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In this paper we calculate with full details Einstein-Podolsky-Rosen spin correlations in the framework of
nonrelativistic quantum mechanics. We consider the following situation: two-particle state is prépared
consider separately distinguishable and identical particles and take into account the space part of the wave
function) and two observers in relative motion measure the spin component of the particle along given
directions. The measurements are performed in bounded regions of(deé@etory not necessarily simulta-
neously. The resulting correlation function depends not only on the directions of spin measurements but also on
the relative velocity of the observers.
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I. INTRODUCTION are violated and that quantum-mechanical predictions are
The issue of locality plays a central role in recent theoretsatisfied[23]. Recently, even experiments with observers in
ical and experimental investigations of basic properties ofelative motion were performed.2].
quantum mechanics. The history of this long-standing prob- In the standard formulation of the Bell inequality, only the
lem began in 1935, when Einstein, Podolsky, and RosefPIn part of the wave function of two particles is taken into
(EPR published their papdiL]. EPR considered a gedanken account[13,14. However, some authors pointed out that

: ; : - : hen the issue of locality in quantum mechanics is consid-
experiment with two spatially separated particiesndb, in w :
an entangled state in which the relative positiops x, , and ered, the space part of the wave function cannot be neglected

e [15,16. We accept this point of view. Unfortunately, in the
the total momentumpa + Py, have definite values. If th_e standard formulation of relativistic quantum mechanics, the
momentum of the particl@ is measured, one can predict

) . . _ notion of localization of a particle is ill-defined. The main
with certainty the momentum of the particte Since par-  ohiem one encounters in this case concems the Lorentz
ticles are spatially separated and the locality of quantum mesqyariance of the localizatiotsee, e.g.[17]). It causes the
chanics is assumed, the measurement on the paatid®es  framework of the standard relativistic quantum mechanics to
not disturb the particlé, thus, due to the EPR reality crite- pe ynsuitable for the calculation of EPR correlations in the
rion, the momentum of the particteis an element of reality. most general case, i.e., when the space part of the wave
Alternatively one could measure the position of the particlefunction and the relative motion of the observers are taken
a, and by the same arguments one concludes that also theto account. In the framework of standard relativistic quan-
position of the particléd is an element of reality. But quan- tum mechanics, the spin correlations were calculated in
tum mechanics does not allow us to find simultaneously val{18,19 but the derivation of the correlation function pre-
ues ofp, andx,, therefore EPR concluded that the descrip-sented therein does not involve localization of measured par-
tion of reality that is provided by quantum mechanics is notticles in detectors and is restricted to the measurements per-

complete. formed in the same inertial frame. The framework of the
In the above so-called “EPR paradox,” the Einstein local- Lorentz covariant quantum mechanics developeddf]
ity principle, which states'* .. the real factual situation of S€e€ms to be more suitable to calculate the EPR correlation

the system S2 is independent on what is done with the sygunction in the general case. The correlation function in such
tem S1, which is spatially separated from the formge] ~ @ framework was calculated [i21].

was applied for the first time explicitly to quantum mechan-_ ©On the other hand, to the best of our knowledge, no sys-
ics. tematic review of EPR correlations in the framework of non-

For a long time, EPR predictions were experimentaly un_relativistic guantum mechanics in the general case exist in

testable. The problem was reformulated in terms of spin vari:[he literature. One of the reasons for this is that the EPR

ables by Bohnj3], and in 1964 Bell proved thd#] in such paradox appears only in the relativistic case. But in our opin-

. ; . ... ion, we should know also the exact form of the EPR corre-
a setting some inequality should hold for any local rea“St'Clation function in the case of nonrelativistic quantum me-

theory. The Bell inequality was easier to handle experimengpanics at least to compare it with results obtained in the
tally because it imposes some constraints only on correlag|agivistic case. Therefore, the main goal of our present pa-
tions of results of measurements performed by two distanger js to calculate in detail spin correlations in the framework
observers. Many experiments were performed to test Bellpf nonrelativistic quantum mechanics. More precisely, we
type inequalitief5-11], and all of them showed that they consider the following situation: a two-particle state is pre-
pared(we consider separately distinguishable and identical
particles and we take into account the space part of the wave
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The paper is organized as follows. In Sec. I, we calculate Under Galilean boosts, projectiﬁf?i,”n transforms as fol-
EPR spin correlations taking into account the space part dbws [cf. Eq. (A34)]:
the wave function and motion of the observers. We discuss
the cases of distinguishable and identical particles separately. N . 5
Section IIl concludes with a summary of our results. The  Ut(V) Hd,nUt(V):de X [X=tv,n,\)(x—tv,n,\|
main facts concerning the Galilean group and its unitary ray

representations are collected in the Appendix.
zf d3x [x,n,\)(x,n,\|
Q'(t)

