This protocol~E91! is interesting as it is an example o
fundamental physics, i.e., violations of local realism, be
applied to a practical problem.

In this paper, we propose an extension of this proto
using three-dimensional systems, or qutrits. The extensio
Bell inequalities to three dimensions is a nontrivial and
teresting problem. As higher-dimensional entangled quan
systems are more resistant to noise than two-dimensi
systems~qubits!, it was suspected that this may lead to stro
ger violations of local realism which was shown numerica
using linear optimization@4# and later confirmed analytically
@5#. Hence, using higher-dimensional systems may lead
more robust cryptographic protocols.

The quantum channel we consider consists of a sou
producing two qutrits@6#, A and B, in the maximally en-
tangled stateuc&5(1/A3)(k50

2 uk&A^ uk&B , where uk&A and
uk&B are thekth ~computational! basis state of the qutritA
and B, respectively~these basis states can represent, for
stance, spatial degrees of freedom of photons! @7#. Qutrit A
flies towards Alice whereas qutritB flies towards Bob. Each
observer has at his disposal a symmetric unbiased six-
beam splitter. An unbiased symmetric six-port beam spli
performs a unitary transformation between ‘‘mutually un
ased’’ bases for qutrits@8–10#. Such devices were tested
several quantum optical experiments@11#, and also analyzed
theoretically@12,13#. This device has three input and thre
output ports~Fig. 1!. In front of each input port there is
phase shifter,w, . With all phase shifters set to zero, an i
coming photon through one of the input ports has eq
probability of leaving through any of the output ports. T
elements of the unitary transformation, which describes
action, are given byUk,5(1/A3)ak,eiw,, wherea5e2p i /3
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and the indicesk, , (k,,50,1,2) denote the input and ex
ports, respectively. The phase shifters can be changed b
observer. For convenience, we will denote the values of
three phase shifts aswW 5(w1 ,w2 ,w3). In our protocol, both
observers perform three distinct unitary transformations
their qutrits. The transformations at Alice’s side are defin
by wW 1

A5(0,0,0), wW 2
A5(0,p/3,2p/3), wW 3

A5(p,0,2p),

whereas Bob’s transformations arewW 1
B5(0,p/6,2p/6), wW 2

B

5(0,2p/6,p/6), wW 3
B5(2p,0,p). The observers choos

their transformations randomly and independently for ea
pair of qutrits. After performing the pair of transformatio
wW m

A ,wW n
B , the final state isuc̃&mn5UA(wW m

A) ^ UB(wW n
B)uc&. The

observers perform a measurement of the state of their q
in the computational basis,u0&m ,u1&m ,u2&m (m5A,B).

We adopt an uncommon but useful complex value ass
ment to the results of the measurements, first used in
@11#: namely, for the result of the measurement of the
uk&x we ascribe the valueak. This assignment naturally lead
to the following definition of the correlation function
Q(wW k

A ,wW ,
B) (Qk, for short! between the values of Alice’s an

Bob’s results of measurements @11#, Qk,

5(a,b50
2 aa1bP(a,b;wW k

A ,wW ,
B), where P(a,b;wW k

A ,wW ,
B) de-

notes the probability of Alice and Bob obtaining the resultsa

and b, respectively, for phase shifts (wW k
A ,wW ,

B). It can be
shown that the correlation function readsQk,

5 1
3 ( j 50

2 @ei (w j
A(k)2w j 11

A (k)1w j
B(,)2w j 11

B (,))# where, for in-
stance,w2

A(k) denotes the second component of thekth vec-
tor of phases for Alice, and the addition in the indic
~henceforth! is modulo 2.

Note thatQ3351, which means that the results of th
measurement obtained by Alice and Bob in this case
strictly correlated. When Alice obtains the results 1,a, or
a2, Bob must register the results 1,a2, or a, respectively.

FIG. 1. Qutrit cryptographic protocol.
©2003 The American Physical Society10-1
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Thus, only the following pairs of the results are possib
$(1,1),(a,a2),(a2,a)% @denoted subsequently b
$(0,0),(1,2),(2,1)%], and each pair of results occurs wit
equal probability1

3 . Let us also define the following quan
tity:

S5Im~2a2Q111aQ121a2Q212a2Q22!. ~1!

It can be shown, using the recently discovered Bell inequ
ity for two qutrits@14#, that according to local realistic theor
S cannot exceedA3. However, when using the quantum
mechanical correlation function (Qkl), S acquires the value
2
3 (21A3). Therefore, to satisfy the above Bell inequality
this case one must reduce the correlation function by
factor 6A329/2 ~such reduction is possible by adding th
symmetric noise to the system!. It has been proved@15# that
the above Bell inequality gives a necessary and suffic
condition for local realism in this case.

