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Relativistic entanglement and Bell’s inequality
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In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The

calculated Bell observable for four joint measurements turns out to give a universal value,^â^ b̂&1^â^ b̂8&
1^â8^ b̂&2^â8^ b̂8&5(2/A22b2)(11A12b2), whereâ,b̂ are the relativistic spin observables derived from
the Pauli-Lubanski pseudovector andb5(v/c). We found that the degree of violation of the Bell’s inequality
is decreasing with increasing velocity of the observer and Bell’s inequality is satisfied in the ultrarelativistic
limit where the boost speed reaches the speed of light.
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I. INTRODUCTION

Relativistic transformation properties of quantum stat
especially, the entangled states are of considerable inte
partially because many novel features of the quantum in
mation processing rely on the entanglement and the no
cality associated with it@1–7#. One would take the telepor
tation @8,9# as a typical example. The problem of th
entanglement and the nonlocality traces back to the fam
1935 paper by Einstein-Podolsky-Rosen~EPR! @10#, almost
70 years ago, now known as the EPR paradox, and su
quent studies, most noticeably by Bell@11#, which showed
that the nature indeed seems to be nonlocal as far as no
ativistic quantum mechanics is concerned. This subtle qu
tion still remains to be answered especially in the relativis
arena. Recently, Czachor@1# and Terashima and Ueda@4#
suggested that the degree of violation of the Bell inequa
depends on the velocity of the pair of spin-1

2 particles or the
observer with respect to the laboratory.

The goal of this paper is to give a partial answer to
EPR paradox and the nonlocality. In the previous work@6#,
we studied the case of an entangled state shared by Alice
Bob in different frames and showed that the entangled
satisfies Bell’s inequality when the boost speed approac
the speed of light somewhat surprisingly. We also show
that the Bell state in the rest frame appears as a superpos
of the Bell bases to an observer in the moving frame due
the Wigner rotation of the spin states.

In this paper, we calculate the Bell observables for
tangled states in the rest frame seen by the observer mo
in the x direction and show that the entangled states sat
the Bell’s inequality when the boost speed approaches
speed of light. The calculated average of the Bell observa
for the Lorentz transformed entangled states turns out to
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c~aW ,aW 8,bW ,bW 8!5^â^ b̂&1^â^ b̂8&1^â8^ b̂&2^â8^ b̂8&

5
2

A22b2
~11A12b2!, ~1!

whereâ,b̂ are the relativistic spin observables for Alice an
Bob, respectively, related to the Pauli-Lubanski pseudove
@1,12# which is known to be a relativistically invariant op
erator corresponding to spin andb5(v/c), the ratio of the
boost speed and the speed of light.

In the nonrelativistic limitb50, and the right-hand-side
~rhs! of Eq. ~1! gives the value of 2A2, indicating the maxi-
mum violation of Bell’s inequality. On the other hand, in th
ultrarelativistic limitb51, the rhs of Eq.~1! gives the value
2, suggesting the Bell inequality is satisfied. Moreover, E
~1! shows that the average Bell observable or the degre
violation of the Bell’s inequality is decreasing with increa
ing velocity of the observer.

In the following section, we give the Lorentz transform
tion of the quantum states and the Wigner representatio
the Lorentz group from a heuristic point of view.

II. RELATIVISTIC TRANSFORMATION OF QUANTUM
STATES AND WIGNER REPRESENTATION

OF THE LORENTZ GROUP

One of the conceptual barriers for the relativistic tre
ment of quantum information processing is the difference
the role played by the wave fields and the states vecto
relativistic quantum theory. In nonrelativistic quantum m
chanics both the wave function and the states vector in
Hilbert space give the probability amplitude which can
used to define conserved positive densities or density ma
Since an attempt to unify quantum mechanics and spe
relativity was made by Dirac toward the end of the 192
and the famous Dirac equation for an electron was disc
ered, it was found that the waves obeying the relativis
wave equations do not represent the probability amplitude
themselves. For example, the probability wave function fo
photon is neither the electric nor the magnetic field wh
satisfies Maxwell’s equations. In a way, the state vec
©2003 The American Physical Society03-1
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of a photon is related indirectly to Maxwell’s equations.
this sense, the relativistic wave equations must be rega
only as indirect representation for the description of o
particle probability waves, and the forms of equation the
selves have a direct connection to the quantum-field the

