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Classification of multipartite entangled states by multidimensional determinants
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We find that multidimensional determinants “hyperdeterminants,” related to entanglement me@kares
so-called concurrence, or 3-tangle for two or three qubits, respectialy derived from a duality between
entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy
of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that
by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially
ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished
as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell’s inequalities in
general(e.g., in then=4 qubit9, contrary to the widely known bipartite or three-qubit cases. It suggests that
not only are they never locally interconvertible with the majority of multipartite entangled states, but they
would have no grounds for the canonigcapartite entangled states. Our classification is also useful for the
mixed states.
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[. INTRODUCTION fer. Later, we find that this SLOCC classification is still fine
grained to classify the multipartite entanglement. Mathemati-
Entanglement is the quantum correlation exhibiting non-cally, two states belong to the same class under SLOCC if
local (nonseparableproperties. It is supposed to be neverand only if they are converted by anvertible local opera-
strengthened, on average, by local operations and classicn having a nonzero determinaf]. Thus the SLOCC
communicationLOCC). In particular, entanglement in mul- classification is equivalent to the classification of orbits of
tiparties is of fundamental interest in quantum many-bodythe natural action: direct product of general linear groups
theory [1], and makes quantum information processingGLy. (C)XGL,.1(C) [6]. The local rankr in Eq. (1) [7],
(QIP), e.g., distillation protocol, more efficient than relying equivalently the rank od; ., is found to be preserved under
on entanglement only in two parti¢€]. Here, we classify SLOCC. A setS; of states of the local rankj is aclosed
and characterize the multipartite entanglement that has yet &Qpvariety under SLOCC, ar§|_, is the singular locus of
be understood, compared with the bipartite one. S;. This is how the local rank leads to an “onion” structure

For the single copy of bipartite pure states AC*"Y)  (mathematically the stratification
@H(CKTY), we are interested in whether a stai) can

convert to another stateb) by LOCC. It is convenient to Sc+12 8D+ 2812 SH=1, 2

) h hmi .
consider the Schmidt decomposition, and §—S;_1(j=1,... k+1) give k+1 classes of en-

K . _ K ) tangled states. Since the local rank can decreaseobin-

W)= X a i linelid=2 Nlepele)), (D) vertible local operations, i.e., general LOG@,5,8, these
i1,ip=0 j=0 . .
classes are totally ordered such that, in particular, the outer-
most generic sef,,1— S, is the class of maximally en-
tangled states and the innermost Sgt=S;—S) is that of
separable states.
For the single copy of multipartite pure states,

where the computational bagis) is transformed to a local
biorthonormal basise;),|e/), and the Schmidt coefficients
\; can be taken as;=0. We call the number of nonzeiq

the (Schmidj local rankr. Then the LOCC convertibility is

given by a majorization rule between the coefficientsof Kps .- kn
|W) and those ofd) [3]. This suggests that the structure of Ty=" > a, .. li)®- - ®liy, )
entangled states consists of partially ordered, continuous 1.0 =0

glalsses Iabﬁled by a Iset By . (;n p?\”'?g‘ég’h aan.|q)>. .&here are difficulties in extending the Schmidt decomposition
elong to the same class under the classitication for a multiorthonormal basi®]. Moreover, an attempt to use

and only If all continuous,; coincide. E]e tensor rank oehil i [10] falls down sinceS;, defined

y it, is not always closed11,12. For three qubits, Du
K €t al. showed that SLOCC classifies the whole stdemto
finite classes, and in particular there exist two inequivalent,

Suppose we are concerned with a coarse-grained classi
cation by the so-called stochastic LOGSLOCQ [4,5],
where we identifyl¥') and|®) that are interconvertible bac
and forth with(maybe different nonvanishing probabilities.

This is becaus¢W¥) and |®) are supposed to perform the G_reen_berger-Horne-ZeiIinge{GHZ) and W, classes of the
same tasks in QIP although their probabilities of success giftripartite entanglgmer{tS]: They also p(_)lnted out that this
case is exceptional since the action \GL(C)x- -

><GLkn+1(C) hasinfinitely manyorbits in generale.g., for
*Electronic address: miyake@monet.phys.s.u-tokyo.ac.jp n=4).
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In this paper, we classify multipartite entanglement in a(k,+1)(k,+1)—1. This X is a closed, smooth, algebraic

unified manner based on the hyperdeterminant. The advarypvariety(Segrevariety) defined by the Segrembedding
tages are three fold. into CPkat Dkt =1 712 13

(i) This classification is equivalent to the SLOCC classi- CPXx CPKee Pkt (k1) -1
fication when SLOCC has finitely many orbits. So it natu- i} ' '

rally includes the widely known bipartite and three-qubit (XD - ~:x(k1)),(x62):-~-:x(ki)))

cases.
.. . . . 1) (2). (D (2). (D) (2). (D) (2
(i) In the multipartite case, we need further SLOCC in- = (GG I x(Dx2).

variants in addition to the local ranks. For example, in the @
three-qubit casgs], the 3-tangler, the absolute value of the

hyperdeterminanfsee Eq.(10)], is utilized to distinguish Denotin? homogeneous coordinates(iR(kiTDket1)=1 by
GHZ andW classes. This work clarifies why the 3-tangle  b; ; =x{Vx{?(0=i;<k;), we find that the Segreariety X

