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We discuss three-body processes in ultracold two-component Fermi gases with short-range intercomponent
interaction characterized by a large and positive scattering lemdthis found that in most cases the prob-
ability of three-body recombination is a universal function of the mass ratioaarahd is independent of
short-range physics. We also calculate the scattering length corresponding to the atom-dimer interaction.
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In the search for fermionic superfluidity, ultracold Fermi at distances of the order &, then significantly influences
gases with strong interactions and high densities are prahe large-scale behavior and short-range parameters of the
duced routinely. In current experiments withk [1] and 5Li interaction potential are required to describe the three-body
[2-5], the scattering length, corresponding to the interac- system.
tion between different fermionic species, has been modified In this paper we discuss a three-body systeém|() con-
using a powerful tool of Feshbach resonances. Reaching higining two identical fermions and belonging to the first uni-
densities is limited by three-body recombination—the pro_v.ersality class. In the ultracold limit we find universal func-
cess in which two atoms form a bound state and a third ondons of a and m;/m; for the probability of three-body
carries away the binding energy. In the case of a two- recombination and for the amplitude of atom-dimer scatter-

component Fermi gas the three-body process requires at le g Aas expeqted, thhe :ecombr:natur)]n to cr:)mé)aratlvely d:ep
two identical fermions to approach each other to a distanc oun dstatgts |fhmuc S owgrt ?n: %g ttﬁ ose ca;e. ow-
of the order of the size of the final bound state. Therefore, irf, "¢ 9€SPIt€ th€ Suppression tacto » (e recombina-

the ultracold limit the recombination probability acquires an Ig?atrcr)l:tggacl;‘lyabt(\)/\fon-grcl?’r:/ecl)éaeitoFZ?ri?iaRse)c?nr Leeagsst'icm or-
additional small factoK/e, whereK is the relative kinetic P b 9 P

; . . tant as that in a Bose gas with the same density and scatter-
energy of identical fermiongcf. Ref. [6]). One may specu- ing length 9 y
late that limitations on achieving high densities are not as ~|, e .center-of-mass reference frame the state of the

severe as in Bose gases, where the recombination rate tiﬁree-body system((l |) with total energyE is described by

independent of the kinetic energy of particles. the Schrdinger equation
Theoretical studies of the three-body problem have re-
vealed the existence of two universality classes for the case
where a greatly exceeds the characteristic radius of inter- V2 E]w=—3 (ﬁ(xtanaty))q} 1)
atomic interactionR. [7,8]. For the first class, short-range * 2\/FT '

physics is not important and the three-body problem can be

described in terms of two-body scattering lengths and massa#herefy/\m; is the distance between identicafermions,

of particles. One can then use the zero-range approximatiohx/2u is the distance between their center of mass and the
for the interatomic potential, which has been successfully particle, u=2m;m,/(2m;+m)) is the corresponding re-
demonstrated, e.g., in the calculations of neutron-deuteroguced mass, and)=arctan/1+ 2m,/m;. The vector X
scattering with the total spii=3/2[9]. For the second class, ={x,y} describes the rescaled 6D configuration space for the
where short-range behavior is important, the description ofhree-body problem. The potential of interaction between
the three-body problem requires at least one parameter conlistinguishable particles i¥ and the interaction between
ing from short-range physi¢40]. For two identical fermions  identical particles is omitted.

(T) interacting with a third particle|(), the presence of two  We assume that the potentMlsupports a weakly boursi
universality classes has been shown by Efifiog]. For a  state with the binding-energy and with the size determined
largea, the pair interaction between distinguishable particlesyy the scattering lengta>0. The latter greatly exceeds the
leads to the appearance of an attractivé Interaction in the rangeR, of the potentialV. We also assume the condition
three-body systerfil1]. If the mass ratian; /m; is smaller  |E|<¢ which means that wavelengths of particles are at least
than~13, then this attraction is not sufficient to overcomeas large asa. Then, neglecting corrections of the order of
the centrifugal barriet(I+1)/r* (I=1 due to the symme- R_/a we can take the interaction potential into account by
try). In this case the probability of all three particles being inimposing the boundary condition on the wave functibrior

the volumeR? vanishes and short-range physics drops out of/anishing distance between two unlike particles:

the problem. However, the effective attraction increases with

the mass ratio and fom,/m =13 we have a well-known f(r)[ 1
phenomenon of the fall of a particle into the center in an v — 4—(——\/5). 2
attractiver ~2 potential[12]. The shape of the wave function -0 SmALL
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Herer, =xsin#—y cosd is the rescaled distance from tle 3.0 1
particle to the first of the twd fermions, 1{/s is the res- ] 7
caled scattering length, and the unknown funcfiatepends 2.5 =
only on the distance=x cos#+y siné to the second fer- ] — -
mion. Under permutationy(——y) of the 1 fermions the a /a 2-0': s -
function ¥ should change sign due to the symmetry, and we ] s
then requiref — —f. 1'5'; ,/
Let us first construct the wave functiol such that it ; 0: /
satisfies the Poisson equatipn VZ—E]¥ =0 and the sym- "o 5 10 15 20

metry conditions. Then, the general form reads
m./m,
_ . 3 FIG. 1. The ratioa,,/a versusm, /m, calculated from Eq(6)
‘I’—‘I’o(x)+§ f *Ge(IX=XL(nPf(nd’r, (3 (solid line) and from the Born-Oppenheimer approximatioashed
line).
where X.(r)={rcosé,xrsing}, and Vy(x,y)=—Vq(X,
—y) is a solution of the Poisson equation without singulari-
ties. We restrict, to be finite everywhere and, hence, for
E<0 we haveV ,=0. The Green’s functiofg is a solution
of Eq. (1) with the rhs5%(X) = 6°(x) 5%(y) and is given by

L'=%f(r)=0. (6)

HereL'~? is an integral operator which is obtained frdm,
by integrating over angles.

—EK(V—-EIXD E<O From Eq.(3) we find that far from the originr1/y/s)
8m2X? ' 1 the wave functionW~ = f(r)exp(—yer,)/4mr, . There-
Ge(X)=1 . —— 304 fore, at these distances the functit{m) describes the atom-
w’ Ewg E0 47X molecule relative motion and behaves as@/r. The atom-
1673X? molecule scattering length is then given by,

=ap\/esin 26. The ratioan/a is plotted in Fig. 1 as a func-

Here K is an exponentially decaying Bessel function andjon of m, /m, . In the limit of m, /m >1 one can use the

H, is a Hankel function representing the outgoing wave.  Born-Oppenheimer approximation. In this case the hefavy
The functionf is defined by the condition that Eq®) and  fermions move slowly in a field produced by the exchange of
(3) give the same result at —0. Direct calculations show the fast light| particle. The adiabatic behavior assumes de-
that the parts proportional torl/ coincide automatically for  composition of the wave function into two parts. The first
any f, and the comparison of the regular parts gives the inpart describes-wave scattering of the heavy fermions. The

tegral equation motion of the light particle is, therefore, described by a wave
function antisymmetric with respect to their permutation. At
(Le— e+ V=E)f(r)=4m¥ (X (1)), (4) large distancesy 1/\e) the effective interaction has the
form of a repulsive Yukawa potential U(y)
where the Hermitian operatdrz is given by =cosf(m; /m)2\sexp(~2 cosfyy/e)/y. The corresponding

scattering length is plotted in Fig. 1 as a dashed line. We
estimatea,/a~In(m,/m)).
I:Ef(r):477f [Ge(lr=r"DIf(r)=f(r")] It can be shown analytically thé{r)~r? near the origin.
The exponenty increases monotonically from 1 to 3, with
+Ge(\r2+r'2=2rr 'cos 20)f(r")]d%". (5) m, /m; growing from O toc indicating an effective repul-
sion in the systenj7]. In the case ofm;=m; we obtain
This operator conserves angular momentum, and we can efm/a~1.2 (cf. Ref.[9]).
pand the solution of Eq4) in spherical harmonics and deal ~ We now turn to the problem of three-body recombination
only with a set of uncoupled integral equations for functionsjust above the threshold<OE<e. This process {+ 1+ |
of a single variable. Equation(4) is a particular case of the —1+71]) takes place at interparticle distances comparable
Faddeev equatiorf43] and in the momentum representation with the size of af | -dimer (~ 1/{/e). At these distances the
it was first obtained in Re{9] for m;=m, . shapes of the function¥ andf are independent dE. The
The method presented above allows us to solve the prolrormalization coefficient, however, depends on the large
lem of atom-molecule scattering for an arbitrary mass ratioscale behavior and, therefore, on enefgyn terms of plain
Let us assume that the relative kinetic energy dfladimer  waves the wave function of free motion ¥,(x,y) = sin(k
and? fermion is much less than the dimer binding enesgy  -Yy)exp(q-x), where the momentk andq satisfy the equa-
The total energy of the system is then negafire—e and, tion E=k®+q? At distances comparable with \i¢ the
consequently,¥,=0. As the size of the dimer is much quantity|¥,|? is equal to k-y)?[1+O(E/e)], giving rise
smaller than the inverse relative momentum, ¢iveave con-  to thek? threshold law for the probability of three-body re-
tribution dominates and Ed4) becomes combination[6]. Higher-order terms lead to small correc-
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tions to the recombination probablllty ConSidering the limit An exp|icit form of the operatoElozl can be obtained from
E—O0 we keep only the leading termml ,(X . (r))~4wk Eq. (5) by integrating out the angular part 6r).

