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Error rate of the Kane quantum computer controlled-NOT gate in the presence of dephasing
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We study the error rate of controlledT (cNOT) operations in the Kane solid-state quantum computer
architecturdB. Kane, Nature393 133(1998]. A spin Hamiltonian is used to describe the system. Dephasing
is included as exponential decay of the off-diagonal elements of the system’s density matrix. Using available
spin-echo decay data, theyoT error rate is estimated at10 °.
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[. INTRODUCTION the error rate of theNoOT gate is also given. In Sec. V we
conclude with a discussion of the implications of our esti-
Existing classical computers manipulate bits that can bénate of the likely minimum error rate of the KamaoT
exclusively 0 or 1. Quantum computers manipulate two-gate.
level quantum systems called qubits that can be arbitrary
superpositions of0) and|1). While the idea of a quantum
computer was first suggested by Benioff and Feynman in the Il. THE KANE QUANTUM COMPUTER
early 1980s[2,3], the first quantum algorithm that could — The 31p in the 28Si system is thought to be well suited for
solve an interesting real-world problem faster than its classiyse as a qubit due to its long relaxatiof,} and dephasing
cal equivalent was published by Shor in 1984. Shor's (T,) times. Both times only have meaning when the system
algorithm factorizes integers with the number of steps growis in a steady magnetic field. Assuming the field is parallel
ing polynomially in the number of digits, whereas the bestyjth the 7 axis, the relaxation time refers to the time taken
known classical algorithm grows exponentially. A significantfor 1/e of the spins in the sample to spontaneously flip:
milestone in the quest to build a quantum computer was thghereas the dephasing time refers to the time taken fox the
construction of a 7-qubit liquid NMR implementation of andy components of a single spin to decay by a factor of
Shor’s algorithm designed to factorize [I§. Unfortunately,  1/e |n natural silicon containing 4.7%°Si, relaxation times
the liquid NMR approach is not expected to work beyond ar, in excess b1 h have been observed for the donor electron
few tens of qubitg6]. _ , _atT=1.25 KandB~0.3 T[17]. The nuclear relaxation time
Many different technologies are being researched in the 55 peen estimated at over 80 h in similar conditiftel.
hope of producing a scalable quantum computer. A sample 6fhe qonor electron dephasing tirfie in enriched?®Si con-
the diverse proposals can be found in Rdfs.7—-11. In taining (0.12-0.08)% 2°Si [19] has been measured &t
Kane's solid-state proposfl,12], the nuclear spins of single _1 4k to be~05 ms[20]. No experimental data relating

31 . 8 . . .
P dopant atoms irf®Si are used as qublts- This approac_hto the nuclear dephasing time have been obtained to the au-
aims to take maximum advantage of the industry expertisg, s’ knowledge.

acquired during the last 50 years of conventional semicon- tpq phosphorous donor electrons are used primarily to
ductor electronics. mediate interactions between neighboring nuclear qubits. As

In this paper we study the error rate of controlled? o, they are polarized to remove their spin degrees of free-
(CNOT) operations in the Kane quantum compu®C). Ini-  44m from the system. This can be achieved by maintaining a

tial simulations were carried out without dephasing to e”abl%teadyB =2 T at aroundr =4 K [16]. To take advantage of
2 .

th_e pulse profiles of the controlling_electrpdes to be opti-,q long T, and T, times discussed above, the operating
mized[13]. The lowest error rate achieved in the absence OEemperature will more likely need to be1 K. Techniques

. 75 .
dephasing was 810 . When a physically reasonable level ¢, vo|aying the high-field and low-temperature requirements

of dephasing was included in the simulation, the error ratg,ch as spin refrigeration are under investigafib2].
increased to=10 3. While theoretical estimates of the error In the Kane architecture, qubits are arranged in a single

rate required for fault tolerant computation are of order®.0
[14], numerical simulations by Zalka suggest that an error

rate of 10 % or higher may be tolerable 5]. Further work is RS

A\ J A, J A,

required to determine the maximum allowed error rate in the T~1K
Kane architecture. $(0), [BEE

This paper is organized as follows. In Sec. Il the physical & e e iBz“zT
architecture of the Kane quantum computer is described. In @ @ @
Sec. Il the process of performing @OT operation in the sp+ n, 23 n, ;%T

Kane architecture is presented with emphasis on achieving
the lowest possible error rate in the absence of dephasing. FIG. 1. Schematic of the Kane architecture. The rightmost two

