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Einstein-Podolsky-Rosen correlations and Galilean transformations

Paweł Caban,* Jakub Rembielin´ski,† Kordian A. Smoliński,‡ and Zbigniew Walczak§

Department of Theoretical Physics, University of Ło´dź, ul. Pomorska 149/153, 90-236 Ło´dź, Poland
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In this paper we calculate with full details Einstein-Podolsky-Rosen spin correlations in the framework of
nonrelativistic quantum mechanics. We consider the following situation: two-particle state is prepared~we
consider separately distinguishable and identical particles and take into account the space part of the wave
function! and two observers in relative motion measure the spin component of the particle along given
directions. The measurements are performed in bounded regions of space~detectors!, not necessarily simulta-
neously. The resulting correlation function depends not only on the directions of spin measurements but also on
the relative velocity of the observers.
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I. INTRODUCTION

The issue of locality plays a central role in recent theor
ical and experimental investigations of basic properties
quantum mechanics. The history of this long-standing pr
lem began in 1935, when Einstein, Podolsky, and Ro
~EPR! published their paper@1#. EPR considered a gedanke
experiment with two spatially separated particles,a andb, in
an entangled state in which the relative position,xa2xb , and
the total momentum,pa1pb , have definite values. If the
momentum of the particlea is measured, one can predi
with certainty the momentum of the particleb. Since par-
ticles are spatially separated and the locality of quantum
chanics is assumed, the measurement on the particlea does
not disturb the particleb, thus, due to the EPR reality crite
rion, the momentum of the particleb is an element of reality.
Alternatively one could measure the position of the parti
a, and by the same arguments one concludes that also
position of the particleb is an element of reality. But quan
tum mechanics does not allow us to find simultaneously v
ues ofpb andxb , therefore EPR concluded that the descr
tion of reality that is provided by quantum mechanics is n
complete.

In the above so-called ‘‘EPR paradox,’’ the Einstein loc
ity principle, which states ‘‘ . . . the real factual situation of
the system S2 is independent on what is done with the
tem S1, which is spatially separated from the former,’’@2#
was applied for the first time explicitly to quantum mecha
ics.

For a long time, EPR predictions were experimentaly u
testable. The problem was reformulated in terms of spin v
ables by Bohm@3#, and in 1964 Bell proved that@4# in such
a setting some inequality should hold for any local realis
theory. The Bell inequality was easier to handle experim
tally because it imposes some constraints only on corr
tions of results of measurements performed by two dis
observers. Many experiments were performed to test B
type inequalities@5–11#, and all of them showed that the
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are violated and that quantum-mechanical predictions
satisfied@23#. Recently, even experiments with observers
relative motion were performed@12#.

In the standard formulation of the Bell inequality, only th
spin part of the wave function of two particles is taken in
account @13,14#. However, some authors pointed out th
when the issue of locality in quantum mechanics is cons
ered, the space part of the wave function cannot be negle
@15,16#. We accept this point of view. Unfortunately, in th
standard formulation of relativistic quantum mechanics,
notion of localization of a particle is ill-defined. The ma
problem one encounters in this case concerns the Lor
covariance of the localization~see, e.g.,@17#!. It causes the
framework of the standard relativistic quantum mechanics
be unsuitable for the calculation of EPR correlations in
most general case, i.e., when the space part of the w
function and the relative motion of the observers are ta
into account. In the framework of standard relativistic qua
tum mechanics, the spin correlations were calculated
@18,19# but the derivation of the correlation function pre
sented therein does not involve localization of measured
ticles in detectors and is restricted to the measurements
formed in the same inertial frame. The framework of t
Lorentz covariant quantum mechanics developed in@20#
seems to be more suitable to calculate the EPR correla
function in the general case. The correlation function in su
a framework was calculated in@21#.