On the other hand, the idea that the quantum state
relativistic particles can be formulated directly without t
use of wave equations, was proposed by Wigner in 1
@13#. He showed that the states of a free particle are given
unitary irreducible representations of the Poincare´ group, i.e.,
the group formed by translations and Lorentz transform
tions in the Minkowski space. As a matter of fact, if we g
all unitary irreducible representations of the Poincare´ group,
or the Lorentz group, we do have a complete knowledge
relativistic free particle states and behavior@14#.

In this paper, we follow Wigner’s approach and focus
the Lorentz transformation properties of quantum states, t
obtain the relativistic transformation of entangled quant
states. For convenience, we follow the Weinberg’s notat
@15# throughout the paper.

A multiparticle state vector is denote by

Cp1s1 ;p2s2 ; . . . 5a1~pW 1 ,s1!a1~pW 2 ,s2!•••C0 , ~2!

wherepi labels the four momentum,s i is the spinz compo-
nent, a1(pW i ,s i) is the creation operator which adds a pa
ticle with momentumpW i and spins i , andC0 is the Lorentz
invariant vacuum state. The Lorentz transformationL in-
duces unitary transformation on vectors in the Hilbert spa

C→U~L!C, ~3!

and the operatorsU satisfies the composition rule

U~L̄ !U~L!5U~L̄L!, ~4!

while the creation operator has the following transformat
rule:

U~L!a1~pW ,s!U~L!21

5A~Lp!0

p0 (
s̄

D s̄s
( j )
„W~L,p!…a1~pW L ,s̄ !. ~5!

Here,W(L,p) is Wigner’s little group element given by

W~L,p!5L21~Lp!LL~p!, ~6!

with D ( j )(W) the representation ofW for spin j, pm

5(pW ,p0), (Lp)m5@pW L ,(Lp)0# with m51,2,3,0, andL(p)
is the Lorentz transformation such that

pm5Ln
mkn, ~7!

wherekn5(0,0,0,m) is the four-momentum taken in the pa
ticle’s rest frame. One can also use the conventional ket
tation to represent the quantum states as

Cp,s5a1~pW ,s!C05upW ,s&5upW & ^ us&. ~8!
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We now give the derivation of the representation of t
Wigner’s little groupW(L,p) for spin-12 particles following
the Halpern’s approach@16#. From Eq.~6!, the representation
D (1/2)

„W(L,p)… is written as

D (1/2)
„W~L,p!…5D (1/2)21

„L~Lp!…D (1/2)~L!D (1/2)
„L~p!….

~9!

If we consider an arbitrary boost given by the velocityvW with
ê as the normal vector in the boost direction, the Lore
transformationLn

m is @17#

L j
i 5d i j 1eiej~cosha21!,

L0
i 5L i

05eisinha,

L0
05cosha5g5

1

A12b2
. ~10!

Then, forpm5(pW ,p0) with p05EpW ,

pW 85pW L5@pW 2~pW •ê!ê#1@EpWsinha1~pW •ê!cosha#ê,
~11!

~Lp!05~p0!85EpWcosha1~pW •ê!sinha, ~12!

and

D (1/2)~L!5I cosh
a

2
1~sW •ê!sinh

a

2
. ~13!

From the two-component spinor representation~Appendix!,

fR~pW !5F S g11

2 D 1/2

1sW •
pW

upW u
S g21

2 D 1/2GfR~0!

5D (1/2)
„L~p!…fR~0!, ~14!

wherefR is the two-component spinor, we obtain

D (1/2)
„L~p!…5S p01m

2m D 1/2

I 1S p02m

2m D 1/2

sW •
pW

upW u
~15!

and

D (1/2)
„LL~p!…5S ~Lp!01m

2m D 1/2

I 1S ~Lp!02m

2m D 1/2

sW •
pW L

upW Lu
.