=
appears and how these SLOCC invariants are related to thg gzivenllby the common zero locus &6 (K;+ 1)kx(K,

hyperdeterminant in general. ~+1)/4 homogeneous polynomials of degree 2:
(iii) Our classification is also useful to multipartite mixed bbb b ®)
states. A mixed statg can be decomposed as a convex com- ERA R B B R

bination of projectors onto pure states. Considering how
needs at least the outer class in the onion structure of PUtion implies that all 2<2 minors of “matrix” b, ; equal
states, we can also classify multipartite mixed states |nt%. e th K ob i 1. Th h é(_s’f’z hich
totally ordered classe$or details, see Appendix)BWe con- 18 _e rank ol i, 1S L. ”us.we aver=op, W 'C_
centrate on the pure states here. agrees with the SLOCC classification by the local rank in the
The rest of the paper is organized as follows. In Sec. II, dipartite case. o _
duality between separable states and entangled states is in-NOow  consider the multipartite Cartesian produxt
troduced. We find that the hyperdeterminant, associated tg CP *--- X (P& in the Segre embedding into M
this duality, and its singularities lead to the SLOCC-invariant=CP' v )( n .) . Because this Segreariety X is
onionlike structure of multipartite entanglement. The characthe projectivization of a variety of the matricds ;.
teristics of the hyperdeterminant and its singularities are ex= xi(11>. : 'Xi(:) , it gives a set of completely separable states in
plained in Sec. IIIII.f.C(;a.ssmcatlons of muItlpartriehentar:lgIedH tkitl)g. .. @ H(Ck*1). By another Segrembedding,
states are exemplified in Sec. IV so as to reveal how they Argay X’ = Pkt D+ =15 cpkax . .. X (P, we also dis-

ordered under SLOCC. Finally, the conclusion is given iny,ish a set of separable states where only first and second
Sec. V. parties can be entangled; i.e., when we regard first and sec-
ond parties as one party, an element of this set is completely
Il. DUALITY BETWEEN SEPARABLE STATES separable for h— 1" parties. This is how, also in the multi-
AND ENTANGLED STATES partite case, we can classify all kinds séparablestates,
typically lower-dimensional sets. Note that, in the multipar-

In this section, we find that there is a duality between thajte case, this check for the separability is more strict than the
set of separable states and that of entangled states. Thifeck by local rank§14].

duality derives the hyperdeterminant our classification is
based on. B. Main idea: Duality

where 0<i;<i;=<k,, and 0<i,<ij<k,. Note that this con-

We rather want to classifyentangled states, typically
A. Preliminary: Segre variety higher-dimensional complementary sets of separable states.
To introduce our idea, we first recall the geometry of pureour strategy i‘f‘ based on the QUaIity in algebraic geometry; a
states. In a complexfinite) (k+ 1)-dimensional Hilbert rlyeerplane IrCP forms the pomt of a dgal _prOJectlve space
space’H(CK™1), let | W) be a(not necessarily normalizgd tP%, a\r;q coﬂnzersely every poiptof CP is tied to a hyper-
vector given by k+1)tuple of complex amplitudes;(j planep™ in CP* as the set of aI_I hy_perplan_es@P passing
—0,... k) eC*1-101 in a computational basis. The f[hro_ughp. Remarkat_)ly, the projective duality between pro-
f jective subspaces, like the above example, can be extended

physical state irf{(C*"") is a ray, an equivalence class o 0 an involutive correspondence between irreducible alge
vectors up to an overall nonzero complex number. Then the™ ° RS P P . > alg
raic subvarieties icP and CP*. So we define a projec-

set of rays constitutes the complex projective spzRE[the tively dual (irreducible variety XV CCP* as the closure of

projectivization of{ (CK*1)], andx:=(x:- - - :X,), consid- S
; - e set of all hyperplanes tangent to the Segrgety X.
ered up to a complex scalar multiple, gives homogeneoug1 Let us observdand see the reason latehat, in the bi-

) Tk
Co%rg:ngtiir%ﬁggsite system that consists76fC*1) and partite case seen in .Sec. I, the vqriayof thg degenerate
H(Ck2™1), the whole Hilbert space is the tensor product(k+1)x(k+1) matricesA=a i, is projectively dual to
H(C* )@ H(Ck2+1), and the associated projective space isthe varietyS; =X of the matricesB=b; ; =x{"x{?). That

M=CPkitDlket)=1 A setX of the separable states is the is, S, is the dual varietyXxV. Following an analogy with a
mere Cartesian productP¥1x CP*2, whose dimension two-dimensional(bipartite case, ann-dimensional matrix
ki +k, is much smaller than that of the whole spade A=a i is calleddegeneratef and only if it (precisely,

.....
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its projectivization lies in the projectively dual varietxV
of the Segrevariety X. In other words, identifying the space

PHYSICAL REVIEW A67, 012108 (2003

A. Hyperdeterminant
We utilize the hyperdeterminant, the generalized determi-

ing,

i (6)

we see thatA is degenerate if and only if its orthogonal
hyperplaneé=(A,B) =0 is tangent tX at some nonzero point
x=(x®, ... x(M). Analytically, a set of equations,

()

l?Xi(jj) F(A,x)=0 forallj,i;