On the other hand, to the best of our knowledge, no s
tematic review of EPR correlations in the framework of no
relativistic quantum mechanics in the general case exis
the literature. One of the reasons for this is that the E
paradox appears only in the relativistic case. But in our op
ion, we should know also the exact form of the EPR cor
lation function in the case of nonrelativistic quantum m
chanics, at least to compare it with results obtained in
relativistic case. Therefore, the main goal of our present
per is to calculate in detail spin correlations in the framewo
of nonrelativistic quantum mechanics. More precisely,
consider the following situation: a two-particle state is p
pared~we consider separately distinguishable and ident
particles and we take into account the space part of the w
function! and two observers in relative motion measure
spin component of the particle along given directions. T
measurements are performed in bounded regions of s
~detectors! not necessarily simultaneously.
©2003 The American Physical Society09-1
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CABAN, REMBIELIŃSKI, SMOLIŃSKI, AND WALCZAK PHYSICAL REVIEW A 67, 012109 ~2003!
The paper is organized as follows. In Sec. II, we calcul
EPR spin correlations taking into account the space par
the wave function and motion of the observers. We disc
the cases of distinguishable and identical particles separa
Section III concludes with a summary of our results. T
main facts concerning the Galilean group and its unitary
representations are collected in the Appendix.

II. EPR CORRELATIONS

In this section we calculate quantum correlations in
following case. In a given inertial frame of referenceO, a
two-particle state is prepared. Two observers, sayA andB,
travel with constant velocities with respect to the frameO.
Each observer possesses a detector which can measu
spin component of a particle along a given axis fixed by u
vectorsa andb, respectively. We assume that the spin m
surements take place only if the particle is inside the de
tor. Thus we assume that detectors occupy regionsA andB,
respectively. We consider separately the case of distingu
able and identical particles. For the notation concerning
Galilean group and its unitary ray representations, see
Appendix.

A. Distinguishable particles

We consider two spins particles, saya andb. We assume
that spins of both particles are equal for simplicity, howev
it is straightforward to generalize our considerations for
case of particles with different spins. The space of state
this two-particle system isHa

^ Hb, whereHa andHb de-
note the space of states of the particlesa andb, respectively.
In the spacesHa andHb, we will use bases$uxa ,na ,la&%
and $uxb ,nb ,lb&%, respectively. A vector uxa ,na ,la&
(uxb ,nb ,lb&) describes the situation in which the particlea
(b) is localized atxa (xb) and its spin component along th
direction determined by a unit vectorna (nb) is equal tola
(lb). Definition of the vectorsux,n,l& and their basic prop-
erties are given in the Appendix, Eqs.~A24! and ~A25!. We
want to describe an EPR-type experiment in which two d
tant observersA and B measure spin components of th
particles using detectors that occupy some bounded reg
A andB, respectively. Thus the measurement consists of
localization inside the region of the detector and simu
neous measurement of the spin component. Therefore, c
sponding observables for particlesa andb read

LA,a
s

^ I , I ^ LB,b
s , ~1!

where the spectral decomposition ofLV,n
s is the following:

LV,n
s 5 (

l52s

s

lS E
V

d3x ux,n,l&^x,n,lu D[ (
l52s

s

l PV,n
s,l .

~2!

The projectorsPV,n
s,l in Eq. ~2! have the following obvious

interpretation: When we measurePV,n
s,l we get the value 1 if

and only if the corresponding particle is insideV and its spin
component along the directionn is equal tol.
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Under Galilean boosts, projectorPV,n
s,l transforms as fol-

lows @cf. Eq. ~A34!#:

Ut
†~v! PV,n

s,l Ut~v!5E
V

d3x ux2tv,n,l&^x2tv,n,lu

5E
V8(t)

d3x ux,n,l&^x,n,lu

5PV8(t),n
s,l , ~3!

where V8(t)5$x8: x85x2vt,xPV%. This means that lo-
calization in nonrelativistic quantum mechanics is covaria
that is, the projectorPV8(t),n

s,l corresponds to the localizatio
in the same region as seen by the moving observer, at
momentt. We point out that this is not true in standard rel
tivistic quantum mechanics@17#.

Now we can calculate quantum correlations. This can
done in the following steps.

(i) Preparation of the initial state. We assume that a two
particle stater is prepared in a certain inertial frame of re
erenceO. Two other inertial frames of reference,A andB,
move with constant velocities with respect toO. We denote
the velocity of the frameO with respect toA andB by vA
andvB , respectively.

(ii) Measurement performed by observerA. An observer
at rest with respect toA ~for simplicity, we refer to him as to
the observerA) measures at timetA the observableLA,a

s

^ I . As a result of the measurement with selection,A re-
ceives a valuela .

