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Relativistic entanglement and Bell's inequality
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In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The
calculated Bell observable for four joint measurements turns out to give a universal (&g} +(a®b’)
+(a'@b)—(a’®b’'y=(2/2— B?)(1+ J1— B?), wherea,b are the relativistic spin observables derived from
the Pauli-Lubanski pseudovector age- (v/c). We found that the degree of violation of the Bell's inequality
is decreasing with increasing velocity of the observer and Bell's inequality is satisfied in the ultrarelativistic
limit where the boost speed reaches the speed of light.
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l. INTRODUCTION c(a,a’,b,b')=(awb)+(axh')+ (3 ®b)—(a'®b')
- . . 2
Relativistic transformation properties of quantum states, — (1+1-3?) (1)
especially, the entangled states are of considerable interest V2—3? '

partially because many novel features of the quantum infor-

mation processing rely on the entanglement and the nonlayherea,b are the relativistic spin observables for Alice and
cality associated with if1-7]. One would take the telepor- Bob, respectively, related to the Pauli-Lubanski pseudovector
tation [8,9] as a typical example. The problem of the [1,12] which is known to be a relativistically invariant op-
entanglement and the nonlocality traces back to the famousrator corresponding to spin amg=(v/c), the ratio of the
1935 paper by Einstein-Podolsky-Ros@PR) [10], almost  boost speed and the speed of light.

70 years ago, now known as the EPR paradox, and subse- In the nonrelativistic limit3=0, and the right-hand-side
quent studies, most noticeably by BEl1], which showed (rhs) of Eq. (1) gives the value of 22, indicating the maxi-
that the nature indeed seems to be nonlocal as far as nonréhum violation of Bell’s inequality. On the other hand, in the
ativistic quantum mechanics is concerned. This subtle quesHtrarelativistic limit3=1, the rhs of Eq(1) gives the value
tion still remains to be answered especially in the relativistic2, suggesting the Bell inequality is satisfied. Moreover, Eq.
arena. Recently, Czach¢t] and Terashima and Ued4] (1) shows that the average Bell observable or the degree of
suggested that the degree of violation of the Bell inequalityviolation of the Bell's inequality is decreasing with increas-

depends on the velocity of the pair of sgirparticles or the INg Velocity of the observer.
observer with respect to the laboratory. In the following section, we give the Lorentz transforma-

The goal of this paper is to give a partial answer to thetion of the quantum states and the Wigner representation of

EPR paradox and the nonlocality. In the previous widk the Lorentz group from a heuristic point of view.

we studied the case of an entangled state shared by Alice and

Bob in different frames and showed that the entangled pair Il. RELATIVISTIC TRANSFORMATION OF QUANTUM

satisfies Bell's inequality when the boost speed approaches STATES AND WIGNER REPRESENTATION

the speed of light somewhat surprisingly. We also showed OF THE LORENTZ GROUP

that the Bell state in the rest frame appears as a SUperposition e of the conceptual barriers for the relativistic treat-

of the Bell bases to an observer in the moving frame due t¢nent of quantum information processing is the difference of

the Wigner rotation of the spin states. the role played by the wave fields and the states vector in

In this paper, we calculate the Bell observables for enye|ativistic quantum theory. In nonrelativistic quantum me-

tangled states in the rest frame seen by the observer movinghanics both the wave function and the states vector in the

in the x direction and show that the entangled states satisfiilbert space give the probability amplitude which can be

the Bell's inequality when the boost speed approaches thased to define conserved positive densities or density matrix.

speed of light. The calculated average of the Bell observabl8ince an attempt to unify quantum mechanics and special

for the Lorentz transformed entangled states turns out to beelativity was made by Dirac toward the end of the 1920s
and the famous Dirac equation for an electron was discov-
ered, it was found that the waves obeying the relativistic
wave equations do not represent the probability amplitude by

*Email address: dahn@uoscc.uos.ac.kr themselves. For example, the probability wave function for a
"Email address: Ihjae@iquips.uos.ac.kr photon is neither the electric nor the magnetic field which
*Email address: swhwang@korea.ac.kr satisfies Maxwell's equations. In a way, the state vector
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of a photon is related indirectly to Maxwell's equations. In We now give the derivation of the representation of the
this sense, the relativistic wave equations must be regardeigner’s little groupW(A ,p) for spin4 particles following
only as indirect representation for the description of onethe Halpern's approadi6]. From Eq.(6), the representation
particle probability waves, and the forms of equation them-D M2(\W(A,p)) is written as

selves have a direct connection to the quantum-field theory.

