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Quantum cryptography based on qutrit Bell inequalities
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We present a cryptographic protocol based upon entangled qutrit pairs. We analyze the scheme under a
symmetric incoherent attack and plot the region for which the protocol is secure and compare this with the
region of violations of certain Bell inequalities.
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The need to communicate secretly has always been aand the indicek, ¢ (k,£=0,1,2) denote the input and exit
important issue for military strategists during wartime. Theports, respectively. The phase shifters can be changed by an
one-time padVernam cipher has been shown to be an ab- observer. For convenience, we will denote the values of the

solutely secure means of encrypting a message provided thgree phase shifts 35=(<P1,<P21<P3)- In our protocol, both
key is truly random, is long as the message, and is nevejhservers perform three distinct unitary transformations on
reused 1]. However, a major problem with the one-time pad their qutrits. The transformations at Alice’s side are defined
is the establlshment_of a secure key bet\_/veen the two _physby cE’i‘z(0,0,0), (;/ZA:(O,W/&_ 7l3), q3§=(7-r,0,— ),
cally separated parties without the services of a courier. A , . - -B
recent proposal in this direction is to apply the laws of quan Vhereas Bob's transformations ap§ = (0,7/6,~ m/6), ¢;

tum mechanics to establish this crucial ki3l. One such =(0,—7/6,m/6), ¢5=(—m,0,m). The observers choose
protocol is based on entangled pairs of particles and detectheir transformations randomly and independently for each
ing the presence of an eavesdropper using Bell inequalitiegair of qutrits. After performing the pair of transformation
[3]. This protocol(E9J) is interesting as it is an example of ¢~ B the final state i$9)mn=Ua(¢%) @ Ug(02)| ). The
fundamental physics, i.e., violations of local realism, beingobservers perform a measurement of the state of their qutrit
applied to a practical problem. in the computational basi§),,,|1),./2),, (u=A,B).

In this paper, we propose an extension of this protocol \We adopt an uncommon but useful complex value assign-
using three-dimensional systems, or qutrits. The extension gfient to the results of the measurements, first used in Ref.
Bell inequalities to three dimensions is a nontrivial and in-[11]: namely, for the result of the measurement of the ket
teresting problem. As higher-dimensional entangled quanturjk), we ascribe the value®. This assignment naturally leads
systems are more resistant to noise than two-dimensiongh the following definition of the correlation function

syste_mls(qubits,fiic Wals squecteﬁ_tT]at this rrr:ay lead to s'tro”n—Q((;/Q ,¢2) (Qx for shorp between the values of Alice’s and
ger violations of local realism which was shown numerically g v results of measurements [11], Qe
using linear optimizatiof4] and later confirmed analytically -p - A -
B ; : =2 _,a®"PP(a,b;pk,¢%), where P(a,b;ep,¢?) de-

[5]. Hence, using higher-dimensional systems may lead to <a.b=0 2D Pk o) D Pk P
more robust cryptographic protocols. notes the prob§b|llty of Alice and ng gbteilgung the resalts

The quantum channel we consider consists of a sourcand b, respectively, for phase Shlﬁspf,_w)- It can be
producing two qutritg6], A and B, in the maximally en- shown tha/E thg coréelatlan function read€Qy,
tangled statd )= (1/y/3)22_,|k)a®|k)g, where|k), and =337 o[ ea0+ e (007 (] where, for in-
|k)g are thekth (computational basis state of the qutrA  stance (k) denotes the second component of kitie vec-

and B, respectively(these basis states can represent, for intor of phases for Alice, and the addition in the indices
stance, spatial degrees of freedom of photd@$ Qutrit A (henceforth is modulo 2.

flies towards Alice whereas quti flies towards Bob. Each Note thatQsz=1, which means that the results of the

observer has at his disposal a symmetric unbiased six-pofheasurement obtained by Alice and Bob in this case are
beam splitter. An unbiased symmetric six-port beam splittektrictly correlated. When Alice obtains the results d.,, or

performs a unitary transformation between “mutually unbi- ,2 Bob must register the results &2, or a, respectively.
ased” bases for qutritg8—10]. Such devices were tested in

several quantum optical experimefid], and also analyzed ¢ ¢

theoretically[12,13. This device has three input and three DI ‘<P; <P;._ —DD!
output ports(Fig. 1). In front of each input port there is a D'Z(]— | @12 29 _DD;
phase shifterp,. With all phase shifters set to zero, an in- o T A }\& [0 T o
coming photon through one of the input ports has equal 30_ b o _D 3

Wee
probability of leaving through any of the output ports. The i
elements of the unitary transformation, which describes its Alice Eve Bob

action, are given byu*‘=(1/y/3)ak‘e'?¢, where a=e?""/3 FIG. 1. Qutrit cryptographic protocol.
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Thus, Only the fOIIOWing pairS of the results are pOSSiblestate|X2> gives the correlation functioan(i,lZ). Thus,

