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Quartic anharmonic oscillator and non-Hermiticity
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Using a group-theoretic approach, we investigate some new peculiar features of a general quartic anhar-
monic oscillator. When the coefficient of the quartic term is positive and the potential is differentiable, we find
that continuity of the derivative of the potential forces the nonexistence of an analytic wave function. For the
case in which the coefficient of the quartic term is negative, we find that normalizability of the wave function
requires non-Hermiticity of the Hamiltonian. Finally, we apply our method to gain some insight on the double

well potential.
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I. INTRODUCTION AND MOTIVATION lim ¥*(x)=0, lim ¥ (x)=0,
X— +® X— —®

One of the basic problems of nonrelativistic quantum me-
chanics is to find the energy spectrum and wave functions of +oo ) . _
a physical system governed by the Salinger equation or f_ [ ()| *dx=finite number;
HW(x)=EW(x) with an appropriate potentidf(x). For a
special class of potentiaJ&] such as the harmonic oscillator jjj)

(HO), the Coulomb potential, the Morse potential and so

forth, exact solutions can be found. However, there exist a dW¥(x)
large class of potentials with no known exact solutions. One dx
such potential is the anharmonic oscillafgr~13]. While the

harmonic oscillator has provided invaluable insights into thenc dV(x)/dx is continuous everywhere.

investigation of many physical systems, the anharmonic os- |, . . .
. . . : It is well known that any perturbation theory can provide
cillator (AHO) has played a pivotal role in helping us under- . . ) X
s with some approximate eigenvalues and wave functions.

stand and model more realls.t|c physical systems since reaﬁ— is also easy to verify condition§) and (ii) for these ap-
world problems certainly deviate from the idealized picture . ) P !
PrOX|mate wave functions. However, it is difficult to verify

of harmonic oscillators. Indeed, it serves as a basic tool fo S . .

. ) : : - condition (iii) without knowing the exact form ofV(x).
checking different approximate and perturbative methods "While literature on anharmonic oscillator regarding the con-
quantum mechanicEl4—3d, the simplified counterpart of vergent properties of eigenvalue and wave f%nctio% abounds
field-theoretical models and so forth. In spite of its apparent gent prop 9 . o ’

AR o condition (iii) has seldom been discussed and it is in fact
simplicity, it has been difficult to extract the energy spectrum

and wave functions of physical systems endowed with aanten even ignored. Nevertheless, the eigenvalaéa func

anharmonic interaction. Consequently, it has become a Sta&olg\lqu)(())()wti?l’?;uf?ﬂﬁ‘{lﬁ: t?gﬂ;ﬁ?ﬂ%ﬁ:;ﬂgﬁgﬁ E';Pé;?u_
dard norm to approach this problem via perturbation theory’ti_on and should not be rge arded as the correct energy of the
The energyE of a physical system must necessarily be a hysical system 9 9y

real and finite number. Moreover, the associated wave fund? One anharmonic oscillator svstem that has defied exact
tion in quantum mechanic&, has to satisfy the following . y )
solutions for many years has been case of the harmonic os-

three conditions: ) . . . ) . )

(i) Continuity, qlllator with quartic terms. The_ aim of this paper is to inves-

tigate the most general quartic anharmonic oscillator based

essentially on the S@) group. There has been extensive
literature on the application of Lie groups to the study of
harmonic oscillators and other solvable modg34]. The
Schralinger equation of a quartic anharmonic oscillator
reads (/+0)

_dvt(x)

x=0 dx x=0

W (X)x=0=¥ " (X)|x=0;