Further details of this process can be found in R&6]. In  qubits show the notation to be used when discussingitwer op-
Sec. IV our model of dephasing is described and its effect orration.
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FIG. 4. The adiabatic measuf(t) for eachJ(t) profile.

aq : ; ;
19%> i bias draws (drives the donor electron away from the

' nucleus, reducing the magnitude of the interaction between
the electron and nuclear spins. This in turn reduces the en-

3200 symm> ergy difference between nuclear spin uj®)) and down
janti> (11)), allowing this transition to be brought into resonance
Lo with a globally applied oscillating magnetic field. Depending
1> 6 - (Energy) on the timing of theA electrode bias, the qubit can be rotated
HO> ! g into an arbitrary superpositior|0)+ g|1). Clearly this
lo1> | g scheme also allows arbitrary combinations of individual qu-
00> -6 bits to be simultaneously and independently manipulated.
S S Interactions between neighboring qubits are governed by
L ol e ul | J electrodes. A positive bias encourages greater overlap of
" 90 o044 7.60 044 90 the donor electron wave functions, leading to indirect cou-
Step times (ms) pling of their associated nuclei. In analogy to the single-qubit

case, this allows two-qubit transitions to be performed selec-
tively between arbitrary neighbors. A discussion of the elec-
trode pulses required to implementcaoT gate is given in

. . . . the following section.
line. Control is achieved via electrodes above and between

each qubit and a global transverse oscillating field of magni-
tude ~103 T (Fig. 1). To selectively manipulate a single
qubit, theA electrode above it is biased. A positireegative Performing acnoT operation on a Kane QC is an in-
volved process described in detail in REL6]. Given the
high-field (2 T) and low-temperature~1 K) operating con-

FIG. 2. Gate profiles and state energies durirguaT operation
in units of gpunB,=7.1X10"° meV.

Ill. THE cNoT GATE ON A KANE QC

soor profile 2 ditions, we can model the behavior of the system with a spin
Hamiltonian. Only two qubits are required to perform a
e CNOT operations; so for the remainder of the paper, we will
600 profile 1 |

restrict our attention to a computer with just two qubits. The
basic notation is shown in Fig. 1. Furthermore, dét = o
vlolel, ci=l®c’®lcl, oi,=I1”1”s*®l, and o,
4001 ] =1®1®|®c? wherel is the 2< 2 identity matrix,o? is the
usual Pauli matrix, anc® denotes the matrix outer product.
With these definitions the meaning of terms suclrgsand

rofile

J(t)

=00r il o, should be self-evident.
Let g,, be theg factor for the phosphorus nucleys,, be
the nuclear magneton, andg be the Bohr magneton. The
O TR S T BN S TR | TR |- . . .
0 5 1 5 8 Hamiltonian can be broken into three parts:

t (us) H=H_+Hj(t)+Had ). (1)

FIG. 3. Possible forms of thd(t) profile for step 2 of the
adiabaticcNoT gate.J(t) is in units ofg,u,B,=7.1X107° meV. The Zeeman interaction terms are containedtin
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Ho=— gnitnBy 02+ 0%,) + ugBol+ %), (2) the control, the value of\; is increasedqubit 1 will be
assumed to be the control qubit for the remainder of the
The contact hyperfine and exchange interaction terms, botpapey.
of which can be modified via the electrode potentials, are Step 2 is to gradually apply a positive potential to the
L . . electrode in order to force greater overlap of the donor elec-
Hin() =A1(t) o1 01 T Ax(t) 02 0ep T (1) 01 02, tron wave functions and hence greatiedirect coupling of
3 the underlying nuclear qubits. The rate of this change is lim-
ited so as to be adiabatic—qubits initially in energy eigen-
tude of the wave function of donor electroat phosphorous states remain in energy eigenstates throughout this s_tep.
nucleusi, andJ(t) depends on the overlap of the two donor I.‘et |Sym”7> and|antj q§note the standard symmetrlc and
gntisymmetric superpositions ¢f0) and|01). Step 3 is to

electron wave functions. The dependence of these quantiti batically red tha lina back to its initial val
on their associated electrode voltages is a subject of ongoingﬁ'a aucally reduce tha, coupling back o Its initial value.
ce more. During this step, anti-level-crossing behavior

researcH21-23. In this paper the hyperfine and exchange .
interaction magnitudes; andJ will frequently be discussed Ch?;rﬂss the input states g40)—[symn) and [01)