{(11),(@,@®),(a%a)}  [denoted  subsequently by the correlation function on the stateg is
{(0,0),(1,2),(2,1)], and each pair of results occurs with

equal probability:. Let us also define the following quan- o o
tity: Qnoisd ¢, ¥) =(A+ aB-i-aZC)Q(qﬁ, ). (4)

— 2 2 2

S=IM(=a"Qut aQuzt a’Qa— a’Qz). @ From Eg.(2), we obtain the conditiorA+ aB+ «’C=V,
It can be shown, using the recently discovered Bell inequalwhich is only possible iB=C (V is rea).
ity for two qutrits[14], that according to local realistic theory ~ Eve can prepare the reduced density operegpby con-
S cannot exceed/3. However, when using the quantum- Structing an entangled state of the form
mechanical correlation functiorQ,), S acquires the value
2 (2+3). Therefore, to satisfy the above Bell inequality in =
this case one must reduce the correlation function by the  |yage)= \@(|OO}|EOO)+|11>|E1]_)+|22)|E22))
factor 63— 9/2 (such reduction is possible by adding the

symmetric noise to the systenit has been provefl5] that G
the above Bell inequality gives a necessary and sufficient + \@(|01)|E01)+|10)|E10>+|20>|E20>
condition for local realism in this case.

After the transmission has taken place, Alice and Bob +]02)|Egp) +|12)|E1p) +|21)| ELy)), (5)

publicly announce the vectors of phase shifts that they have

chosen for each particular measurement and divide the mea- _ _

surements into two separate groups: a first group for whichvhere{|kl)} are the computational basis states of the two
they have used the vectopd, @2 and¢®, ¢€, and a sec- qutrits, and{|Ey)} are states of the ancilla. Without loss of

. -5 Sp generality, we can assume that they are normalizguch
ond group for which they have usetf,¢3. Subsequently, implies thatF +G=1). Note that the most general state of

Alice and Bob announce in public the results of the measureg, o joint system of Alice’s and Bob’s quitrits and Eve’s an-

ments they have obtained within the first group. In this way 2 VEL. H E . the fol-
they can compute the value &f If this value is not equal to cilla readsjy_o|I) ). However, Eq(3) imposes the fo

. ) lowing conditions on the states of the ancil&({E,|E;)
2
2(2+3), it means that the qutrits have somehow been_ 5 5 Aand(Ey | Enrd = 8, k1. Letting (B Eyd =\, we

disturbed. The source of this disturbance can be either ag i o ot the following set of conditiongy+2B+D=1, A
eavesdropper or noise. For sufficiently low disturbance the o _ -\ andD=3(1-F) ’
=F\, =3 _

results from the second group allow them, due to the men-

tioned correlations, to generate a ternary cryptographic keySe
Let us consider a symmetric incoherent attack in whichth

the eavesdroppéEve) controls the source that produces the

pairs of qutrits. Naturally, if Eve wants to acquire any infor- shifts) are revealed(i) if the chosen settings are not the ones

mation about the key, she must introduce some disturbanq? - . :

: ' ; sed for the key generation Eve ignores the andiiiajf the

in the state of the qutrits. Her only chance of being undetec: _... : : :
ted is to hide herself behind what, to Alice and Bob, may crings aré the ones for which the key is generated, i.e.,

°B . . .
look like an environmental noise in the channel. We assum&3:$3, EVe attempts to identify the ancilla state.
that the noise is symmetrical in the sense that the disturbed BY Straightforward computation, the final state in the sec-
correlation function reads ond case is

Eve's strategy is the following. She prepares the tate

nds the quitrits to Alice and Bob, and keeps her ancilla. She
en waits for public communication between Alice and Bob.
When the settings of Alice’s and Bob’s apparafyhase

Qnoisd &, 1) =VQ(&, 1)), @ . . 2 _
_ _ _ [Yase)=Ua(¢5)®Us(93) @ |age)= > |ab)|Eay),
where 0=sV<1. This can only be fulfilled if the reduced a,b=0
density operator for Alice and Bokafter tracing out Eve’s (6)

degrees of freedojris of the form

D where the unnormalized statfs, ;) are
Qae=AlY) (] +Blx1)(x1l+ Clx2)(x2l + glel, ()

2
~ 1 F A B

where the(not necessarily all positiyenumbers satisfyA |Eap) = §( \[E(Eo DA T AN

+B+C+D=1, and the maximally entangled orthogonal -

states | x1)=(1/4/3)(|00)+ a|11)+ @?|22)) and |x.) G

D aam+bnei(zp';\](3)+<pﬁ(3))|Emn> )

=(1/y/3)(|00) + a?|11) + a|22)). This choice stems from Vg2
m+n

the fact that only the above states generate correlation func-
tions that are proportional t@(q@,(}), specifically, the state
|x1) gives the correlation functiomQ(¢,1) whereas the Note that|age) can also be written more conveniently as
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FIG. 3. Three-dimensional plots of the error rates.

Flit+2i+ DIEir2i)), ®  Bobis given byEag=2(1—F\)/3. We also note that when-

(gver Eve eavesdrops, the correlation function obtained by
@tlice and Bob is reduced big\. Therefore, if this factor is
less than (§3—9)/2, the Bell inequality is not violatefb]

and so Alice and Bob will abort the protocol. This implies
Hhat Eve must keep this factor above this value.