~16!

Then obviously we get

@D (1/2)
„LL~p!…#215S ~Lp!01m

2m D 1/2

I

2S ~Lp!02m

2m D 1/2

sW •
pW L

upW Lu
. ~17!

Here,sW 5(sx ,sy ,sz) ands i is the Pauli matrix. If we put
Eqs.~13!, ~15!, and~16! into Eq. ~9!, we obtain
3-2
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D (1/2)
„W~L,p!…5apW L

1
apW

1cosh
a

2
2apW L

2
apW

1cosh
a

2
~sW • p̂L!

1apW L

1
apW

1sinh
a

2
~sW •ê!

2apW L

2
apW

1sinh
a

2
~sW • p̂L!~sW •ê!

1apW L

1
apW

2cosh
a

2
~sW • p̂!

2apW L

2
apW

2cosh
a

2
~sW • p̂L!~sW • p̂!

1apW L

1
apW

2sinh
a

2
~sW •ê!~sW • p̂!

2apW L

2
apW

2sinh
a

2
~sW • p̂L!~sW •ê!~sW • p̂!,

~18!

where apW
6

5@(p06m)/2m#1/2, apW L

6
5$@(Lp)06m#/2m%1/2,

p̂5(PW /upW u), and p̂L5(PW L /upW Lu). Equation~18! can be re-
arranged into the following form:

D 1/2
„W~L,p!…5A1BsW •pW 1CsW •ê1 iDsW •~pW 3ê!,

~19!

by using the relations

~sW •aW !~sW •bW !5aW •bW 1 isW •~aW 3bW ! ~20!

and

~sW • p̂L!~sW •ê!~sW • p̂!5~ p̂L•ê!~sW • p̂!

1 i ~ p̂L3ê!• p̂1sW •$ p̂3~ p̂L3ê!%.

~21!

The coefficientsA, B, C, and D are obtained after length
mathematical manipulations@16,18#. They are

A5
1

$~p01m!@~Lp!01m#%1/2H ~p01m!cosh
a

2

1~pW •ê!sinh
a

2J , ~22!

B5C50, ~23!

D52
1

$~p01m!@~Lp!01m#%1/2
sinh

a

2
. ~24!

Then the Wigner representation of the Lorentz group for
spin-12 becomes
01210
e

D (1/2)
„W~L,p!…5

1

$~p01m!@~Lp!01m#%1/2

3 H ~p01m!cosh
a

2
1~pW •ê!sinh

a

2

2 isinh
a

2
sW •~pW 3ê!J ~25!

5cos
VpW

2
1 isin

VpW

2
~sW •n̂!, ~26!

with

cos
VpW

2
5

cosh
a

2
cosh

d

2
1sinh

a

2
sinh

d

2
~ ê• p̂!

F1

2
1

1

2
cosha coshd1

1

2
sinha sinhd~ ê• p̂!G1/2

~27!

and

sin
VpW

2
n̂5

sinh
a

2
sinh

d

2
~ ê3 p̂!

F1

2
1

1

2
cosha coshd1

1

2
sinha sinhd~ ê• p̂!G1/2,

~28!

where coshd5(p0/m). We note that Eq.~26! indicates the
Lorentz group can be represented by the pure rotation
axis n̂5ê3 p̂ for the two-component spinor.

As an example, we consider the case of momentum ve
in thez direction and the boost in thex direction. In this case,
we have

cos
VpW

2
5

cosh
a

2
cosh

d

2

F1

2
1

1

2
cosha coshdG1/2, ~29!

sin
VpW

2
n̂5

2 ŷsinh
a

2
sinh

d

2

F1

2
1

1

2
cosha coshdG1/2, ~30!

and

D 1/2
„W~L,p!…5cos

VpW

2
2 isysin

VpW

2

5S cos
VpW

2
2sin

VpW

2

sin
VpW

2
cos

VpW

2

D . ~31!

The Wigner angleVpW is defined by
3-3
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tanVpW5
sinha sinhd

cosha1coshd
. ~32!