(j=1,...nand Osig-skj), has at least one nontrivial so-
lution x=(x1, ... xM) of every x!N#0, and thenx is

called a critical point. The above condition is also equivalen

to saying that the kernel kierof F(A,x) is not empty, where
kel is the set of points=(x), ... x(M) e X such that, in
everyjo=1,...n,

FA,(x®D, .. xUo=D) Z00) xUo+ 1)~ x(M))=0 (8)

for the arbitrary zU0),
In the case oh=2, the condition for Eq(7) coincides
with the usual notion of degeneracy, and means ghdbes
not have the full rank. It shows thXt” is nothing butS, . In
particular, XV (defined by this conditionis of codimension 1
and is given by the ordinary determinant AetO, if and
only if A is a square K;=k,=k) matrix. In the
n-dimensional case, XV is a hypersurfacéof codimension
1), it is given by the zero locus of a uniquep to sign
irreducible homogeneous polynomial ovérof a;

..... in

[15,14. Its absolute value is also known as an entanglement
measure, the concurren€[17], or 3-tangler [18], for the
two-, three-qubit pure case, respectively.

C=2|DetA,|=2|detA| =2|agpa;;— ap:a1q, 9
7=4|DetA;| = 4|afy@d:1+ a5oaT 10+ g1 A0 alocAt1
—2(@goR00121102111T A0ocR010A1018111
* 8p00A100R0118111F 8001201021018 110
+a001210020112110™ Ao10A10020112101)

+4(agoA01121012110T A001201A 1002111 -

The following useful facts are found in R¢fL6]. Without
loss of generality, we assume thge=k,= - - - =k,=1. The
n-dimensional hyperdeterminant Retof format (k;+1)
XX (k,+1) exists, i.e.XV is a hypersurface if and only
if a “polygon inequality” ky<k,+ - - - +k, is satisfied. For
n=2, this condition is reduced tk;=k, as desired, and

(10

!EetA coincides with ded. The matrix format is called

oundary ifk;=k,+---+k, and interior if ky<k,+---
+k,. Note that(i) the boundary format includes the “bipar-
tite cut” between the first party and the others so that it is
mathematically tractabldji) the interior format includes the
n=3qubit case. We treat hereafter the format where the
polygon inequality holds anXV is the largest closed subva-
riety, defined by the hypersurface BetO.

DetA is relatively invariant(invariant up to constajpun-

der the action of Gj, ,4(C) X+ XGLy .4(C). In particu-

lar, interchanging two parallel slicésubmatrices with some
fixed direction$ leaves DeA invariant up to sign, and DAt

is a homogeneous polynomial in the entries of each slice.
Since it is ensured thaxV, Xgng, and further singularities
are invariant under SLOCC, our classification is equivalent
to or coarser than the SLOCC classification. Later, we see
that the former and the latter correspond to the case where

SLOCC gives finitely and infinitely many classes, respec-

This polynomial is the hyperdeterminant introduced by Cay-ively.

ley and is denoted by DAt As usual, ifXV is not a hyper-
surface, we set DAtto be 1.
Remember that, in théipartite case, we classify the

B. Schldli’s construction

It would not be easy to calculate Detdirectly by its

statese Sy, 1— Sx=M—XV as the generic entangled states, definition that Eq.(7) has at least one solution. Still, the

the statese sk—sk_1:><V—xgng as the next generic en-

Schidli's method enables us to construct Bgtof format 2

tangled states, and so on. Likewise, we aim to classify thén qubit9 by induction onn [15,16,19.
multipartite entangled states into the onion structure by the For n=2, by definition Def,=detA=ay@;;—ag:a10-

dual varietyXV (DetA=0), its singular Iocué(g{ng, and so
on (i.e., by every closed subvarigfyinstead of the tensor

rank[10].

IIl. HYPERDETERMINANT AND ITS SINGULARITIES

Suppose Det,,, whose degree of homogeneityljss given.
Associating an 1f+ 1)-dimensional matrixl';\ioyil'___'in (i

to a family of n-dimensional matricesA(x)
=T i X; linearly depending on the auxiliary vari-
0’ n '0

ablexio, we have DeA(x),. Due to Theorems 4.1 and 4.2 of

In order to classify multipartite entanglement into the Ref. [16], the discriminantA of DefA(x), gives Def,. ;
SLOCC-invariant onion structure, we explore the dual vari-with an extra factolR,,. The Sylvester formula of the dis-

ety XV (zero hyperdeterminanand its singular locus in this
section.

criminantA for binary forms enables us to write ¥, ; in
terms of the determinant of ordet21;
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Co €1 Cl—2 C-1 ¢
0 Co Ci_» C_1 0
~ 1
DetAnH:A(DetA(X)n)/Rn=RC| 0 0 Co C |, (19)
" 1c, 2c, lc, O 0
0 0 0 lc;,  2c¢, Ic,

where eaclt; is the coefficient oy x| in DefA(x),, i.e.,

1 J
ST Tt

DetA(X),.

Note that because far=2 or 3, the extra factar,, is just
a nonzero constant, accordingly Bgt, for the three or four

qubits is readily calculated, respectively. It would be instruc-

tive to check that D&; in Eq. (10) is obtained in this way.
On the other hand, fon=4, R, is the Chow form(related
resultant of irreducible components of the singular locus
Xgng- These are due to the fact théy,,, has codimension 2
in M for any format of the dimension=3 except for the
format 2° (three-qubit case that was conjectured in Ref.
[15] and was proved in Ref20]. So we have to explorlégng
not only to classify entangled states in thequbits, but to
calculate DeA,,, ; inductively. Although DeA, -5 has yet to
be written explicitly, only its degreé¢ of homogeneity is
known (in Corollary 2.10 of Ref[16]) to grow very fast as 2,
4, 24, 128, 880, 6816, 60032, 589 312, 6 384 384 rfor
=2,3,...,10.

