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Classification of multipartite entangled states by multidimensional determinants
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We find that multidimensional determinants ‘‘hyperdeterminants,’’ related to entanglement measures~the
so-called concurrence, or 3-tangle for two or three qubits, respectively!, are derived from a duality between
entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy
of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that
by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially
ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished
as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell’s inequalities in
general~e.g., in then>4 qubits!, contrary to the widely known bipartite or three-qubit cases. It suggests that
not only are they never locally interconvertible with the majority of multipartite entangled states, but they
would have no grounds for the canonicaln-partite entangled states. Our classification is also useful for the
mixed states.

DOI: 10.1103/PhysRevA.67.012108 PACS number~s!: 03.65.Ud, 03.67.2a, 02.10.Xm, 02.40.Pc
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I. INTRODUCTION

Entanglement is the quantum correlation exhibiting no
local ~nonseparable! properties. It is supposed to be nev
strengthened, on average, by local operations and clas
communication~LOCC!. In particular, entanglement in mu
tiparties is of fundamental interest in quantum many-bo
theory @1#, and makes quantum information processi
~QIP!, e.g., distillation protocol, more efficient than relyin
on entanglement only in two parties@2#. Here, we classify
and characterize the multipartite entanglement that has y
be understood, compared with the bipartite one.

For the single copy of bipartite pure states onH(Ck11)
^ H(Ck11), we are interested in whether a stateuC& can
convert to another stateuF& by LOCC. It is convenient to
consider the Schmidt decomposition,

uC&5 (
i 1 ,i 250

k

ai 1 ,i 2
u i 1& ^ u i 2&5(

j 50

k

l j uej& ^ uej8&, ~1!

where the computational basisu i j& is transformed to a loca
biorthonormal basisuej&,uej8&, and the Schmidt coefficient
l j can be taken asl j>0. We call the number of nonzerol j
the ~Schmidt! local rankr. Then the LOCC convertibility is
given by a majorization rule between the coefficientsl j of
uC& and those ofuF& @3#. This suggests that the structure
entangled states consists of partially ordered, continu
classes labeled by a set ofl j . In particular,uC& and uF&
belong to the same class under the LOCC classificatio
and only if all continuousl j coincide.

Suppose we are concerned with a coarse-grained cla
cation by the so-called stochastic LOCC~SLOCC! @4,5#,
where we identifyuC& anduF& that are interconvertible bac
and forth with~maybe different! nonvanishing probabilities
This is becauseuC& and uF& are supposed to perform th
same tasks in QIP although their probabilities of success
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fer. Later, we find that this SLOCC classification is still fin
grained to classify the multipartite entanglement. Mathem
cally, two states belong to the same class under SLOC
and only if they are converted by aninvertible local opera-
tion having a nonzero determinant@5#. Thus the SLOCC
classification is equivalent to the classification of orbits
the natural action: direct product of general linear grou
GLk11(C)3GLk11(C) @6#. The local rankr in Eq. ~1! @7#,
equivalently the rank ofai 1 ,i 2

, is found to be preserved unde

SLOCC. A setSj of states of the local rank< j is a closed
subvariety under SLOCC, andSj 21 is the singular locus of
Sj . This is how the local rank leads to an ‘‘onion’’ structur
~mathematically the stratification!:

Sk11.Sk.•••.S1.S05B, ~2!

and Sj2Sj 21( j 51, . . . ,k11) give k11 classes of en-
tangled states. Since the local rank can decrease bynonin-
vertible local operations, i.e., general LOCC@4,5,8#, these
classes are totally ordered such that, in particular, the ou
most generic setSk112Sk is the class of maximally en
tangled states and the innermost setS1(5S12S0) is that of
separable states.

For the single copy of multipartite pure states,

uC&5 (
i 1 , . . . ,i n50

k1, . . . ,kn

ai 1 , . . . ,i n
u i 1& ^ •••^ u i n&, ~3!

there are difficulties in extending the Schmidt decomposit
for a multiorthonormal basis@9#. Moreover, an attempt to us
the tensor rank ofai 1 , . . . ,i n

@10# falls down sinceSj , defined
by it, is not always closed@11,12#. For three qubits, Du¨r
et al. showed that SLOCC classifies the whole statesM into
finite classes, and in particular there exist two inequivale
Greenberger-Horne-Zeilinger~GHZ! and W, classes of the
tripartite entanglement@5#. They also pointed out that thi
case is exceptional since the action GLk111(C)3•••

3GLkn11(C) has infinitely manyorbits in general~e.g., for

n>4).
©2003 The American Physical Society08-1
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AKIMASA MIYAKE PHYSICAL REVIEW A 67, 012108 ~2003!
In this paper, we classify multipartite entanglement in
unified manner based on the hyperdeterminant. The ad
tages are three fold.

~i! This classification is equivalent to the SLOCC clas
fication when SLOCC has finitely many orbits. So it nat
rally includes the widely known bipartite and three-qu
cases.

~ii ! In the multipartite case, we need further SLOCC
variants in addition to the local ranks. For example, in
three-qubit case@5#, the 3-tanglet, the absolute value of the
hyperdeterminant@see Eq.~10!#, is utilized to distinguish
GHZ andW classes. This work clarifies why the 3-tanglet
appears and how these SLOCC invariants are related to
hyperdeterminant in general.

~iii ! Our classification is also useful to multipartite mixe
states. A mixed stater can be decomposed as a convex co
bination of projectors onto pure states. Considering howr
needs at least the outer class in the onion structure of
states, we can also classify multipartite mixed states
totally ordered classes~for details, see Appendix B!. We con-
centrate on the pure states here.

The rest of the paper is organized as follows. In Sec. I
duality between separable states and entangled states
troduced. We find that the hyperdeterminant, associate
this duality, and its singularities lead to the SLOCC-invaria
onionlike structure of multipartite entanglement. The char
teristics of the hyperdeterminant and its singularities are
plained in Sec. III. Classifications of multipartite entangl
states are exemplified in Sec. IV so as to reveal how they
ordered under SLOCC. Finally, the conclusion is given
Sec. V.

