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Relativistic analysis of a wave packet interacting with a quantum-mechanical barrier
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The dynamics of a wave packet incoming on a quantum-mechanical barrier is analyzed in the framework of
a fully relativistic model, with particular emphasis on the case of a large spectrum. Some of the characteristic
times of tunneling are calculated and compared; they are all of the same order of magnitude and all indicate an
apparent superluminal motion, even if causality is maintained. A time-asymptotic expression for the transmit-
ted wave function is derived and its strong validity is shown.
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[. INTRODUCTION parison between the most common definitions of this quan-
tity, namely, the Hartman phase time, the traversal time, and
The problem of wave tunneling through a quantum-the dwell time[15,16. In Sec. IV, we derive an original
mechanical barrier has recently been reopened by the resuggalytical estimate of the transmitted wave function and dis-
of several experimental studies, which show a possible sueuss the validity of this formula. Conclusions and comments
perluminal behavior of the wave pacKdt—6]. The theoret- are given in Sec. V.
ical analysis of this phenomenon involves such general prob-
lems as the conservation of the concept of causality during Il. PROPAGATION OF THE WAVE PACKET THROUGH
the motion of the wave packet, but also more peculiar ques- THE BARRIER
tions such as the definition and evaluation of the time spent
by the packet inside the barrier. The features of wave tunnel-
ing were studied first by Wigndi7] and Hartmar{8]. This &S
latter author proposed an expression for the traversal time o o
through the barrier which is valid for thin spectra. This time i — = —ica,— +C?ByY+V(X)y, (1)
is usually called the phase time, and presents a saturation ot IxX
value for increasing barrier widths. The corresponding veloc- . ) .
ity should increase with this parameter and exceed the sped1€re¢ @x and g are the Pauli matricesy is the two-
of light in vacuum. His original work, however, as well as component Dirac spinol/(x) is the potential, and atomic
most of the subsequent analyg@s-11], was based on the Units @=%2=mo=1, c=137) are used. If the potential is a
Schradinger equation, which is not relativistic, and should, Square barrier of heigh?, and widtha, using a standard
therefore, be inappropriate to describe the dynamics of gech_mque we pbtam the stationary solutions of the equation.
wave packet propagating at luminal or superluminal velocityFor instance, if a wave packet approaches the barrier from
In this sense, there remain reasonable doubts that the sup&f€ left, in the region at the right of the barrier the stationary
luminal behavior presented by the wave packet might be agolution can be written as
artifact due to the inadequacies of the nonrelativistic model, _ —ipx
rather than a real effect. u(x) =FeP,
A few authors[12—14 have extended the analysis of the 2 aip .
wave tunneling to a completely relativistic case, using the,[WherGCp_(E t_C )  E being the total energy and the
Dirac equation, which should be the natural tool to investi- wo-component spinor
gate the propagation of wave packets at large velocity. In 1
some of this wor12,13, the authors describe the temporal F 4ypp'eiPa
evolution of a wave packet in the tunneling situation and = [E—c? " 2.—ip'a T 2ap'a’
demonstrate that it still presents superluminal behavior, even E+c? (ptyp)e —(p=yp)e
if the causality is fully restored. (2)
In the present paper, we want to give a contribution in this
direction. In Sec. II, we recall briefly the problem of propa- where y=(E—c?)/(E—c?—V,), cp’=[(Vo—E)?—c*]'?
gation through a quantum-mechanical barrier by integratiors the momentum of the particles inside the barrier, Agpl)
of the Dirac equation, analyzing in particular the regime ofis the initial spectrum of the wave packet.
large-spectrum wave packets, which was studied by Krekora By analysis of the quantityp’, we recall briefly that
et al. but in less detail than the opposite regime. In Sec. lll,propagation through the barrier occurs wHer V,+ c? or
we compute the time spent inside the barrier, making a comwhen c?><E<V,—c?. This last region of propagation
(where the phenomenon called Klein tunneling takes place
[17]) exists only if Vo>2c2. In the intermediate region,
*FAX: +39-2-50317269. Electronic address: Petrillo@mi.infn.it namely, for Vo—c?<E<Vy+c? (c?<E<Vy+c?, if V,

The one-dimensional Dirac equation is commonly written
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E/c? FIG. 2. Position of the peak of the wave functigg,, versus the

- . barrier widtha at t=0.1 for py=146, Vy/myc?=1.5, andA
FIG. 1. Modulus of the complex coefficient of transmiss|@h =(al)0 ;)NI(b) 2.0 (dashed Iin%))s and V00/m0[::2=2 2 with Agz

