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Maximal violation of Bell inequalities using continuous-variable measurements
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We propose a whole family of physical states that yield a maximal violation of Bell inequalities, when using
gquadrature-phase homodyne detection. This result is based on a binning process called root binning, that is
used to transform the continuous-variable measurements into binary results needed for the tests of quantum
mechanics versus local realistic theories. A physical process in order to produce such states is also suggested.
The use of high-efficiency spacelike separated homodyne detections with these states and this binning process
would result in a conclusive loophole-free test of quantum mechanics.
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[. INTRODUCTION quadrature-phase homodyne measurements, that use strong
local oscillators detected by highly efficient photodiodes. Up
Nonseparability, or entanglement, has emerged as one &9 date, a few theoretical proposals that use quadrature-phase

the most striking feature of quantum mechanics. In 1935, ihomodyne detections have been mate-13 but for these

led Einstein, Podolsky, and Rosen to sugdéstthat quan-  setups the Bell inequality violation is a few percents only,

tum mechanics is incomplete, on the premise that any physthat lies far away from the maximal violation attainable :

cal theory of nature must be both “local” and “realistic.” To 22 (compared to a classical maximum of Zor the

quantify the debate between quantum mechanics and loc&llauser-Horne-Shimony-HoltCHSH) inequality [3], and

realistic(classical theories, Bell introduced a set of inequali- (1+ y2)/2 (compared to a classical maximum of for the

ties that must be obeyed by any local realistic theory wherea€lauser-Horne(CH) inequality [4]. Gilchrist et al. [10,11]

they are violated by quantum mechani2zs-4]. These results use acircle or pair coherent state produced by nondegenerate

shifted the debate from the realm of philosophy to experiparametric oscillation with the pump adiabatically removed.

mental physics. The experiments done at the beginning of th€his state leads to a theoretical violation of about 1.015

1980s by Aspect and co-workef5—7] convincingly sup- (>1) of the CH Bell inequality. Munrd13] considers cor-

ported the predictions of quantum mechanics, but admittedlyelated photon number states of the form

left open two so-called “loopholes,” that have to be ad- N

dressed for the evidence to be fully conclusive.

The first of these loopholes, called “locality” loophole, |q’>:r]§=:0 Calmn), @)

arises when the separation between the measured states is not

large enough to completely discard the exchange of sublumiyhereN is truncated aN=10. He then performs a numeri-

nal signals during the measurements. The second loopholga| optimization on each, coefficient to maximize the vio-

called detection-efficiency loophole, occurs when the particl@ation of the CHSH Bell inequality when an homodyne mea-

detectors are inefficient enough so that the detected evenégirement is performed. For this specific state, the CHSH

may be unrepresentative of the whole ensemble. In 1998pequality is violated by 2.076%2) and the CH inequality

Weihs et al. [8] achieved communication-free condition by py 1.019 (~1). From a different phase-space approach,

using a type-ll parametric down-conversion source and fashubersonet al.[14] derive phase space Bell inequalities and

random switching of the analyzers, that were separated by,onose a state that yields a maximal violation of up @2

about'400 n_1._This closed the I(_)c_ality loophole, but thelré>2)_ This state can be expressed in the position space by
detection efficiency was not sufficient to close the secon

loophole. In 2001, Rowet al.[9] measured quantum corre- 1 _
lations between two entangled beryllium ions with up to 80%W .. (qy,q,) = —= 1+ e (™Jsgn(q;)sgr(a,) 1f(|a:|) f(|aa]),
overall efficiency, closing the detection-efficiency loophole, 2\2 @)
but unfortunately the ions were too clo&gbout 3um) to
avoid the locality loophole. Hence a present challenge is tovhere f(q) is a regularized form of (1q), with
design and perform an experiment that closes both loopholeg’Zdq f(q)?=1. The main problem with this wave function
to lead to a full logically consistent test of any local realistic lies in its singularities and phase switches. Therefore, it re-
theory. quires nontrivial regularization procedures to be considered
Quantum optics suggests good candidates, as photons cas a suitable physical state. Following these various attempts,
be transported to sufficient long distances to avoid the localwe are thus looking for a “simple” physical state that would
ity loophole. To close the detection-efficiency loophole, anlead to a maximal violation of a Bell inequality.
alternative to photon-counting schemes consists in In this paper, we consider the CHSH Bell inequalig}
(sometimes referred to as tispin inequality. Figure 1 de-
picts an idealized setup for a general Bell inequality mea-
*Email address: philippe.grangier@iota.u-psud.fr surement. Two entangled substates are viewed by two ana-
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A 7 A =Y with f real, even, and normalized to unity whids assumed

| | . . o

| I | I real, odd, and normalized to unity. This kind of state looks
| :4_ Source of : similar to the one that used by Aubersetal.[14], but thef

| | correlated stz | | andg functions will be quite different as well as the binning
: a,a | : b, b | of the continuous variables being measured.