On the other hand, the idea that the quantum states o “2(W(A,p))=D W~ HL(Ap))D YI(A)DYA(L(p)).
relativistic particles can be formulated directly without the 9
use of wave equations, was proposed by Wigner in 1939 , . . -
[13]. He showed that the states of a free particle are given by W€ consider an arbitrary boost given by the veloaityvith
unitary irreducible representations of the Poinagneup, i.e., € as the normal vector in the boost direction, the Lorentz
the group formed by translations and Lorentz transformatransformationA’ is [17]
tions in the Minkowski space. As a matter of fact, if we get

all unitary irreducible representations of the Poincgmeup, Aj= &+ eiej(cosha—1),
or the Lorentz group, we do have a complete knowledge of i 0 )
relativistic free particle states and behavit]. Ao=A;7=egsinha,

In this paper, we follow Wigner’s approach and focus on
the Lorentz transformation properties of quantum states, then 1

Ad=cosha=y= (10)

obtain the relativistic transformation of entangled quantum n— 32 3 '
states. For convenience, we follow the Weinberg's notation

[15] throughout the paper. Then, forp#=(p,p°) with p°=Ej;,
A multiparticle state vector is denote by P

) R p'=pr=[p—(p-e)e]+[Ezsinha+(p-e)coshale,
‘I’plol;pzoz;...=a+(P1a01)a+(p2:0'2)‘"‘I’o, 2 (11
wherep; labels the four momentuna;; is the spinz compo- (Ap)°=(p%'= Ef,cosha+(§- e)sinha, (12
nent,a+(|5i ,0;) is the creation operator which adds a par-

ticle with momenturmp; and spino;, and¥, is the Lorentz
invariant vacuum state. The Lorentz transformati®nin- a .. a
duces unitary transformation on vectors in the Hilbert space, DAY= coshz—+(a- e)sinhz. (13)

Y-u)Y, 3) From the two-component spinor representati@dppendix,

and the operatord satisfies the composition rule

R ,y+ 1 1/2 R 5 y— 1 1/2
— — (P =||——| o T(T) #r(0)
U(A)U(A)=U(AAN), 4 Ipl
while the creation operator has the following transformation =D™2(L(p))¢r(0), (14

rule: where ¢ is the two-component spinor, we obtain

U(A)a®(p,a)U(A) po+m)1/2l (po_m)uz
+

D W2) L =(
= TZ D;U(W(A,p))a (Pa,0). (5

and

Here,W(A,p) is Wigner's little group element given by D(lfz)(AL(p)):((Ap)0+m 1/2| ((Ap)o—m)l’za. 5_A

W(A,p)=L"*(Ap)AL(p), 6) 2m 2m |5ﬁ|6>
with DO(W) the representation ofV for spin j, p* _
= (p.p%), (AP)“=[Py.(AP)°] With u=1,2,3,0, and_(p) ' "e" Obviously we get
is the Lorentz transformation such that (Ap)°+m|L2

_— @ [D(M)(AL('O))TIZ(T) !
p = 14 1
0__ 1/2 -

wherek”=(0,0,0m) is the four-momentum taken in the par- _((Ap) m) o E’_A (17)
ticle’s rest frame. One can also use the conventional ket no- 2m [pal

tation to represent the quantum states as )
R R R Here,o=(oy,0y,0;,) ando; is the Pauli matrix. If we put
v, ,=a’(p,0)¥o=|p,0)=|p)®]|0). (8) Egs.(13), (15), and(16) into Eq. (9), we obtain
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DUDW(A,p)=a’ a’coshs —a: a’cosh (o Py)
P)=ap ap coshy —ap a; Coshy (- Py
+ o+ X
+aﬁl\aﬁ8|nh§(0’-e)

N A
—aﬁl\aﬁslnhi(a-p/\)(o"e)

