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Three-body problem in Fermi gases with short-range interparticle interaction
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We discuss three-body processes in ultracold two-component Fermi gases with short-range intercomponent
interaction characterized by a large and positive scattering lengtha. It is found that in most cases the prob-
ability of three-body recombination is a universal function of the mass ratio anda, and is independent of
short-range physics. We also calculate the scattering length corresponding to the atom-dimer interaction.
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In the search for fermionic superfluidity, ultracold Ferm
gases with strong interactions and high densities are
duced routinely. In current experiments with40K @1# and 6Li
@2–5#, the scattering lengtha, corresponding to the interac
tion between different fermionic species, has been modi
using a powerful tool of Feshbach resonances. Reaching
densities is limited by three-body recombination—the p
cess in which two atoms form a bound state and a third
carries away the binding energy«. In the case of a two-
component Fermi gas the three-body process requires at
two identical fermions to approach each other to a dista
of the order of the size of the final bound state. Therefore
the ultracold limit the recombination probability acquires
additional small factorK/«, whereK is the relative kinetic
energy of identical fermions~cf. Ref. @6#!. One may specu-
late that limitations on achieving high densities are not
severe as in Bose gases, where the recombination ra
independent of the kinetic energy of particles.

Theoretical studies of the three-body problem have
vealed the existence of two universality classes for the c
where a greatly exceeds the characteristic radius of int
atomic interaction,Re @7,8#. For the first class, short-rang
physics is not important and the three-body problem can
described in terms of two-body scattering lengths and ma
of particles. One can then use the zero-range approxima
for the interatomic potential, which has been successf
demonstrated, e.g., in the calculations of neutron-deute
scattering with the total spinS53/2 @9#. For the second class
where short-range behavior is important, the description
the three-body problem requires at least one parameter c
ing from short-range physics@10#. For two identical fermions
(↑) interacting with a third particle (↓), the presence of two
universality classes has been shown by Efimov@7,8#. For a
largea, the pair interaction between distinguishable partic
leads to the appearance of an attractive 1/r 2 interaction in the
three-body system@11#. If the mass ratiom↑ /m↓ is smaller
than '13, then this attraction is not sufficient to overcom
the centrifugal barrierl ( l 11)/r 2 ( l 51 due to the symme
try!. In this case the probability of all three particles being
the volumeRe

3 vanishes and short-range physics drops ou
the problem. However, the effective attraction increases w
the mass ratio and form↑ /m↓*13 we have a well-known
phenomenon of the fall of a particle into the center in
attractiver 22 potential@12#. The shape of the wave functio
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at distances of the order ofRe then significantly influences
the large-scale behavior and short-range parameters o
interaction potential are required to describe the three-b
system.

In this paper we discuss a three-body system (↑↑↓) con-
taining two identical fermions and belonging to the first un
versality class. In the ultracold limit we find universal fun
tions of a and m↑ /m↓ for the probability of three-body
recombination and for the amplitude of atom-dimer scatt
ing. As expected, the recombination to comparatively de
bound states is much slower than that in the Bose case. H
ever, despite the suppression factor ofK/«, the recombina-
tion to a weakly bounds-level (a.0 anda@Re) for realistic
parameters of a two-component Fermi gas can be as im
tant as that in a Bose gas with the same density and sca
ing length.

In the center-of-mass reference frame the state of
three-body system (↑↑↓) with total energyE is described by
the Schro¨dinger equation

@2¹X
22E#C52(

6
VS \~xtanu6y!

2Am↑
D C, ~1!

where\y/Am↑ is the distance between identical↑ fermions,
\x/A2m is the distance between their center of mass and
↓ particle,m52m↑m↓ /(2m↑1m↓) is the corresponding re

duced mass, andu5arctanA112m↑ /m↓. The vector X
5$x,y% describes the rescaled 6D configuration space for
three-body problem. The potential of interaction betwe
distinguishable particles isV and the interaction betwee
identical particles is omitted.

We assume that the potentialV supports a weakly bounds
state with the binding-energy« and with the size determine
by the scattering lengtha.0. The latter greatly exceeds th
rangeRe of the potentialV. We also assume the conditio
uEu,« which means that wavelengths of particles are at le
as large asa. Then, neglecting corrections of the order
Re /a we can take the interaction potential into account
imposing the boundary condition on the wave functionC for
vanishing distance between two unlike particles:

C ——→
r'→0

f ~r !