-r siné in the rhs of Eq.(4). A1 ) .
. . The operatot., ~ has remarkable properties which allow
A ly, th | f Eq(4) has the formf 0 . )
ccordingly, the solution of Eq(4) has the formf(r) us to solve Eq(7) analytically.First, for f(r)=r", wherev

=f(r)k-r/kr corresponding to the angular momentdm . ) :
=1, and Eq.(4) transforms to is in the region—4<Re(v)<2, the action of the operator
reduces tol§ r’=\(»)r’"%, and the function\(») is

(Lo *=e)f(r)=4mkrsine. (7)  given by
|
A(v)= v(v+ Z)Cotﬂ— vcos20cog (v+1)(20— w/2)]+siMv(20— 77/2)].

v+l 2 (v+1)cog26 sin 20 sin( wv/2)

In the specified interval of the function\ has two rootsy,  from the equalityrf (r)=pf,(p) and from the normaliza-
and —vo—2. With m; /m, increasing from 0 to~13.6 the tion condition fgfp(r)fp,(r)rzdr=27r5(p—p’). The op-
root v decreases from 1 te 1 approaching the second root. erator L, 1~ \/& in Eq. (7) can now be inverted and after
At larger mass ratios the roots are complex conjugates witdome manipulation we obtain

the real part equal te-1. Zeros ofA(v) are important to
understand the behavior 6r) at short distances.

. . A1 47k sing MNO)N(D)
Secongdany eigenfunctiony(r) of the operatot., - cor- f(ry=-—— Jer +AN D)+ ———
responding to the eigenvalue 1 can be rescaled to generate an & Ver
eigenfunction corresponding to a new eigenvahudor any NOND) N=T) (= ya(2)2d2
p>0) - | o
- Jer 2w Jo z—\fer
Lo “x(pr)=px(pr). 8

. The integral in Eq.(9) is taken as a principal value. The

As \ has two roots, the spectrum &f;" is two-fold  solutionf is not singular at short distances. The terms con-
degenerate, and fqu=1 there are only two linearly inde- tainingr ~2, r°, andr vanish as expected except in situations
pendent eigenfunctions which behave jas~r" and x,  where\(1), \(0), or A\(—1) are equal to 0. At distances
~r~"072 at smallr. The complex exponents, and v§ at  r<1/\s we havef(r)~r? and the short-range physics does
larger mass ratios imply that the function= x5 rapidly  not come into play. For large distances the asymptotic behav-
oscillates as —0 and the Efimov effect takes place. In both ior x,(r)~2sinf+ &,)/r gives
cases we choose two real eigenfunctions which at large dis-

tances (>1) have the asymptotesxlyz(r.)wz sing = y,(2)2dz 1
+ 6, 9)/r. The phases; and §, can be determined from a f ————=2m co¥g \/§r+51)+o — . (10
numerical calculation of Eq(8). 0 z—+fer Jer

The casep= /e corresponds to the collision of a mol- ) ) )
ecule with an atom just below the three-body recombinatiorPPViously, this describes the molecule-atom channel respon-
threshold E= —0), where the functionV', is zero. Strictly  Sible for three-body recombination. An outgoing wave of the
speaking this process is described by the linear combinatiofPrm exp(+r)/r describing the dimer and atom flying
fool(1)=Ax1(Ver)+Bya(y/er). The determination of the apart, is obtained by adding a general solution of the homo-
coefficientsA and B involves short-range physics, i.e., the 9eneous form of Eq7), which is proportional td y(r), to
knowledge of the three-body wave functighat distances of f(r). . ]
the order ofR,~ ym,Re/h<1/\e, and is beyond the scope EQuations(3), (9), and(10) provide the three-body wave
of this paper. However, the matching procedure implies thafunction ¥ (X) at distances e <|X|<1/JE, where the in-

at these distances both termsfjg, (r) are of the same order elastic dimer-atom channel is well separated from the elastic
of magnitude, soB/A~(\sR.)2*2. In the case of one, and give the amplitude of recombination. Then for the
’ e .