as though directly manipulable. Step 4 is th licat f illating fi
The last part of the Hamiltonian contains the coupling to €p < 1S e application of an osciiiating !Gﬁigc reso-
Hating fi . nant with the|symn)«|11) transition. This oscillating field
the global oscillating field .: . S . .
is maintained until these two states have been interchanged.
« « « Steps 5-7 are the time reverse of steps 1-3. The process is
Hadt)=Badt)cof @t)[ — gnun(opy + o72) + pp(0e shown schematically in Fig. 2. Note that steps 1 an¢he
TP T . _ Y o4 oY increasing and _decreaS|_ng Af) have been omltted' as the
Te2) ] Bad OS] = Gnpin( o+ onz) only limit to their speed is that they must be done in a time

where A (t) =8 ugdnun ®i(0)|%/3, |®;(0)| is the magni-

+ (ot o). (4  much greater thar/0.01 eV~0.1 ps, where 0.01 eV is the
orbital excitation energy of the donor electron.
Using the above definitions, only the quantitiég, J, and In general, the fidelity of the adiabatic steps in the proce-
B,c need to be manipulated to perforncBOT operation. dure can be increased arbitrarily by making them indefinitely

For clarity, assume the computer is initially in one of long. In reality, of course, this is not practicable and the
stateg00), |01), |10), or|11) and that we wish to perform a procedure must be implemented on a time scale that is short
CNOT operation with qubit 1 as the control. Step 1 is to breakcompared to the systems dephasing time. For a givén,
the degeneracy of the two qubits’ energy levels to allow thehe degree to which the evolution deviates from perfect adia-
control and target qubits to be distinguished. To make qubit baticity can be quantified by the meas{ip<]

J
ﬁ‘< b)) 5 (H(D) wb<t>>‘
0 (t)=Max,

. 5
L L DIH) [ 9a(0) — (D H D [ D) 2 ©

It is desired tha® (t)<1. Here statesy,(t)) are the set of dure have been investigated in REE3]. In Fig. 3, we have
eigenstates of the Hamiltonian at timelt is possible to plotted three possibld(t) profiles for step 2 of theenoT
reduce®(t) without increasing the duration of the step by gate. The functior® (t) for each profile is shown in Fig. 4.
optimizing the profiles of the time-dependent parameters iProfile 1 is a simple linear pulse, profile 2 can be seen to be
the Hamiltonian. In the case of the Kane architecture thigshe best of the three and is described bft)=810a[1

means optimizing the shape of the evolution/f(t) and  —sech(8/7)], where 7=9us is the duration of the pulse
J(1). and a=1.0366 is a factor introduced to ensure tl3dt)
Various profiles for the adiabatic steps in &treoT proce-  =810. The third profile
Jmax L(1+7/2
Imax UL+ 7/2) 0<t<T/(1+/2)
2 T
JB= Jimax mt—=TI(1+ 7/2) ©

1+sin

——” T/(1+ 7/2)<t<T,

2 2 TI(1+2/m)
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FIG. 5. Probability of error during anoT operation as a function of, and 7, for input state(a) |00), (b) |01), (c) |10y, and(d) |11).
The first qubit is the control.

although not quite as efficient as profile 2, is a compositéVithout a large energy difference, the oscillating fidg,
linear-sinusoidal profile that was used in the calculations prethat is set to resonate with the transiti@ymmn)«|11) will
sented |n this paper due to numerical difficulties in solvingalso be very close to resonant witanti)«|11) causing a
the Schrdinger equation for profile 2. The advantage of the|arge error during the operation of tkoaioT gate. While it is
next two profiles over the linear one is that they flatten out agjesirable to makel(t) large, it must be kept comfortably

J approaches 810. AI=816.65, the system undergoes apelow 816.65 as near this level crossing the time required to
level crossing. To maintain adiabatic evolutidiit) needs to adiabatically increasé(t) increases significantly.

change more slowly near this value. Note that the reasonitis Step 3(the decreasing ;) could be performed without
desirable to makd(t) so large is to ensure that there is a degrading the overall fidelity of the gate in a time of less
large energy difference betwe¢symn) and |ant) during  than a 1us with a linear pulse profile.

step 4(the application oB,g. This difference is given by The above steps were simulated using an adaptive
Runge-Kutta routine to solve the density-matrix form of
SE=2A2 1 @) the Schrdinger equation in the computational basis