II. DUALITY BETWEEN SEPARABLE STATES
AND ENTANGLED STATES

In this section, we find that there is a duality between
set of separable states and that of entangled states.
duality derives the hyperdeterminant our classification
based on.

A. Preliminary: Segrè variety

To introduce our idea, we first recall the geometry of pu
states. In a complex~finite! (k11)-dimensional Hilbert
spaceH(Ck11), let uC& be a ~not necessarily normalized!
vector given by (k11)tuple of complex amplitudesxj ( j
50, . . . ,k)PCk112$0% in a computational basis. Th
physical state inH(Ck11) is a ray, an equivalence class
vectors up to an overall nonzero complex number. Then
set of rays constitutes the complex projective spaceCPk @the
projectivization ofH (Ck11)], andxª(x0 :•••:xk), consid-
ered up to a complex scalar multiple, gives homogene
coordinates inCPk.

For a composite system that consists ofH(Ck111) and
H(Ck211), the whole Hilbert space is the tensor produ
H(Ck111) ^ H(Ck211), and the associated projective space
M5CP(k111)(k211)21. A set X of the separable states is th
mere Cartesian productCPk13CPk2, whose dimension
k11k2 is much smaller than that of the whole spaceM,
01210
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(k111)(k211)21. This X is a closed, smooth, algebra
subvariety~Segrèvariety! defined by the Segre` embedding
into CP(k111)(k211)21 @12,13#,

CPk13CPk2
�CP(k111)(k211)21,

„~x0
(1) :•••:xk1

(1)!,~x0
(2) :•••:xk2

(2)!…

°~x0
(1)x0

(2) :•••:x0
(1)xk2

(2) :x1
(1)x0

(2) :•••:xk1

(1)xk2

(2)!.

~4!

Denoting homogeneous coordinates inCP(k111)(k211)21 by
bi 1 ,i 2

5xi 1
(1)xi 2

(2)(0< i j<kj ), we find that the Segre` variety X

is given by the common zero locus ofk1(k111)k2(k2
11)/4 homogeneous polynomials of degree 2:

bi 1 ,i 2
bi

18 ,i
28
2bi 1 ,i

28
bi

18 ,i 2
, ~5!

where 0< i 1, i 18<k1, and 0< i 2, i 28<k2. Note that this con-
dition implies that all 232 minors of ‘‘matrix’’ bi 1 ,i 2

equal
0; i.e., the rank ofbi 1 ,i 2

is 1. Thus we haveX5S1, which
agrees with the SLOCC classification by the local rank in
bipartite case.

Now consider the multipartite Cartesian productX
5CPk13•••3CPkn in the Segre` embedding into M
5CP(k111)•••(kn11)21. Because this Segre` variety X is
the projectivization of a variety of the matricesbi 1 , . . . ,i n

5xi 1
(1)
•••xi n

(n) , it gives a set of completely separable states

H(Ck111) ^ •••^ H(Ckn11). By another Segre` embedding,
sayX85CP(k111)(k211)213CPk33•••3CPkn, we also dis-
tinguish a set of separable states where only first and sec
parties can be entangled; i.e., when we regard first and
ond parties as one party, an element of this set is comple
separable for ‘‘n21’’ parties. This is how, also in the multi
partite case, we can classify all kinds ofseparablestates,
typically lower-dimensional sets. Note that, in the multipa
tite case, this check for the separability is more strict than
check by local ranks@14#.

B. Main idea: Duality

We rather want to classifyentangledstates, typically
higher-dimensional complementary sets of separable sta
Our strategy is based on the duality in algebraic geometr
hyperplane inCP forms the point of a dual projective spac
CP* , and conversely every pointp of CP is tied to a hyper-
planep~ in CP* as the set of all hyperplanes inCP passing
throughp. Remarkably, the projective duality between pr
jective subspaces, like the above example, can be exte
to an involutive correspondence between irreducible al
braic subvarieties inCP and CP* . So we define a projec
tively dual ~irreducible! variety X~,CP* as the closure of
the set of all hyperplanes tangent to the Segre` variety X.

Let us observe~and see the reason later! that, in the bi-
partite case seen in Sec. I, the varietySk of the degenerate
(k11)3(k11) matricesA5ai 1 ,i 2

is projectively dual to

the varietyS15X of the matricesB5bi 1 ,i 2
5xi 1

(1)xi 2
(2) . That

is, Sk is the dual varietyX~. Following an analogy with a
two-dimensional~bipartite! case, ann-dimensional matrix
A5ai 1 , . . . ,i n

is calleddegenerateif and only if it ~precisely,
8-2
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CLASSIFICATION OF MULTIPARTITE ENTANGLED . . . PHYSICAL REVIEW A67, 012108 ~2003!
its projectivization! lies in the projectively dual varietyX~

of the Segre` variety X. In other words, identifying the spac
of n-dimensional matrices with its dual by means of the pa
ing,

F~A,B!5 (
i 1 , . . . ,i n50

k1, . . . ,kn

ai 1 , . . . ,i n
bi 1 , . . . ,i n

, ~6!

we see thatA is degenerate if and only if its orthogon
hyperplaneF(A,B)50 is tangent toX at some nonzero poin
x5(x(1), . . . ,x(n)). Analytically, a set of equations,

F~A,x!5 (
i 1, . . . ,i n50

k1, . . . ,kn

ai 1, . . . ,i n
xi 1

~1!•••xi n
~n!50,

]

]xi j

( j )
F~A,x!50 for all j ,i j

~7!