(iii) Free time evolution of the state. Next, the state
evolves freely in time fromtA to tB>tA .

(iv) Measurement performed by observerB. At time tB ,
an observer that rests with respect toB ~we call him observer
B) measuresI ^ LB,b

s . The result of this measurement wit
selection islb .

Let us denote the probability thatA receivesla and B
receiveslb asp(la ,lb). In the case of distinguishable pa
ticles, we define the following correlation function:

Ca,b~a,b!5 (
la ,lb

lalb p~la ,lb!. ~4!

We could also imagine the situation in which the observ
do not distingiush the type of particles. In such a case,
correlation function~4! should be replaced by

C~a,b!5 (
la ,lb

lalb@p~lb ,la!1p~la ,lb!#

5Ca,b~a,b!1Cb,a~a,b!. ~5!

Thus we have to calculatep(la ,lb). We do it according
to the steps described above.

(i) Preparation of the initial state. An initial state is pre-
pared in the frameO. At time tA , it is given byr(tA).

(ii) Measurement performed by the observerA. For the
observerA, the density matrixr(tA) has the form
9-2
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rA~ tA!5UtA
~vA! r~ tA!UtA

† ~vA!, ~6!

where Ut(v)5Ut
a(v) ^ Ut

b(v) and the unitary operator o
pure Galilean boostUt

a(v) @Ut
b(v)# is given in the Appen-

dix; see Eqs.~A12!, ~A15!, ~A23!, and ~A34!. Now the ob-
serverA measuresLA,a

s
^ I in the state~6! and as a result o

the measurement with selection he receivesla with the
probability

p~la!5Tr@rA~ tA!~PA,a
s,la ^ I !#. ~7!

The measurement reduces the density matrix~6! to

rA
la~ tA!5

~PA,a
s,la ^ I !rA~ tA!~PA,a

s,la ^ I !

Tr@rA~ tA!~PA,a
s,la ^ I !#

. ~8!

(iii) Free time evolution of the state. The density matrix
~8! as seen from the frameO reads

rla~ tA!5UtA
† ~vA!rA

la~ tA! UtA
~vA!. ~9!

Now the staterla(tA) evolves from timetA to tB and the
resulting density matrix reads
01210
rla~ tB!5U†~ tB2tA!rla~ tA!U~ tB2tA!, ~10!

where U(tB2tA)5Ua(tB2tA) ^ Ub(tB2tA) and U(t) de-
notes the time evolution operator.

(iv) Measurement performed by the observerB. The den-
sity matrix ~i! as seen by the observerB has the form

rB
la~ tB!5UtB

~vB!rla~ tB! UtB
† ~vB!. ~11!

Now the observerB measuresI ^ LB,b
s in the state~11! and

receiveslb with the probability

p~lbula!5Tr@rB
la~ tB!~ I ^ PB,b

s,lb!#. ~12!

It is conditional probability because the state in whichB
performs the measurement has the form~10! only if A re-
ceivesla in the first measurement.

So finally we get

p~la ,lb!5p~la! p~lbula!. ~13!

Taking into account Eqs.~6!–~12!, we can write
ange
p~la ,lb!5Tr$@UtA
† ~vA!~PA,a

s,la ^ I !UtA
~vA!#r~ tA!@UtA

† ~vA!~PA,a
s,la ^ I !UtA

~vA!#

3@U~ tB2tA!UtB
† ~vB!~ I ^ PB,b

s,lb!UtB
~vB!U†~ tB2tA!#%. ~14!

Inserting Eq.~14! into Eq. ~4!, we get

Cab~a,b!5Tr$r~ tA!@UtA
a†~vA!LA,a

s UtA
a ~vA!# ^ @Ub~ tB2tA!UtB

b†~vB!LB,b
s UtB

b ~vB!Ub†~ tB2tA!#%. ~15!

The functionCba(a,b) can be obtained fromCab(a,b) by simultaneous change of the order in the tensor product and ch
of indicesa andb.

The formula~15! may be simplified in a particular case when the initial state is a pure one. In this caser(tA)5uc&^cu,
whereuc&PHa

^ Hb is normalized.
Moreover, one can check that in the free time evolution case, the following relation holds:

U~t!@Ut
†~v!PV,n

s,l Ut~v!#U†~t!5
1

~2p!3EEd3k•d3pE
V

d3xei (x2tv)•(p2k)1[ i t(k22p2)/2M ] uk,n,l&^p,n,lu. ~16!