The quadrature-phase homodyne measurement outputs a
FIG. 1. Schematic of a generalized Bell experiment. The sourc€ontinuous variable, but using the CHSH inequality for test-
generates correlated states that are directed té thied B devices  ing local realism versus quantum mechanics require a binary
used to perform the measurements, with adjustable paranetersresult. Hence for a given quadrature measurentgnti

and b. Each measurement provides a binary resuit”“or “ —” =1,2) at either locatio’\ or B, we need to classify the result

individually. as either “+” or “ —.” In Refs. [11,13,14, the “positive-
negative” binning is used, that is the result is classified as “

lyzers and detectors at locatiodsand B, wherea andb  +"if g;=0 and “—"if ;<0.

denote any adjustable parameteAandB. In our particular The choice of binning is quite arbitrary. For staf we

case, we will use quadrature-phase homodyne measurean consider another type of binning, we aalbt binning
ments, which could have an efficiency high enough to closehat depends on the roots of the functidnend g (that are
the detection-efficiency loophole. Moreover, the apparatuselgnown in advance to the experimenterg/e assign “”
A andB can be in principle spacelike separated, thereby exwhen the result; lies in an interval wherd(q) andg(q)
cluding action at distance, and closing also the locality loop-ave the same sign, and-" if q; is in an interval wherd
hole. We point out that in the present approach all the deandg have opposite signs. We defile™ as the union of the
tected light has to be taken into account, i.e., the relevarintervals in whichf(q) andg(q) have the same sign ami-

signal is the photocurrent generated by the interferometrigs the union of the intervals in whici{q) andg(q) have
mixing and photodetection of the local oscillator and inputopposite signs. We have thus

guantum state. Therefore, no “supplementary assumption”
[3] will be needed to interpret the data. Under these condi- D" ={VgeR|f(q)g(q)=0}, (6)
tions, the CHSH Bell inequality can be writt¢8] as

D~ ={VqeR|[f(q)g(q)<0}. @)

Let us first consider the case when quadrature measure-
ments in position space have been performed on both sides.
So the binary probabilities we need for the CHSH type of
Bell inequality will be

S=|E(a’,b’)+E(a’,b)+E(a,b’)—E(a,b)|<2, (3
where the correlation functioB(a,b) is given by

E(a,b)=P, ,(a,b)+P__(ab)—P, (ab)—P_.(ab)
(4)

P++:fD+fD+dQ1dQ2P(Q1,Q2)' ®
with P, . (a,b) the probability that a “+” occurs at bothA
andB, givena andb.

In this paper, we propose explicitly a set of physical states P, = j +f ~dg;dg,P(d1,92), 9
that yield a violation of the CHSH inequality with a value of b-Jb
S arbitrarily close to 2/2, when measured by an ideal

quadrature-phase homodyne detection. In Sec. I, we de- P_+=f _f +dqldqu(ql,qz), (10

scribe how we convert the continuous quadrature amplitude b Jb

into a binary result 4" or “ —" for each apparatu#,B

using a process calleRoot Binning In Sec. Ill, a specific P”:J' f dg;da,P(d;,05), (12)
D JD"™

state that yields a large violation of the CHSH inequality is
presented. This state is generalized in Sec. IV to derive fith
whole family of states that violate this Bell inequality. The
issue of preparing such states is addressed in Sec. V, and P(01,02) = [{(qul(q, ¥)|? (12)
various other theoretical and practical issues are briefly dis-
cussed in the conclusion.

1
5Lf(au)*f(d2)*+9(a1)%g(d2)?
Il. ROOT BINNING
. _ +2 cos6f(q1)9(d1)f(d2)9(d2)]. (13
To begin our study, we consider a state of the form of a

superposition of two two-particles wave functions with a The correlation fuction for the sta{@) is given by
relative phase.