. . ) . = H(S)’}’\(t),n , ()
In this section we calculate quantum correlations in the
following case. In a given inertial frame of referen€® a  \yhere O/ (t)={x": X' =x—vt,xe Q}. This means that lo-
two-particle state is prepared. Two observers, gagnd B, calization in nonrelativistic quantum mechanics is covariant;

tEravEI V‘gth constant velocities th'th trespi(;tgo the fra@e mat is, the projectofTg;) ., , corresponds to the localization
ach ODSETVer possesses a Jetector which can measure he same region as seen by the moving observer, at the

spin component of a particle along a given axis fixed by unitmomentt. We point out that this is not true in standard rela-

vectorsa andb, respectively. We assume that the spin meas;,istic quantum mechanidg7].

surements take place only if the particle is inside the detec- Now we can calculate quantum correlations. This can be

tor. Thu_s we assume f[hat detectors occupy regk)ax_;d_B, __done in the following steps.

respectlvgly. We consmjer separately the case of d|3t|ng|sh- (i) Preparation of the initial stateWe assume that a two-

gkz:?l:;: identical pqrhcles_. For the notation concerning th article statep is prepared in a certain inertial frame of ref-
group and its unitary ray representations, see th renceQ. Two other inertial frames of referencd, and B,

Il. EPR CORRELATIONS

Appendix. move with constant velocities with respect@ We denote
the velocity of the frame&) with respect ta4 and 5 by vu
A. Distinguishable particles andvg, respectively.
We consider two spis particles, sayr and3. We assume (if) Measurement performed by observédr An observer

that spins of both particles are equal for simplicity, howeverat rest with respect tal (for simplicity, we refer to him as to
it is straightforward to generalize our considerations for thethe observerd) measures at time, the observable\j, ,
case of particles with different spins. The space of states ofl. As a result of the measurement with selectioh re-
this two-particle system i8/“® H?, whereH® and+” de-  ceives a value\,,.

note the space of states of the particleand 8, respectively. (iii) Free time evolution of the stateNext, the state
In the spaceg{® and H#, we will use base$|x,,n,,\,)}  evolves freely in time froni, to tg=t,.
and {|xg.ng,\g)}, respectively. A vector|x,,n, \,) (iv) Measurement performed by observgrAt time tg,

(Ixg.ng .\ g)) describes the situation in which the particle  an observer that rests with respectgwe call him observer
(B) is localized atx, (xz) and its spin component along the ) measures ®Ag . The result of this measurement with
direction determined by a unit vectay, (ng) is equal ton,  selection ish .

(Ap). Definition of the vectorsx,n,\) and their basic prop- Let us denote the probability that receivesn, and B
erties are given in the Appendix, Eq#24) and (A25). We  receives\ ;s asp(\,,\g). In the case of distinguishable par-
want to describe an EPR-type experiment in which two disiicles, we define the following correlation function:

tant observers4d and B measure spin components of the

particles using detectors that occupy some bounded regions .

A andB, respectively. Thus the measurement consists of the c (a,b)=k§;\ Nakg P(Na,Np). (4)
localization inside the region of the detector and simulta- «np

neous measurement of the spin component. Therefore, cor@ge ¢oy1d also imagine the situation in which the observers

sponding observables for particlesand 8 read do not distingiush the type of particles. In such a case, the