Thus inserting Eqs.~3! and ~16! into Eq. ~15!, we have

Cc
ab~a,b!5

1

~2p!3EA
d3xE

B
d3yEEd3k d3pH ei (y2vBtB)•(p2k)1[ i (tB2tA)/2Mb](k22p2)

3 (
la ,lb

lalb^cu@ ux2vAtA ,a,la&^x2vAtA ,a,lau ^ uk,b,lb&^p,b,lbu#uc&J , ~17!

whereMb denotes the mass of the particleb. In the position representation,uc& is of the form

uc&5 (
ma ,mb

EEd3x d3y cmamb
~x,y!ux,ma& ^ uy,mb&. ~18!

Note that in Eq.~18! we use the basis$ux,ma& ^ uy,mb&%, wherema andmb denote spin components along thez axis. One can
check that under the definition~18! and using Eqs.~A30! and ~A31!, we obtain
9-3



.

gle
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Cc
ab~a,b!5

1

~2p!6EA
d3xE

B
d3yEEd3k d3p ei (y2vBtB)•(p2k)1[ i (tB2tA)/2MB](k22p2) (

ma ,mb

ma8 ,mb8

EEd3x8d3y8ei (k•x82p•y8)3cm
a8m

b8
!

~x

2vAtA ,x8!cmamb
~x2vAtA ,y8!~a•S!mam

a8
~b•S!mbm

b8
. ~19!

When tA5tB5t, the correlation function~19! takes the form

Cc
ab~a,b!5E

A
d3xE

B
d3y (

ma ,mb

ma8 ,mb8

cm
a8m

b8
!

~x2vAt,y2vBt ! cmamb
~x2vAt,y2vBt !~a•S!mam

a8
~b•S!mbm

b8
. ~20!

The case sÄ 1
2

Now let us apply the formula~20! to the case of the lowest nontrivial spins5 1
2 . The stateuc& can be a triplet or a singlet

Singlet state. For the singlet state we have

cmamb
~x,y!52cmbma

~x,y! ~21!

and then from Eq.~20! we receive

Ccsinglet

ab ~a,b!52
1

2
cos~uab!E

A
d3xE

B
d3yucsinglet~x2vAt,y2vBt !u2, ~22!

wherecsinglet(x,y)[c1/2,21/2(x,y), uab denotes an angle between vectorsa andb, and the normalization yields

E Ed3x d3yucsinglet~x,y!u25 1
2 . ~23!

Thus the correlation function depends on the vectorsa andb in the standard way, i.e., it behaves like a cosine of an an
between vectorsa and b. The only difference is the presence of the term*Ad3x*Bd3yucsinglet(x2vAt,y2vBt)u2, which
influences the intensity of the correlations.

Triplet state. In the triplet case we have

cmamb
~x,y!5cmbma

~x,y! ~24!

and the correlation function has a rather complicated form,

Cc triplet

ab ~a,b!5 1
4 E

A
d3xE

B
d3y$~ uc11u21uc22u2!cosua cosub1~c11

! c22ei (wa1wb)1c22
! c11e2 i (wa1wb)!sinua sinub

1~c11
! c122c12

! c22!~cosua sinubeiwb1sinua cosubeiwa!1~c12
! c112c22

! c12!~cosua sinube2 iwb

1sinua cosube2 iwa!22c12
! c12@cosua cosub2sinua sinub cos~wa2wb!#%, ~25!
e
on

the

e
two
where we used the following notation:

c11[c1/2,1/2~x2vAt,y2vBt !, ~26!

c12[c1/2,21/2~x2vAt,y2vBt !, ~27!

c22[c21/2,21/2~x2vAt,y2vBt !, ~28!

a5~coswa sin ua ,sin wa sin ua ,cosua!, ~29!

b5~coswb sin ub ,sin wb sin ub ,cosub!, ~30!

and the normalization yields
01210
E Ed3x d3y$uc1/2,1/2~x,y!u21uc21/2,21/2~x,y!u2

12uc1/2,21/2~x,y!u2%51. ~31!

