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Quartic anharmonic oscillator and non-Hermiticity
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Using a group-theoretic approach, we investigate some new peculiar features of a general quartic anhar-
monic oscillator. When the coefficient of the quartic term is positive and the potential is differentiable, we find
that continuity of the derivative of the potential forces the nonexistence of an analytic wave function. For the
case in which the coefficient of the quartic term is negative, we find that normalizability of the wave function
requires non-Hermiticity of the Hamiltonian. Finally, we apply our method to gain some insight on the double
well potential.

DOI: 10.1103/PhysRevA.67.012101 PACS number~s!: 03.65.Fd, 34.20.Gj
e
s

r
so
t
n

th
o
r-
e
re
fo

s
f
en
m
a
ta

or
a

n

e
ns.

y

n-
ds,

act

the

act
os-

s-
sed
e
of

or
I. INTRODUCTION AND MOTIVATION

One of the basic problems of nonrelativistic quantum m
chanics is to find the energy spectrum and wave function
a physical system governed by the Schro¨dinger equation
HC(x)5EC(x) with an appropriate potentialV(x). For a
special class of potentials@1# such as the harmonic oscillato
~HO!, the Coulomb potential, the Morse potential and
forth, exact solutions can be found. However, there exis
large class of potentials with no known exact solutions. O
such potential is the anharmonic oscillator@2–13#. While the
harmonic oscillator has provided invaluable insights into
investigation of many physical systems, the anharmonic
cillator ~AHO! has played a pivotal role in helping us unde
stand and model more realistic physical systems since r
world problems certainly deviate from the idealized pictu
of harmonic oscillators. Indeed, it serves as a basic tool
checking different approximate and perturbative method
quantum mechanics@14–30#, the simplified counterpart o
field-theoretical models and so forth. In spite of its appar
simplicity, it has been difficult to extract the energy spectru
and wave functions of physical systems endowed with
anharmonic interaction. Consequently, it has become a s
dard norm to approach this problem via perturbation the

The energyE of a physical system must necessarily be
real and finite number. Moreover, the associated wave fu
tion in quantum mechanics,C, has to satisfy the following
three conditions:

~i! Continuity,

C2~x!ux505C1~x!ux50 ;

~ii ! normalizable,
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lim
x→1`

C1~x!50, lim
x→2`

C2~x!50,

or E
2`

1`

uC~x!u2dx5finite number;

~iii !

dC2~x!

dx U
x50

5
dC1~x!

dx U
x50

,

if dV( x)/dx is continuous everywhere.
It is well known that any perturbation theory can provid

us with some approximate eigenvalues and wave functio
It is also easy to verify conditions~i! and ~ii ! for these ap-
proximate wave functions. However, it is difficult to verif
condition ~iii ! without knowing the exact form ofC(x).
While literature on anharmonic oscillator regarding the co
vergent properties of eigenvalue and wave function aboun
condition ~iii ! has seldom been discussed and it is in f
often even ignored. Nevertheless, the eigenvalueE of a func-
tion C(x) that satisfies the Schro¨dinger equationHC(x)
5EC(x) without fulfilling condition ~iii ! is not a true solu-
tion and should not be regarded as the correct energy of
physical system.

One anharmonic oscillator system that has defied ex
solutions for many years has been case of the harmonic
cillator with quartic terms. The aim of this paper is to inve
tigate the most general quartic anharmonic oscillator ba
essentially on the SU~2! group. There has been extensiv
literature on the application of Lie groups to the study
harmonic oscillators and other solvable models@31#. The
Schrödinger equation of a quartic anharmonic oscillat
reads (gÞ0)

HC~x!5S 2
d2

dx2
1V~x!D C~x!5EC~x!,

V~x!5rx1ax21bx31gx4. ~1!
©2003 The American Physical Society01-1
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Our result shows that there does not seem to exist acorrect
wave function for a Hermitian HamiltonianH. More specifi-
cally, our result shows that the above Schro¨dinger equation
cannot possess an analytic wave function unlessH is non-
Hermitian ~i.e., r, a, b, and g are not all real numbers!.
Indeed, however, the theory ofPT-symmetric Hamiltonians
which are generally non-Hermitian but possesses real ei
values is currently an active area of research@32#. In Sec. II,
we discuss the situation for the case in whichg.0. In fact,
we found that in this case, it is not possible to have an a
lytic wave function unless the potential is nondifferentiab
In Sec. III, we present the case ofg,0. In this case, we
found that a ground-state wave function can be found, p
vided we insist on non-Hermiticity for the Hamiltonian. F
nally in Sec. IV, we briefly discuss the case of the doub
well potential.