( j 51, . . . ,n and 0< i j<kj ), has at least one nontrivial so
lution x5(x(1), . . . ,x(n)) of every x( j )Þ0, and thenx is
called a critical point. The above condition is also equival
to saying that the kernel kerF of F(A,x) is not empty, where
kerF is the set of pointsx5(x(1), . . . ,x(n))PX such that, in
every j 051, . . . ,n,

F„A,~x(1), . . . ,x( j 021),z( j 0),x( j 011), . . . ,x(n)!…50 ~8!

for the arbitrary z( j 0).
In the case ofn52, the condition for Eq.~7! coincides

with the usual notion of degeneracy, and means thatA does
not have the full rank. It shows thatX~ is nothing butSk . In
particular,X~ ~defined by this condition! is of codimension 1
and is given by the ordinary determinant detA50, if and
only if A is a square (k15k25k) matrix. In the
n-dimensional case, ifX~ is a hypersurface~of codimension
1!, it is given by the zero locus of a unique~up to sign!
irreducible homogeneous polynomial overZ of ai 1 , . . . ,i n

.
This polynomial is the hyperdeterminant introduced by C
ley and is denoted by DetA. As usual, ifX~ is not a hyper-
surface, we set DetA to be 1.

Remember that, in thebipartite case, we classify the
statesPSk112Sk5M2X~ as the generic entangled state
the statesPSk2Sk215X~2Xsing

~ as the next generic en
tangled states, and so on. Likewise, we aim to classify
multipartite entangled states into the onion structure by
dual varietyX~ (DetA50), its singular locusXsing

~ , and so
on ~i.e., by every closed subvariety!, instead of the tenso
rank @10#.

III. HYPERDETERMINANT AND ITS SINGULARITIES

In order to classify multipartite entanglement into t
SLOCC-invariant onion structure, we explore the dual va
ety X~ ~zero hyperdeterminant! and its singular locus in this
section.
01210
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A. Hyperdeterminant

We utilize the hyperdeterminant, the generalized deter
nant for higher-dimensional matrices, by Gelfandet al.
@15,16#. Its absolute value is also known as an entanglem
measure, the concurrenceC @17#, or 3-tanglet @18#, for the
two-, three-qubit pure case, respectively.

C52uDetA2u52udetAu52ua00a112a01a10u, ~9!

t54uDetA3u54ua000
2 a111

2 1a001
2 a110

2 1a010
2 a101

2 1a100
2 a011

2

22~a000a001a110a1111a000a010a101a111

1a000a100a011a1111a001a010a101a110

1a001a100a011a1101a010a100a011a101!

14~a000a011a101a1101a001a010a100a111!u. ~10!

The following useful facts are found in Ref.@16#. Without
loss of generality, we assume thatk1>k2>•••>kn>1. The
n-dimensional hyperdeterminant DetA of format (k111)
3•••3(kn11) exists, i.e.,X~ is a hypersurface if and only
if a ‘‘polygon inequality’’ k1<k21•••1kn is satisfied. For
n52, this condition is reduced tok15k2 as desired, and
DetA coincides with detA. The matrix format is called
boundary if k15k21•••1kn and interior if k1,k21•••

1kn . Note that~i! the boundary format includes the ‘‘bipar
tite cut’’ between the first party and the others so that it
mathematically tractable;~ii ! the interior format includes the
n>3qubit case. We treat hereafter the format where
polygon inequality holds andX~ is the largest closed subva
riety, defined by the hypersurface DetA50.

DetA is relatively invariant~invariant up to constant! un-
der the action of GLk111(C)3•••3GLkn11(C). In particu-
lar, interchanging two parallel slices~submatrices with some
fixed directions! leaves DetA invariant up to sign, and DetA
is a homogeneous polynomial in the entries of each sl
Since it is ensured thatX~, Xsing

~ , and further singularities
are invariant under SLOCC, our classification is equival
to or coarser than the SLOCC classification. Later, we
that the former and the latter correspond to the case wh
SLOCC gives finitely and infinitely many classes, respe
tively.

B. Schläfli’s construction

It would not be easy to calculate DetA directly by its
definition that Eq.~7! has at least one solution. Still, th
Schläfli’s method enables us to construct DetAn of format 2n

(n qubits! by induction onn @15,16,19#.
For n52, by definition DetA25detA5a00a112a01a10.

Suppose DetAn , whose degree of homogeneity isl, is given.
Associating an (n11)-dimensional matrixai 0 ,i 1 , . . . ,i n

( i j

50,1) to a family of n-dimensional matricesÃ(x)
5( i 0

ai 0 ,i 1 , . . . ,i n
xi 0

linearly depending on the auxiliary vari

ablexi 0
, we have DetÃ(x)n . Due to Theorems 4.1 and 4.2 o

Ref. @16#, the discriminantD of DetÃ(x)n gives DetAn11
with an extra factorRn . The Sylvester formula of the dis
criminantD for binary forms enables us to write DetAn11 in
terms of the determinant of order 2l 21;
8-3



DetAn115D„DetÃ~x!n…/Rn5
1

RnclU c0 c1 ••• cl 22 cl 21 cl ••• 0

0 c0 ••• ••• cl 22 cl 21 ••• 0

A � A � A

0 0 ••• c0 c1 ••• ••• cl

1c1 2c2 ••• ••• lc l 0 ••• 0

A � A � A
U , ~11!
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where eachcj is the coefficient ofx0
l 2 j x1

j in DetÃ(x)n , i.e.,

cj5
1

~ l 2 j !! j !

] l

]x0
l 2 j]1

j DetÃ~x!n .

Note that because forn52 or 3, the extra factorRn is just
a nonzero constant, accordingly DetA3,4 for the three or four
qubits is readily calculated, respectively. It would be instru
tive to check that DetA3 in Eq. ~10! is obtained in this way.
On the other hand, forn>4, Rn is the Chow form~related
resultant! of irreducible components of the singular loc
Xsing

~ . These are due to the fact thatXsing
~ has codimension 2

in M for any format of the dimensionn>3 except for the
format 23 ~three-qubit case!, that was conjectured in Re
@15# and was proved in Ref.@20#. So we have to exploreXsing

~

not only to classify entangled states in then qubits, but to
calculate DetAn11 inductively. Although DetAn>5 has yet to
be written explicitly, only its degreel of homogeneity is
known~in Corollary 2.10 of Ref.@16#! to grow very fast as 2,
4, 24, 128, 880, 6816, 60 032, 589 312, 6 384 384 fon
52,3, . . .,10.