2 _ 2_
versus energy/moc”, for a=0.3 andV,/mec=2.2. =(c¢)0.5,(d) 2, and(e) 3.5(solid lineg. The dotted parts of the lines

o o correspond to situations where the average values are superluminal.
<2c®) the wave inside the barrier is evanescent and the phe-

nomenon of tunneling takes place. This is shown, for a po=2.2. The advance can increase regularly, as for instance in
tential Vo/c?=2.2, in Fig. 1, where the transmission coeffi- crves (@ (Apy=0.5Vy/c?=1.6), (b) (Apy=5.0V,/c?
cient |T|=|F/A| is presented as a function &/c? for a =1.6), (0 (Apy=0.5Vy/c?=2.2), and (d) (Ap,
barrier width a=0.3. The presence of geometrical reso-=2.0V,/c?=2.2). It can sometimes be so large that the
nances produces oscillations [ in both regions of trans- apparent velocity of translation of the wave packet is found
mission. If the potentiaV/, is greater than &, the analysis |arger thanc. Although the theory used is fully causal, the
of the step of the potential yields a paradoxical value of theaverage values sometimes show superluminal behavior. This
reflection coefficient greater than 1, or, provideds nega-  sijtuation is usually referred to as a behavior of weak causal-
tive, to a nonvanishing value of the transmission coefficientty [21,27.
whenV, tends to infinity. This is the so-called Klein paradox  |n Fig. 2, the analysis has been carried out at a ttme
[17], reconsidered by TelegdL8] and resolved by Hansen =0.1, which is sufficiently short to permit of obtaining mean
and Ravnda[19] by admitting that the potential step emits velocities(calculated over the whole spatial interval traveled
electron-positron pairs. The analysis of the potential barriepy the wave packet, which is considerably wider than the
made by Calogeracos and DomH{@p] shows that the emis-  parrier width larger thanc. The range of the parameters
sion of particles from the barrier is a transient phenomenonyhere this situation occurs is evidenced in the figure by dot-
occurring during the growth phase of the potential. In theted curves. For instance, we have that a wave packet starting
following, when cases witN,>2c? are concerned, we con- att=0 at Xo=— 3.8, traveling with a velocity =c=137,
sider a scenario where the potential is adiabatically switchegjill be at t=0.1 in the positionx=9.9. All the situations
on from zero, and the wave packet is injected onto the barriefyhere the packet is, at this same time, beyond this position,
only when the particle emission occurring in this first phasegre characterized by a mean velocity, averaged over the
is completely concluded. whole temporal period considered, larger thanin this
The temporal evolution of the wave packet can be obanalysis, we compare the position of the peak of the wave
tained by reconstructing the wave function in its integralpacket at=0.1 with its position at=0, and we evaluate the
form: mean velocity in this interval. Since the wave packet pre-
sents interference fringes in the neighborhood of the barrier,
W= f dE F(E)e \/Ez——(:‘lx/c—iEt_ &) this comparison can be used to evaluate a mean velocity only
if at the initial and at the final instants considered the wave
packet is sufficiently far from the barrier, in such a way that
In the tunneling situation, superluminal behavior can bethe interference process is not yet begun or is completely
found. In fact, temporal analysis of the wave-packet dynamended.
ics shows that the transmitted wave packet, at least in some As can be seen from Fig. 2, the spatial advance increases
situations, emerges from the barrier before the correspondinggularly forV,/c?=1.5 for all values considered dfp,; in
wave packet that travels freely in vacuum, accumulatinghe casé/,/c?=2.2 this monotonic increase takes place only
therefore a space advance. The space advance depends onftitethin spectra. In this range of potential, for a wave packet
width of the barriera as shown in Fig. 2, where the position with a large spectrum, a region of less pronounced advance
of the peak of the wave packey,. is shown versusi for a  with respect to the free propagation takes place when
fixed time and for a Gaussian spectrum centeredo@t ~a [see curve(e), in which Apy,=3.5]. This is due to the
=146, with various values of the spread in momentdipy,  fact that, when the spectrum is broad, the tail of the momen-
and for two different values of the potentid), the first one  tum distribution invades the Klein transmission region at low
Vo/c?=1.6 [curves(a) and (b)] and the second ong,/c?  values of energyf<V,—c?), and these slower components
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0. . . . is clearly shown. The conclusions that can be drawn from
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comparison of the data of Figs.[8urve (c)] and 4 (which
are made with only slightly different datare not contradic-