4p S 1

r'

2A« D . ~2!
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Herer'5x sinu2y cosu is the rescaled distance from the↓
particle to the first of the two↑ fermions, 1/A« is the res-
caled scattering length, and the unknown functionf depends
only on the distancer5x cosu1y sinu to the second↑ fer-
mion. Under permutation (y→2y) of the ↑ fermions the
functionC should change sign due to the symmetry, and
then requiref→2 f .

Let us first construct the wave functionC such that it
satisfies the Poisson equation@2¹X

22E#C50 and the sym-
metry conditions. Then, the general form reads

C5C0~X!1(
6

E 6GE„uX2X6~r !u…f ~r !d3r , ~3!

where X6(r )5$r cosu,6r sinu%, and C0(x,y)52C0(x,
2y) is a solution of the Poisson equation without singula
ties. We restrictC0 to be finite everywhere and, hence, f
E,0 we haveC0[0. The Green’s functionGE is a solution
of Eq. ~1! with the rhsd6(X)5d3(x)d3(y) and is given by

GE~X!55
2EK2~A2EuXu!

8p2X2
, E,0

iEH2~AEuXu!

16p3X2
, E.0

——→
E→0

1

4p3X4
.

Here K2 is an exponentially decaying Bessel function a
H2 is a Hankel function representing the outgoing wave.

The functionf is defined by the condition that Eqs.~2! and
~3! give the same result atr'→0. Direct calculations show
that the parts proportional to 1/r' coincide automatically for
any f, and the comparison of the regular parts gives the
tegral equation

~ L̂E2A«1A2E! f ~r !54pC0„X1~r !…, ~4!

where the Hermitian operatorL̂E is given by

L̂Ef ~r !54pE @GE~ ur2r 8u!@ f ~r !2 f ~r 8!#

1GE~Ar21r 8222rr 8cos 2u! f ~r 8!#d3r 8. ~5!

This operator conserves angular momentum, and we can
pand the solution of Eq.~4! in spherical harmonics and de
only with a set of uncoupled integral equations for functio
of a single variabler. Equation~4! is a particular case of the
Faddeev equations@13# and in the momentum representatio
it was first obtained in Ref.@9# for m↑5m↓ .

The method presented above allows us to solve the p
lem of atom-molecule scattering for an arbitrary mass ra
Let us assume that the relative kinetic energy of a↑↓ dimer
and↑ fermion is much less than the dimer binding energy«.
The total energy of the system is then negativeE'2« and,
consequently,C0[0. As the size of the dimer is muc
smaller than the inverse relative momentum, thes-wave con-
tribution dominates and Eq.~4! becomes
01070
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L̂2«
l 50f ~r !50. ~6!

HereL̂2«
l 50 is an integral operator which is obtained fromL̂2«

by integrating over angles.
From Eq.~3! we find that far from the origin (r @1/A«)

the wave functionC'6 f (r )exp(2A« r')/4pr' . There-
fore, at these distances the functionf (r ) describes the atom
molecule relative motion and behaves as 12b/r . The atom-
molecule scattering length is then given byam

5abA«sin 2u. The ratioam /a is plotted in Fig. 1 as a func-
tion of m↑ /m↓ . In the limit of m↑ /m↓@1 one can use the
Born-Oppenheimer approximation. In this case the heav↑
fermions move slowly in a field produced by the exchange
the fast light↓ particle. The adiabatic behavior assumes d
composition of the wave function into two parts. The fir
part describess-wave scattering of the heavy fermions. Th
motion of the light particle is, therefore, described by a wa
function antisymmetric with respect to their permutation.
large distances (y@1/A«) the effective interaction has th
form of a repulsive Yukawa potential U(y)
5cosu(m↑ /m↓)2A«exp(22 cosu yA«)/y. The corresponding
scattering length is plotted in Fig. 1 as a dashed line.
estimateam /a; ln(m↑ /m↓).

It can be shown analytically thatf (r );r g near the origin.
The exponentg increases monotonically from 1 to 3, wit
m↑ /m↓ growing from 0 to` indicating an effective repul-
sion in the system@7#. In the case ofm↑5m↓ we obtain
am /a'1.2 ~cf. Ref. @9#!.

We now turn to the problem of three-body recombinati
just above the threshold 0,E!«. This process (↑1↑1↓
→↑1↑↓) takes place at interparticle distances compara
with the size of a↑↓-dimer (;1/A«). At these distances the
shapes of the functionsC and f are independent ofE. The
normalization coefficient, however, depends on the la
scale behavior and, therefore, on energyE. In terms of plain
waves the wave function of free motion isC0(x,y)5sin(k
•y)exp(iq•x), where the momentak andq satisfy the equa-
tion E5k21q2. At distances comparable with 1/A« the
quantity uC0u2 is equal to (k•y)2@11O(E/«)#, giving rise
to thek2 threshold law for the probability of three-body re
combination@6#. Higher-order terms lead to small corre

FIG. 1. The ratioam /a versusm↑ /m↓ calculated from Eq.~6!
~solid line! and from the Born-Oppenheimer approximation~dashed
line!.
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tions to the recombination probability. Considering the lim
E→0 we keep only the leading term 4pC0„X1(r )…'4pk
•r sinu in the rhs of Eq.~4!.