C. Singularities of the hyperdeterminant

We describe the singular locus of the dual varixty.
The technical details are given in RE20]. It is known that,

for the boundary format, the next largest closed subvariet)‘/"h(':'“:“G:Gl‘kl+1>< a

Xgng is always an irreducible hypersurface XV; in con-

X XV

cusp

FIG. 1. Two types of singularities ofV. X\ 4 corresponds to
the bitangent oK, where both tangencies are of the first orde,Sp
corresponds to the tangent at an inflection pointXpfwhere its
tangency is of the second order.

trast, for the interior onexgng has generally two closed ir-
reducible components of codimension 1 XY, node-type
(Xiodd @nd cusp-type Xg,s) singularities. The rest of this
section can be skipped for the first reading. It is also illus-
trated for the three-qubit case in Appendix A.
First, X\, 4eiS the closure of the set of hyperplanes tangent

to the Segrevariety X at more than one poirtcf. Fig. 1).
XYoge CaN be composed of closed irreducible subvarieties
XYoqdJ) labeled by the subsetC{1, ... n}, includingd.
Indicating that two solutiong=(x, ... x, ... x(M) of

Eq. (7) coincide forj e J, the labelJ distinguishes the pat-
tern in these solutions. In order to rewri¥e,,{J), let us
pick up a pointx®(J) such that its homogeneous coordinates
xi(jJ)z 8 o forjed and & \ for j&J. It is convenient to
label the positions of 1 in eack by a multindex
i1,....n]. For example, x°(1) is labeled by
[0Ko, ... k,] andx®(1, ... n) is just written byx°. Ac-
cording to Eq.(7), XV[o.3), tangent toX at x°(J), consists

of the matricesA of all CT ié:o such thafiy, ... ,i;]

differs from[iy, ... ,i,] of xX°(J) in at most one index. Then
we can defineXy,,{J) as

X¥oad ) = (XV]x0NXV]50(3)) - G, (12)

- XGLy +1 acts onM from the right
and the bar stands for the closure.

Second,XCVusp is the set of hyperplanes having a critical
point that is not a simple quadratic singularif. Fig. 1).
Precisely, the quadric part df(A,x) at x° is a matrix
y(j,ij),(j,,ij,)z(&Zlaxi(jj)axi(jj,'))F(A,xo), where the pairsj(i;)
and (',ij)(1si;<k;,1<ij<k;/) are the row and the col-
umn index, respectively. Denoting byé{,sgxo the variety of
the Hessian dat=0 in XV|,0, we can define)%spas

Xé/usp: Xé/us;J x0G. (13

This XY

cusp S already closed without taking the closure.

IV. CLASSIFICATION OF MULTIPARTITE
ENTANGLEMENT

According to Secs. Il and Ill, we illustrate the classifica-
tion of multipartite pure entangled states for typical cases.
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never has the full ranki.e., six 2<2 minors in Eq.(14) are
zerg. We can identifyX.,{1) as the setP1 < CP3, seen

in Sec. Il A, of biseparable states between the first party and
the rest of the parties. Its dimension is-B=4. Likewise,
XYoadJ) for j=2,3 gives the biseparable class for the second
or third party, respectively. So, the class nV—xgng is
found to be tripartite entangled states, whose representative
is W. We can intuitively see that, among genuine tripartite
entangled statedY is rare, compared to GH[5]. Finally, the
intersection ofX\,4{j) is the completely separable claSs
given by the Segreariety X of dimension 3. Another intui-
tive explanation about this procedure is seen in Appendix A.

Now we clarify the relationship of six classes hgnin-

FIG. 2. The onionlike classification of SLOCC orbits in the Vertible local operations. Because noninvertible local opera-
three-qubit case. We utilize a duality between the smallest closetions cause the decrease in local rafR4], the partially
subvarietyX and the largest closed subvariéty. The dual variety — ordered structure of entangled states in the three qubits, in-
XV (zero hyperdeterminanand its singularities constitute SLOCC- cluded in Fig. 4, appears. Two inequivalent tripartite en-
invariant closed subvarieties, so that they classify the multipartitdangled classes, GHZ and/, have the same local ranks

4.

7N
S qodel
/ \\_

entangled stateSLOCC orbits. (2,2,2) for each party, so that they are not interconvertible by
the noninvertible local operatior{se., general LOCE Two
A. Three-qubit (format 2°) case classes hold different physical propertiég; the GHZ rep-

The classification of three qubits under SLOCC has beefeseéntative state has the maximal amount of generic tripartite
already done in Ref§5,6]. Surprisingly, Gelfandt al.con-  €ntanglement measured by the 3-tangte[DetAg|, while

sidered the same mathematical problem byAQén example ~ the W representative state has the maximal amouriawér-
4.5 of Ref.[16]. Our idea is inspired by this example. We age two-partite entanglement distributed over three parties

complement the Gelfandt al’s result, analyzing addition- (S€€ also Ref[22]). Under LOCC, a state in these two
ally the singularities oK" in detail. The dimensions, repre- classes can be transformed into any state in one of the three
sentatives, names, and varieties of the orbits are summariz&igeparable class&(j=1,2,3), where th¢th local rank is

as follows. The basis vectdin,)®|i,)®|i) is abbreviated to 1 and the others are 2. Three clasBgsever convert into