II. CASE OF gÌ0

A. For xÌ0

After performing the transformation

C1~x!5N 0
1expF2E W1~x!dxGf~x!,

W1~x!5mx21tx1n, ~2!

we shall arrive at

Hf5S 2
d2

dx2
12W1

d

dx
2~W1

2 2W18 2V!D f5Ef,

~3!

or

Hf5S 2
d2

dx2
12~mx21tx1n!

d

dx
2@~m22g!x4

1~2mt2b!x31~t212mn2a!x2

1~2tn22m2r!x1n22t# D
f5Ef. ~4!

To express the Hamiltonian in terms of SU~2! generators
@31# realized by

j 152 jx2x2
d

dx
, j 052 j 1x

d

dx
, j 25

d

dx
, ~5!

where j is the spin (j 50,1/2,1, . . . , andj 2x05 j 1x2 j50),
we must have

m25g, 2mt5b, t212mn5a, ~6!

and as a result,

Hf5~A j2
2 1B j11C j01D j 21K !f5Ef, ~7!

i.e.,
01210
n-

a-
.

-

-

Hf5S A
d2

dx2
1~2Bx21Cx1D !

d

dx
12 jBx1K2 jC D f

5Ef, ~8!

where

A521, B522m, C52t, D52n,

K52n21~ j 11/2!C, n5@r12m~112 j !#/2t. ~9!

One can find that@H,j2#50, which implies thatj2 is a con-
stant of motion. Therefore,f j

1(x)5(m50
2 j amxm could be the

common eigenfunction ofH and j2, here the wave function
f j

1(x) are characterized by the quantum numberj. The
ground-state energy should correspond to the lowest valu
j, i.e., j 50, in this casef0

1(x)51, and

E0
15K52n21t, ~10!

with the corresponding wave function

C0
1~x!5N 0

1expS 2E W1~x!dxD
5N 0

1exp@2~ 1
3 mx31 1

2 tx21nx!#, ~11!

whereN 0
1 is a normalization constant.

Since

lim
x→1`

C0
1~x!50, ~12!

we then have

m5Ag, t5
b

2Ag
, n5

a2
b2

4g

2Ag
5

rAg12g

b
. ~13!

B. For xË0

After performing the transformation

C2~x!5N 0
2expF2E W2~x!dxGf~x!,

W2~x!5m8x21t8x1n8, ~14!

we shall arrive at

Hf5S 2
d2

dx2
12W2

d

dx
2~W2

2 2W28 2V!D f5Ef,

~15!

or
1-2
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Hf5S 2
d2

dx2
12~m8x21t8x1n8!

d

dx
2@~m822g!x4

1~2m8t82b!x31~t8212m8n82a!x21~2t8n8

22m82r!x1n822t8# D c5Ef. ~16!

To express the Hamiltonian in terms of SU~2! generators
realized by

j 152 jx2x2
d

dx
, j 052 j 1x

d

dx
, j 25

d

dx
, ~17!

where j is the spin (j 50,1/2,1, . . . , andj 2x05 j 1x2 j50),
we must have

m825g, 2m8t85b, t8212m8n85a, ~18!

and as a result,

Hf5~A8 j 2
2 1B8 j 11C8 j 01D8 j 21K8!f5Ef, ~19!

where

A8521, B8522m8, C852t8, D852n8,

K852n821~ j 11/2!C8, n85@r12m8~112 j !#/2t8.

One can find that@H,j2#50, which implies thatj2 is a con-
stant of motion. Thereforef j

2(x)5(m50
2 j amxm could be the

common eigenfunction ofH and j2, here the wave function
f j

2(x) is characterized by the quantum numberj. The
ground-state energy should correspond toj 50, in this case
f0

2(x)51, and

E0
25K852n821t8, ~20!

with the corresponding wave function

C0
2~x!5N 0

2expS 2E W2~x!dxD
5N 0

2exp@2~ 1
3 m8x31 1

2 t8x21n8x!#, ~21!

whereN 0
2 is a normalization constant.