Accordingly, the solution of Eq.~4! has the formf (r )
5 f (r )k•r /kr corresponding to the angular momentuml
51, and Eq.~4! transforms to

~ L̂0
l 512A«! f ~r !54pkr sinu. ~7!
t.
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01070
t An explicit form of the operatorL̂0
l 51 can be obtained from

Eq. ~5! by integrating out the angular part off (r ).

The operatorL̂0
l 51 has remarkable properties which allo

us to solve Eq.~7! analytically.First, for f (r )5r n, wheren
is in the region24,Re(n),2, the action of the operato

reduces toL̂0
l 51r n5l(n)r n21, and the functionl(n) is

given by
l~n!5
n~n12!

n11
cot

pn

2
2

n cos 2u cos@~n11!~2u2p/2!#1sin@n~2u2p/2!#

~n11!cos22u sin 2u sin~pn/2!
.
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In the specified interval ofn the functionl has two roots:n0
and 2n022. With m↑ /m↓ increasing from 0 to'13.6 the
root n0 decreases from 1 to21 approaching the second roo
At larger mass ratios the roots are complex conjugates w
the real part equal to21. Zeros ofl(n) are important to
understand the behavior off (r ) at short distances.

Second, any eigenfunctionx(r ) of the operatorL̂0
l 51 cor-

responding to the eigenvalue 1 can be rescaled to genera
eigenfunction corresponding to a new eigenvaluep ~for any
p.0)

L̂0
l 51x~pr !5px~pr !. ~8!

As l has two roots, the spectrum ofL̂0
l 51 is two-fold

degenerate, and forp51 there are only two linearly inde
pendent eigenfunctions which behave asx1;r n0 and x2

;r 2n022 at small r. The complex exponentsn0 and n0* at
larger mass ratios imply that the functionx15x2* rapidly
oscillates asr→0 and the Efimov effect takes place. In bo
cases we choose two real eigenfunctions which at large
tances (r @1) have the asymptotesx1,2(r )'2 sin(r
1d1,2)/r . The phasesd1 and d2 can be determined from
numerical calculation of Eq.~8!.

The casep5A« corresponds to the collision of a mo
ecule with an atom just below the three-body recombinat
threshold (E520), where the functionC0 is zero. Strictly
speaking this process is described by the linear combina
f mol(r )5Ax1(A«r )1Bx2(A«r ). The determination of the
coefficientsA and B involves short-range physics, i.e., th
knowledge of the three-body wave functionC at distances of
the order ofRe8;Am↑Re /\!1/A«, and is beyond the scop
of this paper. However, the matching procedure implies t
at these distances both terms inf mol(r ) are of the same orde
of magnitude, soB/A;(A«Re8)

2n012. In the case of
m↑ /m↓,13.6, the exponent 2n012 is real and positive, and
at distancesr @Re8 one has f mol(r )'Ax1(A«r ). Hence,
short-range three-body parameters are unnecessary.

Fortunately, the discussed case ofm↑ /m↓,13.6 covers
almost all practical situations. Using the functionx1(r ) and
scaling property~8! we can construct a complete orthono
mal set of functionsf p(r )5px1(pr). Completeness follows
th

an

is-

n

n

t

from the equalityr f p(r )5p fr(p) and from the normaliza-
tion condition *0

` f p(r ) f p8(r )r 2dr52pd(p2p8). The op-

erator L̂0
l 512A« in Eq. ~7! can now be inverted and afte

some manipulation we obtain

f ~r !52
4pk sinu

« S A«r 1l~1!1
l~0!l~1!

A«r

2
l~0!l~1!

A«r
Al~21!

2p E
0

` x1~z!zdz

z2A«r
D . ~9!

The integral in Eq.~9! is taken as a principal value. Th
solution f is not singular at short distances. The terms co
taining r 21, r 0, andr vanish as expected except in situatio
wherel(1), l(0), or l(21) are equal to 0. At distance
r !1/A« we havef (r );r 2 and the short-range physics do
not come into play. For large distances the asymptotic beh
ior x1(r )'2sin(r1d1)/r gives

E
0

` x1~z!zdz

z2A«r
52p cos~A«r 1d1!1OS 1

A«r
D . ~10!