(ii) normalizable,

2
HW¥(x)= ( - d—+V(X) P (x)=EW¥(X),
*Email address: jinglingchen@eyou.com dx?
"Email address: Ickwek@nie.edu.sg
*Email address: phyohch@nus.edu.sg V(X)=px+ ax®+ Bx3+ yx*. (1)
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Our result shows that there does not seem to exesireect d2 d

wave function for a Hermitian Hamiltoniad. More specifi- He=| A—+(— Bx?+Cx+D)—+2jBx+K—jC| ¢
cally, our result shows that the above Salinger equation dx dx

cannot possess an analytic wave function unléss non-
Hermitian (i.e., p, a, B, andy are not all real numbers
Indeed, however, the theory @t7-symmetric Hamiltonians
which are generally non-Hermitian but possesses real eige
values is currently an active area of resed@®i. In Sec. Il,
we discuss the situation for the case in whigh 0. In fact,
we found that in this case, it is not possible to have an ana-

lytic wave function unless the potential is nondifferentiable. K=—12+(j+1/2C, v=[p+2u(1+2))]1/27. (9
In Sec. Ill, we present the case ¢&0. In this case, we

found that a ground-state wave function can be found, pro©ne can find thatH,j?]=0, which implies thaj2 is a con-
vided we insist on non-Hermiticity for the Hamiltonian. Fi- stant of motion. Therefore,ﬁ (x)= 221 0@mx™ could be the
nally in Sec. IV, we briefly discuss the case of the doublecommon eigenfunction ofi andj ) here the wave function

=Ed, (8)
Ix{yhere

A=-1, B=—-2u, C=2r, D=2y,

well potential. ¢ (x) are characterized by the quantum numpefThe
ground-state energy should correspond to the lowest value of
Il. CASE OF y>0 j,i.e.,j=0, in this casepy (x)=1, and
A. For x>0
Eg=K=—-12+7, (10)

After performing the transformation

with the corresponding wave function
\If+(x)=./\/gexp{—f W (x)dX|p(X),
+ _ArT _
W, (X) = uX2+ 7+ v, 2 o (x)=Nyg eX;{ j W+(X)dx)
we shall arrive at =Ngexd — (3 ux3+ 3733+ vx)], (11
d? d + o
Hp=| — —+2W, —— (W2 —W/, —V) | p=E o, where N is a normalization constant.
dx? dx Since
()
. oon
or lim ¥4 (x)=0, (12
X— + 00
d? d
Hop=| — — +2(ux®+ 7x+v) 7 = [(u?~ y)x* we then have
dx2 dx
3, (.2 2 B?
+QRur—B)x°+(m°+2uv—a)Xx a—
p=y, = B . 4y:p\/;/+27 13
+(2mv—2u— p)X+v>— 7] , 2\/;, 2\/; P
¢=Eg. (4) B. For x<0
To express the Hamiltonian in terms of &Y generators After performing the transformation
[31] realized by
d \P(x):Noexp{—J’W(x)dx d(X),
ji=2jx—x2 g o= Titxgy =g ©® ,
_ W_(X)=u'x*+ 7'x+v’, (14
wherej is the spin {=0,1/2,1 ..., andj_x°=j x?=0),
we must have we shall arrive at
wl=vy, 2ur=B, T?+2uv=a, (6) o2 q
and as a result, Heé=| - JJFZW*d__(WZf_WL_V) ¢=E¢,
H¢=(Aj2+Bj, +Cjp+Dj +K)¢=E,  (7) 9
ie., or
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2 d C. Remarks
_ 1y2 ’ ’ 12 4
He= _@’LZ(M X+ r'x+v) o ()X (1) The continuity of the wave function¥, (x)|y—o
=W (X)|¢=o implies that
+2u' "= B3+ (%4 2u v — a)XP+ (27" v
Ng=Ng=NMNs. (24)
—2u' —p)x+v'?2— 71| y=Ed. (16) (2) The quartic anharmonic potentidl(x)=px+ ax?

+ Bx3+ yx* does not contain a term liké,5(x—a), there-
fore the continuity of the derivation for the potential implies

To express the Hamiltonian in terms of enerators
P &g that[d\lfg(x)/dx]|X:0=[d\IfJ(x)/dx]|X:0, ie.,

realized by
. . ,d o d d v=v', (25)
J+=2x =Xy Jo=—itxg, J-=g @D or
wherej is the spin {=0,1/2,1 ..., andj_x°=j . x?=0), B?
we must have a—4—7:01 p\y+2y=0, and —p\y+2y=0,
,U«IZZ')’, 2/1/,7',:,8, T,2+2,(L,VI:C¥, (18) (26)

however, the last two relations of the above equation contra-
dict with each other. Consequently, whei-0, there does
not exist a suitable wave function for a differentiable quartic
harmonic potentiaV(x) = px+ ax?®+ Bx3+ yx*.