In Fig. 1, we plot the Wigner angle given by Eq.~32! as a
function of b5(v/c) for ~i! EpW /m510 ~solid line!, ~ii !
EpW /m5100 ~dashed line!, and ~iii ! EpW /m51000 ~dotted
line!. It is interesting to note that the higher energy~at the
rest frame! of a particle for a given mass, the smaller t
rotation angle at lowerb. On the other hand,VpW goes to
(p/2) asb becomes 1 when the momentum is highly re
tivistic.

III. RELATIVISTIC ENTANGLEMENT OF QUANTUM
STATES AND BELL’S INEQUALITY

We define the momentum-conserved entangled Bell st
for spin-12 particles in the rest frame as follows:

FIG. 1. Wigner angle for different energy to mass ratios for~i!
EpW /m510 ~solid line!, ~ii ! EpW /m5100 ~dashed line!, and ~iii !
EpW /m51000 ~dotted line! as a function ofb5(v/c).
01210
-

es

C005
1

A2
$a1~pW , 1

2 !a1~2pW , 1
2 !

1a1~pW ,2 1
2 !a1~2pW ,2 1

2 !%C0 , ~33a!

C015
1

A2
$a1~pW , 1

2 !a1~2pW , 1
2 !

2a1~pW ,2 1
2 !a1~2pW ,2 1

2 !%C0 , ~33b!

C105
1

A2
$a1~pW , 1

2 !a1~2pW ,2 1
2 !

1a1~pW ,2 1
2 !a1~2pW , 1

2 !%C0 , ~33c!

C115
1

A2
$a1~pW , 1

2 !a1~2pW ,2 1
2 !

2a1~pW ,2 1
2 !a1~2pW , 1

2 !%C0 , ~33d!

whereC0 is the Lorentz invariant vacuum state.
For an observer in another reference frameS8 described

by an arbitrary boostL, the transformed Bell states are give
by

C i j →U~L!C i j . ~34!

For example, from Eqs.~5! and~33a!, U(L)C00 becomes
U~L!C005
1

A2
$U~L!a1~pW , 1

2 !U21~L!U~L!a1~2pW , 1
2 !U21~L!

1U~L!a1~pW ,2 1
2 !U21~L!U~L!a1~2pW ,2 1

2 !U21~L!%U~L!C0

5
1

A2
(
s,s8

HA~Lp!0

p0
D s1/2

(1/2)
„W~L,p!…A~LPp!0

~Pp!0
D s81/2

(1/2)
„W~L,Pp!…a1~pW L ,s!a1~2pW L ,s8!

1A~Lp!0

p0
D s21/2

(1/2)
„W~L,p!…A~LPp!0

~Pp!0
D s821/2

(1/2)
„W~L,Pp!…a1~pW L ,s!a1~2pW L ,s8!J C0 ~35!

and so on. For simplicity, we assume thatpW is in thez direction,pW 5(0,0,p), and the boostL is in thex direction.
Then from Eqs.~31! and ~35!, we obtain
3-4
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U~L!C005
~Lp!0

p0
cosVpW

1

A2
$a1~pW L , 1

2 !a1~2pW L , 1
2 !

1a1~pW L ,2 1
2 !a1~2pW L ,2 1

2 !%C0

2
~Lp!0

p0
sinVpW

1

A2
$a1~pW L , 1

2 !a1~2pW L ,2 1
2 !

2a1~pW L ,2 1
2 !a1~2pW L , 1

2 !%C0

5
~Lp!0

p0
upW L ,2pW L& ^ H cosVpW

1

A2
(u 1

2 , 1
2 &

1u2 1
2 ,2 1

2 &)J 2
~Lp!0

p0
upW L ,2pW L&

^ H sinVpW
1

A2
~ u 1

2 ,2 1
2 &2u2 1

2 , 1
2 J

5
~Lp!0

p0
$cosVpWC008 2sinVpC118 %, ~36a!

whereC i j8 is the Bell states in the moving frameS8 whose

momenta are transformed aspW→pW L ,2pW →2pW L . Likewise,
we have

U~L!C015
~Lp!0

p0
C018 , ~36b!