Eq,.q,=P+++P__—P, —P_, (14)
W)= i(|ff>+ei flgg)) O<é6<2m, (5)  and as we have chosérven andy odd, we get the remark-
V2 ably simple expression,
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—\/2 1.0 1.0
Eq,.q,= VcOS0, 1w ] . ol T
where 4 i
10 — T T T T 4 71 T T T°p
V:jD+f(Q)g(Q)dq_ J»Dif(q)g(q)dq 1‘0_-30 20 -10 Q 10 20 30 . -3 -2 -1 0 1 2 3
o 05 g o5 g/i
= f_ [f(@)g(a)lda. 1 ]
-0 T T T T T 19 10— T T T T TP
A similar binning will be applied for the momentum part. D S 22 40 128

Since' we suppose théfq) is a real and even functi'on while FIG. 2. f andg for a four-peaks state described by E(2§) and
g(q) Isa real and oddf(q) has a real even Fourier trans- (7) in position spaceleft) and momentum spacgight), with a
form f(p) while g(g) has an imaginary Fourier transform =7.5 (a=15). Left axes are in arbitrary units and normalized to

ih(p), whereh(p) is a real and odd function. Using these Unity.

properties, and taking care of the supplementdactor, the
same reasoning applies férandh as forf, g. Denoting as

D’* and D'~ the intervals associated with and h, we
obtain

Ep,.p,= — Wcos0), (17
where
w= | Twhmap- | Tohmdp
+OO ~ ~

=fo [f(p)h(p)|dp, (18)

and equivalently,
qu,p2=—v W siné, (29
Ep11q2=—v W siné. (20

Hence by combining Egg15), (17), (19), and(20) we can
write the CHSH inequality(3)

S=|cog 6)(VZ+W?)—2 sin §)VW|<2. (21)

The maximum ofS with respect tod is obtained for tam,,
=—2VW/(V?+W?), and we havef,——m/4 as V,W
—1. For this optimized,, we get the Bell inequality

S=|JyW*+ V44 6V2W?| <2. (22)

Using this really simple expressid@2), the debate between
quantum mechanics and local realistic theories boils down tof(q

find functionsf and g such that the integral¥, W violate

(22). An interesting feature appears when the distributions

are eigenstates of the Fourier transform, so ¥atW and
Eq. (22) becomes

S=2.2 V2<2. (23)

When compared to the positive-negative binning, root
binning has the advantage of having two paramefeaadW
to play with while the positive-negative binning has only one
[14]. Moreover, as we will show now, the above Bell in-
equality is violated by simple wave functions, that no longer
have the singularities that appeared in R&#].

lIl. LINEAR SUPERPOSITION OF FOUR
COHERENT STATES

In order to propose an explicit expression of a state that
violates the Bell inequality22), let us first consider the case
of a superposition of two coherent states of amplitualasd
—a. This state, sometimes referred to as a Sdimger cat,
involves intrinsic quantum features such as negative Wigner
functions, which make it an interesting candidate for our
state|f) or |g). We must choose an even wave function for
f(q) and an odd fog(q),

f(q)oce—(q+a)2/2+e—(q—a)z/z, (24)

g(q)oc_e—(q+a)2/2+e—(q—a)2/2, (25)
unfortunately for this simple state we gs#t=1 and W
=0.64 fora—x, so thatS=1.90<2. Therefore this state
cannot be used for violating Bell inequalitpote that Gil-
christet al. [10,11] also consider similar states, but without
getting a violation of Bell inequalitigs

Instead of superpositions of two coherent states, we con-
sider quantum superpositions that have four Gaussian com-
ponents. Let us for instance consider

Yo — @~ (a+3%2 1 o= (a+ D)2y o= (a-D%/2_ g~ (a-30)%12
(26)

g(q) % — e~ (@+3)%2_ - (a+a)%2 o~ (a-a)%/24 g—(d-3a)%/2.