The triplet correlation function given by Eq.~25! depends on
velocities of frames in a more nontrivial way than in th
singlet case. Moreover, it is evident that the dependence
frame velocities in fact reduces to the dependence on
relative velocity of the observers.

B. Identical particles

Now we calculate the correlation function in the sam
setting as in the previous subsection but in the case of
9-4
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identical particles. We denote the one-particle Hilbert sp
by H. For our purpose it is convenient to use inH the basis
$ux,n,l&%, where, as previously,ux,n,l& represents the par
ticle localized atx and with spin component along the dire
tion n equal tol @see also the Appendix, Eqs.~A24! and
~A25!#. Since the particles are identical, the state vectors
the two-particle system constitute the symmetrical or a
symmetrical subspace ofH^ H and the observables are re
resented by symmetrical operators. Thus an observable
measures the spin component along directionn inside the
regionV has the form

DV,n
s 5LV,n

s
^ I 1I ^ LV,n

s 5 (
l52s

s

l~PV,n
s,l

^ I 1I ^ PV,n
s,l !,

~32!

where, as in the previous subsection,

PV,n
s,l [E

V
d3x ux,n,l&^x,n,lu, ~33!

LV,n
s [ (

l52s

s

lS E
V

d3x ux,n,l&^x,n,lu D 5 (
l52s

s

l PV,n
s,l ,

~34!

and I denotes the identity. When we apply the observa
~32!, we do not know how many particles are insideV. Thus
DV,n

s measures the component of the total spin of all partic
inside V. To justify the above statement, we consider t
particle number operatorPV

s
^ I 1I ^ PV

s , where

PV
s [ (

l52s

s E
V

d3x ux,n,l&^x,n,lu5 (
l52s

s

PV,n
s,l , ~35!

which discriminates how many particles are insideV. The
spectral decomposition ofPV

s
^ I 1I ^ PV

s reads

PV
s

^ I 1I ^ PV
s 52PV

(2)11PV
(1)10PV

(0) , ~36!

wherePV
(2) , PV

(1) , PV
(0) are projectors on mutually orthogo

nal subspaces and their explicit form is the following:

PV
(2)5PV

s
^ PV

s , ~37!

PV
(1)5PV

s
^ I 1I ^ PV

s 22PV
s

^ PV
s , ~38!

PV
(0)5I ^ I 2PV

s
^ I 2I ^ PV

s 1PV
s

^ PV
s . ~39!

Therefore, as a result of measurement ofPV
s

^ I 1I ^ PV
s ,

we receive one of the following outcomes:~i! there is no
particle insideV; ~ii ! there is one particle insideV; and~iii !
there are two particles insideV.

In the sequel, we will restrict ourselves to the simple
cases5 1

2 . Let us denote for simplicity

PV,n
1 [PV,n

1/2,1/2, PV,n
2 [PV,n

1/2,21/2. ~40!

The spectral decomposition ofDV,n[DV,n
1/2 has the form

DV,n5 1
2 PV,n

(1,1)2 1
2 PV,n

(1,2)11PV,n
(2,1)21PV,n

(2,21)

10PV,n
(2,0)10PV

(0,0) , ~41!
01210
e

f
i-

at

e
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where

PV,n
(1,1)5PV,n

1
^ I 1I ^ PV,n

1 22PV,n
1

^ PV,n
1 2PV,n

1
^ PV,n

2

2PV,n
2

^ PV,n
1 , ~42!

PV,n
(1,2)5PV,n

2
^ I 1I ^ PV,n

2 22PV,n
2

^ PV,n
2 2PV,n

1
^ PV,n

2

2PV,n
2

^ PV,n
1 , ~43!

PV,n
(2,1)5PV,n

1
^ PV,n

1 , ~44!

PV,n
(2,21)5PV,n

2
^ PV,n

2 , ~45!

PV,n
(2,0)5PV,n

1
^ PV,n

2 1PV,n
2

^ PV,n
1 , ~46!

PV,n
(0,0)5I ^ I 2PV,n

1
^ I 2PV,n

2
^ I 2I ^ PV,n

1 2I ^ PV,n
2

1PV,n
1

^ PV,n
1 1PV,n

2
^ PV,n

2 1PV,n
1

^ PV,n
2

1PV,n
2

^ PV,n
1 ~47!

are projectors on mutually orthogonal subspaces and one
easily check that

PV,n
(2) 5PV,n

(2,1)1PV,n
(2,21)1PV,n

(2,0) , ~48!