AsA,a®|a |®A§,b, (1) correlation function4) should be replaced by

where the spectral decomposition be)’n is the following: C(a,b)= %EAB Nah gl PN g N o) FP(N g N p)]
S S
— pa,B B,
(S),n:}\ZE_S )\( JQd3X |X,n')\><x’n’)\| E)\;S N H?i)’\n =C (a,b)-‘rC (a,b)- (5)
(2 Thus we have to calculag(\ , ,\ g). We do it according
to the steps described above.
The projectordlg’, in Eq. (2) have the following obvious (i) Preparation of the initial stateAn initial state is pre-
interpretation: When we measuﬂ%y*n we get the value 1 if pared in the framé. At time t,, it is given byp(t,).
and only if the corresponding particle is insi@eand its spin (i) Measurement performed by the observér For the
component along the directianis equal to\. observerA, the density matrixp(t,) has the form
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pa(ta)=U¢,(Va) P(tA)UtTA(VA)v (6) pra(te)=UT(tg—ta) p a(tA) U(tg—tn), (10)

where Ut(v)=Ut“(v)®U{3(v) and the unitary operator of where U(tg—ta)=U%(tg—ta)® UP(tg—t,) and U(t) de-
pure Galilean boost/(v) [U£(v)] is given in the Appen- notes the time evolution operator.

dix; see Eqs(A12), (A15), (A23), and (A34). Now the ob- (iv) Measurement performed by the obsererThe den-
serverA measures\} ,®| in the state(6) and as a result of Sity matrix (i) as seen by the observBrhas the form

the measurement with selection he receiwes with the N

probability ps“(te) =Uy,(ve)phe(te) Uy (Ve). (11)

PN o) =T pa(ta) (T @ 1)]. (@)

The measurement reduces the density md#gjxo

Now the observei3 measures® Ag ,, in the state(11) and
receivesh ; with the probability

(I ® 1) p 4(ta) (I3 1) PONgIA ) =Tr o (te) (1B TI5}A)]. (12)

: (8
T p At (L ®I)] It is conditional probability because the state in whigh
(iii) Free time evolution of the statéThe density matrix ~Performs the measurement has the fait0) only if A re-

(8) as seen from the fram@ reads ceives\ , in the first measurement.
So finally we get

pA”(tA)

pra(ta)= U] (Va)pli(ta) Uy, (Va). 9)
p()\ai)\ﬁ):p()\a) p()\ﬁp\a) (13)
Now the statep*«(t,) evolves from timet, to tg and the
resulting density matrix reads Taking into account Eqg6)—(12), we can write

|
PNy A p)= Tr{[U (Va)(IT ®I)UtA(VA)]p(tA)[U (Va)(ITy ®|)UtA(VA)]

X[U(tg—ta)U{ (ve) (1 ®TT5 1)Uy, (ve) U (tg—ta) 1} (14)

Inserting Eq.(14) into Eq. (4), we get
Caﬁ(a,b):Tr{P(tA)[U&T(VA) Z,aUtD;(VA)]@[UB(tB_tA)Ut'BBT(VB) SB,bU{BB(VB)UﬁT(tB_tA)]}- (15

The functionC?%(a,b) can be obtained frord*?(a,b) by simultaneous change of the order in the tensor product and change
of indicesa and 3.

The formula(15) may be simplified in a particular case when the initial state is a pure one. In thiptade | ) (],
where| ) e H*® H” is normalized.

Moreover, one can check that in the free time evolution case, the following relation holds:

U(n[U{ (w1, t(v)]uT(T)—( ffde'k d® f d3xe! - (=R +Li7k*=pY2MI |k 1y \Y(p,n,\|. (16)

)3
Thus inserting Eqs(3) and (16) into Eqg. (15), we have

1 . _
(2w)3fAd3std3yffd3k d3p| el (y—Vate) - (p—K) + [ (tg—ta)/2M gl (k?—p?)