C. Singularities of the hyperdeterminant

We describe the singular locus of the dual varietyX~.
The technical details are given in Ref.@20#. It is known that,
for the boundary format, the next largest closed subvar
Xsing

~ is always an irreducible hypersurface inX~; in con-

FIG. 1. Two types of singularities ofX~. Xnode
~ corresponds to

the bitangent ofX, where both tangencies are of the first order.Xcusp
~

corresponds to the tangent at an inflection point ofX, where its
tangency is of the second order.
01210
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trast, for the interior one,Xsing
~ has generally two closed ir

reducible components of codimension 1 inX~, node-type
(Xnode

~ ) and cusp-type (Xcusp
~ ) singularities. The rest of this

section can be skipped for the first reading. It is also illu
trated for the three-qubit case in Appendix A.

First,Xnode
~ is the closure of the set of hyperplanes tang

to the Segre` variety X at more than one point~cf. Fig. 1!.
Xnode

~ can be composed of closed irreducible subvarie
Xnode

~ (J) labeled by the subsetJ,$1, . . . ,n%, including B.
Indicating that two solutionsx5(x(1), . . . ,x( j ), . . . ,x(n)) of
Eq. ~7! coincide for j PJ, the labelJ distinguishes the pat
tern in these solutions. In order to rewriteXnode

~ (J), let us
pick up a pointx0(J) such that its homogeneous coordinat
xi j

( j )5d i j ,0
for j PJ and d i j ,kj

for j P” J. It is convenient to

label the positions of 1 in eachx( j ) by a multiindex
@ i 1 , . . . ,i n#. For example, x0(1) is labeled by
@0,k2 , . . . ,kn# and x0(1, . . . ,n) is just written byx0. Ac-
cording to Eq.~7!, X~ux0(J) , tangent toX at x0(J), consists
of the matricesA of all ai

18 , . . . ,i
n8
50 such that@ i 18 , . . . ,i n8#

differs from@ i 1 , . . . ,i n# of x0(J) in at most one index. Then
we can defineXnode

~ (J) as

Xnode
~ ~J!5~X~ux0ùX~ux0(J)!•G, ~12!

whereG5GLk1113•••3GLkn11 acts onM from the right
and the bar stands for the closure.

Second,Xcusp
~ is the set of hyperplanes having a critic

point that is not a simple quadratic singularity~cf. Fig. 1!.
Precisely, the quadric part ofF(A,x) at x0 is a matrix

y( j ,i j ),( j 8,i j 8)5(]2/]xi j

( j )]xi j 8

( j 8))F(A,x0), where the pairs (j ,i j )

and (j 8,i j 8)(1< i j<kj ,1< i j 8<kj 8) are the row and the col
umn index, respectively. Denoting byXcusp

~ ux0 the variety of
the Hessian dety50 in X~ux0, we can defineXcusp

~ as

Xcusp
~ 5Xcusp

~ ux0•G. ~13!

This Xcusp
~ is already closed without taking the closure.

IV. CLASSIFICATION OF MULTIPARTITE
ENTANGLEMENT

According to Secs. II and III, we illustrate the classific
tion of multipartite pure entangled states for typical case
8-4
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CLASSIFICATION OF MULTIPARTITE ENTANGLED . . . PHYSICAL REVIEW A67, 012108 ~2003!
A. Three-qubit „format 2 3
… case

The classification of three qubits under SLOCC has b
already done in Refs.@5,6#. Surprisingly, Gelfandet al. con-
sidered the same mathematical problem by DetA3 in example
4.5 of Ref. @16#. Our idea is inspired by this example. W
complement the Gelfandet al.’s result, analyzing addition-
ally the singularities ofX~ in detail. The dimensions, repre
sentatives, names, and varieties of the orbits are summa
as follows. The basis vectoru i 1& ^ u i 2& ^ u i 3& is abbreviated to
u i 1i 2i 3&.
dim 7: u000&1u111&, GHZ PM (5CP7)2X~;
dim 6: u001&1u010&1u100&, WPX~2Xsing

~ 5X~2Xcusp
~ ;

dim 4: u001&1u010&,u001&1u100&,u010&1u100&, bisepa-
rableBj

PXnode
~ ( j )2X for j 51,2,3, whereXnode

~ ( j )5CPj th
1 3CP3

are three closed irreducible components ofXsing
~ 5Xcusp

~ ;
dim 3: u000&, completely separableS
PX5ù j 51,2,3Xnode

~ ( j )5CP13CP13CP1.
G5GL23GL23GL2 has the onion structure of six orbit

on M ~see Fig. 2!, by excluding the orbitB@5Xnode
~ (B)#.

The dual varietyX~ is given by DetA350 @cf. Eq. ~10!#. Its
dimension is 72156. The outside ofX~ is generic tripar-
tite entangled class of the maximal dimension, whose re
sentative is GHZ. This suggests that almost any state in
three qubits can be locally transformed into GHZ with
finite probability and vice versa. Next, we can identifyXsing

~

asXcusp
~ , which is the union of three closed irreducible su

varietiesXnode
~ ( j ) for j 51,2,3 @20# ~also see Appendix A!.

For example,Xnode
~ (1) means by definition that, in additio

to the condition ofX~ in Sec. II B, there exists some nonze
x(1) such thatF(A,x)50 for anyx(2),x(3); i.e., a set of linear
equations @yi 2 ,i 3

(x(1))5(]2/]xi 2
(2)]xi 3

(3))F(A,x)50 for i j

50,1] has a nontrivial solutionx(1). This indicates that the
‘‘bipartite’’ matrix

S a000 a001 a010 a011

a100 a101 a110 a111
D ~14!