PV,n
(1) 5PV,n

(1,1)1PV,n
(1,2) , ~49!

PV,n
(0) 5PV,n

(0,0) ~50!

@cf. Eqs. ~37!–~39!#. Thus we can see that the observab
DV,n really measures the component of the total spin of
the particles insideV.

Now we are prepared to calculate quantum correlation
the case of two identical particles. As previously, we assu
that a two-particle stater(tA) is prepared at timetA in a
certain inertial frame of referenceO. Moreover, the two ob-
servers,A andB, move with constant velocities with respe
to O. We denote the velocity of the frameO with respect to
A andB by vA and vB , respectively. The observerA mea-
sures at timetA the observableDA,a , and as a result of mea
surement with selection he receives the valuel. Here A
denotes some bounded region inR3 and a denotes a unit
vector. Next, at timetB>tA , the observerB measuresDB,b
and receivesl8, where similarlyB,R3 andb is a unit vec-
tor. We can write

DA,a5 (
N50

2 S (
lN

lNPA,a
(N,lN)D , ~51!

DB,b5 (
N50

2 S (
lN

lNPB,b
(N,lN)D . ~52!

For the explicit form ofPA,a
(N,lN) and PB,b

(N,lN) , see Eqs.
~42!–~47!. In Eqs. ~51! and ~52!, lN is an eigenvalue of
DA,a ,DB,b and the projectorPA,a

(N,lN) corresponds to the situ
ation in which inside the regionA there areN particles and
9-5
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the total spin component along the directiona of all these
particles is equal tolN .

As in the previous section, letp(l,l8) denote the prob-
ability that A receives the valuel andB the valuel8. We
define the correlation function by the formula

C~a,b!5 (
l,l8

ll8p~l,l8!. ~53!
ob
r

tio
ri
er

o
e
th

to

01210
This function differs from zero when each observer regist
one particle or when one observer registers two particles
the second one registers one or two particles. If one of th
registers no particle, then the correspondingl is equal to
zero. We take into account only the case in which each
server registers one particle.

Performing similar steps as in the case of distinguisha
particles and taking into account Eqs.~51! and ~52!, we get
p~l1 ,l18!5Tr$@UtA
† ~vA!PA,a

(1,l1)UtA
~vA!#r~ tA!@UtA

† ~vA!PA,a
(1,l1)UtA

~vA!#@U~ tB2tA!UtB
† ~vB!PB,b

(1,l18) UtB
~vB! U†~ tB2tA!#%,

~54!

where, as previously,

Ut~v!5Ut~v! ^ Ut~v!, U~ t !5U~ t ! ^ U~ t ! ~55!

andUt(v),U(t) are defined in the Appendix; see Eqs.~A12!, ~A15!, ~A23!, and~A34!. Inserting Eq.~54! into Eq. ~53!, we
arrive at the following formula for the correlation function:

C~a,b!5TrH(
l1

@UtA
† ~vA!PA,a

(1,l1)UtA
~vA!#r~ tA!@UtA

† ~vA!PA,a
(1,l1)UtA

~vA!#@U~ tB2tA!UtB
† ~vB!DB,bUtB

~vB!U†~ tB2tA!#

3@UtA
† ~vA!DA,aUtA

~vA!#J . ~56!
ts in
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Let us consider the simplest case in which both the
servers rest with respect toO and the measurements are pe
formed at the same time. It means that we put in Eq.~56!

vA50, vB50, tA5tB5t. ~57!

The result is the following:

C~a,b!5(
l1

Tr$PA,a
(1,l1)

r~ t !PA,a
(1,l1)

DB,bDA,a%. ~58!

Furthermore, if we assume that the regionsA andB are dis-
joint ~as it happens in the real EPR-type experiments!, we
find from ~32!, ~33!, ~40!, ~42!, and~43! thatDB,b andPA,a

(1,l1)

commute. Thus changing the order in Eq.~58! and using Eq.
~51! we get

C~a,b!5Tr$r~ t !DA,aDB,b%. ~59!