4ot ot a .o
ag @ coshz—(a- p)

— _ a o . N
—a; a;coshy (o py)(a-p)

N 2P
+a5Aaﬁs|nh§(0~e)(a~p)

_ . a L. N
—a; agsinh(a-py)(0-e)(a-p),

(18
where a; =[(p°+m)/2m]*?, a§A={[(Ap)°¢m]/2m}1/2,

p=(P/|p|), andp,=(P,/|p,|). Equation(18) can be re-
arranged into the following form:

DYAW(A,p))=A+Bo-p+Ca-e+iDa-(pxe),
(19

by using the relations
(o-a)(o-b)=a-b+ic-(axb) (20)
and
(a-Pa)(0-€)(a-p)=(Ps-€)(a-P)
+i(paxe)-ptao{px(pyxe)}.
(1)

The coefficientsA, B, C, and D are obtained after lengthy

mathematical manipulatiorjd6,18§. They are

1
A=
{(p°+m)[(Ap)°+m]}2

(44
(p°+ m)coshz—

+(5~é)sinh§], (22)

B=C=0, (23

D=— ! sinhe- (24)
TP mLAp 2
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DEAW(A,p))=

{(p%+m)[(Ap)%+m]}2

X

o 5> A o
(p°+ m)cosh2—+(p-e)sinh§

[0 2N > A
—isinhia«(pxe) (25
Q; = OQp - .
=cos?+|sm7(a-n), (26)
with
@ o hc_r_ 6 ~ A
0; coshz—coshz—+sm 2smhi(e-p)
COSo-=r1 1 1 _ L
> + Ecosha coshs+ Esmha sinhd(e-p)
(27)
and
_hc_v_ 6 ~ 4
05 sin 2slnhi(ex p)
sinsn=r—7 1 _ L
> + Ecosha coshs+ Esmha sinhé(e- p)
(28)

where cosh=(p’m). We note that Eq(26) indicates the
Lorentz group can be represented by the pure rotation by
axisn=ex p for the two-component spinor.

As an example, we consider the case of momentum vector
in thez direction and the boost in thedirection. In this case,
we have

a )
coshz—coshz—

Q5
€057 1 cosral 9
§+ 5C0sha cos
- . hc—l' 1)
Q.. —ysin 2smhi
sinon=rg 75+ (30
> + Ecosha coshs
and
Q5 Q5
1)1’2(W(A,p))=cos?p—iaysin7p
Qp O
S N
= . 1
Q5 Q5 @D
sy 00527

Then the Wigner representation of the Lorentz group for the

spin4 becomes

The Wigner angle}; is defined by
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——FE/m=10 1 N N
1.6 _ 1 1
. ——E/m =100 ‘I’oo——rz{a+(p,§)a+(—p,5)
1.4 J—— E/m = 1000 ‘,’

+at(p,—a’(—p,— 5}V, (333

1 - -
WOl:E{a+(p1%)a+(_pi%)

Wigner Angle(radian)

—a*(p,~Ha'(—p,— )V, (33b)

-0.2 . T . . . . . T . .
0.0 0.2 0.4 0.6 0.8 1.0

vic

Vo= a* (5 ha’ (~p, )
10 \/E P,z p,—2

FIG. 1. Wigner angle for different energy to mass ratios(for ec 4, =1
E;/m=10 (solid line), (i) E;/m=100 (dashed ling and (iii) +a’(p,—3z)a’(=p.2)}¥o, (330
E;/m=1000 (dotted ling as a function of3=(v/c).

e sinha sinhé 39 S
a5 = Cosha + coshs” (32 v :E{a (p,z)a" (—p,—3)
In Fig. 1, we plot the Wigner angle given by E§2) as a —a*(ﬁ,— Lyat(— 5,%)}\1,0, (339

function of g=(v/c) for (i) E;/m=10 (solid line), (i)
Ep;/m=100 (dashed ling and (i) E;/m=1000 (dotted
line). It is interesting to note that the higher ener@y the
rest frame of a particle for a given mass, the smaller the For an observer in another reference fraBiedescribed

tati le at | . On the other h 5 t
E?T?zl)ogszn%gcgmg;v iﬂwheg thg r%or?]rénil:ndgi)sf) r?;ﬁlsy roela-by an arbitrary boosA , the transformed Bell states are given
by

whereW, is the Lorentz invariant vacuum state.