Ji 11 i 3). each other. Likewise, a state B} can be locally transformed

dm  7:  |000)+|111) GHZ eM(=CP")—XV; into any state in the completely separable cl8ssf local

dim 6: [00)+]010 +|100, WeXV—XY =XV ~XYq  anks (L11). - . .

dim 4: [001)+]010),|001)+|100),/010)+|100), bisepa- This is how the onionlike classification of SLOCC orbits

rable B- ' ' ' reveals that multipartite entangled classes constitute the par-
i

tially ordered structure. It indicates significant differences

from the totally ordered one in the bipartite ca&e.In the

. three-qubit case, all SLOCC invariants we need to classify is

dim 3:|000), cc&mp!etehg slepgzralblsw 1 the hyperdeterminant D&% in addition to local ranks(ii)

€ X=Nj-123Knoud]) =CP*XCP ><_LP : ) . Although noninvertible local operations generally mean the
G=GL,XGL, X GL; has the onion structure of six orbits yransformation further inside the onion structure, an outer

on M (see Fig. 2, by excluding the orbitZ[ =Xy.ud D)].  class cannot necessarily be transformed intorisighboring

The dual varietyX is given by DeA;=0 [cf. Eq.(10)]. Its  inner class. A good example is given by GHZ antdas we
dimension is 71=6. The outside oK" is generic tripar-  have just seen.
tite entangled class of the maximal dimension, whose repre-

sentative is GHZ. This suggests that almost any state in the

three qubits can be locally transformed into GHZ with a

finite probability and vice versa. Next, we can ident)(yng Before proceeding to the=4 qubit case, we drop in the
asXY..., which is the union of three closed irreducible sub-format 3x2x2, which would give an insight into the struc-

cusp? . .
varieties X\, .{j) for j=1,2,3[20] (also see Appendix A ture of multipartite entangled states when each party has a

For example XY,,{1) means by definition that, in addition system consisting of more than two levels. This case is in-
to the condition ofX" in Sec. Il B, there exists some nonzero (€sting since on one hafcbntrary to the three-qubit case
x) such thaf (A,x) =0 for anyx® x®; i.e., a set of linear ittihs tyEica(lj(that-lGHtZ i?ld/vb?‘re :E{‘Clucje?hinx;{ng;b_?” tge

; (DY — (927 25(2) 54(3) _ ;- other hand(similar to the bipartite or three-qubit cages
equations [, ; (x) = (9" ox, o JF(Ax)=0 for 1, SLOCC has still finite classes so that it becomes another
good test for the equivalence to the SLOCC classification.
Besides, it is a boundary format, so that several subvarieties

e XV {j)—X for j=1,2,3, whereX\ ,{j)=CP,xCP3
are three closed irreducible component@(@{f]gz Xeusp

B. Format 3X2X2 case

=0,1] has a nontrivial solution®. This indicates that the
“bipartite” matrix

can be explicitly calculated, and enables us to analyze en-
Q000 Qo1 @do1o o11 . X . - .
(14)  tanglement in the qubits system using an auxiliary level, like
d100 Q101 Q110 ann ion traps.
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1000>+1101>H110>+H211> 1000>+1101>+H211>
3.22) (3.2,2)
= gentine
1000>+111> tripartite
(22,2) GHZ entanglement
N
1001>+l010> 1001>+1100>

(122) B1 (2,12) B2

1000>
a1 s

FIG. 4. The partially ordered structure of multipartite pure en-
tangled states in theX32x 2 format, including the three-qubit case.
Each class, corresponding to the SLOCC orbit, is labeled by the
representative, local ranks, and the name. Noninvertible local op-
erations, indicated by dashed arrows, degrade higher entangled
classes into lower entangled ones.

(22,1) B3

FIG. 3. The onionlike classification of SLOCC orbits in the
3x2x2 format. Although this resembles Fig. 2 in the order of
SLOCC orbits(two orbits are added outsiget is worthwhile to
note that singularities oKV, which classify the SLOCC orbits,
have a different order.

- . _ ) However, the former two classes of the local ranks (3,2,2)
: + + + =CPy—xV -
g!m 11_ 000 +]107)+ |110 |2v1]> $IV1( v P 3 X ' can convert to the latter two classes of (2,2,2) by noninvert-
Im 10_- 000 +[109) +[211) eX ;Xsing_vx _Xnode(vl)_’ ible local operationdi.e., LOCQ. And we can “degrade”
dim 9: |00 +[111), GHZ e Xsind = Xnodd 1)1~ Xeusp these tripartite entangled classes into the biseparable or com-

dim 8: [001) +|010 +|100), We Xs5~ Uj=z2Xn0adi);  pletely separable classes by LOCC in a fashion similar to the
dim 6: [001)+|100,/010 +|100), biseparable B,,B;  three qubits.