(3) For a nondifferentiable quartic anharmonic potential

and as a result,

H¢=(A'j2+B'j.+C'jo+D'j_+K')¢p=Ed, (19

where o 3 4 . L
V1(X) = p|x|+ ax?+ Bx>+ yx*, by using the similar proce-
A'=—1, B'=-2u', C'=27, D'=2v, dure developed in Sec. | A and Sec. | B, one will obtain
K'=—024(j+12C", v =[p+2u (1+2])]/2r" A A
=—v ] , v =[pt2u ] T. - _ =
_a 4y pyt2y “ 4y py+2y
One can find thatH,j?]=0, which implies thaj? is a con- ¥~ 2y B e 20y T T

stant of motion. Therefore; (x) =2ﬁ1':oamxm could be the (27)
common eigenfunction dfl andj?, here the wave function

¢; (x) is characterized by the quantum numberThe In the case, W (X)|y=0="g (X)|x=o is satisfied provided
ground-state energy should correspond #c0, in this case that Nj=N,. For the condition [dW¥, (x)/dX]|x=o

¢o (X)=1, and =[dW¥, (x)/dx]|4—o to be satisfied, we must have=1v’,
ie.,
Eo=K'=—v'24+7, (20
BZ
with the corresponding wave function a— 4_7:0' and p\y+2y=0, (28)
- _ or
Vo (X)=N,g exr{ —f W_(x)dx
,32
=Noexd —(Fu' X3+ 37 x%+v'x)], (21 4y p=-2\7. (29)
where NV is a normalization constant. Furthermore, as an eigenvalue of Hamiltonigg, should be
Since equal toEg , and hence we have
lim ¥4 (x)=0, (22) =1, (30)
X— — 00

which implies that
we then have

B=0, (32)
M,:_\/;, = B , thus
2\y -
BZ
~a - \/—+2 Hence, wheny>0, for the nondifferentiable quartic anhar-
= Y__PVNYTeY (23 monic potential; (x) =p|x|+ yx*, its exact groundstate and
2y B energy are
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x}ro(x)zj\/oexp< - \/?;|x|3), Eo=0. (33

Ill. CASE OF <0
A. The forms of ground state and ground-state energy

After performing the transformation—(c <x<+ )

‘I’<X>=Moexn[— f WO)AX|B(x),  WX) = ux?+ 7x+ v,

(34)
we arrive at
Hep= OI2+2WOI W2—W'—V) | ¢=E
¢_ dXZ dX ( ) (15— ¢!
(39
or
Hp= o +2(uX2+ X+ d 2 4
b= e (ux=+7X V)d_x [(u"=y)X

+2ur— B)X3+(?+2uv—a)x?
+(2mv—2u— p)X+ v2>— 7]

y=Eg, (36)

PHYSICAL REVIEW A67, 012101 (2003

B. Remarks

(1) It is easy to verify thatVo(x) and[dW¥y(x)/dx] are
continuous everywhere.

(2) As a wave functionWy(x) should be normalizable.
From

+ o
J | W o(x)|2dx=finite number,

we must have

ptu =0, 7+7>0,
*=0 *>0 (42
or more precisely,
B B\
1/2 1/2y%x
v+ (y)* =0, 2y1/2+ 217 >0. (43

From the above equation, we must have

v<0, R A >0, pB#realnumber. (44
2,}/1/2

Equation (43) implies that 8 cannot be a real number if
Wy(x) is normalizable. Thus, if we insist on the normaliz-
ability of a wave function, the Hamiltonian with a quartic
anharmonic potentiaV/(x) = px+ ax®+ Bx3+ yx* must be
non-Hermitian.