(27)

The functionsf(q) andg(q) are depicted in Fig. 2 together
with their Fourier transform. We note that the distance be-

So if such functions have the right overlap needed to obtaifiveen each peak and its neighborsis 2a. This disposition
V=1, one will get the maximal violation of the above in- yields an optimal overlap df andg and thus a high value of
equality, which is obtained fo=2/2. S The best violation appears when the peaks move off as
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TABLE I. Sfor N-peaks states defined by E¢88) and(29) and f o
=15, each peak having the same height. | | — | | | |

N 2 4 6 8 10 12

S 1.895 2417 2.529 2.611 2.649 2.681 | | 2 | | | |

a—oo, In that caseV=1, W=8/(37) and thus we get the
significant violation ofS—2=0.417 (in facts, the condition 9 | | | | | | |
a—oo appeared to be not so strict numerically, as an ampli- | |

tudea=>5 is enough to obtails=2.417). Such a violation

represents a large improvement compared to Munro’s best li o
violation of 0.076[13], for a state with no singularity and at | | e | | | | |
least as easy to produce as Munro;soptimized state(1). | | | | | | | P
However, we are still away from the maximal value@ of
the CHSH Bell inequality 15]. In the following section, we FIG. 3. Infinite-peaks state, represented in the position and mo-

will propose a set of states to get closer to the maximamentum phase space. Thick segments denote Dirac delta functions.
violation.

functions to Gaussians and taking a finite number of ele-
IV. LINEAR SUPERPOSITION OF N COHERENT STATES ments. Thus one can understand tﬁa&Z\/z asN—oo.

The result obtained with the four Gaussian component Another regularization of wave functior80) and (31)

P consists in a widening of the Dirac functions to Gaussians of
states suggests that a way to get a stronger violation is t0

increase the total numbet of peaks of the state,,) and width s associated with a Gaussian envelope of width 1/
|gn), with the proper sign between the peaks. We thus de-

fine, for a given amplituder Foci,s(A) = Guss(A) [ For; x Go(@) ], (32
(N2)—1

fra(@= 2
j N/2

Oe;r,s( D) G (A [ v ax Gs(Q) ], (33

exp{—(q—[j+3]a)?2}, .
where G¢(q)=exp(—g%2s?), * denotes the convolution
(28 product, ands is a squeezing parameter. Wherk1, one

cos{%[2j+1]

(N/2)—1 indeed has
SN CIEIDS sin(z[Zj +1] |exp{—(q—[j+z]a)%/2}
a 2 . rd
’ j==(N2) 4 foo;a,s(p)och*[fw;w/ac‘l/s](p)%foo;w/a,s(p)y (34)
(29
Table | presents the results of the calculatiorSafccord- O;a,5(P)*Cet [ Qo 1aG15](P) ~ Grimia s(P)  (35)

ing to formula(22) for the state defined by Eg&), (28), and
(29). As expected, the quantitg increases with the number

of peaks and tends to\2. To prove this point, let us con- mately eigenstates of the Fourier transform.

sider the two following distributions that have an infinite 1.2 1 o't the Gaussian envelope, the above functions can
number of peaks. These distributions are depicted with thei[')e truncated to a finite total numb,er of peakswithout

Fourier transform in Fig. 3. affecting numerically thé andg functions, provided

The value ofS exhibits a symmetng(a) =S(#/«a), with a
maximum reached for= /7, wheref and g are approxi-

+ o

@ 3 aa-ali+ 12)0d 20), (0 ns 22Nl 3

+ . .
where ¢ is an arbitrary small tolerance parameter. For

. [ mq
g*?a(Q)“j;_w Gl +1/2))S'n(ﬂ)' (32) =0.01, a=/m, ands=0.3, the condition yielddN=12.
Given these parameters aht=12, we getS~2.2 with a
Up to scaling factors, these distributions appear to be alrelative error of 0.01%. Regardless to this condition, one
most identical to their Fourier transform, while for the spe-may also arbitrarily choose to limit the above functiond\to
cific amplitudea= /7 they are exact eigenstates of the Fou-peaks for given parametesand @, but as such and g
rier transform. Moreover, a$., and g.. overlap perfectly, cannot directly be considered as truncated, ; andg..., s,
these distributions would yield the maximal violation of the the best amplitude will differ from/z and S will slightly
CHSH inequality, as$=2./2 from Eq.(23). Of course, they move away from 2/2. Some results obtained fer=0.3 are
are unphysicalnon-normalizablestates, but the wave func- presented on Table Il faX running from 4 to 12. The value
tions fy andgy in Egs.(28) and (29) can be considered as of « used in this table is numerically calculated in order to
regularized forms off., and g.., widening the Dirac delta maximize S. Here the violation is considerably improved
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TABLE II. S as a function of the number of peaks for a
squeezing parametsr=0.3 and a Gaussian envelope of widtls,1/
for an optimized amplituder,p; .

