
PHYSICAL REVIEW A 67, 012301 ~2003!
Error rate of the Kane quantum computer controlled-NOT gate in the presence of dephasing
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~Received 18 July 2002; published 3 January 2003!

We study the error rate of controlled-NOT ~CNOT! operations in the Kane solid-state quantum computer
architecture@B. Kane, Nature393, 133~1998!#. A spin Hamiltonian is used to describe the system. Dephasing
is included as exponential decay of the off-diagonal elements of the system’s density matrix. Using available
spin-echo decay data, theCNOT error rate is estimated at'1023.

DOI: 10.1103/PhysRevA.67.012301 PACS number~s!: 03.67.Lx
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I. INTRODUCTION

Existing classical computers manipulate bits that can
exclusively 0 or 1. Quantum computers manipulate tw
level quantum systems called qubits that can be arbit
superpositions ofu0& and u1&. While the idea of a quantum
computer was first suggested by Benioff and Feynman in
early 1980s@2,3#, the first quantum algorithm that coul
solve an interesting real-world problem faster than its cla
cal equivalent was published by Shor in 1994@4#. Shor’s
algorithm factorizes integers with the number of steps gro
ing polynomially in the number of digits, whereas the be
known classical algorithm grows exponentially. A significa
milestone in the quest to build a quantum computer was
construction of a 7-qubit liquid NMR implementation o
Shor’s algorithm designed to factorize 15@5#. Unfortunately,
the liquid NMR approach is not expected to work beyond
few tens of qubits@6#.

Many different technologies are being researched in
hope of producing a scalable quantum computer. A sampl
the diverse proposals can be found in Refs.@1,7–11#. In
Kane’s solid-state proposal@1,12#, the nuclear spins of single
31P dopant atoms in28Si are used as qubits. This approa
aims to take maximum advantage of the industry exper
acquired during the last 50 years of conventional semic
ductor electronics.

In this paper we study the error rate of controlled-NOT

~CNOT! operations in the Kane quantum computer~QC!. Ini-
tial simulations were carried out without dephasing to ena
the pulse profiles of the controlling electrodes to be op
mized@13#. The lowest error rate achieved in the absence
dephasing was 531025. When a physically reasonable lev
of dephasing was included in the simulation, the error r
increased to'1023. While theoretical estimates of the erro
rate required for fault tolerant computation are of order 1026

@14#, numerical simulations by Zalka suggest that an er
rate of 1023 or higher may be tolerable@15#. Further work is
required to determine the maximum allowed error rate in
Kane architecture.

This paper is organized as follows. In Sec. II the physi
architecture of the Kane quantum computer is described
Sec. III the process of performing aCNOT operation in the
Kane architecture is presented with emphasis on achie
the lowest possible error rate in the absence of dephas
Further details of this process can be found in Ref.@16#. In
Sec. IV our model of dephasing is described and its effec
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the error rate of theCNOT gate is also given. In Sec. V w
conclude with a discussion of the implications of our es
mate of the likely minimum error rate of the KaneCNOT

gate.

II. THE KANE QUANTUM COMPUTER

The 31P in the 28Si system is thought to be well suited fo
use as a qubit due to its long relaxation (T1) and dephasing
(T2) times. Both times only have meaning when the syst
is in a steady magnetic field. Assuming the field is para
with the z axis, the relaxation time refers to the time tak
for 1/e of the spins in the sample to spontaneously fl
whereas the dephasing time refers to the time taken for tx
and y components of a single spin to decay by a factor
1/e. In natural silicon containing 4.7%29Si, relaxation times
T1 in excess of 1 h have been observed for the donor electr
at T51.25 K andB;0.3 T @17#. The nuclear relaxation time
has been estimated at over 80 h in similar conditions@18#.
The donor electron dephasing timeT2 in enriched28Si con-
taining (0.1260.08)% 29Si @19# has been measured atT
51.4 K to be;0.5 ms@20#. No experimental data relating
to the nuclear dephasing time have been obtained to the
thors’ knowledge.

The phosphorous donor electrons are used primarily
mediate interactions between neighboring nuclear qubits
such, they are polarized to remove their spin degrees of f
dom from the system. This can be achieved by maintainin
steadyBz52 T at aroundT54 K @16#. To take advantage o
the long T1 and T2 times discussed above, the operati
temperature will more likely need to be;1 K. Techniques
for relaxing the high-field and low-temperature requireme
such as spin refrigeration are under investigation@12#.