Figure 3 shows the three-dimensional plots of the error
tes of Eve as a function of the parametemnd\ (labeled

where we have grouped the terms into three orthogonal su
spaces associated with Alice and Bob generating the corre
key {(0,0),(1,2),(2,1), and the two incorrect keys,
{(1,2),(2,0),(0,2) or {(2,2),(1,0),(0,1). Note also that

the ancilla states of one subspace are orthogonal to t
ancilla states of the other subspaces. The probabilities

that Eve projects into the subspaces spanned y surface ] as well as the error rate between Alice and Bob
the  states {|Eqo),[Es). E21>}’~ {|E11>’|E20>’|E°2>} and (labeled by surface )1 The region in which the factdf\ is
{|E222'|E~10>'|E01>} are Po=3(Eq| Eoo)=(1+2F\)/3,P1  greater than the threshold valid,= (63— 9)/2] is demar-
=3(EnlEip=(1—-FN\)/3 and P,=3(ExE;»)=(1 cated by the “wall’ labeledC. In the region bounded by
—F\)/3, respectively. We have considered the fact that thg=)\ =V, the error rate of Eve is always greater than the error
states within each bracket in E() have the same norms rate between Alice and Bob.
with the same mutual scalar products. Moreover, these scalar An alternative approach to test the security of the protocol
products are all real. is to compare the mutual information between Alice and Eve,
Eve now has to determine the state of her ancilla, giverand Alice and Bob. The mutual information between Alice
that Alice and Bob have projected the whole state into one ofnd Eve is given by the following expression:
the three subspaces associated with the three cases. These
subspaces are orthogonal so that Eve can, in principle, detel
mine without error, which of these cases Alice and Bob have.
The three ancilla vectors in each subspace correspondin
to the result obtained by Alice and Bob are symmetric and
equiprobable. This makes Eve’s task of discrimination easiet
as this case has an analytic optimal soluti@6] using the
so-called “square-root measurement.” We define the opera-
tor =3 ,,|E.0)(Eapl, Where{|E,,)} are the ancilla states
spanning the subspace associated with Alice and Bob’s mee
surement outcomes. Since we are discriminating three vec
tors in a three-dimensional space, the optimum measuremer
directions, |w,,)=® "YJE,,), are orthogonal, hence, Eve
simply performs a projective measurement on her ancilla
(Fig. 2). Thus, Eve’s error rate is given by
3
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where W, = (3y1+2X,+2y1-1X,)2 is the probability of
correctly identifying the three states of the ancilla in the
subspace, and\;=2%(3F+4F\—1)/(1+2F\) and X,

=3(3F—2FA—1)/(1—F\)=X3. Due to the symmetry of FIG. 4. Plan elevation of a three-dimensional plot of mutual
the noise introduced by Eve, the error rate between Alice anghformation between Alice and Bob and Alice and Eve.
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Tpg=log 3— 3<E00|E00) |09<~E00|E00> - 6<E11|E11>|09<E11|E11> —{- 3<E00|E00>W1|09 (<Eoo|~Eoo>W1)
—3(Eod Eoo) (1~ Wy)log[(E oo Eqo) (1 —W1)/2] — 6(E 14| E11) W,log((E14|E1 1) Wo)
—6(E 11 E1)(1—W,)logl (E14[E1)(1-W,)/2]}. (10

The mutual information between Alice and Bob is

2
Zag=2log 3+ %(1+ FA){log(1+FX\)—log 9} + 5(1— FX\){log(1—FX\)—log 9}, (11

where log refers to logarithm base 3. Figure 4 shows the plaBell inequality provides a sufficient condition for secure
elevation of the three-dimensional plots of the mutual infor-communication. However, this attack may not be optimal, so
mation as a function of the parameté&rsaand\. The line of  the Bell inequality may prove to be necessary. Moreover, our
intersection betweefi,g andZ,g clearly lies behind the wall  protocol is more robust against noise compared to E91 pro-
separating the region in which the Bell inequality is violatedtocol. The protocol tolerates 33.7% noise, whereas it is
from the region R1) in which local realistic description is  29.29 for E91 or BB84 protocqll7].

possible R2). In the regiorR1, Zyg>Zxe . From numerical

calculation, the maximum value &for which Eve’s mutual D.K., C.H. Oh, A.E., and L.C.K. acknowledge financial
information equals Alice and Bob’s is 0.6629, thus Alice’s support provided under the ASTAR Grant No. 012-104-
and Bob have a buffer region in which to operate securelf0040. D.K.L.O. acknowledges the support of CES0K)
from this kind of attack by Eve. To summarize, we haveand QAIP Grant No. 1ST-1999-11234. D.K. and L.C.K.
presented a cryptographic protocol using qutrits which is rewould like to thank Jing-Ling Chen for invaluable discus-
sistant to a form of symmetric, incoherent attacks. The qutrisions.
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