tivistic.
lll. RELATIVISTIC ENTANGLEMENT OF QUANTUM
STATES AND BELL'S INEQUALITY Wi = U)W (34)
We define the momentum-conserved entangled Bell states
for spin+ particles in the rest frame as follows: For example, from Eqg5) and(33g), U(A)W o, becomes
1 +rm 1y -1 + ~ 1yp—1
U(A)Voo=—={U(A)a"(p,z)U (A)U(A)a" (—p,3)U " (A)

V2

+U(A)a’(p,—HU YA UN)at (—p,— HU LHA)UA) T,

1
7 > [\/ DE&@(W(A >)\/ D(%’532<WA Pp))a‘(py,c)a’(—py,o’)
\/( P) D(llz)/z(W(A ))\/ D‘l’z’l,z(wm Pp)a’(py,o)a’(—py,a')(¥e (39

and so on. For simplicity, we assume tipats in thez direction,p=(0,0p), and the boost is in thex direction.
Then from Eqs(31) and(35), we obtain
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VA W= IO)Ocosﬂp Lt (Ba bat(—Ba.d)
p° V2

+at(py,—3a(—pr,— ¥,
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N (Vl_ﬁ25L+6H)'(;
b= , (38)
\/1+32[(é-5)2—1]

(Ap)o where the subscripts and|| denote the components af(or

l

sinQ); at(py,Hat(—py,—3)
\/—{ Pa Pa

_a+(5Aa_%)a+(_5A v%)}‘l’o

_(Ap)° .

0
|_%_2>)] (AP) |pA7 5A>
p°

SInQQ\/—(lzr §>_|_%l%]

)0
ol p@@[cosﬂ i 55D VAo P

5) which are perpendicular and parallel to the boost direc-
tion, respectively. Moreoveta|=|b|=1.
Case | Woo—U(A)V¥yo. From Eqg.(3638), we have

cosﬂp(| 1.3

1
pA>® \/5

1
+|_%1_%>)_ESinQﬁ(|%1_%>_|_%1%>) :

(39

( p)o Then, after some mathematical manipulations, we get

{cosQ W oo—sinQ, W4}, (369

whereV; is the Bell states in the moving fran® whose agbh|},3)=

momenta are transformed ps->p, ,—p— —p, . Likewise,
we have

0
(A W= pp) v, (36D)
0
U(A)‘Plo—( pp) Vio (360
and
(A P)O a®

U(A) W ;=———{sinQ ¥ ot cosQ Wi} (360

If we regard\l’i’j as Bell states in the moving fran®, then

to an observer ir§', the effects of the Lorentz transforma-
tion on entangled Bell states among themselves should ap-
pear as rotations of Bell states in the fraffe We are now
ready to check whether the Lorentz-transformed Bell states
violate Bell's inequality by calculating the average of the
Bell observable defined in Eql). Before we proceed, we
note that the Bell states can be categorized into two groups.
The first group is the subséW oy, V1} which transforms
among themselves by the Lorentz transformation, and the
second group is the s¢W¥y,, Vo which remains invariant

in forms under the boost except the momentum change. Nor-

malized relativistic spin observablesb are given by[1]

(\/l ,8 al+a”
\/1+3 [(e-a)2—1]

(37

and

012103-5
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1
VI1+B2%(a5— D1+ B%(b—1)]
{(1-B%ab,3.3
+1— Ba,(bt+iby1— B[, - 1)
+1= B2 (at+ia1- 7| 3.3)+(ax

+ia,\1— B) (b +ibyy1— B)|—3,— 1)},
(402

1
VI1+p%ai—1)][1+ B2(b2—1)]

X{(ax_iay\/l_ﬂz)(b —ib \/1 ,82)|sz
sz(ax |ay\/ﬁ) ';_'
_\/1_3 a,(by—ib \/1 B |_212

+(1_,82)az z|_§-_§>}! (40b)

NI
~
I

T[T @ DL+ b 1)]
x{\1- B%a,(b,—iby\1- 75,5
~(1-BAab,/3,~3)
+(ayt+iay 1= B7)(b,—iby 1= 87|~ 3,3)