& Xoad 2) = X, Xpoad 3) = X; We notice that three grades in the three-qubit case
dim 5:|001)+|010), biseparabléB; e X\qdD)—X; changed to four grades in thex2x 2 (one-qutrit and two-

dim 4:]000), completely separablg qubit) case. In general, the partially ordered structure be-
e X=CP?xX CPx CP!, comes “higher” as the system of each party becomes the

The onion structure consists of eight orbits ®hunder  higher-dimensional one. We also see how the tensor rank
SLOCC (see Fig. 3 Generic entangled states of the outer-[10] is inadequate for the onionlike classification of SLOCC
most class are given by nonzero Bahat can be calculated orbits.
in the boundaryformat as the determinant associated with
the Cayley-Koszul complex. Although this is one of the re- C. n=4 Qubit (format 2") case
cent successes of Gelfaret al. for generalized discrimi-

nants, we avoid its detailed explanation here. According to Further in then=4 qubit case, our classification works.

Theorem 3.3 of Ref[16], we have The outermost classl (= CP2"~ 1)~ XV of genericn-partite
entangled states is given by Bgt-0. In n=4, De#A, of
DetA=m;m,—m,m;z (15  degree 24 is explicitly calculated by the Sdlila construc-
) . . tion in Sec. Il B. It would be suggestive to transform any
of degree 6, wheren;(j=1,2,3,4) is the X3 minor of generic four-partite state (D&t+0) to the “representative”

of the outermost class by invertible local operations,
300 Ago1 Aoi0 o1l

100 101 110 111 (16) «(|0000 +|1111) + B(|0011) +[1100) + ¥(|0101)
a200 a201 a210 a2]_]_ +|101@)+5(|011@+|100]}), (17)

without thejth column, respectively. Next, it is characteristic \yhere the continuous complex coefficieriss, y, 8 should
that X¢ng is Xyoad 1) [20]. Similar to the three-qubit case in safisfy

Sec. IV A, X\oqd 1) means that the “bipartite” matrix in Eq.

(16) does not have the full rank, i.e., all fourd® minorsm DetA,= a?B2y?6%(a+ B+ y+ 8)*(a+ B+ y— 8 (a+
in Eq. (16) are zero. The SLOCC orbits that appear inside 2 > 2
XYy are essentially the same as the three-qubit case. T o a=fryto)A(—atpry+o)(ath

_ Thus we obtain the pqrtial_ly ordered structure of multipar- —y—=8)%a—B+y— 8 (a—B—y+8)?+0. (18

tite entangled states as in Fig. 4. The tripartite entanglement

consists of four classes. Because the classedlefXV  Thus three complex parameters remain in the outermost class
(whose representative i©00) +|101)+[110+[211)) and  (since we consider rays rather than normalized state vectors
that of XV—Xg,, (whose representative if000+|101)  This means that there are infinitely many same-dimensional
+|211)) have the same local ranks (3,2,2), they do not conSLOCC orbits in the four qubits, and the SLOCC orbits
vert each other in the same reason as GHZ ¥Ahdo not.  never locally convert to each other when their sets of the
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parameters are distinct. It is also the case fomthel qubits.  dered structure, such as Fig. 4, of inequivalent multipartite
Note that, inn=4, this outermost clad®l — XV corresponds entangled classes of pure states, which is significantly differ-
to the family of generic states in Verstraedeal. classifica-  ent from the totally ordered one in the bipartite case. Local
tion of the four qubits by a different approa¢peneralizing ranks are not enough to distinguish these classes, and we
the singular-value decomposition in matrix analysis to comneed to calculate SLOCC invariants associated wittAD&t
plex orthogonal equivalence classeandX" contains other  other words, the generic entangled class of the maximal di-
special familieq23]. mension(the outermost clagss given by the outside oXV

The next outermost class X6/ — Xg/ng. In the four qubits,  (DetA+0), and other multipartite entangled classes appear
Xgng IS Shown to consist of eight closed irreducible compo-as XV or its different singularities. Analytically, the classifi-
nents of codimension 1 iXV; X&sp,xnvode(@): and six  cation of multipartite entanglement corresponds to that of the
XYogdi1,)2) for 1<j,<j,=<4[20]. They neither contain nor number and pattern of the solutions in E@).
are contained by each other. Their intersections also give This work reveals that the situation of the widely known
(finitely) many lower-dimensional genuine four-partite en- bipartite or three-qubit cases, where the maximally entangled
tangled classes. Since the four-partite entangled classes nestates in Bell's inequalities belong to the generic class, is
essarily have the same local ranks (2,2,2,2), these classes @&xceptional. Lying far inside the onion structure, the maxi-
not interconvertible by noninvertible local operatiofie., mally entangled state§GHZ) are included in the lower-
any LOCQ. As typical examples, GHZthe maximally en- dimensional peculiar class in general, e.g., for e qu-

tangled state in Bell's inequalitigR4]), bits. It suggests two points. The majority of multipartite
entangled states cannot convert to GHZ by LOCC, and vice
|GHZ)=|0000 +|1111) (19  versa. So, we have given an alternative explanation to this

) o ) observation, first made in R¢b], by comparing the number
(i-e., 20000=a1111# 0 and the others are 0) is included in the of |ocal parameters accessible in SLOCC with the dimension
intersection of X4 @) and six Xyoadj1.j2), but is ex-  of the whole Hilbert space. Moreover, there seems poi-

cluded fromxgjsp. In contrastW, ori reason why we choose GHZ states as tfamonical
n-partite entangled states, that, for example, constitute a
|W)=|0003)+|0010 +|0100 +[1000, (200 minimal reversible entanglement generating(8REGS in