U~L!C105
~Lp!0

p0
C108 , ~36c!

and

U~L!C115
~Lp!0

p0
$sinVpWC008 1cosVpC118 %. ~36d!

If we regardC i j8 as Bell states in the moving frameS8, then
to an observer inS8, the effects of the Lorentz transforma
tion on entangled Bell states among themselves should
pear as rotations of Bell states in the frameS8. We are now
ready to check whether the Lorentz-transformed Bell sta
violate Bell’s inequality by calculating the average of t
Bell observable defined in Eq.~1!. Before we proceed, we
note that the Bell states can be categorized into two gro
The first group is the subset$C00,C11% which transforms
among themselves by the Lorentz transformation, and
second group is the set$C01,C10% which remains invariant
in forms under the boost except the momentum change. N
malized relativistic spin observablesâ,b̂ are given by@1#

â5
~A12b2aW'1aW i!•sW

A11b2@~ ê•aW !221#
~37!

and
01210
p-

s

s.

e

r-

b̂5
~A12b2bW'1bW i!•sW

A11b2@~ ê•bW !221#
, ~38!

where the subscripts' andi denote the components ofaW ~or
bW ) which are perpendicular and parallel to the boost dir
tion, respectively. Moreover,uaW u5ubW u51.

Case I. C00→U(L)C00. From Eq.~36a!, we have

U~L!C005
~Lp!0

p0
upW L ,2pW L& ^ F 1

A2
cosVpW (u

1
2 , 1

2 &

1u2 1
2 ,2 1

2 &)2
1

A2
sinVpW (u

1
2 ,2 1

2 &2u2 1
2 , 1

2 &)G .

~39!

Then, after some mathematical manipulations, we get

â^ b̂u 1
2 , 1

2 &5
1

A@11b2~ax
221!#@11b2~bx

221!#

$~12b2!azbzu
1
2 , 1

2 &

1A12b2az~bx1 ibyA12b2!u 1
2 ,2 1

2 &

1A12b2bz~ax1 iayA12b2!u2 1
2 , 1

2 &1~ax

1 iayA12b2!~bx1 ibyA12b2!u2 1
2 ,2 1

2 &%,

~40a!

â^ b̂u2 1
2 ,2 1

2 &5
1

A@11b2~ax
221!#@11b2~bx

221!#

3$~ax2 iayA12b2!~bx2 ibyA12b2!u 1
2 , 1

2 &

2A12b2bz~ax2 iayA12b2!u 1
2 ,2 1

2 &

2A12b2az~bx2 ibyA12b2!u2 1
2 , 1

2 &

1~12b2!azbzu2
1
2 ,2 1

2 &%, ~40b!

â^ b̂u 1
2 ,2 1

2 &

5
1

A@11b2~ax
221!#@11b2~bx

221!#

3$A12b2az~bx2 ibyA12b2!u 1
2 , 1

2 &

2~12b2!azbzu
1
2 ,2 1

2 &

1~ax1 iayA12b2!~bx2 ibyA12b2!u2 1
2 , 1

2 &

2A12b2bz~ax1 iayA12b2!u2 1
2 ,2 1

2 &%, ~40c!
3-5
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â^ b̂u2 1
2 , 1

2 &

5
1

A@11b2~ax
221!#@11b2~bx

221!#

3$A12b2bz~ax2 iayA12b2!u 1
2 , 1

2 &

1~ax2 iayA12b2!~bx1 ibyA12b2!u 1
2 ,2 1

2 &

2~12b2!azbzu2
1
2 , 1

2 &

2A12b2az~bx1 ibyA12b2!u2 1
2 ,2 1

2 &% ~40d!

for the boost in thex direction. The calculation of̂â^ b̂& is
straightforward and is given by

^â^ b̂&5
1

A@11b2~ax
221!#@11b2~bx

221!#

3$@axbx1~12b2!azbz#cos~2VpW !