(3) For simplicity, let us denoter=7,+i7,, v=v,

To express the Hamiltonian in terms of @) generators, we +iv,. E, could be expressed as

must have

w’=y, 2ur=B, T+2uv=a, (37

and as a result,
He=(Aj> +Bj,+Cjo+Dj_+K)p=E¢, (38
where
A=-1, B=-2u,

C=27, D=2y,

K=—12+(j+1/2C, v=[p+2u(1+2j)]/27. (39)

[H,j?]=0 implies that? is a constant of motion. Therefore
oi(x)= >2_ ax™ could be the common eigenfunctiontaf
andj?, here we characterize the wave functiéy(x) by the
guantum numbej. The ground-state energy should corre-
spond to the lowest value of, i.e., j=0, in this case

do(X)=1, and
Eo=K=—12+71, (40)

with the corresponding wave function

\Ifo(x)zj\/gex;{—J'W(x)dx

=Npexd — (3 ux3+ 3 X%+ vx)], (41

where\ is the normalization constant.

Eo=—12+71=—v2+ 15+ 1 +i(1—2v11y). (45

The energyE, should be a real number, one must have

T,=2v,v,, OF Im( )=2V1V2, (46)
2,}/1/2
which yields
2
B
Im(z,leZ :8
E=—v2+v2+7=——+vz+Re( .
0 1 2 1 41/3 2 271/2

(47)

(@) For Wo(x), Ax=(x>~x?)"2 and Ap=(p?—p?)*?
should satisfy thédeisenberg uncertainty relatign

1

From [TZ|W,(x)|?2dx=1, we have the normalization

constant
| M4 V2
=|=] expg —5—]|.
T 27
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On one hand, one has

_ + o v
X= f X|Wo(x)|2dx= — —

2

_ +o0 1 v
2_ 2 2y~ 4 L
X Jixx | W o(x)|“dx 27_1+ Ti’ (49
so that
1 1
Ax=(x2—x)12=—_ —, (50)
2 \n
On the other hand, one has
dW¥,(x
:_'f W (x) o( )
= L. g L 51
_|,LL27_17—§—T7_—1 v, ()

— +oo d?W¥y(x)
pz:—fﬂ qu(x)—d)fz dx

= fjw‘l’é(x)[Eo—(px+ ax?+ Bx3+ yx*) W o(x)dx

31 vi 2+BV1 3 +V§ 1 +vi
= »y _——_— —_— —_— — —_— o —_—
4 7-% 7-21 T1 27'1 7-% 27'1 7-21
Vi 2
+p—+[—v°+7]. (52
71
By using Eq.(37), we have
(Ap)*=p?—p?
11+V2£+/3l 2 L o
=—Y - — T 5 — — T T
yr% 71 T% 27 MTl
2
V1 .
:_‘y_ 1+ +(2,LLT1+|2/.L7'2)_2_( 1_7%
Tl T1 71
+|’Tl7'2) _2/.L_1+’Tl+|'7'2
2 2
14 T T
=— +2 (\/—‘)/)2+2|,LL—+—2+—1
1 T1 1 2’7'1 2

2 2

V1 V17T 2

o (\/—7)21”27v—7+ >
1

)
71

(53
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where we have useigh= = \/— y. For given admissible val-

ues ofy and g, sincey<<0 and Ref3/2u)>0, we will have

pm=iy—vy when Im3>0, andu=—i+—y when ImB<O0.
The Heisenberg uncertainty relatiorequires

w—>2+2 J_+—>o (54

A

which is a quadratic algebraic equation of the variaptey.
Becauser; >0, it is obvious that the above equation is valid
if v,=0 and 7,=2v,v,=0. If v;#0, since (1+ )1

+ v%/rl]>0, one must require that

2 21 2 2
V1To 1 Vl T
A=4 —4—|1+—| == =2-"2[v?>—7,]=<0,
( Tl ) Ti T1 2Tl 7'4[ 7l

(59

from which we have?< 1, i.e.,

Owning tor,=2v,v,, the condition required by the Heisen-
berg uncertainty relation can be expressed as

= . (57)

el

C. Analysis: Admissible values ofy, B, @, and p

(1) Admissible values of. y<<0, ye real numbers.

(2) Admissible values oB. Be complex numbers, but
ImB+0.