FIG. 3. Modulus of the wave functiofi| (in arbitrary unit$  tory. The superluminality of the first peak of Fig. 4 &t
versusx at t=20 for py=146 Vo/mec®=2.2, Apo=5 and a =0.041 (evaluated av~a/[t(x=a)—t(x=0)]~1.&) is
=(2)0.01,(b) 0.5, (¢) 0.75, and(d) 1. reabsorbed at subsequent times just because the components

of the spectrum with low momentum slow down the whole
compete with the faster ones, becoming progressively domiyave packet. The presence and the effects of the tail on the
nant as the barrier width increases. For thin spectra, insteaghomentum distribution could be avoided by cutting off the
the transmitted wave packet maintains the Gaussian shaggectrum or by choosing the initial parameters of the wave
without distortions and the peak value decreases strongligacket in a suitable way, for instance, by eliminating the

with increasing barrier width. In all cases wheérg/c®>2,  Kiein transmission range with a potential vahig<2c?2.
the incidence of the wave packet onto the barrier must occur

after a time intervat= (a/c)[Vo/(2¢?) — 1]~ with respect

to the switc_h-on of the bgrrier it;eﬂQO], in order to p_ermit IIl. TUNNELING TIMES

the conclusion of the particle emission process. In Fig. 3, the

dynamics of the transmitted wave packet is shown in the The characteristic time in which the phenomenon of tun-
case of a large spectrum and high potential, with,=5,  neling through a barrier takes place can be evaluated with the
and for various increasing values of the width of the barrieHartman phase time calculated, for the Dirac equation, by
a. The analysis is made at a time sufficiently large 20) to ~ Krekoraet al.[12,13. The limiting value ofty, for a>1 is
permit clear separation between the slow and the fast congiven byt = (2E—V,)/(c?pp’). The Schidinger equation
ponents. For a very thin barrigcurve (a), a=0.01], the gives, instead, for this same Ilimit, the valué,
wave packet is strongly superluminal in the region of the=V,/c?pp’, where p=+2E and p’=+2(V,—E). If we
barrier and the peak is therefore advanced with respect to theompare a relativistic and a nonrelativistic packet with the
free propagation of a quantityx=0.66. For more opaque same kinetic energy, the delay time for the relativistic wave
barriers the superluminality cannot be revealed from thigpacket is shorter than the classical one for lower energies,
snapshot and the peak at this time shows a dalagve (b),  while for higher energies the classical packet transits in a
a=0.5]. The formation of two distinct wave packets is shorter time, according to the results of R&f3]. In any case
shown in curve(c) (a=0.75). The leading part, which is the differences are always very small and the order of mag-
more advanced, derives from the tunneling, maintains thaitude of these two times always remains the same, as re-
Gaussian shape, and decreases strongly with increasing ported in Fig. 5, where the relativistic limiturve (a)] and

The trailing part derives from the low-momentum transmis-the classic ondcurve (b)] are presented as functions of
sion and its shape is determined by the presence of geometf/mqc?. Another characteristic time is commonly con-
cal resonances. The curi@ (a=1.0) shows the case where structed by recording the instantg and 75, of the passage
the tunneled part is considerably smaller than the transmittedf the wave-packet maximum through the initial and final
one and the leading tail of the transmitted part masks th@oints of the barrier, and calculating the differenge= 74,
tunneling completely. This fact is apparent also in the tem— 7;,,. It is important to note that, even if the interference
poral analysis. In Fig. 4/ is presented fok=a versus time  between the transmitted and the reflected packets does not

X
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FIG. 5. Limit fora>1 of the Hartman phase time in the non-
relativistic (dotted ling@ and relativistic (solid line model for FIG. 7. Curve (8): Hartman phase timery versusa for
Vo/mgc?=2.2 E/myc?=1.46 andV,/mgc®=2.2. Traversal timer, versusa for