In the Kane architecture, qubits are arranged in a sin

FIG. 1. Schematic of the Kane architecture. The rightmost t
qubits show the notation to be used when discussing theCNOT op-
eration.
©2003 The American Physical Society01-1
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FOWLER, WELLARD, AND HOLLENBERG PHYSICAL REVIEW A67, 012301 ~2003!
line. Control is achieved via electrodes above and betw
each qubit and a global transverse oscillating field of mag
tude ;1023 T ~Fig. 1!. To selectively manipulate a singl
qubit, theA electrode above it is biased. A positive~negative!

FIG. 2. Gate profiles and state energies during aCNOT operation
in units of gnmnBz57.131025 meV.

FIG. 3. Possible forms of theJ(t) profile for step 2 of the
adiabaticCNOT gate.J(t) is in units ofgnmnBz57.131025 meV.
01230
n
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bias draws ~drives! the donor electron away from th
nucleus, reducing the magnitude of the interaction betw
the electron and nuclear spins. This in turn reduces the
ergy difference between nuclear spin up (u0&) and down
(u1&), allowing this transition to be brought into resonan
with a globally applied oscillating magnetic field. Dependin
on the timing of theA electrode bias, the qubit can be rotat
into an arbitrary superpositionau0&1bu1&. Clearly this
scheme also allows arbitrary combinations of individual q
bits to be simultaneously and independently manipulated

Interactions between neighboring qubits are governed
J electrodes. A positive bias encourages greater overla
the donor electron wave functions, leading to indirect co
pling of their associated nuclei. In analogy to the single-qu
case, this allows two-qubit transitions to be performed se
tively between arbitrary neighbors. A discussion of the el
trode pulses required to implement aCNOT gate is given in
the following section.

III. THE CNOT GATE ON A KANE QC

Performing aCNOT operation on a Kane QC is an in
volved process described in detail in Ref.@16#. Given the
high-field ~2 T! and low-temperature (;1 K) operating con-
ditions, we can model the behavior of the system with a s
Hamiltonian. Only two qubits are required to perform
CNOT operations; so for the remainder of the paper, we w
restrict our attention to a computer with just two qubits. T
basic notation is shown in Fig. 1. Furthermore, letsn1

z [sz

^ I ^ I ^ I , se1
z [I ^ sz

^ I ^ I , sn2
z [I ^ I ^ sz

^ I , and se2
z

[I ^ I ^ I ^ sz whereI is the 232 identity matrix,sz is the
usual Pauli matrix, and̂ denotes the matrix outer produc
With these definitions the meaning of terms such assn2

y and

sW e1 should be self-evident.
Let gn be theg factor for the phosphorus nucleus,mn be

the nuclear magneton, andmB be the Bohr magneton. Th
Hamiltonian can be broken into three parts:

H5HZ1H int~ t !1Hac~ t !. ~1!

The Zeeman interaction terms are contained inHZ,

FIG. 4. The adiabatic measureQ(t) for eachJ(t) profile.
1-2
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ERROR RATE OF THE KANE QUANTUM COMPUTER . . . PHYSICAL REVIEW A 67, 012301 ~2003!
HZ52gnmnBz~sn1
z 1sn2

z !1mBBz~se1
z 1se2

z !. ~2!

The contact hyperfine and exchange interaction terms, b
of which can be modified via the electrode potentials, ar

H int~ t !5A1~ t !sW n1•sW e11A2~ t !sW n2•sW e21J~ t !sW e1•sW e2 ,
~3!

whereAi(t)58pmBgnmnuF i(0)u2/3, uF i(0)u is the magni-
tude of the wave function of donor electroni at phosphorous
nucleusi, andJ(t) depends on the overlap of the two don
electron wave functions. The dependence of these quan
on their associated electrode voltages is a subject of ong
research@21–23#. In this paper the hyperfine and exchan
interaction magnitudesAi andJ will frequently be discussed
as though directly manipulable.

The last part of the Hamiltonian contains the coupling
the global oscillating fieldBac:

Hac~ t !5Bac~ t !cos~vt !@2gnmn~sn1
x 1sn2

x !1mB~se1
x

1se2
x !#1Bac~ t !sin~vt !@2gnmn~sn1

y 1sn2
y !

1mB~se1
y 1se2

y !#. ~4!

Using the above definitions, only the quantitiesA1 , J, and
Bac need to be manipulated to perform aCNOT operation.