N 4 6 8 10 12
opt 2.6 2.3 2 1.8 1.8
s 2.764 2823 2826 2828  2.828

compared to Table I, with for instanc8=2.764 with N
=4, andS=2.828 withN=10. In Fig. 4 we displayf(q)

andg(q) for the caséN =12 showing that these functions are

nearby self Fourier transform.

In Appendix A, we rewrite these states on the Fock-states 11 1 1 0
“L2\1 -1 77 lo -1

basis and express tHeand g functions as combinations of
Hermite polynomials.

V. CONDITIONAL PREPARATION OF ENTANGLED
SUPERPOSITIONS OFN COHERENT STATES

Preparing an entangled superposition Ndofcoherent or

squeezed states is a challenging task, we begin by focusi

our attention on how one singld Gaussian components

state as defined by E@29) could be generated. This state

has strong similarities with thencoded statefmtroduced by
Gottesman and co-workef46] to perform quantum error-
correction codes. Recently, Travaglione and MilbyY]

B
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l9) .
19) I | Iffy + e¥|gg)
ei010)+|1) A —
H -
— — |- €000y —— —— — — = [ _Oj_o_
0 —D A O
10 r l9)

FIG. 5. Schematic of the setup used to generate the giate
=(12)(|ff)+e"’|gg)) with f and g defined by Eqs(28) and
(29). See text for the notations.

(39

2

We then have a probability 1/2 of measuring the qubit either
in the excited or in the ground state. If it is found in the
|1), state, the continuous variable is left in the sthYg)
«—|—a)+|a), otherwise the procedure is stopped and we
again. The qubit is then bit flipped 16), and we go on
applying the sequence

He '2P7z H. (39)
Measuring the qubit in thé0), results in the continuous
variable left in the state|Y,)x—|—-3a)+|—a)—|a)

presented a proposal to generate nondeterministically schp|3a>_ To increase the number of peaks, we iterate the fol-
encoded states-ollowing this study, we will first show how lowing procedure givefY, ) and the qubit in0),:

to generate the statg) by applying a specific sequence of

operations similar to Refl17] and then derive a setup to
produce the whole stai®).

The preparation procedure begins with the quantum sys-

tem in the vacuum stat€0) and an ancilla qubit in the

ground statg0), (if some squeezing parameter is needed,

(1) Apply the operators

He 12" fepoz |, (40)

(2) Measure the qubit.
(3) If the qubit was in the stat¢0),, we have created

one may take a squeezed vacuum as quantum system apd
follow the procedure we describe here. For simplicity rea- (4) |f the qubit was in the stat¢l),, discard and try

sons, we ses=1). Let us first apply

He 'ePoz H,

37)

again.
Once the number of peaks is considered satisfactory, we
stop the previous iteration. The last point to genefgjds to

with p is the momentum operator applied to the continuous?PPly the following sequence:

variable stateH is the Hadamard gate, angl, is the Pauli
matrix applied to the qubit:

1.0

10

o5 f s ¥

00 00
05 0.5 —
10 T T T 19 10y T T T TP

-10 -5 0 5 10 -10 -5 0 5 10

1.0 1.0

05 g o5 gli

0.0 0.0 -
05 0.5
-0 T T T 19 104 T T T TP

-10 -5 0 5 10 -10 5 0 5 10

FIG. 4. N=12 states described by Eq82) and(33) presented
in position spacéleft) and in momentum spadeight) for param-
etersa=1.8 ands=0.3. Left axes are in arbitrary units and nor-
malized to unity.

He '(«/2poz H, (41)

If the qubit is found in the statf),, we have created the
state|g) as defined in Eq(29). If the protocol was stopped
after n iterations (corresponding tdY,)), the state|g) is
created with probability 1/2'! and showsN=2""1 peaks.

In the last section of Ref{17], Travaglione and Milburn
briefly consider the question of the physical implementation
of this iteration process using a radio-frequency ion trap. We
refer the reader to this paper for further details.