Since

lim
x→2`

C0
2~x!50, ~22!

we then have

m852Ag, t852
b

2Ag
,

n852

a2
b2

4g

2Ag
5

2rAg12g

b
. ~23!
01210
C. Remarks

~1! The continuity of the wave functionC0
2(x)ux50

5C0
1(x)ux50 implies that

N 0
15N 0

2[N0 . ~24!

~2! The quartic anharmonic potentialV(x)5rx1ax2

1bx31gx4 does not contain a term likeV0d(x2a), there-
fore the continuity of the derivation for the potential implie
that @dC0

2(x)/dx#ux505@dC0
1(x)/dx#ux50, i.e.,

n5n8, ~25!

or

a2
b2

4g
50, rAg12g50, and 2rAg12g50,

~26!

however, the last two relations of the above equation con
dict with each other. Consequently, wheng.0, there does
not exist a suitable wave function for a differentiable quar
harmonic potentialV(x)5rx1ax21bx31gx4.

~3! For a nondifferentiable quartic anharmonic potent
V1(x)5ruxu1ax21bx31gx4, by using the similar proce-
dure developed in Sec. I A and Sec. I B, one will obtain

n5

a2
b2

4g

2Ag
5

rAg12g

b
, n852

a2
b2

4g

2Ag
52

rAg12g

b
.

~27!

In the case,C0
2(x)ux505C0

1(x)ux50 is satisfied provided
that N 0

15N 0
2 . For the condition @dC0

2(x)/dx#ux50

5@dC0
1(x)/dx#ux50 to be satisfied, we must haven5n8,

i.e.,

a2
b2

4g
50, and rAg12g50, ~28!

or

a5
b2

4g
, r522Ag. ~29!

Furthermore, as an eigenvalue of Hamiltonian,E0
2 should be

equal toE0
1 , and hence we have

t5t8, ~30!

which implies that

b50, ~31!

thus

a50, E0
25E0

1[E050. ~32!

Hence, wheng.0, for the nondifferentiable quartic anha
monic potentialV1(x)5ruxu1gx4, its exact groundstate an
energy are
1-3
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C0~x!5N0expS 2
Ag

3
uxu3D , E050. ~33!

III. CASE OF gË0

A. The forms of ground state and ground-state energy

After performing the transformation (2`,x,1`)

C~x!5N08expF2E W~x!dxGf~x!, W~x!5mx21tx1n,

~34!

we arrive at

Hf5S 2
d2

dx2
12W

d

dx
2~W22W82V!D f5Ef,

~35!

or

Hf5S 2
d2

dx2
12~mx21tx1n!

d

dx
2@~m22g!x4

1~2mt2b!x31~t212mn2a!x2

1~2tn22m2r!x1n22t# D
c5Ef, ~36!

To express the Hamiltonian in terms of SU~2! generators, we
must have

m25g, 2mt5b, t212mn5a, ~37!

and as a result,

Hf5~A j2
2 1B j11C j01D j 21K !f5Ef, ~38!

where

A521, B522m, C52t, D52n,

K52n21~ j 11/2!C, n5@r12m~112 j !#/2t. ~39!

@H,j2#50 implies thatj2 is a constant of motion. Therefor
f j (x)5(m50

2 j amxm could be the common eigenfunction ofH
and j2, here we characterize the wave functionf j (x) by the
quantum numberj. The ground-state energy should corr
spond to the lowest value ofj, i.e., j 50, in this case
f0(x)51, and

E05K52n21t, ~40!

with the corresponding wave function

C0~x!5N08expS 2E W~x!dxD
5N08exp@2~ 1

3 mx31 1
2 tx21nx!#, ~41!

whereN08 is the normalization constant.
01210
-

B. Remarks

~1! It is easy to verify thatC0(x) and @dC0(x)/dx# are
continuous everywhere.

~2! As a wave function,C0(x) should be normalizable
From

E
2`

1`

uC0~x!u2dx5finite number,

we must have

m1m* 50, t1t* .0, ~42!

or more precisely,

g1/21~g1/2!* 50,
b

2g1/2
1S b

2g1/2D *
.0. ~43!