For clarity, assume the computer is initially in one
statesu00&, u01&, u10&, or u11& and that we wish to perform a
CNOT operation with qubit 1 as the control. Step 1 is to bre
the degeneracy of the two qubits’ energy levels to allow
control and target qubits to be distinguished. To make qub
y

h

01230
th

ies
ng

k
e
1

the control, the value ofA1 is increased~qubit 1 will be
assumed to be the control qubit for the remainder of
paper!.

Step 2 is to gradually apply a positive potential to theJ
electrode in order to force greater overlap of the donor e
tron wave functions and hence greater~indirect! coupling of
the underlying nuclear qubits. The rate of this change is l
ited so as to be adiabatic—qubits initially in energy eige
states remain in energy eigenstates throughout this step

Let usymm& anduanti& denote the standard symmetric an
antisymmetric superpositions ofu10& and u01&. Step 3 is to
adiabatically reduce theA1 coupling back to its initial value
once more. During this step, anti-level-crossing behav
changes the input states asu10&→usymm& and u01&
→uanti&.

Step 4 is the application of an oscillating fieldBac reso-
nant with theusymm&↔u11& transition. This oscillating field
is maintained until these two states have been interchan
Steps 5–7 are the time reverse of steps 1–3. The proce
shown schematically in Fig. 2. Note that steps 1 and 7~the
increasing and decreasing ofA1) have been omitted as th
only limit to their speed is that they must be done in a tim
much greater than\/0.01 eV;0.1 ps, where 0.01 eV is the
orbital excitation energy of the donor electron.

In general, the fidelity of the adiabatic steps in the pro
dure can be increased arbitrarily by making them indefinit
long. In reality, of course, this is not practicable and t
procedure must be implemented on a time scale that is s
compared to the systems dephasing time. For a givenH(t),
the degree to which the evolution deviates from perfect ad
baticity can be quantified by the measure@24#
Q~ t ![MaxaÞb
F \ZK ca~ t !U ]

]t
~H~ t !!Ucb~ t !L Z

@^ca~ t !zH~ t !uca~ t !&2^cb~ t !uH~ t !zcb~ t !&#2
G . ~5!
.
be
It is desired thatQ(t)!1. Here statesuca(t)& are the set of
eigenstates of the Hamiltonian at timet. It is possible to
reduceQ(t) without increasing the duration of the step b
optimizing the profiles of the time-dependent parameters
the Hamiltonian. In the case of the Kane architecture t
means optimizing the shape of the evolution ofA1(t) and
J(t).

Various profiles for the adiabatic steps in theCNOT proce-
in
is

dure have been investigated in Ref.@13#. In Fig. 3, we have
plotted three possibleJ(t) profiles for step 2 of theCNOT

gate. The functionQ(t) for each profile is shown in Fig. 4
Profile 1 is a simple linear pulse, profile 2 can be seen to
the best of the three and is described byJ(t)5810a@1
2sech(5t/t)#, where t59ms is the duration of the pulse
and a51.0366 is a factor introduced to ensure thatJ(t)
5810. The third profile
J~ t !5H Jmax

2

t~11p/2!

T
, 0,t,T/~11p/2!

Jmax

2 F11sinS p

2

t2T/~11p/2!

T/~112/p! D G , T/~11p/2!,t,T,

~6!
1-3
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FIG. 5. Probability of error during aCNOT operation as a function ofte andtn for input state~a! u00&, ~b! u01&, ~c! u10&, and~d! u11&.
The first qubit is the control.
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although not quite as efficient as profile 2, is a compos
linear-sinusoidal profile that was used in the calculations p
sented in this paper due to numerical difficulties in solvi
the Schro¨dinger equation for profile 2. The advantage of t
next two profiles over the linear one is that they flatten ou
J approaches 810. AtJ5816.65, the system undergoes
level crossing. To maintain adiabatic evolution,J(t) needs to
change more slowly near this value. Note that the reason
desirable to makeJ(t) so large is to ensure that there is
large energy difference betweenusymm& and uanti& during
step 4~the application ofBac). This difference is given by

dE52A2S 1

mBBz1gnmnBz
2

1

mBBz1gnmnBz22JD . ~7!
01230
e
-

s
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Without a large energy difference, the oscillating fieldBac

that is set to resonate with the transitionusymm&↔u11& will
also be very close to resonant withuanti&↔u11& causing a
large error during the operation of theCNOT gate. While it is
desirable to makeJ(t) large, it must be kept comfortably
below 816.65 as near this level crossing the time require
adiabatically increaseJ(t) increases significantly.