After the transmission has taken place, Alice and B
publicly announce the vectors of phase shifts that they h
chosen for each particular measurement and divide the m
surements into two separate groups: a first group for wh
they have used the vectorswW 1

A , wW 2
A andwW 1

B , wW 2
B , and a sec-

ond group for which they have usedwW 3
A ,wW 3

B . Subsequently,
Alice and Bob announce in public the results of the measu
ments they have obtained within the first group. In this w
they can compute the value ofS. If this value is not equal to
2
3 (21A3), it means that the qutrits have somehow be
disturbed. The source of this disturbance can be eithe
eavesdropper or noise. For sufficiently low disturbance
results from the second group allow them, due to the m
tioned correlations, to generate a ternary cryptographic k

Let us consider a symmetric incoherent attack in wh
the eavesdropper~Eve! controls the source that produces t
pairs of qutrits. Naturally, if Eve wants to acquire any info
mation about the key, she must introduce some disturba
in the state of the qutrits. Her only chance of being undet
ted is to hide herself behind what, to Alice and Bob, m
look like an environmental noise in the channel. We assu
that the noise is symmetrical in the sense that the distur
correlation function reads

Qnoise~fW ,cW !5VQ~fW ,cW !, ~2!

where 0<V<1. This can only be fulfilled if the reduce
density operator for Alice and Bob~after tracing out Eve’s
degrees of freedom! is of the form

%AB5Auc&^cu1Bux1&^x1u1Cux2&^x2u1
D

9
I ^ I , ~3!

where the~not necessarily all positive! numbers satisfyA
1B1C1D51, and the maximally entangled orthogon
states ux1&5(1/A3)(u00&1au11&1a2u22&) and ux2&
5(1/A3)(u00&1a2u11&1au22&). This choice stems from
the fact that only the above states generate correlation f
tions that are proportional toQ(fW ,cW ), specifically, the state
ux1& gives the correlation functionaQ(fW ,cW ) whereas the
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state ux2& gives the correlation functiona2Q(fW ,cW ). Thus,
the correlation function on the state%AB is

Qnoise~fW ,cW !5~A1aB1a2C!Q~fW ,cW !. ~4!

From Eq. ~2!, we obtain the conditionA1aB1a2C5V,
which is only possible ifB5C (V is real!.

Eve can prepare the reduced density operator~3! by con-
structing an entangled state of the form

ucABE&5AF

3
~ u00&uE00&1u11&uE11&1u22&uE22&)

1AG

6
~ u01&uE01&1u10&uE10&1u20&uE20&

1u02&uE02&1u12&uE12&1u21&uE21&), ~5!

where $ukl&% are the computational basis states of the t
qutrits, and$uEkl&% are states of the ancilla. Without loss o
generality, we can assume that they are normalized~which
implies thatF1G51). Note that the most general state
the joint system of Alice’s and Bob’s qutrits and Eve’s a
cilla reads(kl50

2 ukl&uEkl&. However, Eq.~3! imposes the fol-
lowing conditions on the states of the ancilla,F^EkkuEll &
5A2B and^EkluEmn&5dkl , kÞ l . Letting ^EkkuEll &5l, we
arrive at the following set of conditions,A12B1D51, A
2B5Fl, andD5 3

2 (12F).
Eve’s strategy is the following. She prepares the state~5!,

sends the qutrits to Alice and Bob, and keeps her ancilla.
then waits for public communication between Alice and Bo
When the settings of Alice’s and Bob’s apparatus~phase
shifts! are revealed:~i! if the chosen settings are not the on
used for the key generation Eve ignores the ancilla;~ii ! if the
settings are the ones for which the key is generated,
wW 3

A ,wW 3
B , Eve attempts to identify the ancilla state.

By straightforward computation, the final state in the se
ond case is

uc̃ABE&5UA~wW 3
A! ^ UB~wW 3

B! ^ I ucABE&5 (
a,b50

2

uab&uẼab&,

~6!

where the unnormalized statesuẼab& are

uẼab&5
1

3 SAF

3(
k50

2

a (a1b)kei (wk
A(3)1wk

B(3))uEkk&

3AG

6 (
mÞn

aam1bnei (wm
A (3)1wn

B(3))uEmn& D . ~7!

Note thatuc̃ABE& can also be written more conveniently a
0-2
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uc̃ABE&5(
i 50

2

~ u i ,i &uẼi ,i&1u i 11,i 12&uẼi 11,i 12&

1u i 12,i 11&uẼi 12,i 11&), ~8!

where we have grouped the terms into three orthogonal
spaces associated with Alice and Bob generating the co
key $(0,0),(1,2),(2,1)%, and the two incorrect keys
$(1,1),(2,0),(0,2)% or $(2,2),(1,0),(0,1)%. Note also that
the ancilla states of one subspace are orthogonal to
ancilla states of the other subspaces. The probabil
that Eve projects into the subspaces spanned
the states $uẼ00&,uẼ12&,uẼ21&%, $uE11&,uE20&,uE02&% and

$uE22&,uE10&,uE01&% are P053^Ẽ00uẼ00&5(112Fl)/3, P1

53^Ẽ11uẼ11&5(12Fl)/3 and P253^Ẽ22uẼ22&5(1
2Fl)/3, respectively. We have considered the fact that
states within each bracket in Eq.~8! have the same norm
with the same mutual scalar products. Moreover, these sc
products are all real.