(3) Admissible values af=(ay,a,). From Eq.(37), we
have

a=71+ 2uv= Ti— T§+ 2i 7'17'2+2y1/2( vi+ivy)

r
=[7‘i—r§+2i'ymvz]+i 27'17'2—2iy1/22—52 (58

Writing a= a,+iay,, wherea, and «a, denote the real and
imaginary parts ofy, respectively, we have

R%zfm) r‘{'”‘(sz) r

ay 1 7'2+2|y Vo

+2i ’yl/2V2 y

012101-5
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T2

2V2

B
=2RE( 271/2) Im

Thus the points &,,a,) satisfy the following algebraic
equation:

ay=2117,—2i 71/2

(59

Im(iﬂz)
B )_Wl/z 2y _

2 ,yl/2 Vs

Im (60)

B
y0=2Re{ 5

1/2
Y

B
2,}/1/2 ’

Equation (60) corresponds to a hyperbola undép,|

=Im(B/2y*?)|12\/Re(BI2y'?), for given admissible values
of v and .

(4) Admissible values gi=(py,p,). From Eq.(39), we
have

p=2Tv—2u=2[ TV~ Tovy | +i2[ TVt 72V1+i’y1/2].
(61

Again writing p=p,+ip,, wherep, andp, denote the real
and imaginary parts g, respectively, we get

T2

Tl 2 Vo
ﬁ1/2) V2,
Y

1
=R p Im i ——2Im
2,yl/2 2,)/1/2 12 2

2
T2 .
T+ — I 'yllz}

27/2
2

1 ﬁ i A 112

. +2Re< 271,2) o+ 2i Y12,

B
2,y1/2

Thus the point f,,p,) satisfies the following algebraic
equation:

px=2 —T2V2

py=2

=|Im (62

PHYSICAL REVIEW A67, 012101 (2003

15} ct
(I
10} |
(]
(l
§ 5 l‘. o
£ B *'L”’/
= 0 -
g — & 0 PEl——4s |
£ i
- -5} ;::;/ \I 4
Pr 1
i :
-10 ,/ !
A
/ 9

-10 -5 5 10 15

0
Re(a) or Re(p)

FIG. 1. Parametric plot o& (bold curveg andp (dashed curve
in the Argand plane for8=1+2i. For simplicity, a particular
branch of y(*2 has been chosen for the plots, specificaffy’?
=(i/2). The pointsA, B, andC on the parametric plot of (bold
curve correspond to the values of,=—4, 1, and 6. A similar
choice of values o, has also been chosen for the parametric plot
of p (dashed curvefor the pointsA’, B’, andC’.

[R{Zfﬂz) r‘['”‘(sz) r
Re( 251’2) 'm< 251’2)

4
B

- 2,)/1/2

X py(py=2i v+ e(—

B
2 ,yl/2

Indeed, Eq(63) also corresponds to a hyperbola unfies]
=|Im(B/2yY?)|12\Re(BI2y™?).

For a particular value ofy=—¢ (£ being real and posi-
tive), there are two solutions fop*2 namely y*?= +i /.

In Fig. 1, we have plotted possible values @fand p, pa-
rametrized by different values of,. For simplicity, we have
chosen the value of'? asi /¢ with £=0.5 and the value of
B=1+2i. For the chosen values @ and y, we see that
depending on the values af,, the admissible values af
andp lies on the appropriate branch of the hyperbolas in the
Argand plane. Consequently we have shown the location of
a (corresponding to the points, B, andC) andp (corre-
sponding to the pointd’, B’, andC’") in the Argand plane
for v,=—4, 1, and 6.

(5) The constraint om, «, B, and y. For a valuev,, we
have one corresponding poiat=(a,,«,) and one corre-
sponding pointo=(py,py) [see Egs(59) and (62)]. From
a=7>+2uv and v=[p+2u(1+2j)]/27, one obtains a
constraint orp, «, B, andy as follows(whenj=0):

pi—(py=2iy"H?-

=0. (63)

,82 4,)/3/2 2,)/
=—+ +—
““ayT g "

(64)
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hence, for fixed values of andg, the pointp=(p,,p,) and
the pointa=(ay,ay) are in one-to-one correspondence.
(6) If y=—1, B=2ia is a pure imaginary.y=—1 im-

plies thatu=i or u=—i. If B=2ia is a pure imaginary, for
a>0 we haveu=i, =7, +imp=(B/2u)=a is a real posi-
tive number(for a<0, we haveu= —i and7=—a), based

on which we haver,=Im(B/2y*?=0. Sincer,=2v,v,,
one must haver;,=0 or v,=0.