R ﬁb a-x"_lay\/l B)l_ ) §>}! (400
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3.0+

2@b|—

NID—‘
NID—'
~

L
L @ DL+ BB 1)] '
x{V1-B?by(a—ia1-B7)3,3
+(a—iayV1— ) (by+ibyV1-p2)|3,— 3
—(1-p%ab,|—3,3

—V1-p%a(btibyV1-B%)|-3,-3)} (400 207

for the boost in thex direction. The calculation ofa®b) is

2.6

2.44

2.2+

Bell's observable

0.0 0.2 0.4 0.6 0.8 1.0

straightforward and is given by Ve
<A A> 1 FIG. 2. Plot of the Bell observables as a function Bf
a = =(v/c).
VI1+p%(ai- 1)1+ B2(bi-1)]
X{[axbx+(1_ﬁ2)azbz]00320ﬁ) A~ A 1
(a®b)=

(1~ BA)ayb, 14 VILF B DI+ A= 1)
X (a;by— b,a,)sin(203)}. (42) x{ab,+(1-B%(ab,~ab,)}. (45

It is interesting to note that in the ultrarelativistic limit

51, Eq.(41) becomes Then, in the ultrarelativistic limiB— 1, we have
—1, .

by

ay
Ox TC0g 20 ), (42 <a®b>_>| ay |bx| (46)

<a®b>*| 2 by

implying that the joint measurements are not correlated aggain, indicating the joint measurements, become uncorre-
all. As a result, one might suspect that the entangled statgted in this limit.t We consider the vectors
satisfies Bell's inequality. We now consider the vectars = [(1N2),(1N2),0], a'=[-(1N2),—(12),0], b
=[(1/\/§),:(1/\/§),0], a'=[—(1N2),-(1N2),0, b  =(0,1,0),b’=(1,0,0), which lead to the maximum viola-
=(0,1,0),b’=(1,0,0), which lead to the maximum viola- tion of Bell’s inequality in the nonrelativistic regime. Then
tion of the Bell's inequality in the nonrelativistic domain the Bell observable for the four relevant joint measurements

(,=0 andB=0. Then the Bell observable for the four rel- becomes
evant joint measurements becomes

(a®b)+(a®b')+(a’®b)—(a’®h’)

(V1= B7+1), (47)

(awb)+(a®b')+(a’'@b)—(a’®b’)

2
(V1= B%+cosQ,). (43) 2= 2

2
A

In the ultrarelativistic limit where3=1, the Eq.(43) gives
the maximum value of 2 satisfying Bell's inequality as ex-

thus giving same maximum value as in case |. The above
results show that it may be irrelevant whether the form of the
pected. entanglement is invariant or not in calculating the Bell's in-
Case Il W,o—U(A)W,,. This case is interesting be- equality. It can also be shown that one can obtain the same
cause the Lorentz transformation leaves the Bell state invart":"Iue for the Bell observables given by E@47) for
ant in form. which is (A)W¥y; andU(A)W 44 implying Eq. (47) is the universal
' result. In Fig. 2, the universal Bell observaljleq. (47)] is
0 1 calculated as a function g#=(v/c).
U(A)‘I’lo—( P) |I0A, 5A>® (|3, - 141, 1Y). We note that the Bell observallgq. (47)] is a monotoni-
J2 cally decreasing function g8, approaching the limit value
(44  of 2 from above wherB=1 which indicates the degree of
violation of Bell's inequality is decreasing with increasing
From Eqgs.(409—(40d), we obtain velocity of the observer. It is interesting to note that if
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one simply rotates the spin directionsayb,a’,b’ instead of We now define the unitary transformation corresponding to
using the Pauli-Lubanski vectors, then the entanglement béhe homogeneous Lorentz transformation as
tween the spins of the Bell states would be unchanged and _
the results of the spin measurements will be exactly the same ! 20 IRV
. . ) . A)=1+ - Y= gleOur’™ A
as if they were done in the rest frame. There still remains a uia) 2 @) e (A3)
guestion of why Bell’'s inequality is satisfied at the ultrarela-
tivistic limit. One plausible explanation seems that the shapdhe antisymmetric tensab,,, and the generatal*” can be
of the entangled pair seen by the observer becomes mowritten as
deformed as boost speed increases and as a consequence,