Eve now has to determine the state of her ancilla, giv
that Alice and Bob have projected the whole state into one
the three subspaces associated with the three cases. T
subspaces are orthogonal so that Eve can, in principle, d
mine without error, which of these cases Alice and Bob ha

The three ancilla vectors in each subspace correspon
to the result obtained by Alice and Bob are symmetric a
equiprobable. This makes Eve’s task of discrimination ea
as this case has an analytic optimal solution@16# using the
so-called ‘‘square-root measurement.’’ We define the ope
tor F5(abuẼab&^Ẽabu, where$uẼab&% are the ancilla state
spanning the subspace associated with Alice and Bob’s m
surement outcomes. Since we are discriminating three
tors in a three-dimensional space, the optimum measurem
directions, uvab&5F21/2uẼab&, are orthogonal, hence, Ev
simply performs a projective measurement on her anc
~Fig. 2!. Thus, Eve’s error rate is given by

EEve5(
i 50

3

Pi~12Wi !, ~9!

where Wi5( 1
3
A112l̃ i1

2
3
A12l̃ i)

2 is the probability of
correctly identifying the three states of the ancilla in thei th
subspace, andl̃15 1

2 (3F14Fl21)/(112Fl) and l̃2

5 1
2 (3F22Fl21)/(12Fl)5l̃3. Due to the symmetry of

the noise introduced by Eve, the error rate between Alice

FIG. 2. The optimal three-state discrimination procedure
states in the first subspace. The angle between each of the sta

a5arccosl̃1.
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Bob is given byEAB52(12Fl)/3. We also note that when
ever Eve eavesdrops, the correlation function obtained
Alice and Bob is reduced byFl. Therefore, if this factor is
less than (6A329)/2, the Bell inequality is not violated@5#
and so Alice and Bob will abort the protocol. This implie
that Eve must keep this factor above this value.

Figure 3 shows the three-dimensional plots of the er
rates of Eve as a function of the parametersF andl ~labeled
by surface I! as well as the error rate between Alice and B
~labeled by surface II!. The region in which the factorFl is
greater than the threshold value@V05(6A329)/2# is demar-
cated by the ‘‘wall’’ labeledC. In the region bounded by
Fl>V0, the error rate of Eve is always greater than the er
rate between Alice and Bob.

An alternative approach to test the security of the proto
is to compare the mutual information between Alice and E
and Alice and Bob. The mutual information between Ali
and Eve is given by the following expression:

r
s is

FIG. 3. Three-dimensional plots of the error rates.

FIG. 4. Plan elevation of a three-dimensional plot of mutu
information between Alice and Bob and Alice and Eve.
0-3
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IAE5 log 323^Ẽ00uẼ00& log^Ẽ00uẼ00&26^Ẽ11uẼ11& log^Ẽ11uẼ11&2$23^Ẽ00uẼ00&W1log ~^Ẽ00uẼ00&W1!

23^Ẽ00uẼ00&~12W1!log@^Ẽ00uẼ00&~12W1!/2#26^Ẽ11uẼ11&W2log~^Ẽ11uẼ11&W2!

26^Ẽ11uẼ11&~12W2!log@^Ẽ11uẼ11&~12W2!/2#%. ~10!

The mutual information between Alice and Bob is

IAB52 log 31
1

3
~11Fl!$ log ~11Fl!2 log 9%1

2

3
~12Fl!$ log ~12Fl!2 log 9%, ~11!
la
or

l
ed

’s
e
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re
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where log refers to logarithm base 3. Figure 4 shows the p
elevation of the three-dimensional plots of the mutual inf
mation as a function of the parametersF andl. The line of
intersection betweenIAE andIAB clearly lies behind the wal
separating the region in which the Bell inequality is violat
from the region (R1) in which local realistic description is
possible (R2). In the regionR1, IAB.IAE . From numerical
calculation, the maximum value ofV for which Eve’s mutual
information equals Alice and Bob’s is 0.6629, thus Alice
and Bob have a buffer region in which to operate secur
from this kind of attack by Eve. To summarize, we ha
presented a cryptographic protocol using qutrits which is
sistant to a form of symmetric, incoherent attacks. The qu
. A
t

.
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Bell inequality provides a sufficient condition for secu
communication. However, this attack may not be optimal,
the Bell inequality may prove to be necessary. Moreover,
protocol is more robust against noise compared to E91 p
tocol. The protocol tolerates 33.7% noise, whereas it
29.2% for E91 or BB84 protocol@17#.
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wski, and A. Zeilinger, Phys. Rev. Lett.85, 4418~2000!.
@5# D. Kaszlikowski, L.C. Kwek, J.L. Chen, M. Z˙ukowski, and

C.H. Oh, e-print quant-ph/0106010.
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