FIG. 2. The onionlike classification of SLOCC orbits in th
three-qubit case. We utilize a duality between the smallest clo
subvarietyX and the largest closed subvarietyX~. The dual variety
X~ ~zero hyperdeterminant! and its singularities constitute SLOCC
invariant closed subvarieties, so that they classify the multipa
entangled states~SLOCC orbits!.
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never has the full rank@i.e., six 232 minors in Eq.~14! are
zero#. We can identifyXnode

~ (1) as the setCP1st
1 3CP3, seen

in Sec. II A, of biseparable states between the first party
the rest of the parties. Its dimension is 11354. Likewise,
Xnode

~ ( j ) for j 52,3 gives the biseparable class for the seco
or third party, respectively. So, the class ofX~2Xsing

~ is
found to be tripartite entangled states, whose representa
is W. We can intuitively see that, among genuine tripart
entangled states,W is rare, compared to GHZ@5#. Finally, the
intersection ofXnode

~ ( j ) is the completely separable classS,
given by the Segre` variety X of dimension 3. Another intui-
tive explanation about this procedure is seen in Appendix

Now we clarify the relationship of six classes bynonin-
vertible local operations. Because noninvertible local ope
tions cause the decrease in local ranks@21#, the partially
ordered structure of entangled states in the three qubits
cluded in Fig. 4, appears. Two inequivalent tripartite e
tangled classes, GHZ andW, have the same local rank
(2,2,2) for each party, so that they are not interconvertible
the noninvertible local operations~i.e., general LOCC!. Two
classes hold different physical properties@5#; the GHZ rep-
resentative state has the maximal amount of generic tripa
entanglement measured by the 3-tanglet}uDetA3u, while
the W representative state has the maximal amount of~aver-
age! two-partite entanglement distributed over three part
~see also Ref.@22#!. Under LOCC, a state in these tw
classes can be transformed into any state in one of the t
biseparable classesBj ( j 51,2,3), where thej th local rank is
1 and the others are 2. Three classesBj never convert into
each other. Likewise, a state inBj can be locally transformed
into any state in the completely separable classS of local
ranks (1,1,1).

This is how the onionlike classification of SLOCC orbi
reveals that multipartite entangled classes constitute the
tially ordered structure. It indicates significant differenc
from the totally ordered one in the bipartite case.~i! In the
three-qubit case, all SLOCC invariants we need to classif
the hyperdeterminant DetA3 in addition to local ranks.~ii !
Although noninvertible local operations generally mean
transformation further inside the onion structure, an ou
class cannot necessarily be transformed into theneighboring
inner class. A good example is given by GHZ andW, as we
have just seen.

B. Format 3Ã2Ã2 case

Before proceeding to then>4 qubit case, we drop in the
format 33232, which would give an insight into the struc
ture of multipartite entangled states when each party ha
system consisting of more than two levels. This case is
teresting since on one hand~contrary to the three-qubit case!,
it is typical that GHZ andW are included inXsing

~ ; on the
other hand~similar to the bipartite or three-qubit cases!,
SLOCC has still finite classes so that it becomes ano
good test for the equivalence to the SLOCC classificati
Besides, it is a boundary format, so that several subvarie
can be explicitly calculated, and enables us to analyze
tanglement in the qubits system using an auxiliary level, l
ion traps.

d

e
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dim 11: u000&1u101&1u110&1u211& PM (5CP11)2X~;
dim 10: u000&1u101&1u211& PX~2Xsing

~ 5X~2Xnode
~ (1);

dim 9: u000&1u111&, GHZ PXsing
~ @5Xnode

~ (1)#2Xcusp
~ ;

dim 8: u001&1u010&1u100&, WPXcusp
~ 2ø j 5B,2,3Xnode

~ ( j );
dim 6: u001&1u100&,u010&1u100&, biseparable B2 ,B3

PXnode
~ (2)2X,Xnode

~ (3)2X;
dim 5: u001&1u010&, biseparableB1 PXnode

~ (B)2X;
dim 4: u000&, completely separableS
PX5CP23CP13CP1.

The onion structure consists of eight orbits onM under
SLOCC ~see Fig. 3!. Generic entangled states of the out
most class are given by nonzero DetA that can be calculated
in the boundary format as the determinant associated w
the Cayley-Koszul complex. Although this is one of the r
cent successes of Gelfandet al. for generalized discrimi-
nants, we avoid its detailed explanation here. According
Theorem 3.3 of Ref.@16#, we have

DetA5m1m42m2m3 ~15!

of degree 6, wheremj ( j 51,2,3,4) is the 333 minor of

S a000 a001 a010 a011

a100 a101 a110 a111

a200 a201 a210 a211

D ~16!

without thej th column, respectively. Next, it is characterist
that Xsing

~ is Xnode
~ (1) @20#. Similar to the three-qubit case i

Sec. IV A,Xnode
~ (1) means that the ‘‘bipartite’’ matrix in Eq

~16! does not have the full rank, i.e., all four 333 minorsmj
in Eq. ~16! are zero. The SLOCC orbits that appear ins
Xsing

~ are essentially the same as the three-qubit case.
Thus we obtain the partially ordered structure of multip

tite entangled states as in Fig. 4. The tripartite entanglem
consists of four classes. Because the classes ofM2X~

~whose representative isu000&1u101&1u110&1u211&) and
that of X~2Xsing

~ ~whose representative isu000&1u101&
1u211&) have the same local ranks (3,2,2), they do not c
vert each other in the same reason as GHZ andW do not.