From the above equation, we must have

g,0, ReS b

2g1/2D .0, bÞreal number. ~44!

Equation ~43! implies that b cannot be a real number i
C0(x) is normalizable. Thus, if we insist on the normali
ability of a wave function, the Hamiltonian with a quart
anharmonic potentialV(x)5rx1ax21bx31gx4 must be
non-Hermitian.

~3! For simplicity, let us denotet5t11 i t2 , n5n1
1 in2 . E0 could be expressed as

E052n21t52n1
21n2

21t11 i ~t222n1n2!. ~45!

The energyE0 should be a real number, one must have

t252n1n2 , or ImS b

2g1/2D 52n1n2 , ~46!

which yields

E052n1
21n2

21t152

F ImS b

2g1/2D G 2

4n2
2

1n2
21ReS b

2g1/2D .

~47!

~4! For C0(x), Dx5( x̄22 x̄2)1/2 and Dp5( p̄22 p̄2)1/2

should satisfy theHeisenberg uncertainty relation,

DxDp>
1

2
. ~48!

From *2`
1`uC0(x)u2dx51, we have the normalization

constant

N085S t1

p D 1/4

expS 2
n1

2

2t1
D .
1-4
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On one hand, one has

x̄5E
2`

1`

xuC0~x!u2dx52
n1

t1
,

x̄25E
2`

1`

x2uC0~x!u2dx5
1

2t1
1

n1
2

t1
2

, ~49!

so that

Dx5~ x̄22 x̄2!1/25
1

A2

1

At1

. ~50!

On the other hand, one has

p̄52 i E
2`

1`

C0* ~x!
dC0~x!

dx
dx

5 i FmS 1

2t1
1

n1
2

t1
2D 2t

n1

t1
1nG , ~51!

p̄252E
2`

1`

C0* ~x!
d2C0~x!

dx2
dx

5E
2`

1`

C0* ~x!@E02~rx1ax21bx31gx4!#C0~x!dx

52gF3

4

1

t1
2

2S n1
2

t1
2D 2G1b

n1

t1
F 3

2t1
1

n1
2

t1
2G2aF 1

2t1
1

n1
2

t1
2G

1r
n1

t1
1@2n21t#. ~52!

By using Eq.~37!, we have

~Dp!25 p̄22 p̄2

52g
1

t1
2 F11

n1
2

t1
G1b

n1

t1
2

2t2
1

2t1
22m

n1

t1
1t

52g
1

t1
2 F11

n1
2

t1
G1~2mt11 i2mt2!

n1

t1
2

2~t1
22t2

2

1 i t1t2!
1

2t1
22m

n1

t1
1t11 i t2

52g
1

t1
2 F11

n1
2

t1
G~A2g!212im

n1t2

t1
2

1
t2

2

2t1
1

t1

2

5
1

t1
2 F11

n1
2

t1
G~A2g!262

n1t2

t1
2

A2g1
t2

2

2t1
1

t1

2
,

~53!
01210
where we have usedim56A2g. For given admissible val-
ues ofg andb, sinceg,0 and Re(b/2m).0, we will have
m5 iA2g when Imb.0, andm52 iA2g when Imb,0.

The Heisenberg uncertainty relationrequires

1

t1
2 F11

n1
2

t1
G~A2g!262

n1t2

t1
2

A2g1
t2

2

2t1
>0, ~54!

which is a quadratic algebraic equation of the variableA2g.
Becauset1.0, it is obvious that the above equation is val
if n150 and t252n1n250. If n1Þ0, since (1/t1

2)@1
1n1

2/t1#.0, one must require that

D54S n1t2

t1
2 D 2

24
1

t1
2 F11

n1
2

t1
G t2

2

2t1
52

t2
2

t1
4 @n1

22t1#<0,

~55!

from which we haven1
2<t1, i.e.,

un1u<AReS b

2g1/2D . ~56!

Owning tot252n1n2, the condition required by the Heisen
berg uncertainty relation can be expressed as

un2u>U t2

2At1
U5

U ImS b

2g1/2D U
2AReS b

2g1/2D
. ~57!