2~12b2!ayby2A12b2

3~azbx2bzax!sin~2VpW !%. ~41!

It is interesting to note that in the ultrarelativistic lim
b→1, Eq. ~41! becomes

^â^ b̂&→
ax

uaxu
bx

ubxu
cos~2VpW !, ~42!

implying that the joint measurements are not correlated
all. As a result, one might suspect that the entangled s
satisfies Bell’s inequality. We now consider the vectorsaW

5@(1/A2),2(1/A2),0#, aW 85@2(1/A2),2(1/A2),0#, bW

5(0,1,0), bW 85(1,0,0), which lead to the maximum viola
tion of the Bell’s inequality in the nonrelativistic domai
Vp50 andb50. Then the Bell observable for the four re
evant joint measurements becomes

^â^ b̂&1^â^ b̂8&1^â8^ b̂&2^â8^ b̂8&

5
2

A22b2
~A12b21cosVp!. ~43!

In the ultrarelativistic limit whereb51, the Eq.~43! gives
the maximum value of 2 satisfying Bell’s inequality as e
pected.

Case II. C10→U(L)C10. This case is interesting be
cause the Lorentz transformation leaves the Bell state inv
ant in form, which is

U~L!C105
~Lp!0

p0
upW L ,2pW L& ^

1

A2
~ u 1

2 ,2 1
2 &1u2 1

2 , 1
2 &).

~44!

From Eqs.~40a!–~40d!, we obtain
01210
at
te

ri-

^â^ b̂&5
1

A@11b2~ax
221!#@11b2~bx

221!#

3$axbx1~12b2!~ayby2azbz!%. ~45!

Then, in the ultrarelativistic limitb→1, we have

^â^ b̂&→
ax

uaxu
bx

ubxu
, ~46!

again, indicating the joint measurements, become unco
lated in this limit. We consider the vector
aW 5@(1/A2),(1/A2),0#, aW 85@2(1/A2),2(1/A2),0#, bW

5(0,1,0), bW 85(1,0,0), which lead to the maximum viola
tion of Bell’s inequality in the nonrelativistic regime. The
the Bell observable for the four relevant joint measureme
becomes

^â^ b̂&1^â^ b̂8&1^â8^ b̂&2^â8^ b̂8&

5
2

A22b2
~A12b211!, ~47!

thus giving same maximum value as in case I. The ab
results show that it may be irrelevant whether the form of
entanglement is invariant or not in calculating the Bell’s i
equality. It can also be shown that one can obtain the sa
value for the Bell observables given by Eq.~47! for
U(L)C01 andU(L)C11 implying Eq. ~47! is the universal
result. In Fig. 2, the universal Bell observable@Eq. ~47!# is
calculated as a function ofb5(v/c).

We note that the Bell observable@Eq. ~47!# is a monotoni-
cally decreasing function ofb, approaching the limit value
of 2 from above whenb51 which indicates the degree o
violation of Bell’s inequality is decreasing with increasin
velocity of the observer. It is interesting to note that

FIG. 2. Plot of the Bell observables as a function ofb
5(v/c).
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one simply rotates the spin directions ofaW ,bW ,aW 8,bW 8 instead of
using the Pauli-Lubanski vectors, then the entanglement
tween the spins of the Bell states would be unchanged
the results of the spin measurements will be exactly the s
as if they were done in the rest frame. There still remain
question of why Bell’s inequality is satisfied at the ultrare
tivistic limit. One plausible explanation seems that the sh
of the entangled pair seen by the observer becomes m
deformed as boost speed increases and as a consequ
both spins of the pair are tilted toward the boost axis@19#.
Then such a spin has, forb51, commuting components an
behaves like a classical observable.