Step 3~the decreasing ofA1) could be performed withou
degrading the overall fidelity of the gate in a time of le
than a 1ms with a linear pulse profile.

The above steps were simulated using an adap
Runge-Kutta routine to solve the density-matrix form
the Schro¨dinger equation in the computational bas
un1e1n2e2&.
1-4
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ERROR RATE OF THE KANE QUANTUM COMPUTER . . . PHYSICAL REVIEW A 67, 012301 ~2003!
ṙ~ t !5
1

i\
@H~ t !,r~ t !#. ~8!

The times used for each stage are as follows:

Stage Duration (ms)

2 9.0000
3 0.1400
4 7.5989
5 9.0000
6 0.1400

Note that the precision of the duration of stage 4 is
quired as the oscillating fieldBac induces the statesu11& and
usymm& to swap smoothly back and forth. The duratio
7.5989ms is the time required for one swap. The other s
times were obtained by first setting them to arbitrary valu
(;5ms) and increasing them until the gate fidelity ceased
increase. The step times were then decreased one by
until the fidelity started to decrease. As such, the above ti
are the minimum time in which the maximum fidelity can
achieved. This maximum fidelity was found to be 531025

for all computation basis states.

IV. INTRINSIC DEPHASING AND FIDELITY

In this paper, dephasing is modeled as exponential de
of the off diagonal components of the density matrix. Wh
a large variety of dephasing models exist@25–30#, this ap-
proximation is consistent with the first-order nature of t
spin Hamiltonian. The donor electrons and phosphorous
clei are assumed to dephase at independent rates. With
inclusion of dephasing terms, Eq.~8! becomes

ṙ5
1

i\
@H,r#2Ge†se1

z ,@se1

z ,r#‡2Ge†se2

z ,@se2

z ,r#‡

2Gn†sn1

z ,@sn1

z ,r#‡2Gn†sn2

z ,@se2

z ,r#‡. ~9!

To understand the effect of each double commutator, i
instructive to consider the following simple mathematical e
ample:

Ṁ52G†sz,@sz,M #‡,

S ṁ11 ṁ12

ṁ21 ṁ22
D 5S 0 24Gm12

24Gm21 0 D , ~10!

S m11~ t ! m12~ t !

m21~ t ! m22~ t !
D 5S m11~0! m12~0!e24Gt

m21~0!e24Gt m22~0!
D .

Thus each double commutator in Eq.~9! exponentially de-
cays its associated off-diagonal elements with a charact
tic time te51/4Ge or tn51/4Gn .

For each initial stateu00&, u01&, u10&, and u11& Eq. ~9!
was solved for a range of values ofte andtn using the pulse
profiles described in Sec. III allowing a contour plot of th
gate error versuste andtn to be constructed Fig. 5. Note tha
01230
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each contour is a double line as each run of the simula
required considerable computational time and the data av
able does not allow finer delineation of exactly where ea
contour is. The worst case error of all input states as a fu
tion of te andtn is shown in Fig. 6.

V. CONCLUSION

To the authors’ knowledge the only experimental me
surement of the31P in 28Si dephasing times in is Ref.@20# in
which the donor electron dephasing timeT2 was measured a
T51.4 K, Bz50.3 T to be;0.5 ms. The28Si sample con-
tained (0.1260.08)% 29Si @19#. Note that a dopant concen
tration of;1016 cm23 was used implying a donor separatio
of ;50 nm. If thisT2 is used forte and if tn is assumed to
be a couple of orders of magnitude larger as in the cas
the relaxation times, then from Fig. 6 the overall error pro
ability would be just under 1023

Theoretical calculation ofte and tn was performed in
Ref. @29# for a two-dimensional array of P donors spaced
nm apart in pure28Si, yieldingte52 ms andtn510 s. Such
a shortte would imply an unacceptable error probability o
about 10%. However, the same paper also contains sim
calculations for natural silicon (4.7%29Si) with te quoted as
200 ms, which leads to an overall error probability just ov
1023. The suppression of decoherence in this case ar
from line broadening due to the presence of29Si nuclei. In
the case of the Kane quantum computer, similar suppres
can be achieved by biasing theA electrodes such that th
nearby qubits have different spin-flip energies. Further inv
tigation of this point is required.

Though 1023 is a large error probability, numerical simu
lations by Zalka suggest this may be tolerable@15#. Work is
in progress on simulations to determine an acceptable e
rate for the Kane architecture.

FIG. 6. The worst case probability of error during aCNOT op-
eration as a function ofte andtn for all input states.
1-5
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