CiP(a,b)=

X}\Z}\ )\a)\ﬂ<$|[|x_vAtA!ai)\a><X_VAtA7a1)\a|®|k1b7)\ﬁ><pvb1)\,8|]|lp> ' (17)
a B

whereM ; denotes the mass of the partige In the position representatiohy) is of the form

=3[ @ & g mxylxmelymg). 19
My Mg

Note that in Eq(18) we use the basiﬁx,ma>®|y,m5>}, wherem, andm, denote spin components along thaxis. One can
check that under the definitioil8) and using Eqs(A30) and (A31), we obtain
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Cgﬁ(a,b)z 1 fdsxf d3yffd3k d3p ei(yvatB)-(p—k)+[i(thtA)/2MB](k27p2) 2 fJ'd3er3yrei(k4x’7p.y’)Xl//*m/m,(x
(2m)8Ja B Mg, Mg g
m;,m;;
_VAtAvX,)'r//mamﬁ(X_VAtAvy,)(a' S)mam;(b's)mﬁmb- (19)
Whent,=tg=t, the correlation functiori19) takes the form
Ciﬁ(avb):f dBXJ dsy 2 ‘ﬂ:n'm'(x_VAt'y_VBt) Um mB(X_VAtyy_VBt)(a’ Sm m’ (b‘S)mﬂm’- (20
A B my Mg a« B @ @ B

’ !
My, Mg

The case s 3

Now let us apply the formulé20) to the case of the lowest nontrivial spggs 3. The statd ) can be a triplet or a singlet.
Singlet stateFor the singlet state we have

lﬂmamB(XuY) == ‘/’mﬂma(xny) (21
and then from Eq(20) we receive
ap _ 1 3 3 2
C'/’singlet(a’b)_ - ECOS{ eab) Ad X Bd y| ’psingle(X_VAtay_VBtH ) (22)

where Ysingie{ X,¥Y) = 112 - 11AX,Y), 0ap denotes an angle between vectarandb, and the normalization yields

J' fdax dSY| '/’single(xvy”z: % (23)

Thus the correlation function depends on the vectoesxdb in the standard way, i.e., it behaves like a cosine of an angle
between vectors and b. The only difference is the presence of the tefgd®xfgd®y|¢gingie{ X—Vat,y—Vgt)|?, which
influences the intensity of the correlations.

Triplet state In the triplet case we have

¢mamﬂ(xay): ‘pmﬂma(xny) (24

and the correlation function has a rather complicated form,

cgf (ab)=3 [ [ VI P+l PIcos, comtyr (p oy et WLyt e e 0)sing, sing,
A B

l//triplet
+ (P s - — b _)(COH, SiNGye'*o+SiNG, COSpE'#) + (Y _ihy . — Y _ i, _)(COSH, SiNGe ¥

+sind, cosfye™¢a)— 24" i, _[coH, cosH,—Sind, sind, cos oa— ¢p) 1}, (25

where we used the following notation: s 13 5 5
J Jd X Y| P12 1 A}V 2 - 12, 1206 Y|

i+ = P12, 4X— Vat,y = vgt), (26) ,
+2|¢hyp- 1206y =1. (39
_= _1o(X—=Val,y—Vgt), 2 . . . .
Vo=t ALY~ Vet) @ The triplet correlation function given by Eq5) depends on
- (X=Vat,y—Vgt) 28) velocities of frames in a more nontrivial way than in the
I il ALY Vel), singlet case. Moreover, it is evident that the dependence on
. . . frame velocities in fact reduces to the dependence on the
a=(CoS ¢g Sin 0,,5iN ¢, SN 05,€0802), (29 rgjative velocity of the observers.
b=(cos ¢y, sin 6y,sin ¢y, sin 6,,cos ), (30 B. Identical particles

Now we calculate the correlation function in the same

and the normalization yields setting as in the previous subsection but in the case of two
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identical particles. We denote the one-particle Hilbert spacevhere

by H. For our purpose it is convenient to usefifithe basis . N N N N N
{[x,n,\)}, where, as previouslyx,n,\) represents the par- 11§75 =g @l +101lG -~ 21§ (@I -~ 115 @llg ,
ticle localized atx and with spin component along the direc- s elF (42)
tion n equal to\ [see also the Appendix, EqéA24) and Q=220