III. CONCLUSIONS

In this paper, we have presented the detailed calcula
of the spin correlation functions in the EPR-type expe
ments. In opposition to the standard approach, we consid
the space part of the wave function and the relative motion
the observers. We also took into account the fact that ev
measurement of the spin component is connected with
simultaneous localization of the particle inside the detec
-
-

n
-
ed
f

ry
e

r.

Thus we assumed that observers perform measuremen
some bounded regions of space. We performed our calc
tions in the framework of nonrelativistic quantum mecha
ics. There were two main reasons for this. First, to take i
account the localization in the regions of the detectors,
need the well-defined notion of the localization~in the stan-
dard formulation of relativistic quantum mechanics, the n
tion of localization of the particles is ill-defined, however s
@20#!. Secondly, to the best of our knowledge, any system
review of EPR correlations in the framework of nonrelati
istic quantum mechanics in the general case mentio
above does not exist in the literature. Moreover, we cons
ered separately the case of identical and distinguishable
ticles. In both cases, we found the general formula for
correlation function under the assumption that the init
two-particle state is arbitrary. In addition, we also conside
some important special cases.

In the most interesting case of the singlet state of t
spin-12 particles, we determined, as one might expect, that
correlation function depends on the vectorsa and b in the
standard way, i.e., it behaves like a cosine of an angle
tween vectorsa andb. The only difference is the presence
the term*Ad3x*Bd3yucsinglet(x2vAt,y2vBt)u2, which influ-
ences the intensity of the correlations. Note that the low
locity limit of the relativistic correlation function for the sin
glet state of two spin-12 particles derived in@18,19# and in
@21# differs from our results. The correlation function ob
tained in@18,19# depends on the state of motion of the pa
9-6
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ticles, while the function derived in@21# contains a correc-
tion of second order in velocities to our nonrelativis
formula. However, in this second case, when both meas
ments are performed in the same inertial frame, the limit
correlation function coincides with our results.

APPENDIX: GALILEAN GROUP

To establish notation and conventions, we summarize h
the main facts concerning the Galilean group and its unit
representations. LetH be the one-particle Hilbert space o
states. In this space the following basic observables exisX̂
~position!, P̂ ~momentum!, Ŝ ~spin!. They fulfill the follow-
ing relations:

@X̂i ,X̂j #50, @ P̂i ,P̂j #50, ~A1!

@X̂i ,P̂j #5 id i j , @X̂i ,Ŝj #50, ~A2!

@ P̂i ,Ŝj #50, @Ŝi ,Ŝj #5 i« i jk Ŝk . ~A3!

The Galilean group and its algebra act in the spaceH. As is
well known, classical Galilean transformations have the f
lowing form:

x85Rx1a2vt, ~A4!

t85t1t, ~A5!

wherev denotes the velocity of the frame (x8,t8) with re-
spect to the frame (x,t) and we adopt the passive point
view. In the Hilbert space, the rotationR is generated by the
total angular momentumĴ, the translationa is generated by
the momentumP̂, the time translation is generated by th
HamiltonianĤ, and Galilean boost is generated byĜ. The
basic commutation relations of the Galilean algebra~in fact
its central extension! read

@ P̂i ,P̂j #50, @ P̂i ,Ĝj #5 id i j MI , ~A6!

@Ĝi ,Ĝj #50, @Ĥ,P̂i #50, ~A7!

@ Ĵi ,Ĵ j #5 i« i jk Ĵk , @Ĥ,Ĝi #5 i P̂ i , ~A8!

@ Ĵi ,P̂j #5 i« i jk P̂k , @Ĥ,Ĵi #50, ~A9!

@ Ĵi ,Ĝj #5 i« i jkĜk , i , j ,k51,2,3, ~A10!

whereM is the mass of the system. All generators of Galile
transformations can be expressed by observables~A1!–~A3!.
We have

Ĵ5Ŝ1X̂3P̂, Ĝ5tP̂2M X̂. ~A11!