) . asymptotically reversible LOC{4,25]. Since the onionlike
(i-8., A001= B0010= Ao100= A1000% 0, and the others are 0) is ¢|assification is given by every closed subset, not only our
included in the intersection ofy,,and sixXgoadi1.i2) Ut work enables us to see intuitively why, say in the three qu-
is excluded fromXyo,{ ). bits, theW class is rare compared to the GHZ class, but it can

In the n>4 qubits, Xy, is shown to consist of just two be also extended to the classification of multipartite mixed
closed irreducible component§;,s, and Xy,,{J) [20]. We  states(see Appendix B
find that GHZ andw are contained not only iXXV(DetA, The onionlike classification seems to be reasonable in the
=0) but inXg,; i.e., they have nontrivial solutions in Eq. sense that it coincides with the SLOCC classification when
(7), satisfying the singular conditions. They correspond toSLOCC gives finitely many orbits, such as the bipartite or
different intersections of further singularities, similar to the three-qubit cases. So two states belonging to the same class
four qubits. In other words, they are peculiar, living in the can convert each other by invertible local operations with
border dimensions between entangled states and separablenzero probabilities. On the other hand, when SLOCC
ones. gives infinitely many orbits, this classification is still SLOCC

In brief, the dual varietXV and its singularities lead to invariant, but may contain in one class infinitely masame
the coarseonionlike classification of SLOCC orbits, when dimensional SLOCC orbits that cannot locally convert to
SLOCC gives infinitely many orbits. The partially ordered each other even probabilistically. For example, in the four-
structure of multipartite pure entangled states becomegubit case, the generic entangled class in @d) has three
“wider” as the numbern of parties increases. Although nonlocal continuous parameters. Note that it can be possible
many inequivalenn-partite entangled classes appear inthe to make the onionlike classification finer by characterizing
qubits, they never locally convert to each other, as observethe nonlocal continuous parameters in each class.
in Ref. [5]. In particular, the majority of thea-partite en- Then, we may ask, what is the physical interpretation of
tangled states never convert to GKa@ W) by LOCC, and the onionlike classification in the case of infinitely many
the opposite conversion is also not possible. This is a signifiSLOCC orbits? Although a simple answer has yet to be
cant difference from the bipartite or three-qubit case, wherdound, we discuss two points.
almost any entangled state and the maximally entangled state (i) Let us considemglobal unitary operations that create

(GHZ) can convert to each other by LOCC with nonvanish-the multipartite entanglement. On the one hand, states in
ing probabilities. distinct classes would have different complexity of the global

operations, since they have the distinct number and pattern
V. CONCLUSION of nonlocal parameters. On the 'other hand, statgs in'one class
are supposed to have the equivalent complexity, since they
We have presented the onionlike classification of multi-just correspond to different “angles” of the global unitary
partite entanglemer8LOCC orbit$ by the dual varietyXV, operations.
i.e., the hyperdeterminant Dkt It leads to the partially or- (ii) We can consider the case whermre than onestate

012108-7



AKIMASA MIYAKE PHYSICAL REVIEW A 67, 012108 (2003

are shared, including the asymptotic case. Even in twan order that Eq(7) has the nontrivial solutior®. This sug-
shared states, there can exist a local conversion that is ingests that the representative ¥’ is the W state |001)
possible if they are operated separately, such as the catalysis010)+|100), since the states given by E(A1) and W
effect[26]. So we can expect that we do it more efficiently in convert to each other under some invertible local operations
this situation, and the coarse classification may have som@ e GL,xX GL,XGL, as
physical significance. This problem remains unsettled even
in the bipartite case. 801101 + @310 101) + 23,9110 + ;34111

Finally, two related topics are discusséd.The absolute
value |DetA,| of the hyperdeterminant, representing the
amount of generic entanglement, is an entanglement mono-
tone by Vidal[27]. This never conflicts with the property that G
the maximally entangled states in Bell's inequaliti&HZ) ~|001) +|010)+|100). (A2)
generally have a zero D&t . A single-entanglement mono-
tone is insufficient to judge the LOCC convertibility, and  The candidates for the next outer entangled class are two,
generic entangled states of the nonzero/Qetannot convert  node-typeX\,4.and cusp-type%sp, singularities ofXV. We
to GHZ in spite of decreasinfDetA,|. (i) The 3-tangler  first consider the representative ¥f.,{(1). According to
=4|DetA;| first appeared in the context of so-called en-Eq.(12), thex® section ofX.,{1) is given as
tanglement sharing18]; i.e., in the three qubits there is a
constraint(trade-off between the amount of two-partite en-  Xy,d 1)[x0=X"[x0N XV 50(1)
tanglement and that of three-partite entanglement. By using
the entanglement measui@ncurrence) for the two-qubit ={@000=2001= A010= A100= Ao11= 3111= 0}
mixedentangled states, this is written @ ,5=>C7,+Ci;, (A3)
and 7 is defined byr=C% ,3—C3,— Ci; for the three-qubit _ _ _ _
pure entangled states. We expect that, in turn, the hyperdeve find that the representative Xf,.{ 1) is the biseparable
terminant Ded,, gives a clue to find the entanglement mea-State|001)+|010 in B, checking that
sure of more than two-qubiixedstates.