(A25)]. Since the particles are identical, the state vectors of

. . . (1,— )— - - _ - - -
the two-particle system constitute the symmetrical or anti- H g @l +1ell =21 (@ 11g n~11g n® 1l

symmetrical subspace ¢{® H and the observables are rep- B Y S (43)
resented by symmetrical operators. Thus an observable that =
measures the spin component along directiomside the H(z D_qr+
) IIf ) 44
regionQ) has the form ,n =2 n “4
I, V=g ,®Ig . (45)
an= A ®I+HI®AG = E NG @l +IeIIgh),
2,0)_ - —
(32) N§P=1g @l ,+1g (I1F (46)
where, as in the previous subsection, nY9=1e1-11 @1 -, @l -1l — 1&g ,
5)\ —f d3X |X n )\><X n )\| (33) +HS),n®H&l,n+H(_Z,n®HS_2,n+H$,n®H(_2,n
+11, @Il (47)
Qn= 2 )\( JQd3X |x,n,)\>(x,n,)\|) 2 A Hsz ns are projectors on mutually orthogonal subspaces and one can
(39) easily check that
and | denotes the identity. When we apply the observable O =0GY+ g, D+ 1§, (48)
(32), we do not know how many particles are inside Thus " ) (1 3
.n measures the component of the total spin of all particles g =My, +1g (49)
inside Q). To justify the above statement, we consider the ©) _ 11(00)
particle number operatdi§® | +1®11$,, where Hy =15 (50)

s _ 3 [cf. Egs. (37)—(39)]. Thus we can see that the observable
o= 2 f dx [xn M) 06n | = 2 Mg, (39 A , really measures the component of the total spin of all
the particles insidé).

which discriminates how many particles are inside The Now we are prepared to calculate quantum correlations in
spectral decomposition dig,® 1+ 111, reads the case of two identical particles. As previously, we assume
that a two-particle state(t,) is prepared at time, in a
s s _o77(2) (1) (0) 4 WO H A A
al+lellg=211g "+ 114 + 0y, (36 certain inertial frame of referena®. Moreover, the two ob-

servers,A andB, move with constant velocities with respect
to O. We denote the velocity of the fran{@ with respect to
A and B by v, andvg, respectively. The observet mea-

whereIl?, TI() | 119 are projectors on mutually orthogo-
nal subspaces and their explicit form is the following:

NP =115 o115, (37)  sures at time, the observablé , ,, and as a result of mea-
(1) rrs . . . surement with selection he receives the valueHere A
Hy'=el+1olly-2115®Il, (38)  denotes some bounded region i and a denotes a unit
H(O)—I®I— el (39) vector. Next, at timeg=t,, the observel3 measures\g y,

and received.’, where similarlyBC R® andb is a unit vec-

Therefore, as a result of measurementl® | + 1 11§, , tor. We can write

we receive one of the following outcome@) there is no 2
particle inside(); (ii) there is one particle insid@; and(iii ) = 2 (2 ?\NH(N )‘N)), (51)
there are two particles inside. N=0

In the sequel, we will restrict ourselves to the simplest
cases= 3. Let us denote for simplicity

Agp= E (E ANH‘””N’). (52

g n_l—[1/2 2 My n_Hllz 12 (40)
The spectral decomposition af, ,=Ag%, has the form For the explicit form ofH(N ) and H(N ) see Egs.
Ag H(l +)_ H(l )+1H§§ﬁ)— 1H§§;;1) (42—(47). In Egs. (51) and ((522N)AN is an eigenvalue of
20) ©00) Ap a,App and the prolectoflA » " corresponds to the situ-
+0I g+ 01Ty, (41 ation in which inside the regioA there areN particles and
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the total spin component along the directiarof all these
particles is equal ta.y .

As in the previous section, lgi(\,\’) denote the prob-
ability that A receives the valud and 5 the value\x’. We
define the correlation function by the formula

C(a,b)= >, AN'P(A,\').

AN

(53

p()\lr

where, as previously,

U(V)=U (V)@ U(v),

PHYSICAL REVIEW A 67, 012109 (2003

This function differs from zero when each observer registers
one particle or when one observer registers two particles and
the second one registers one or two particles. If one of them
registers no particle, then the correspondings equal to
zero. We take into account only the case in which each ob-
server registers one particle.