C. Analysis: Admissible values ofg, b, a, and r

(1) Admissible values ofg. g,0, gPreal numbers.
(2) Admissible values ofb. bP complex numbers, bu

ImbÞ0.
(3) Admissible values ofa5(ax ,ay). From Eq.~37!, we

have

a5t212mn5t1
22t2

212i t1t212g1/2~n11 in2!

5@t1
22t2

212ig1/2n2#1 i F2t1t222ig1/2
t2

2n2
G . ~58!

Writing a5ax1 iay , whereax anday denote the real and
imaginary parts ofa, respectively, we have

ax5t1
22t2

212ig1/2n25FReS b

2g1/2D G 2

2F ImS b

2g1/2D G 2

12ig1/2n2 ,
1-5
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ay52t1t222ig1/2
t2

2n2

52ReS b

2g1/2D ImS b

2g1/2D 2 ig1/2

ImS b

2g1/2D
n2

. ~59!

Thus the points (ax ,ay) satisfy the following algebraic
equation:

ay2y05

4gImS b

2g1/2D
ax2x0

,

x05FReS b

2g1/2D G 2

2F ImS b

2g1/2D G 2

,

y052ReS b

2g1/2D ImS b

2g1/2D . ~60!

Equation ~60! corresponds to a hyperbola underun2u
>uIm(b/2g1/2)u/2ARe(b/2g1/2), for given admissible values
of g andb.

(4) Admissible values ofr5(rx ,ry). From Eq.~39!, we
have

r52tn22m52@t1n12t2n2#1 i2@t1n21t2n11 ig1/2#.
~61!

Again writing r5rx1 iry , whererx andry denote the rea
and imaginary parts ofr, respectively, we get

rx52Ft1

t2

2n2
2t2n2G

5ReS b

2g1/2D ImS b

2g1/2D 1

n2
22ImS b

2g1/2D n2 ,

ry52Ft1n21
t2

2

2n2
1 ig1/2G

5F ImS b

2g1/2D G 2
1

n2
12ReS b

2g1/2D n212ig1/2. ~62!

Thus the point (rx ,ry) satisfies the following algebrai
equation:
01210
rx
22~ry22ig1/2!22

FReS b

2g1/2D G 2

2F ImS b

2g1/2D G 2

ReS b

2g1/2D ImS b

2g1/2D
3rx~ry22ig1/2!1

2U b

2g1/2U4

ReS b

2g1/2D 50. ~63!

Indeed, Eq.~63! also corresponds to a hyperbola underun2u
>uIm(b/2g1/2)u/2ARe(b/2g1/2).

For a particular value ofg52j (j being real and posi-
tive!, there are two solutions forg1/2, namelyg1/256 iAj.
In Fig. 1, we have plotted possible values ofa and r, pa-
rametrized by different values ofn2. For simplicity, we have
chosen the value ofg1/2 as iAj with j50.5 and the value of
b5112i . For the chosen values ofb and g, we see that
depending on the values ofn2, the admissible values ofa
andr lies on the appropriate branch of the hyperbolas in
Argand plane. Consequently we have shown the location
a ~corresponding to the pointsA, B, and C) and r ~corre-
sponding to the pointsA8, B8, andC8) in the Argand plane
for n2524, 1, and 6.

(5) The constraint onr, a, b, andg. For a valuen2, we
have one corresponding pointa5(ax ,ay) and one corre-
sponding pointr5(rx ,ry) @see Eqs.~59! and ~62!#. From
a5t212mn and n5@r12m(112 j )#/2t, one obtains a
constraint onr, a, b, andg as follows~when j 50):

a5
b2

4g
1

4g3/2

b
1

2g

b
r, ~64!

FIG. 1. Parametric plot ofa ~bold curve! andr ~dashed curve!
in the Argand plane forb5112i . For simplicity, a particular
branch ofg (1/2) has been chosen for the plots, specificallyg (1/2)

5( i /A2). The pointsA, B, andC on the parametric plot ofa ~bold
curve! correspond to the values ofn2524, 1, and 6. A similar
choice of values ofn2 has also been chosen for the parametric p
of r ~dashed curve! for the pointsA8, B8, andC8.
1-6
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hence, for fixed values ofg andb, the pointr5(rx ,ry) and
the pointa5(ax ,ay) are in one-to-one correspondence.