number of recombination eventsf 1+ |—1+1]) per

m, /m;<13.6, the exponentiz+2 is real and positive, and o , . ;
unit time and unit volume in a gas we obtain

at distancesr >R, one hasf . (r)~Axi(Ver). Hence,

short-range three-body parameters are unnecessary. — 5
Fortunately, the discussed caserof/m;<13.6 covers Qpy = ar(efe)n ng, 1D

almost all practical situations. Using the functiggn(r) and

scaling property(8) we can construct a complete orthonor- wheren, andn; are the densities of the fermionic compo-

mal set of functiond ,(r) =px,(pr). Completeness follows nents. The rate constant (e;/¢) is proportional to the av-
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FIG. 2. The parametes;mje/4° versusm; /m, .

erage kinetic energy of particIeSe_T, which equals 3/2 in
a nondegenerate gas, andig35~4.6:2n%¥/m, in a deeply

degenerate gas. The coefficient is given by

5
i N2(1)N2(0)N(—1)sirfotarts.  (12)

87
a=—7
! 3 m?’s2

Figure 2 shows the dependence of the dimensionless quanti

a;m’e?/#° onm, /m, . In the case ofm, =m, =m the quan-
tity a;~148a*/m.

The absence of three-body recombination at the point

A(1)=0 (m;/m; =0), N(0)=0 (m;/m ~8.62), and\

(—=1)=0 (m;/m ~13.6) is a purely quantum phenomenon.
From Egs.(9) and(10) we see that for these mass ratios the
free atom channel is decoupled from the molecular recombi-
nation channel and the interparticle interaction leads to ela

tic scattering only.

The process|(+ | +7T—|+|1) is described in a similar
way. The results are given by Eg41) and(12), where one

should interchange the subscrigtsand |. In a mixture of
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This formula is valid provided the inequalities<#2/ma?
<#h?/mR¢ are satisfied. In current experiments wifik and

8Li one hase~15uK, n~10"%cm 3, and the scattering
length can be tuned using Feshbach resonances.aFor
~280 A we calculate the rate constant-102° cmPs™?
and the loss ratél3) is ~10 s .

In a trap with a barrieg,, higher than the kinetic energy
of dimers and fast atoms produced in the recombination pro-
cess (~#2/ma’), these particles remain trapped and Eq.
(13) overestimates the losses. Actually, the peak loss rate is
reached at a finite scattering lengih- Vme, /%, not for a
—oo. This is consistent with recent observations of particle
losses in trappedLi, where a was tuned by a Feshbach
resonancé¢2-5|.

We emphasize the difference between two-component
Fermi gases and Bose gases with respect to inelastic pro-
cesses. Energy dependence of the recombination in Fermi
gases leads to decreasiligsince particles with compara-
tively high kinetic energies recombine. However, the degen-
eracy parameter decreases due to a faster particle loss. Equa-
tion (13) gives an estimate of the three-body loss rate even if

~R, (i.e., deep bound stgteln Fermi gases tha® depen-
ence(13) leads to a substantial suppression of the recombi-
nation probability compared to th&* dependence in Bose
ased14]. Further, in contrast to Bose gases, cold collisions
etween dimers and atoms have fewer inelastic channels.
Indeed, there are no weakly bound Efimoy| states if
m, /m; <13.6, and the effective repulsion between an atom
and a dimer at low energies suppresses the relaxation to
Sqeeper molecular states. In the case of a deep trap and large
a, where products of three-body recombination stay trapped,
one expects a fast creation of weakly bound molecules that
can be further cooled. The lifetime of the gas of these Bose
dimers is sufficient to observe, for example, a BEC.

two hyperfine components of the same isotope, with equal e thank G. V. Shlyapnikov, J. T. M. Walraven, M. A.

densitiesn;=n;=n/2, ande, =€ =, the total loss rate of

particles is

—n/n=Ln%~111na%?e/4. (13)
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