Apy=2 [curve(b)], 5[curve(c)], and 8[curve(d)].
permit one to record a spatial maximum of the wave packet
due to the presence of the fringes, the variation in time of thghat the outgoing peak appears before the incoming peak
distribution of probability at a fixed position is bell shaped, enters. Situations of this kind, which are usually ascribed to
always without fringes, and this behavior permits one to dethe reshaping of the wave packet in traveling through the
termine precisely the transit time of the wave-packet maxipgarrier, are shown in Fig. 8 wherg, is plotted vsAp, for
mum. In Fig. 6 the traversal ting is reported as a function 3-0.0075 andV,/c?=2.2 [curve (a)], for a=0.03 and
of a for various values oAp,, and compared with the phase v/ /c2=2.2 [curve (b)], and fora=0.015 andV,/c2=1.5
time [curve (a)] for py=146 andV,/c*=1.5. Even for rela-  [curve (c)]. The quantityr,, for the case of the narrower
tively thin spectrgcurve (b), with Ap,=2.0], the traversal parriers, becomes negative for increasiig, for both the
time does not agree with the delay time, being always conpotentials considered. This regime is, however, limited to a
siderably shorter, and this disagreement increases for thickgery small region in the parameter space. In fact, in the case
barriers. For large spectrgcurve (c) with Apy=8.0 and v/ /c2=2.2 and for barriers a little thickeicurve (b) with
curve (d) with Apo=15], the monochromatic analysis given 3=0.03] the situation is already different, and the traversal
by Hartman is no longer valid, and the deviations of thetime is positive and larger than the phase time, indicating the
traversal time with respect to the phase time are strong. Igrevalence of the slow component.
Fig. 7 the phasgcurve (a)] and the traversal times are pre- = QOne of the characteristic times of the interaction between
sented again for another set of parametei$; /c’=2.2 and  the wave packet and the barrier is the dwell tifi28], de-

Apo=2.0[curve(b)], 5.0[curve(c)], and 8.0[curve(d)]. In  fined in its simplest form as
this case, the deviations of the traversal time with respect to

the phase time are in two directions. For large barriers, the

slow components prevail, and the signal appears retarded, as a
i : : in barriers. | = | dt| dxjy> (4)
already shown in the previous section. For thin barriers, in- D 0
stead, the signal is strongly accelerated; it can even occur
(a) 4
| 1x107 | ®)
4x10° | ®) T
T T (a)
[ me T T © ©
TN [ ) 0
0 ' f ’ ’ L 1 I 1 I I
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a Apo
FIG. 6. Curve (a): Hartman phase timery versusa for FIG. 8. Traversal timer, versusAp, for (a) Vo/myc?=2.2,a
E/myc?=1.46 andV,/myc®=1.5. Traversal timer, versusa for ~ =0.0075;(b) Vy/myc?=2.2,a=0.03; and(c) V,/myc?>=1.5 and
Apo=2 [curve (b)], 8 [curve(c)], and 15[curve (d)]. a=0.015.
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The quantityA(cx/¢{) is the initial spectrum of the wave

FIG. 9. Dwell time 7, for Apy,=5.0 (open circley and 0.5  packet, calculated at the valge=cx/{. If the wave spec-
(solid squargsand for E/myc?=1.46 andV,/myc?=1.5. Phase trum is Maxwellian, it is written as
time for the same values of potential and energy.

A(CX/g)%e_(CXM_ p0)2+icxx0/(_

It represents the time of permanence of the wave packet in- i ) )
side the barrier. We should note, however, that the use drurthermore, if most of the spectrum falls in the tunneling
expressior(4) to give an estimate of the tunneling time must range and ifp’a|>1 we can simplify the factof (E) in the
k_)e. limited tq those cases w_here.the reflection is actually negorm F(E)=[4A(E)ypp'/(p+i ¥l pf|)2]eipa*\p’\a and fi-
ligible. In Fig. 9 the dwell time is represented, for the rela-nally get
tivistic model, as a function of, for V,/c?=1.5 and for
Apy=5 [curve (a)] and 0.5[curve (b)]. The phase time is 2

. C cxc— Vot
also represented for comparison. For all cases shown, the |l = \] —
transmission is larger than 97%, so that we can assume the
full validity of the definition(4). The dwell time in all these ,
cases turns out to be shorter than the phase times, and it is X @~ (e {=po)(207)~Ip"|a, (6)
rather independent of the spread in momentum. This charac-

teristic time also shows therefore a superluminal behavior. A numerical comparison between the compléde and the
approximate expressidgl) performed for the modulus of the

2 22(pVolcP—ct?-¢?

IV. ANALYTICAL EXPRESSION wave function|¢| = V[ 1|2+ [,]|? shows the strong validity
OF THE WAVE FUNCTION of the analytical expression. In fact, in the tunneling condi-

In the transmission region, the components of the wav
function are represented by the integ(8), where F has
been defined as expressi@) in Sec. I, andA, appearing in
F, is the initial spectrum of the wave packet.