For the creation process of the state) = (1//2) (| ff)
+€e'’lgg)), we present in Fig5 a global view of our
scheme. Thé -labeled box corresponds to the generation of
|g) we just saw. Our process is based on a contralied-
gate that entangles two qubits and thus produces the state
|)a=1/2(|11),+€'?|00),). Each qubit is then associated
with a state|g) through the following operator
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iT( q very far fetched. Though we do propose a theoretical scheme

AZEXF{Z(E—1>(1—UZ) , (42 to prepare the required states, it relies on various features
(coupling Hamiltonian, controlledoT gates that are not

whereq is the position operator of the) state andr, is the ~ Presently available with the required degree of efficiency.
Pauli matrix applied to the qubit. If the qubit is at zero, the For going in more details into the implementation of the
|g) state will be left unchanged. If the qubit is at one, for present scheme, inefficiencies and associated decoherence
<a the sign of each two peak is changed so thai ghestate f—:-ffects shoulc_j be examineq in detail for egch required step,
is changed into théf) state. After this operatok has been 1-€., preparation, propagation, and detection. Also, various

applied, the whole state is left in possible implementations of the proposed scheme should be
considered9,17,20,2]. Such a study is out of the scope of
e'’|ggo0)+|ff11). (43  the present paper, that has mostly the goal to show that arbi-

trarily high violations of Bell inequalities are in principle
In order to disentangle the two qubits from the continuouspossible, by using continuous-variable measurements and
part, one has to make the qubits pass through an Hadamapdtysically meaningful—though hardly feasible—quantum
plus a controlledNoT gate. Finally measuring one qubit in states.
the zero state will project the continuous variable system

onto the awaited state ACKNOWLEDGMENTS
1 This work was supported by the European IST/FET/QIPC
W)= —(|ff)+€'’gg)). (44)  program, and by the French programs “ACI Photonique”
V2 and “ASTRE.”
Such a process ggnera.tes the linear superpositdhcot APPENDIX: EXPRESSION IN THE FOCK BASIS
herent states as defined in Eq28) and (29), where each
component has the same height. The ¢82 and(33) with An interesting point is to study the decomposition of

a Gaussian envelope is more complicated to produce becaustates|f) and|g) on the Fock basién), which are experi-
each peak must be separately weighted, but as seen in Tabteentally accessible. Starting from stat@2), (33) with «
|, the violation for a statg28), (29) with equal heights is =./7, s=0.4, and withN satisfying condition(36), we ob-
already quite strongS=2.41 forN=4). tained after truncating at the 14th order and normalizing the
states:
VI. CONCLUSION

Considering the quadrature-phase homodyne detection,
we have derived a different binning process caliedt bin-
ning to transform the continuous variables measured into bi- _ _ N~
nary results to be used in the test of quantum mechanics |9)=0.7291) + J0.1545) — 0.1079) 0.00913?A2)

versus local realistic theories. For this process, we propose a

whole family of physical states that yield a violation arbi- These states allow to reach a violati®r 2=0.81. The state
trarily close to the maximal violation in quantum mechan|CS|f> only involves ordersn=0 (mod4), as we haven
and much stronger than previous works in the domain=3 (mod4) for|g). This directly comes from the fact that
[10-13. o _ _ (pIny=(—i)"aln)y-, and (=i)*=1, so that states of the
We have also tested root binning on other interestingqorm S n=a (modalCnN) are eigenvectors of the Fourier trans-

forms of Bell inequality that are the information-theoretic form. From these considerations we have obtaiGed.68
inequalities developed by Braunstein and Ca{&8] and fq,

generalized by Cerf and Adarfi19]. Using quadrature mea-

|f)=10.4590)— 1/0.4914) — \/0.0088) — 1/0.04212),
(A1)

surements, root binning and our state defined by ESjs. fy=./0.5850)— \/0.41584 A3
(32), and(33), we unfortunately could find no violation for I 30) 34), (A3)
neither Braunstein’s nor Cerf’s form of information-theoretic — —

Bell inequality. Our state in fact tends to the minimum limit |g)=1/0.8481)+/0.1525). (A4)

for violation of these information inequalities whé&n—1 andS=2.3 for
andW—1. As a matter of fact, the binning process discards

a lot of information that lies within each interval of the bin- |f)= Jo._sn0>— \/O._3314> l9)=|1). (A5)
ning. This information loss may prevent any violation of ’
information-theoretic inequalities. These states are quite simple, and it is expected that a spe-

As a conclusion, let us point out that though the presentific simplified procedure to produce them might be de-
idea sounds quite attractive, its practical implementation isigned.
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