both spins of the pair are tilted toward the boost 41ig]. [0 w1 W W3
Then such a spin has, f@gr=1, commuting components and —wy O w1, W3
behaves like a classical observable. ,,= ,
TwWo2 T W12 0 w23
IV. SUMMARY | ~wos —wi3 —wyz 0O
In this work, we studied the Lorentz-transformed en- 0 b, b> b3
tangled Bell states and the Bell observables to investigate — & 0 P —9
g S . - - 1 3 2
whether Bell’'s inequality is violated in all regime. We first = , (A4)
present the quantum state transformation and the Wigner rep- —¢, —03 0 01
resentation of Lorentz group from the heuristic point of view. —¢s 6, —6, O

The calculated Wigner angle as a function gt (v/c)

shows that it depends on the energy-mass ratio. We havand
calculated the Bell observable for the joint four measure-
ments and found that the results are universal for all en- 0 Jor g0z 3037
tangled states: _301 ¢ Ji2 13

s s s s ~ A ~ A ~ ~ " R JHr=
c(a,a’,b,b")=(a®b)+(a®b’)+(a’®b)—(a’®b’) -J%2 -3 o J=

2 L =
= _ 2 -~ -
W(1+ \/1 B )1 0 Kl K2 K3
. Ky 0 Jg -
wherea,b are the relativistic spin observables derived from I 0 3 . (AS)
the Pauli-Lubanski pseudovector. It turns out that the Bell 2 3 1
observable is a monotonically decreasing functiorBadind L -Ks J» =3 0 |
approaches the limit value of 2 whe®=1 indicating that
the Bell's inequality is satisfied in the ultrarelativistic limit. Here,
ACKNOWLEDGMENTS J=(31,3,.35)=(3%,3%,0%,
This work was supported by the Korean Ministry of Sci- K=(K: K, Ka)=(J0L 312 313
ence and Technology through the Creative Research Initia- (K1,K2,Kg) =(37, 597,
tives Program under Contact No. M1-0116-00-0008. We are -
also indebted to M. Czachor and M. S. Kim for valuable 0=(601,62,63)= (w23, w31, 012),
discussions. )
¢=(d1,d2,¢3) =(wo1,w02,w03)- (AB)

APPENDIX: DERIVATION OF EQ. (14)
_ . Then from Eqs(A3)—(A6), we obtain
LetJ=(J1,J,,J3) andK=(K;,K,,K3) be generators for
the rotation and the boost, respectively, and define i
U(A)=expyw,,d" = exl (001 w0 %%+ W) %

1. 1.
A:E(J+|K) and B—E(J_|K) (Al) +w12]12+w23]23+w31J31)]

Then it is easy to show that =exdi(¢-K+6-J)]=exp{i[¢-(—i)(A—B)
(AL A T=l €Ak, +6-(A+B)]}
[Bi.Bj]=i€ijkBx, =exfi(6—ig)-A+i(f+igd) B]
[A,B;]=0. (A2) =exdi(6—id) -Alexdi(6+igd)-B], (A7)
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since[A,B]=0. From Eq.(A7), it can be seen thdt)(A)  For a given two-component spinafg, we note thatgg

can be represented by SU@3PU(2) for spini particle.  transforms under the homogenous Lorentz transformation as
From the relatioffA,B]=0, we can find the common eigen- UM doexa ta- d) b A9
stateyr= ¢/(a; ,b;) which can be used in the representation of PR U(A) P 2o @) dr (A9)
U(A). Asa §peciail case, weﬁconsiﬁder Ehe Easbjeio and  Using the relationsy=cosheg, yB=sinh¢, andp= ¢, we
j=3. ThenB=3(J—-iK)=0A=3(J+iK)=J, and as re- finally obtain

sult, we get 1)1 5 o112
o s Pr(P)=|| 5~ +0'm(7) #r(0).
= 1 —q . = I — - =1, A8

UA)=exdi(6—i¢)-J]=expi(f—igp) 5 (A8) (A10)
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