FIG. 3. The onionlike classification of SLOCC orbits in th
33232 format. Although this resembles Fig. 2 in the order
SLOCC orbits~two orbits are added outside!, it is worthwhile to
note that singularities ofX~, which classify the SLOCC orbits
have a different order.
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However, the former two classes of the local ranks (3,2
can convert to the latter two classes of (2,2,2) by noninv
ible local operations~i.e., LOCC!. And we can ‘‘degrade’’
these tripartite entangled classes into the biseparable or c
pletely separable classes by LOCC in a fashion similar to
three qubits.

We notice that three grades in the three-qubit c
changed to four grades in the 33232 ~one-qutrit and two-
qubit! case. In general, the partially ordered structure
comes ‘‘higher’’ as the system of each party becomes
higher-dimensional one. We also see how the tensor r
@10# is inadequate for the onionlike classification of SLOC
orbits.

C. nÐ4 Qubit „format 2 n
… case

Further in then>4 qubit case, our classification work
The outermost classM (5CP2n21)2X~ of genericn-partite
entangled states is given by DetAnÞ0. In n54, DetA4 of
degree 24 is explicitly calculated by the Schla¨fli’s construc-
tion in Sec. III B. It would be suggestive to transform an
generic four-partite state (DetA4Þ0) to the ‘‘representative’’
of the outermost class by invertible local operations,

a~ u0000&1u1111&)1b~ u0011&1u1100&)1g~ u0101&

1u1010&)1d~ u0110&1u1001&), ~17!

where the continuous complex coefficientsa,b,g,d should
satisfy

DetA45a2b2g2d2~a1b1g1d!2~a1b1g2d!2~a1b

2g1d!2~a2b1g1d!2~2a1b1g1d!2~a1b

2g2d!2~a2b1g2d!2~a2b2g1d!2Þ0. ~18!

Thus three complex parameters remain in the outermost c
~since we consider rays rather than normalized state vect!.
This means that there are infinitely many same-dimensio
SLOCC orbits in the four qubits, and the SLOCC orb
never locally convert to each other when their sets of

FIG. 4. The partially ordered structure of multipartite pure e
tangled states in the 33232 format, including the three-qubit case
Each class, corresponding to the SLOCC orbit, is labeled by
representative, local ranks, and the name. Noninvertible local
erations, indicated by dashed arrows, degrade higher entan
classes into lower entangled ones.
8-6
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parameters are distinct. It is also the case for then.4 qubits.
Note that, inn54, this outermost classM2X~ corresponds
to the family of generic states in Verstraeteet al. classifica-
tion of the four qubits by a different approach~generalizing
the singular-value decomposition in matrix analysis to co
plex orthogonal equivalence classes!, andX~ contains other
special families@23#.

The next outermost class isX~2Xsing
~ . In the four qubits,

Xsing
~ is shown to consist of eight closed irreducible comp

nents of codimension 1 inX~; Xcusp
~ ,Xnode

~ (B), and six
Xnode

~ ( j 1 , j 2) for 1< j 1, j 2<4 @20#. They neither contain no
are contained by each other. Their intersections also g
~finitely! many lower-dimensional genuine four-partite e
tangled classes. Since the four-partite entangled classes
essarily have the same local ranks (2,2,2,2), these classe
not interconvertible by noninvertible local operations~i.e.,
any LOCC!. As typical examples, GHZ~the maximally en-
tangled state in Bell’s inequalities@24#!,

uGHZ&5u0000&1u1111& ~19!

~i.e., a00005a1111Þ0 and the others are 0) is included in th
intersection ofXnode

~ (B) and six Xnode
~ ( j 1 , j 2), but is ex-

cluded fromXcusp
~ . In contrast,W,

uW&5u0001&1u0010&1u0100&1u1000&, ~20!

~i.e., a00015a00105a01005a1000Þ0, and the others are 0) i
included in the intersection ofXcusp

~ and sixXnode
~ ( j 1 , j 2) but

is excluded fromXnode
~ (B).

In the n.4 qubits,Xsing
~ is shown to consist of just two

closed irreducible componentsXcusp
~ andXnode

~ (B) @20#. We
find that GHZ andW are contained not only inX~(DetAn

50) but in Xsing
~ ; i.e., they have nontrivial solutions in Eq

~7!, satisfying the singular conditions. They correspond
different intersections of further singularities, similar to t
four qubits. In other words, they are peculiar, living in th
border dimensions between entangled states and sepa
ones.

In brief, the dual varietyX~ and its singularities lead to
the coarseonionlike classification of SLOCC orbits, whe
SLOCC gives infinitely many orbits. The partially ordere
structure of multipartite pure entangled states becom
‘‘wider’’ as the number n of parties increases. Althoug
many inequivalentn-partite entangled classes appear in thn
qubits, they never locally convert to each other, as obser
in Ref. @5#. In particular, the majority of then-partite en-
tangled states never convert to GHZ~or W) by LOCC, and
the opposite conversion is also not possible. This is a sig
cant difference from the bipartite or three-qubit case, wh
almost any entangled state and the maximally entangled
~GHZ! can convert to each other by LOCC with nonvanis
ing probabilities.

V. CONCLUSION

We have presented the onionlike classification of mu
partite entanglement~SLOCC orbits! by the dual varietyX~,
i.e., the hyperdeterminant DetA. It leads to the partially or-
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dered structure, such as Fig. 4, of inequivalent multipar
entangled classes of pure states, which is significantly dif
ent from the totally ordered one in the bipartite case. Lo
ranks are not enough to distinguish these classes, and
need to calculate SLOCC invariants associated with DetA. In
other words, the generic entangled class of the maximal
mension~the outermost class! is given by the outside ofX~

(DetAÞ0), and other multipartite entangled classes app
asX~ or its different singularities. Analytically, the classifi
cation of multipartite entanglement corresponds to that of
number and pattern of the solutions in Eq.~7!.