Moreover, in the case of a free particleĤ5P̂2/2M .
Irreducible unitary ray representations of the Galile

group are determined by two numbers: the eigenvalue ofŜ2,
which has the forms(s11), wheres is an integer or a half-
01210
e-
g

re
y

l-

n

integer, and the non-negative real constantM. In the sequel,
we will use the Schro¨dinger picture. SinceĜ depends on
time explicitly, this dependence remains also in the Sch¨-
dinger picture. In momentum representation, we will den
the basis vectors of the carrier space of the determined
ducible unitary representation of the Galilean group~the
space of states of the system at timet) by uk,m& t , wherek is
an eigenvalue of momentum operatorP̂, and m is the spin
component along thez axis. We will denote elements of th
unitary representation of the Galilean group as follows:

U~a!5eia•P̂, U~v!5eiv•Ĝ,

U~R!5ei w• Ĵ, U~t!5ei tĤ, ~A12!

wherea, v, w, andt are parameters corresponding to pu
translations, Galilean boosts, rotations, and time translat
respectively. The action of operators~A12! on basis vectors
is the following:

U~a!uk,m& t5eia•k uk,m& t , ~A13!

U~R!uk,m& t5Ds~R!m8m uRk,m8& t , ~A14!

Ut~v!uk,m& t5eit [v•k2(Mv2/2)] uk2Mv,m& t , ~A15!

whereDs(R) is the spins irreducible unitary representatio
of SU(2). Moreover, we assume that

ei a•X̂ uk,m& t5uk1a,m& t . ~A16!

The phase factors in Eqs.~A15! and ~A16! determine the
following form of the vectoruk,m& t1t :

uk,m& t1t5e2 i t(k2/2M )uk,m& t . ~A17!

We denote eigenvectors of the position operatorX̂ by
ux,m& t . We have

X̂ux,m& t5xux,m& t , ~A18!

ux,m& t5
1

~2p!3/2E d3k e2 ik•x uk,m& t . ~A19!

The Galilean group and operatorei a•X̂ act on vectorsux,m& t
as follows:

U~a!ux,m& t5ux2a,m& t , ~A20!

U~R!ux,m& t5Ds~R!m8m uRx,m8& t , ~A21!

Ut~v!ux,m& t5eiM [( tv2/2)2v•x)] ux2tv,m& t , ~A22!

ei a•X̂ ux,m& t5ei a•x ux,m& t . ~A23!

In discussion of EPR-like experiments, it is convinient to u
a position basis in which vectors are numbered by spin co
ponent along an arbitrary axis~not necessarily thez axis!.
Thus letn be an arbitrary unit vector. Observablen•Ŝ mea-
9-7
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sures spin component along an axis in directionn. Since
n•Ŝ commutes withX̂, these observables possess a comm
set of eigenvectors. We denote them byux,n,l&,

~n•Ŝ! ux,n,l&5~n•S!slux,n,s&5l ux,n,l&, ~A24!

X̂ux,n,l&5xux,n,l&, ~A25!

where values ofl are the same as values ofm (l52s,
2s11, . . . ,s) andS denotes the generators of the repres
tation D s. If we parametrizen explicitly as follows:

n5~sinu cosw,sinu sinw,cosu!, ~A26!

we get

ux,n,l&5Ds~eiuv•S!l8lux,l8& t , ~A27!

where the vectorv is orthogonal ton and

v5~sinw,2cosw,0!. ~A28!

We define also the vectorsuk,n,l& as follows:

uk,n,l&5
1

~2p!3/2E d3k eik•x ux,n,l&. ~A29!
v

A

01210
n

-

One can also check that the following relations hold:

^y,mux,n,l&5d~x2y!Ds~eiuv•S!ml , ~A30!

^p,mux,n,l&5
e2 ip•x

~2p!3/2
Ds~eiuv•S!ml . ~A31!

The Galilean group and operatorei a•X̂ act on the vectors
ux,n,l& as follows:

U~a!ux,n,l&5ux2a,n,l&, ~A32!

U~R!ux,n,l&5Ds~R!l8l uRx,Rn,l8&, ~A33!

Ut~v!ux,n,l&5eiM [( tv2/2)2v•x] ux2tv,n,l&, ~A34!

ei a•̂X ux,n,l&5ei a•x ux,n,l&. ~A35!

In the cases5 1
2 , we haveS5 1

2 s, so

ux,n, 1
2 &5cos~u/2! ux, 1

2 &1e2 iw sin~u/2! ux,2 1
2 &,

~A36!

ux,n,2 1
2 &52eiw sin~u/2! ux, 1

2 &1cos~u/2!ux,2 1
2 &.
~A37!
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