Obviously, this describes the molecule-atom channel resp
sible for three-body recombination. An outgoing wave of t
form exp(iA«r )/r describing the dimer and atom flyin
apart, is obtained by adding a general solution of the hom
geneous form of Eq.~7!, which is proportional tof mol(r ), to
f (r ).

Equations~3!, ~9!, and~10! provide the three-body wave
functionC(X) at distances 1/A«!uXu!1/AE, where the in-
elastic dimer-atom channel is well separated from the ela
one, and give the amplitude of recombination. Then for
number of recombination events (↑1↑1↓→↑1↑↓) per
unit time and unit volume in a gas we obtain

V↑↑↓5a↑~e↑/«!n↓n↑
2 , ~11!

wheren↓ and n↑ are the densities of the fermionic comp
nents. The rate constanta↑(e↑/«) is proportional to the av-
3-3



n

in

n
he
b

la

u

or

y
ro-
q.
e is

cle
h

ent
pro-
ermi
-
en-
qua-

n if

bi-

ns
els.

om
n to
large
ed,
that
ose

.
rk
nt-

RAPID COMMUNICATIONS

D. S. PETROV PHYSICAL REVIEW A67, 010703~R! ~2003!
erage kinetic energy of↑ particlese↑, which equals 3T/2 in
a nondegenerate gas, and 3TF/5'4.6\2n↑

2/3/m↑ in a deeply
degenerate gas. The coefficienta↑ is given by

a↑5
8p3

3

\5

m↑
3«2

l2~1!l2~0!l~21!sin2u tan3u. ~12!

Figure 2 shows the dependence of the dimensionless qua
a↑m↑

3«2/\5 on m↑ /m↓ . In the case ofm↑5m↓5m the quan-
tity a↑'148\a4/m.

The absence of three-body recombination at the po
l(1)50 (m↑ /m↓50), l(0)50 (m↑ /m↓'8.62), and l
(21)50 (m↑ /m↓'13.6) is a purely quantum phenomeno
From Eqs.~9! and~10! we see that for these mass ratios t
free atom channel is decoupled from the molecular recom
nation channel and the interparticle interaction leads to e
tic scattering only.

The process (↓1↓1↑→↓1↓↑) is described in a similar
way. The results are given by Eqs.~11! and~12!, where one
should interchange the subscripts↑ and ↓. In a mixture of
two hyperfine components of the same isotope, with eq
densitiesn↑5n↓5n/2, ande↑5e↓5 ē, the total loss rate of
particles is

2ṅ/n5Ln2'111~na3!2ē/\. ~13!

FIG. 2. The parametera↑m↑
3«2/\5 versusm↑ /m↓ .
r.
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This formula is valid provided the inequalitiesē!\2/ma2

!\2/mRe
2 are satisfied. In current experiments with40K and

6Li one has ē;15mK, n;1013 cm23, and the scattering
length can be tuned using Feshbach resonances. Fa
'280 Å we calculate the rate constantL;10225 cm6 s21

and the loss rate~13! is ;10 s21.
In a trap with a barrier« tr higher than the kinetic energ

of dimers and fast atoms produced in the recombination p
cess (;\2/ma2), these particles remain trapped and E
~13! overestimates the losses. Actually, the peak loss rat
reached at a finite scattering lengtha;Am« tr/\, not for a
→`. This is consistent with recent observations of parti
losses in trapped6Li, where a was tuned by a Feshbac
resonance@2–5#.

We emphasize the difference between two-compon
Fermi gases and Bose gases with respect to inelastic
cesses. Energy dependence of the recombination in F
gases leads to decreasingē since particles with compara
tively high kinetic energies recombine. However, the deg
eracy parameter decreases due to a faster particle loss. E
tion ~13! gives an estimate of the three-body loss rate eve
a;Re ~i.e., deep bound state!. In Fermi gases thea6 depen-
dence~13! leads to a substantial suppression of the recom
nation probability compared to thea4 dependence in Bose
gases@14#. Further, in contrast to Bose gases, cold collisio
between dimers and atoms have fewer inelastic chann
Indeed, there are no weakly bound Efimov↑↑↓ states if
m↑ /m↓,13.6, and the effective repulsion between an at
and a dimer at low energies suppresses the relaxatio
deeper molecular states. In the case of a deep trap and
a, where products of three-body recombination stay trapp
one expects a fast creation of weakly bound molecules
can be further cooled. The lifetime of the gas of these B
dimers is sufficient to observe, for example, a BEC.
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