We consider, for the sake of simplicity, only the first com-
ponenti; of the spinor and all the considerations that will be
made must be repeated for the other comporent

The integral form3) can be treated in the limit>E with

imes ¢=0.5) as shown in Fig. 10, whefé{ is shown ver-
susx for a=0.1, Apy=5 (complete form, dashed line, and
asymptotic form, solid lingatt=(a) 0.1 and(b) 0.5. If the
spectrum is centered in the Klein region, and there is there-
fore a strong contribution from the transmission regions, the
asymptotic form is always valid, but after a longer time. This
situation, which we present for its mathematical interest as a

. test for the validity of the asymptotic expansion, is reported
the method of the stationary phas®4], because the phase in Fig. 11 @=5, Apo=1, Vo/myc?=5, andp,=50). Sub-

¢=VE"~c’(x—a)/c—Et has a stationary point for the i coincidence between  the complete and the

vaIueE= E=c3/c%?— (x—a)>. ' _asymptotic forms is reached &t 500 (b). This is due to the
Calling {=c?”~(x—a)?, a quantity connected with fact that, for the complete validity of the approximate ex-

the distance between the position examined and the lighgression, there must not be tails of the wave function inside

front, the value of the stationary point can be writtenEas the barrier. The geometrical resonances present in the trans-

=c%/¢, and the corresponding value of the phaseg(g) mission region cause a bounce motion of the wave packet

=—c¢. inside the barrier, which enhances the permanence time of
The first component of the wave function can then bethe particles.

approximated by the expression

%ion, the two forms essentially coincide even at very short

V. CONCLUSIONS

xc¥? 3 —ic{—iml4
= V2m §372 Flc Z e ' ) The relativistic dynamics of a wave packet incoming on a
quantum-mechanical barrier has been analyzed by means of
where the Dirac equation, which should be the most appropriate
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FIG. 10. Comparison between the complete integral form of the 0.

1 1 n 1
wave function(dotted ling, and the asymptotic forntsolid curve 22000 23000 24000 25000
in arbitrary units fora=0.1, Apg=5.0, Vo/myc®=2.2, po= 146, X
andt=(a)0.1 and(b) 0.5.
FIG. 11. Comparison between the complete integral form of the

wave function(dotted ling and the asymptotic forrtsolid curve in
tool for the study of an energetic wave packet. The principafrbitrary units fora=5, Apy=1.0, Vo/mec?=5.0, po="50, andt
conclusions that we can draw are that the nonrelativistic=(2)1 and(b) 500.
analysis based on the ScHinger equation gives results that,
although coming from a theory that does not respect the

causality, are qualitatively in substantial agreement with thesing, for instance, the Woods-Saxon potential barrier which
relativistic ones. In particular, in the relativistic framework, has been analytically solvef25]. Another characteristic
we also recover the superluminal behavior of the wavgjme namely, the dwell time, which is positive by definition,
packet, already found with the Scliinger model. This be- 554 \which is connected to the permanence of the particles

hawo:jmus; be consfldergd 'E:erefore ”ij als tim artifact Cf(f)r]hside the barrier, gives for the tunneled packet traversal ve-
hected to the use of an inadequate model, but as an efieffqiqq larger tharc. It turns out to be independent of the

compatible with the precepts of causality and of relativity.Spread in momentum and to reach a saturation value for in-

We agree with the conclusion of Rdfl2] also in finding . . : . o
that, in some conditions, the superluminal behavior predicte§reaSIng barrier width, showmg therefore a behavior similar
by the Dirac model is more accentuated than in the nonrela> th_at of the Har_tman phase tw_ne. .

Finally, we derived an analytical expression for the wave

tivistic one. We have extended the analysis to broad-

spectrum wave packets. In this condition, there can be a corﬁUnCtion. in the transmission regiqn for very large times. A
tribution from the slow components of the spectrum, fallingCOMParison between the approximate and complete forms

in the Klein transmission region, that alters the tunnelingShOWS the strong validity of the asymptotic expression in all

phenomenon. In general, the superluminality disappears ifte different regimes considered.

this condition, except in the case of a very thin barrier, where

the appearance of the tunneled peak beyond the barrier can

even anticipate the entrance of the incoming wave packet, ACKNOWLEDGMENTS

leading to negative traversal times. The superluminality may

depend on the shape of the potential, and in particular on the Useful discussions with Professor C. Maroli, Professor R.
presence of a sharp discontinuity or on the value of the spaBonifacio, Professor E. Recami, and Professor L. Lanz are
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