Bt gnMnBz_ meB,+gnunB,—23)° |n1eln2€2>-
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A 1 i i i i 1 | 1 i | i i
p(t)= = [H(1),p()]. ® S O ST IR A Y O S S S T
i i
The times used for each stage are as follows: 10 o] ! !
U S B | |
Stage Duration £s) 100_____i___i_ _i____i | i i
2 9.0000 oo * :
3 0.1400 -’.:\ 0 0 ] e 0ke<ie?
10‘ - — 1 _ 1] PN N L L 1 1 L 1 I
4 7.5989 3 J 0 ] e oke<o?]
5 9.0000 2 100F--1-- -t ———T--
~ | | | | | | | ) Lo
6 0.1400 ) SRS v S N S - TR
o kel
Note that the precision of the duration of stage 4 is re- 10 [~ 717777777 T1TTATTIITTATTT IO
quired as the oscillating fielB . induces the statd41) and NS R R e Ean EEELEES EEE RS FEE PR e
|symm) to swap smoothly back and forth. The duration 0_7____i___i___L__i___i___L__i___i___L__i___i___
7.5989us is the time required for one swap. The other step N
times were obtained by first setting them to arbitrary values  10® et
(~5us) and increasing them until the gate fidelity ceased to 168 107 10° 16° 16% 107 102 10" 10° 10! 102 103
increase. The step times were then decreased one by or Te (seconds)

until the fidelity started to decrease. As such, the above times
are the minimum time in which the maximum fidelity can be
achieved. This maximum fidelity was found to be 50 °
for all computation basis states.

FIG. 6. The worst case probability of error duringceoT op-
eration as a function of, and r,, for all input states.

each contour is a double line as each run of the simulation
required considerable computational time and the data avail-
IV INTRINSIC DEPHASING AND FIDELITY able does not allow finer delineation of exactly where each

In this paper, dephasing is modeled as exponential deca‘iP”tour is. The vyorst case error of all input states as a func-
of the off diagonal components of the density matrix. While10n Of 7 and 7, is shown in Fig. 6.
a large variety of dephasing models eXigb—30, this ap-
proximation is consistent with the first-order nature of the V. CONCLUSION
spin Hamiltonian. The donor electrons and phosphorous nu-
clei are assumed to dephase at independent rates. With tgﬁ
inclusion of dephasing terms, E) becomes

To the authors’ knowledge the only experimental mea-
rement of thé'P in 28Si dephasing times in is R4R0] in
which the donor electron dephasing tifigwas measured at

-1 T=1.4K, B,=0.3 T to be~0.5 ms. The?Si sample con-
—_ _ z z _ z z ] z
p=izHpl=Teloe Loe .plI=Teloe, [oe, Pl tained (0.12-0.08)% 2°Si [19]. Note that a dopant concen-
L L tration of ~ 10'® cm™3 was used implying a donor separation
—Luloy, Lon, .pll1=Thloy, Loe, . p1l. (9 of ~50 nm. If thisT, is used forr, and if , is assumed to

~be a couple of orders of magnitude larger as in the case of
To understand the effect of each double commutator, it ishe relaxation times, then from Fig. 6 the overall error prob-

instructive to consider the following simple mathematical ex-apility would be just under 10°

ample: Theoretical calculation ofr, and 7, was performed in
M=—T[o%[o%M]], Ref.[29] for a two-dimensional array of P donors spaced 10
nm apart in pure€®si, yielding7,=2 us andr,=10 s. Such
( My le) ( 0 —4Fm12> a shortr, would imply an unacceptable error probability of
: : = , (10 about 10%. However, the same paper also contains similar
My My —4l'm;, 0 calculations for natural silicon (4.7#8Si) with 7, quoted as

art 200 us, which leads to an overall error probability just over
[ m(0) mo(0)e 103, The suppression of decoherence in this case arises
|\ myy(0)e 4Tt m,,(0) from line broadening due to the presence?di nuclei. In
the case of the Kane quantum computer, similar suppression
Thus each double commutator in E) exponentially de- can be achieved by biasing thfe electrodes such that the
cays its associated off-diagonal elements with a characterisearby qubits have different spin-flip energies. Further inves-
tic time 7,=1/41"g or 7,=1/4T",,. tigation of this point is required.

For each initial stateé00), |01), |10), and|11) Eq. (9) Though 102 is a large error probability, numerical simu-
was solved for a range of values af and 7, using the pulse lations by Zalka suggest this may be toleraig]. Work is
profiles described in Sec. lll allowing a contour plot of the in progress on simulations to determine an acceptable error
gate error versus, andr, to be constructed Fig. 5. Note that rate for the Kane architecture.

(mll(t) mlz(t)>

myy(t)  myy(t)
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