Performing similar steps as in the case of distinguishable
particles and taking into account Eq51) and(52), we get

) =THIU] (VLA (va) 1o () U] (VA TESADU, (va) Tt~ ta U] (V) TIS 2 U (V) U (t—ta) ]},

(54

Ut)=U(t)eU(t) (55

andU,(v),U(t) are defined in the Appendix; see E¢a12), (A15), (A23), and(A34). Inserting Eq.(54) into Eq. (53), we

arrive at the following formula for the correlation function:

Clab)=Tr X [, (VAT AV, (va) 1p (L) (U] (VAT A VU, (Va) J[U(te = ta) 4], (VB) A ol (Vo) U (15— ta) ]

XLUL (VA A p s (VAT -

(56)

Let us consider the simplest case in which both the obThus we assumed that observers perform measurements in
servers rest with respect @ and the measurements are per-some bounded regions of space. We performed our calcula-

formed at the same time. It means that we put in G6)

VAZO, VB:O, tA:tB:t. (57)
The result is the following:
C(a,b) E THIS A (DT A A pAn st (58)

Furthermore, if we assume that the regidnandB are dis-
joint (as it happens in the real EPR-type experimgnise
find from (32), (33), (40), (42), and(43) thatAg , andIT 2"

commute. Thus changing the order in E§8) and using Eq.
(51) we get

C(a,b)=Tr{p(t)Ap 2Ap p}- (59

IlI. CONCLUSIONS

tions in the framework of nonrelativistic quantum mechan-
ics. There were two main reasons for this. First, to take into
account the localization in the regions of the detectors, we
need the well-defined notion of the localizatitin the stan-
dard formulation of relativistic quantum mechanics, the no-
tion of localization of the particles is ill-defined, however see
[20]). Secondly, to the best of our knowledge, any systematic
review of EPR correlations in the framework of nonrelativ-
istic quantum mechanics in the general case mentioned
above does not exist in the literature. Moreover, we consid-
ered separately the case of identical and distinguishable par-
ticles. In both cases, we found the general formula for the
correlation function under the assumption that the initial
two-particle state is arbitrary. In addition, we also considered
some important special cases.

In the most interesting case of the singlet state of two
spin+4 particles, we determined, as one might expect, that the
correlation function depends on the vectarandb in the
standard way, i.e., it behaves like a cosine of an angle be-

In this paper, we have presented the detailed calculatiotween vectors andb. The only difference is the presence of
of the spin correlation functions in the EPR-type experi-the termf od®xJ gdy| ygingief X— Vat,y—Vgt) |, which influ-
ments. In opposition to the standard approach, we consideraghces the intensity of the correlations. Note that the low ve-
the space part of the wave function and the relative motion ofocity limit of the relativistic correlation function for the sin-
the observers. We also took into account the fact that everglet state of two spis- particles derived if18,19 and in
measurement of the spin component is connected with thg21] differs from our results. The correlation function ob-
simultaneous localization of the particle inside the detectontained in[18,19 depends on the state of motion of the par-
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ticles, while the function derived if21] contains a correc- integer, and the non-negative real constsintin the sequel,
tion of second order in velocities to our nonrelativistic e will use the Schidinger picture. Sincé> depends on
formula. However, in this second case, when both measureme explicitly, this dependence remains also in the Schro
ments are performed in the same inertial frame, the ||m|t|nwinger picture_ In momentum representation’ we will denote

correlation function coincides with our results. the basis vectors of the carrier space of the determined irre-
ducible unitary representation of the Galilean groftipe
APPENDIX: GALILEAN GROUP space of states of the system at tithévy |k, m),, wherek is

To establish notation and conventions, we summarize her@? €igénvalue of momentum opera®randm is the spin
the main facts concerning the Galilean group and its unitanf@mponent along the axis. We will denote elements of the
representations. Lek{ be the one-particle Hilbert space of Unitary representation of the Galilean group as follows:
states. In this space the following basic observables eXist: e

S n oo . U@=¢€2P Uw)=e"©,
(position), P (momentum, S (spin. They fulfill the follow-