(6) If g521, b[2ia is a pure imaginary.g521 im-
plies thatm5 i or m52 i . If b[2ia is a pure imaginary, for
a.0 we havem5 i , t5t11 i t25(b/2m)[a is a real posi-
tive number~for a,0, we havem52 i andt52a), based
on which we havet25Im(b/2g1/2)50. Sincet252n1n2,
one must haven150 or n250.

~i! If n150, Eq.~56! is always satisfied, Eq.~57! implies
that n2 can be an arbitrary real number, thusn[ ib is an
arbitrary pure imaginary. One then obtains

a5t212mn5a222b, r52tn22m52i ~ab21!.
~65!

The above result recovers the non-Hermitian quartic an
monic potential suggested in Bender’s paper@33# with J5 j
1151. In the case, the energyE05b21a.

~ii ! If n250, Eq.~54! is always satisfied, Eq.~56! implies
that

un1u<AReS b

2g1/2D 5Aa. ~66!

Thusn[b is a real number (ubu<a). One then obtains@34–
36#

a5t212mn5a212ib, r52tn22m52~ab2 i !.
~67!

In this case, the energy isE052b21a, ubu<a. Finally, one
can verify thatg521, b52ia, a, andr as shown in Eq.
~65! or Eq. ~67! satisfy the constraint~64!.

IV. DISCUSSION: ON THE DOUBLE-WELL POTENTIAL

The double-well potential

HC~x!5S 2
d2

dx2
1V~x!D C~x!5EC~x!,

V~x!5ax21gx4, ~68!

with real a andg has been investigated for a long time b
many authors. However, up till now, its exact ground st
has not been found. It is therefore interesting to find out if
can get some insight into this problem using our SU~2! real-
ization shown in Eq.~5! for the case of the double-well po
tential.

Similarly, after performing the transformation (2`,x
,1`)

C~x!5N0expF2E W~x!dxGf~x!, W~x!5mx21n,

~69!

we shall arrive at
01210
r-

e
e

Hf5S 2
d2

dx2
12W

d

dx
2~W22W82V!D f5Ef,

~70!

or

Hf5S 2
d2

dx2
12~mx21n!

d

dx
2@~m22g!x4

1~2mn2a!x222mx1n2# D f

5Ef. ~71!

To express the Hamiltonian in terms of SU~2! generators, we
must have

m25g, 2mn5a, ~72!

and as a result,

Hf5~A j2
2 1B j11C j01D j 21K !f5Ef, ~73!

i.e.,

Hf5S A
d2

dx2
1~2Bx21Cx1D !

d

dx
12 jBx1K2 jC D f

5Ef, ~74!

where

A521, B522m, C50, D52n,

2 jB52m, K52n21 jC. ~75!

However, B522m and 2jB52m inevitably lead to j 5
21/2. According to quantum mechanics, there has not b
any physical meaning forj 521/2.

V. CONCLUDING REMARKS

In this paper, we have investigated the nature of the
ergy spectrum, particularly the wave function, of the quar
anharmonic oscillator using group-theoretic approach.
though such approach is not new@37–39#, it has allowed us
to explore the relation of the associated wave function
hermiticity of the Hamiltonian.

In our analysis, we distinguish between the case in wh
the coefficient attached to the quartic termg is positive with
the case in whichg is negative. Forg.0, we find that it is
not possible to find suitable wave function for differentiab
quartic harmonic potential, i.e.,V(x) is differentiable every-
where. However, if we relax differentiability ofV(x), we
can find the form of the ground-state wave function w
zero energy.
1-7
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For negativeg, we find that the coefficient of the cubi
term must necessarily be complex. This immediately imp
that the Hamiltonian of the system is no longer Hermitia
Moreover, the other coefficientsa ~coefficient ofx2) andr
~coefficient ofx) cannot assume arbitrary values for cons
tency and the admissible values in fact lie on hyperbolae
the complex plane.

Finally, we extend our analysis briefly to the case
double-well potential. In this case, if we express the Ham
tonian in terms of generators of SU~2!, we requirej 521/2
for consistency. However, we should note that we can av
.

et

et

v.

F.

-

er,

01210
s
.

-
in

f
-

id

this problem by performing the same analysis with gene
tors of SU~1,1!.
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