G
~|011)+|101) +|110 +|111)

G
2101101+ 21,4110 ~|001) +|010). (Ad)
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APPENDIX A: REPRESENTATIVES OF THE aj01 dmu 0

THREE-QUBIT ENTANGLED CLASSE , I
QU G CLASSES the x° section ofXyspis given as

In Sec. IV, we have classified entangled clagsdsOCC

orbits), utilizing SLOCC-invariant closed subvarieties such X&sAxoz{aooo: 3001~ @010~ @100~ 0,
as the dual variet)XV and its singularities. In this appendix,
we give an intuitive explanation about our technique. We dety = 2a1181018110= 0} (AB)

obtain entangled classéy their representativeshe three- o
qubit case is exemplified, and the notation and terminologyVe have three possibilities for det=0. In the case ooy

of Sec. 1l C is followed. =0, t.his component oK, represents the biseparable class
As the representative of the outermost generic entangleB1., since
class, almost any statendeed, satisfying Dét;#0) in the .
whole spaceM=CP’ is qualified. The GHZ stat¢000)
+]111) is chosen among them, since it can be seen as the 210110 + 2119110 + 241 111)~[003) +{010). (A7)
multidimensional analog of the identity matrix.
We _Iook fo_r' the representative of the dual variety/, Likewise, in the case adyo,;=0 ora;;;=0, each component
which is qualified as that of the next outermost entangled¢ y/

) § ; corresponds to the biseparable cl&sor B3, re-
\ - cusp - . -
class. Wf(])erx IS the(r;yperpla.ne tangent to th(()a Segw spectively. Remembering that ea@h is characterized by
ety X atx” such thalxijJ =6in0 (j=1,2,3), the x° section”

Xioad]) for j=1,2,3, we have shown thaty,, has three

of XV is given as irreducible componentX,,{j). Thus, the next outer en-
tangled classes are three biseparable claBsethat never
XV y0=1{ap00= go1= 8p10= 100= O}, (A1) contain nor are contained by each other.
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In general, remaining entangled classes are given by fuin Fig. 2. So, by taking the union of these “competitive”
ther singularities ofX" such as combinations of the above ¢losed subvarietie®, (it will form their convex hull in the

Xoge@NdX s, OF genuine higher singularities. In the three- space ofp), we pick up onlytotally orderedones[e.g., M,
qubit case, since we see th¥iy,q{j) representing the xV, X%sp:szl,z,sxﬁ/odéi), and X in Fig. 2] for conve-
biseparable clas®; is just characterized agPj;,XCP3,  nience later. Now, we are concerned with at most how vari-
there remains just one smaller closed irreducible subvarietyus classes of pure entangled states the mixed ptatmn-
CPXCP'XCP'=X as their intersectiom;_;,3Xyadi).  sists of. We take the maximal closure &f appeared in Eq.
This Segrevariety X represents the completely separable(Bl) and denote it b@max- However, sincg can be decom-

classS whose representative j600). : P
. . osed into the form of EqB1) in infinitely many ways, we
In the text, we have carried out the above procedure in thg qB1) nitely y way

“x0_free” manner &° should be taken aany state onX), should take the minimal closure_tﬁfvmax over all possible
and have obtained entangled classesdifference subsets. decompositions, and write it as nii,.x. Every convex sub-
It enables us to decide readily which entangled class a givesetS, of A =minO,,.is closed such thaf, of the smallen
state|¥) belongs to. After the classification of entangledis contained by that of the larger one. In other woris,of
classes, we can clarify their partially ordered structure undethe larger\ consists of more classéSLOCC orbitg of pure
noninvertible local operations in the same manner as in thentangled states. That is how the mixed sfais classified
text. into the closedconvex subsets, under SLOCC.

In the bipartite case, m@max is called the Schmidt num-

ber[28] (since@ is just labeled by the Schmidt local rank,
as seen in Sec).lAlso in the three-qubit case, this kind of
The onion structure is also useful for the SLOCC-Classification has been done in Rgtl], and four classes
invariant classification of mixed entangled states. A mixec@Ppear, following the above observatidi): GHZ classSy
statep can be written as a convex combination of projectors~Sxv (consisting of all pure statgs(ii) W class Sy
onto pure stategextremal points —chvusp (consisting of the pur&V, biseparable, or separable
states; (iii) biseparable C|aS§ngsp—Sx (consisting of the
p=2 PV (OONP,(O)], p,>0, (Bl  pure biseparable or separable stataad(iv) separable class
® Sx (consisting of only the pure separable statdeedless to
say, the trouble is considering all possible decompositions in
Eqg. (B1). So, it is very difficult to give the criterion to dis-

APPENDIX B: CLASSIFICATION OF MULTIPARTITE
MIXED STATES

Where|\Ifﬂ((9)\)> is the pure state belonging to the SLOCC
‘ﬂbit Oy of anindex. \ is labeled by the closed subvariety tinguish each closed convex subsgt, even to distinguish
O (i.e., the closure 0D,) such asx, XioidJ), Xeusp @A the separable subssk. Still, it would be interesting to ob-
X. Note that, in the multipartite case, there can be mangerye that a witness operatd¥, which forms the tangent
closed subvarietie®, that never contain nor are contained hyperplane trp)V)=0 detectingS, a givenp belongs to,

by each other; for exampl\o4d 1), X\qd2), andX\o4d3)  shares the same idea as our dual variety.
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