ing relations: U(R)=ei“"j, U(T):eirlq, (A12)
[Xi,X;1=0, [P;,P;]=0, (Al)  wherea, v, ¢, andr are parameters corresponding to pure
o o translations, Galilean boosts, rotations, and time translation,
[Xi,Pj]=i6;, [X,§]=0, (A2)  respectively. The action of operatas12) on basis vectors
is the following:
[Pi,Sj]ZO, [3asj]:|8ijksk' (A3) U(a)|k,m>t:eia-k |k,m>t, (A13)
The Galilean group and its algebra act in the spHc@s is s ,
well known, classical Galilean transformations have the fol- U(R)[k,m);=D(R)mm |RK,m");, (A14)
lowing form: .
9 U (V) [k, m) = eltlv-k=(Mo®] [} My m),,  (A15)
x'=Rx+a—Wt, (A4 ] o ) ] .
whereD3(R) is the spins irreducible unitary representation
t'=t+r, (A5)  of SU(2). Moreover, we assume that
wherev denotes the velocity of the frame/(t’) with re- glaX |k,m)=|k+ a,m);. (A16)

spect to the framex(t) and we adopt the passive point of ) )
view. In the Hilbert space, the rotatidhis generated by the 1he phase factors in Eq$A15) and (A16) determine the

total angular momenturd, the translatiora is generated by following form of the vectork,m):.,:
the momentun®, the time translation is generated by the Ik, m) s = efir(kZ/ZM)|k,m>t_ (A17)

HamiltonianH, and Galilean boost is generated Gy The
basic commutation relations of the Galilean algefmafact  We denote eigenvectors of the position operaorby

its central extensionread |x,m);. We have
[Pi.P1=0, [P.Gjl=ig;MI, (A6) X%, mye=x]x,m), (A18)
[Gi,G{]=0, [H,P;]=0, (A7) 1 ,
v I |x,m>t=(2—)3/2f d3k e kX |k,m)t. (A19)
A A . A A A T

[Ji Jdjl=ieipde, [H,G]=iP;, (A8) )

A A 4 o The Galilean group and operatef®* act on vectorsx,m),
[Ji,Pjl=ieiPy, [H,J]=0, (A9)  as follows:

[jiyéj]:isijkéh i,j,k:1,2,3, (AlO) U(a.)|X,m>t:|X_a.,m>t, (AZO)
whereM is the mass of the system. All generators of Galilean U(R)|x,m)=D%R)mm |RX,m"), (A21)
transformations can be expressed by observalgs—(A3). _ ,

We have U(v)|x,m)=eMItvT2=v-2l |y —ty m),,  (A22)
Moreover, in the case of a free partidhe=P?/2M. In discussion of EPR-like experiments, it is convinient to use

Irreducible unitary ray representations of the Galileana position basis in which vectors are numbered by spin com-
group are determined by two numbers: the eigenvalugpf Pponent along an arbitrary axigiot necessarily the axis).
which has the forns(s+1), wheresis an integer or a half- Thus letn be an arbitrary unit vector. ObservahieS mea-
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sures spin component along an axis in directronSince

n-S commutes withX, these observables possess a common

set of eigenvectors. We denote them|gyn,\ ),
(n-9) [x,n\)=(n-3) /%N )=\ [x,n,\), (A24)
X|x,n Ny =x[x,n,\), (A25)

where values of\ are the same as values of (A= —s,
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One can also check that the following relations hold:

(y,mx,n,\)=8(x—y)De %\,  (A30)
efip~x

(p.mlx,n,\)= 277)3,2D5(e‘9‘*"2)m-

(A31)
(

The Galilean group and operatet®* act on the vectors
|x,n,\) as follows:

—s+1,...5s) andX denotes the generators of the represen-

tation D3, If we parametrizen explicitly as follows:

n=(sind cosp, sind sing,cos), (A26)
we get
[X,n,\)=D%(e % ®), ) X\ )y, (A27)
where the vectomw is orthogonal ton and
w=(Sing,—c0sp,0). (A28)
We define also the vectotk,n,\) as follows:
o= Lo e oy, meo

U(a)|x,n,\)=|x—a,n,\), (A32)
U(R)|%,n,\)y=D%R),\ |RX,Rn,\"), (A33)
Ut(v)|x,n,)\>=eiM[(tUZ/Z)‘V'X]|x—tv,n,)\), (A34)
e X |x,n\)=e** [x,n,\). (A35)

In the cases=3, we haveX=1o, so

x,n, 3)=cog0/2) |x, 3)+e'¢ sin(6/2) |x,~ 3),
(A36)

|x,n,— 3)=—€'* sin(0/2) |x, 3)+cog 8/2)|x,— 3).
(A37)
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