IV. SUMMARY

In this work, we studied the Lorentz-transformed e
tangled Bell states and the Bell observables to investig
whether Bell’s inequality is violated in all regime. We fir
present the quantum state transformation and the Wigner
resentation of Lorentz group from the heuristic point of vie
The calculated Wigner angle as a function ofb5(v/c)
shows that it depends on the energy-mass ratio. We h
calculated the Bell observable for the joint four measu
ments and found that the results are universal for all
tangled states:

c~aW ,aW 8,bW ,bW 8!5^â^ b̂&1^â^ b̂8&1^â8^ b̂&2^â8^ b̂8&

5
2

A22b2
~11A12b2!,

whereâ,b̂ are the relativistic spin observables derived fro
the Pauli-Lubanski pseudovector. It turns out that the B
observable is a monotonically decreasing function ofb and
approaches the limit value of 2 whenb51 indicating that
the Bell’s inequality is satisfied in the ultrarelativistic limit
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APPENDIX: DERIVATION OF EQ. „14…

Let JW5(J1 ,J2 ,J3) andKW 5(K1 ,K2 ,K3) be generators for
the rotation and the boost, respectively, and define

AW 5
1

2
~JW1 iKW ! and BW 5

1

2
~JW2 iKW !. ~A1!

Then it is easy to show that

@Ai ,Aj #5 i e i jkAk ,

@Bi ,Bj #5 i e i jkBk ,

@Ai ,Bj #50. ~A2!
01210
e-
nd

e
a
-
e
re
nce,

-
te

p-
.

ve
-
-

ll

a-
e

We now define the unitary transformation corresponding
the homogeneous Lorentz transformation as

U~L!511
i

2
vmnJmn5ei /2vmnJmn

. ~A3!

The antisymmetric tensorvmn and the generatorJmn can be
written as

vmn5F 0 v01 v02 v03

2v01 0 v12 v13

2v02 2v12 0 v23

2v03 2v13 2v23 0

G ,

5F 0 f1 f2 f3

2f1 0 u3 2u2

2f2 2u3 0 u1

2f3 u2 2u1 0

G , ~A4!

and

Jmn5F 0 J01 J02 J03

2J01 0 J12 J13

2J02 2J12 0 J23

2J03 2J13 2J23 0

G
5F 0 K1 K2 K3

2K1 0 J3 2J2

2K2 2J3 0 J1

2K3 J2 2J1 0

G . ~A5!

Here,

JW5~J1 ,J2 ,J3!5~J23,J21,J12!,

KW 5~K1 ,K2 ,K3!5~J01,J12,J13!,

uW 5~u1 ,u2 ,u3!5~v23,v31,v12!,

fW 5~f1 ,f2 ,f3!5~v01,v02,v03!. ~A6!

Then from Eqs.~A3!–~A6!, we obtain

U~L!5exp
i

2
vmnJmn5exp@ i ~v01J

011v02J
021v03J

03

1v12J
121v23J

231v31J
31!#

5exp@ i ~fW •KW 1uW •JW !#5exp$ i @fW •~2 i !~AW 2BW !

1uW •~AW 1BW !#%

5exp@ i ~uW 2 ifW !•AW 1 i ~uW 1 ifW !•BW #

5exp@ i ~uW 2 ifW !•AW #exp@ i ~uW 1 ifW !•BW #, ~A7!
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since @AW ,BW #50. From Eq.~A7!, it can be seen thatU(L)
can be represented by SU(2)^ SU(2) for spin-12 particle.
From the relation@AW ,BW #50, we can find the common eigen
statec5c(aj ,bj ) which can be used in the representation
U(L). As a special case, we consider the case ofbj50 and
j 5 1

2 . Then BW 5 1
2 (JW2 iKW )50,AW 5 1

2 (JW1 iKW )5JW , and as re-
sult, we get

U~L!5exp@ i ~uW 2 ifW !•JW #5expF i ~uW 2 ifW !•
sW

2
G . ~A8!
8
3
d

r,

01210
f

For a given two-component spinorfR , we note thatfR
transforms under the homogenous Lorentz transformatio

fR→U~L!fR5exp~ 1
2 sW •fW !fR . ~A9!

Using the relations,g5coshf, gb5sinhf, and p̂5f̂, we
finally obtain

fR~pW !5F S g11

2 D 1/2

1sW •
pW

upW u
S g21

2 D 1/2GfR~0!.

~A10!
s
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