This work reveals that the situation of the widely know
bipartite or three-qubit cases, where the maximally entang
states in Bell’s inequalities belong to the generic class
exceptional. Lying far inside the onion structure, the ma
mally entangled states~GHZ! are included in the lower-
dimensional peculiar class in general, e.g., for then>4 qu-
bits. It suggests two points. The majority of multiparti
entangled states cannot convert to GHZ by LOCC, and v
versa. So, we have given an alternative explanation to
observation, first made in Ref.@5#, by comparing the numbe
of local parameters accessible in SLOCC with the dimens
of the whole Hilbert space. Moreover, there seems noa pri-
ori reason why we choose GHZ states as thecanonical
n-partite entangled states, that, for example, constitut
minimal reversible entanglement generating set~MREGS! in
asymptotically reversible LOCC@4,25#. Since the onionlike
classification is given by every closed subset, not only
work enables us to see intuitively why, say in the three q
bits, theW class is rare compared to the GHZ class, but it c
be also extended to the classification of multipartite mix
states~see Appendix B!.

The onionlike classification seems to be reasonable in
sense that it coincides with the SLOCC classification wh
SLOCC gives finitely many orbits, such as the bipartite
three-qubit cases. So two states belonging to the same
can convert each other by invertible local operations w
nonzero probabilities. On the other hand, when SLO
gives infinitely many orbits, this classification is still SLOC
invariant, but may contain in one class infinitely manysame-
dimensional SLOCC orbits that cannot locally convert
each other even probabilistically. For example, in the fo
qubit case, the generic entangled class in Eq.~17! has three
nonlocal continuous parameters. Note that it can be poss
to make the onionlike classification finer by characterizi
the nonlocal continuous parameters in each class.

Then, we may ask, what is the physical interpretation
the onionlike classification in the case of infinitely man
SLOCC orbits? Although a simple answer has yet to
found, we discuss two points.

~i! Let us considerglobal unitary operations that creat
the multipartite entanglement. On the one hand, state
distinct classes would have different complexity of the glob
operations, since they have the distinct number and pat
of nonlocal parameters. On the other hand, states in one c
are supposed to have the equivalent complexity, since t
just correspond to different ‘‘angles’’ of the global unitar
operations.

~ii ! We can consider the case wheremore than onestate
8-7
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are shared, including the asymptotic case. Even in
shared states, there can exist a local conversion that is
possible if they are operated separately, such as the cata
effect@26#. So we can expect that we do it more efficiently
this situation, and the coarse classification may have s
physical significance. This problem remains unsettled e
in the bipartite case.

Finally, two related topics are discussed.~i! The absolute
value uDetAnu of the hyperdeterminant, representing t
amount of generic entanglement, is an entanglement mo
tone by Vidal@27#. This never conflicts with the property tha
the maximally entangled states in Bell’s inequalities~GHZ!
generally have a zero DetAn . A single-entanglement mono
tone is insufficient to judge the LOCC convertibility, an
generic entangled states of the nonzero DetAn cannot convert
to GHZ in spite of decreasinguDetAnu. ~ii ! The 3-tanglet
54uDetA3u first appeared in the context of so-called e
tanglement sharing@18#; i.e., in the three qubits there is
constraint~trade-off! between the amount of two-partite e
tanglement and that of three-partite entanglement. By us
the entanglement measure~concurrenceC) for the two-qubit
mixedentangled states, this is written asC1(23)

2 >C12
2 1C13

2 ,
andt is defined byt5C1(23)

2 2C12
2 2C13

2 for the three-qubit
pure entangled states. We expect that, in turn, the hype
terminant DetAn gives a clue to find the entanglement me
sure of more than two-qubitmixedstates.
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APPENDIX A: REPRESENTATIVES OF THE
THREE-QUBIT ENTANGLED CLASSES

In Sec. IV, we have classified entangled classes~SLOCC
orbits!, utilizing SLOCC-invariant closed subvarieties su
as the dual varietyX~ and its singularities. In this appendix
we give an intuitive explanation about our technique. W
obtain entangled classesby their representatives. The three-
qubit case is exemplified, and the notation and terminolo
of Sec. III C is followed.

As the representative of the outermost generic entan
class, almost any state~indeed, satisfying DetA3Þ0) in the
whole spaceM5CP7 is qualified. The GHZ stateu000&
1u111& is chosen among them, since it can be seen as
multidimensional analog of the identity matrix.

We look for the representative of the dual varietyX~,
which is qualified as that of the next outermost entang
class. WhenX~ is the hyperplane tangent to the Segre` vari-
ety X at x0 such thatxi j

( j )5d i j ,0
( j 51,2,3), the ‘‘x0 section’’

of X~ is given as

X~ux05$a0005a0015a0105a10050%, ~A1!
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in order that Eq.~7! has the nontrivial solutionx0. This sug-
gests that the representative ofX~ is the W state u001&
1u010&1u100&, since the states given by Eq.~A1! and W
convert to each other under some invertible local operati
GPGL23GL23GL2 as

a011u011&1a101u101&1a110u110&1a111u111&

;
G

u011&1u101&1u110&1u111&

;
G

u001&1u010&1u100&. ~A2!

The candidates for the next outer entangled class are
node-typeXnode

~ and cusp-typeXcusp
~ , singularities ofX~. We

first consider the representative ofXnode
~ (1). According to

Eq. ~12!, thex0 section ofXnode
~ (1) is given as

Xnode
~ ~1!ux05X~ux0ùX~ux0(1)

5$a0005a0015a0105a1005a0115a11150%.

~A3!

We find that the representative ofXnode
~ (1) is the biseparable

stateu001&1u010& in B1, checking that

a101u101&1a110u110&;
G

u001&1u010&. ~A4!

In the same manner,Xnode
~ (2) and Xnode

~ (3) represent the
biseparable classesB2 andB3, respectively.

Let us then analyze the representative ofXcusp
~ . In terms

of the quadric party of F(A,x) at x0,

y5S 0 a110 a101

a110 0 a011

a101 a011 0
D , ~A5!

the x0 section ofXcusp
~ is given as

Xcusp
~ ux05$a0005a0015a0105a10050,

dety52a011a101a11050%. ~A6!