(i) If v1=0, Eq.(56) is always satisfied, Eq57) implies
that v, can be an arbitrary real number, thussib is an
arbitrary pure imaginary. One then obtains

a=7m+2uv=a’-2b, p=2rv—2u=2i(ab—1).
(65)

The above result recovers the non-Hermitian quartic anha

monic potential suggested in Bender’s paf&s] with J=|j
+1=1. In the case, the enerd§p=b?+a.

(i) If v,=0, Eq.(54) is always satisfied, Eq56) implies
that

|vy|< Re( i ):JE. (66)

2 ,y1/2

Thusv=Db is a real number|p|<a). One then obtaing34—
36]

a=7m’+2uv=a’+2ib, p=2rv—2u=2(ab—i).
(67)

In this case, the energy By= —b?+a, |b|<a. Finally, one

can verify thaty=—1, B=2ia, «, andp as shown in Eq.
(65) or Eq.(67) satisfy the constraini64).

IV. DISCUSSION: ON THE DOUBLE-WELL POTENTIAL

The double-well potential

T (x)=EW¥(X),

d2
H\If(x)=( - @JrV(x)

V(X)= ax?+ yx*, (68)

with real @ and y has been investigated for a long time by

— d2 d 2 ’ —
Hop= —@+2W&—(W -W'—=V) | ¢p=Eq,
(70)
or
_ d® 2 d 2 4
Hé= —§+2(MX ) g L= y)x
+(2uv—a)x?>=2ux+v?] | ¢
=Ed¢. (77

%o express the Hamiltonian in terms of &)Jgenerators, we
must have

wi=vy, 2uv=a, (72)

and as a result,
Ho=(Aj2+Bj, +Cjo+Dj_+K)p=E¢p, (73
i.e.,

d? d
= R —_Bx2 — i —i
Hg¢ AdX2+( Bx +Cx+D)dX+ZJBx+K iCl¢

=Ed, (74)

A=-1, B=-2u, C=0, D=2y,
2jB=2u, K=-1?+jC. (75)
However,B=—2u and 2B=2u inevitably lead toj=
—1/2. According to quantum mechanics, there has not been

any physical meaning for=—1/2.

V. CONCLUDING REMARKS

In this paper, we have investigated the nature of the en-

many authors. However, up till now, its exact ground stateergy spectrum, particularly the wave function, of the quartic
has not been found. It is therefore interesting to find out if weanharmonic oscillator using group-theoretic approach. Al-

can get some insight into this problem using our(SUeal-

ization shown in Eq(5) for the case of the double-well po-

tential.
Similarly, after performing the transformation—fo<x
<+ o)

\P(x)=J\/'0exp{—f W(x)dx|p(x), W(X)=pux>+ v,

(69

we shall arrive at

though such approach is not n¢@7-39, it has allowed us
to explore the relation of the associated wave function to
hermiticity of the Hamiltonian.

In our analysis, we distinguish between the case in which
the coefficient attached to the quartic tegnis positive with
the case in whichy is negative. Fory>0, we find that it is
not possible to find suitable wave function for differentiable
quartic harmonic potential, i.eV|(x) is differentiable every-
where. However, if we relax differentiability o¥(x), we
can find the form of the ground-state wave function with
Zero energy.
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For negativey, we find that the coefficient of the cubic this problem by performing the same analysis with genera-
term must necessarily be complex. This immediately impliegors of SU1,1).
that the Hamiltonian of the system is no longer Hermitian.
Moreover, the other coefficients (coefficient ofx?) andp
(coefficient ofx) cannot assume arbitrary values for consis-

tency and the admissible values in fact lie on hyperbolae in
the complex plane. This work has been supported by NUS Research Grant

Finally, we extend our analysis briefly to the case ofNo. R-144-000-020-112. We would also like to thank Profes-
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