We have three possibilities for dety50. In the case ofa011

50, this component ofXcusp
~ represents the biseparable cla

B1, since

a101u101&1a110u110&1a111u111&;
G

u001&1u010&.
~A7!

Likewise, in the case ofa10150 or a11050, each componen
of Xcusp

~ corresponds to the biseparable classB2 or B3, re-
spectively. Remembering that eachBj is characterized by
Xnode

~ ( j ) for j 51,2,3, we have shown thatXcusp
~ has three

irreducible componentsXnode
~ ( j ). Thus, the next outer en

tangled classes are three biseparable classesBj that never
contain nor are contained by each other.
8-8
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CLASSIFICATION OF MULTIPARTITE ENTANGLED . . . PHYSICAL REVIEW A67, 012108 ~2003!
In general, remaining entangled classes are given by
ther singularities ofX~ such as combinations of the abov
Xnode

~ andXcusp
~ , or genuine higher singularities. In the thre

qubit case, since we see thatXnode
~ ( j ) representing the

biseparable classBj is just characterized asCPj th
1 3CP3,

there remains just one smaller closed irreducible subvar
CP13CP13CP15X as their intersectionù j 51,2,3Xnode

~ ( j ).
This Segre` variety X represents the completely separab
classS, whose representative isu000&.

In the text, we have carried out the above procedure in
‘‘ x0-free’’ manner (x0 should be taken asany state onX),
and have obtained entangled classes as~difference! subsets.
It enables us to decide readily which entangled class a g
state uC& belongs to. After the classification of entangle
classes, we can clarify their partially ordered structure un
noninvertible local operations in the same manner as in
text.

APPENDIX B: CLASSIFICATION OF MULTIPARTITE
MIXED STATES

The onion structure is also useful for the SLOC
invariant classification of mixed entangled states. A mix
stater can be written as a convex combination of project
onto pure states~extremal points!,

r5(
m

pmuCm~Ol!&^Cm~Ol!u, pm.0, ~B1!

whereuCm(Ol)& is the pure state belonging to the SLOC
orbit Ol of an indexl. l is labeled by the closed subvarie
Ō ~i.e., the closure ofOl) such asX~, Xnode

~ (J), Xcusp
~ , and

X. Note that, in the multipartite case, there can be ma
closed subvarietiesŌl that never contain nor are containe
by each other; for example,Xnode

~ (1), Xnode
~ (2), andXnode

~ (3)
ch

t

c
hi
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in Fig. 2. So, by taking the union of these ‘‘competitive

closed subvarietiesŌl ~it will form their convex hull in the
space ofr), we pick up onlytotally orderedones@e.g.,M,
X~, Xcusp

~ 5ø j 51,2,3Xnode
~ ( j ), and X in Fig. 2# for conve-

nience later. Now, we are concerned with at most how v
ous classes of pure entangled states the mixed stater con-
sists of. We take the maximal closure ofŌl appeared in Eq.
~B1! and denote it byŌmax. However, sincer can be decom-
posed into the form of Eq.~B1! in infinitely many ways, we
should take the minimal closure ofŌmax over all possible
decompositions, and write it as minŌmax. Every convex sub-
setSl of l5minŌmax is closed such thatSl of the smallerl
is contained by that of the larger one. In other words,Sl of
the largerl consists of more classes~SLOCC orbits! of pure
entangled states. That is how the mixed stater is classified
into theclosedconvex subsetsSl under SLOCC.

In the bipartite case, minŌmax is called the Schmidt num
ber @28# ~sinceŌl is just labeled by the Schmidt local rank
as seen in Sec. I!. Also in the three-qubit case, this kind o
classification has been done in Ref.@11#, and four classes
appear, following the above observation:~i! GHZ classSM
2S X~ ~consisting of all pure states!; ~ii ! W class S X~

2S X
cusp
~ ~consisting of the pureW, biseparable, or separab

states!; ~iii ! biseparable classS X
cusp
~ 2SX ~consisting of the

pure biseparable or separable states!; and~iv! separable class
SX ~consisting of only the pure separable states!. Needless to
say, the trouble is considering all possible decomposition
Eq. ~B1!. So, it is very difficult to give the criterion to dis
tinguish each closed convex subsetSl , even to distinguish
the separable subsetSX . Still, it would be interesting to ob-
serve that a witness operatorW, which forms the tangen
hyperplane tr(rW)50 detectingSl a given r belongs to,
shares the same idea as our dual variety.
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@22# M. Koashi, V. Bužek, and N. Imoto, Phys. Rev. A62,
050302~R! ~2000!.

@23# F. Verstraete, J. Dehaene, B. De Moor, and H. Versche
01210
s

se
,

-

e,

Phys. Rev. A65, 052112~2002!.
@24# N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A246, 1

~1998!, and references therein.
@25# S. Wu and Y. Zhang, Phys. Rev. A63, 012308~2000!.
@26# D. Jonathan and M.B. Plenio, Phys. Rev. Lett.83, 3566

~1999!; F. Morikoshi, ibid. 84, 3189~2000!.
@27# G. Vidal, J. Mod. Opt.47, 355 ~2000!. The proof is given in

the same way that the 3-tangleuDetA3u is proved an entangle
ment monotone in Appendix B of Ref.@5#, by generalizing the
degree 4 of homogeneity ofuDetA3u to l of uDetAnu. It follows
the arithmetic mean–geometric mean inequality thatuDetAnu is
greater than or equal to the average ofuDetAnu resulting from
any local positive operator valued measure~POVM!. The ab-
solute value should be taken because DetAn is invariant up to
sign under permutations of the parties.

@28# B.M. Terhal and P. Horodecki, Phys. Rev. A61, 040301~R!
~2000!; A. Sanpera, D. Bruß, and M. Lewenstein,ibid. 63,
050301~R! ~2001!.
8-10


