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Engineering functional quantum algorithms
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Suppose that a quantum circuit withelementary gates is known for a unitary matdyxand assume that
U™ is a scalar matrix for some positive integar We show that a function dfl can be realized on a quantum
computer with at mosO(mK+m?lnm) elementary gates. The functions bf are realized by a generic
guantum circuit, which has a particularly simple structure. Among other results, we obtain efficient circuits for
the fractional Fourier transform.

DOI: 10.1103/PhysRevA.67.010302 PACS nuntber03.67.Lx

Let U be a unitary matrixJ e 4(2"). Suppose that a fast whereT denotes the diagonalizing matrix bf, as above.

guantum algorithm is known folJ, which is given by a Notice that any two scalar functiorisand g, which take
factorization of the form the same values on the spectrumfyield the same matrix
value f(U)=g(U). In particular, one can find an interpola-
U=U,U,---Uyg, (1)  tion polynomialg, which takes the same values fasn the

eigenvalues,; . It is possible to assume that the degree of
where the unitary matriced; are realized by controlleslor 1S Smaller than the degree of the minimal polynomialioin
gates or by single-qubit gatéa]. We are interested in the Other words,V=f(U) can be expressed by a linear combi-
following question:Are there efficient quantum algorithms nation of integral powers of the matrl,
for unitary matrices, which are functions of2U

The question is puzzling, because the knowledge of the m-1
factorization(1) of U does not seem to be of much help in V=f(U)= 2 a;Ul, 2
finding similar factorizations for, say/= U3, The purpose 1=0
of this paper is to give an answer to the above question for a
wide range of unitary matriced. where m is the degree of the minimal polynomial of the
Our solution to this problem is based on a generic circuitmatrix U, anda; e C fori=0, ... m—1. In order forV to be

which implements arbitrary functions df, assuming that unitary, it is necessary and sufficient that the funcfiomaps

U™ is a scalar matrix for some positive integer If mis  the eigenvaluei; of U to elements on the unit circle.

small (that is, polylogarithmic im), then our method pro- Remark.There exist several different definitions for ma-

vides an efficient quantum circuit for. trix functions. The relationship between these definitions is
Notations. We denote byZ/(m) the group of unitary discussed in detail in Ref5]. We have chosen the most

mXm matrices, byl the identity matrix, and by the field  general definition that allows to express the function values

of complex numbers. by polynomials.

|. PRELIMINARIES Il. THE GENERIC CIRCUIT

We recall some standard material on matrix functions, see Let U be a unitary 22" matrix with minimal polyno-
Refs.[2—4] for more details. Let) be a unitary matrix. The Mial of degreem. We assume that an efficient quantum cir-
spectral theorem states thalt is unitarily equivalent to a Cuitis known forU. How can we go about implementing the

diagonal matrixD, that is,U=TDT' for some unitary ma- linear combinatior{2)? We will use an ancillary system of
trix T. The elements\, on the diagonal of D  quantum bits, wherg. is chosen such that*2 *<m=2*

=diag(\y, . .. \,n) are the eigenvalues &f. holds. This will allow us to create the linear combination by
Let f be any function of complex scalars such that itsmanipulating somewhat larger matrices, which on injeyt
domain contains the eigenvaluks, 1<i<2". The matrix ~®|y)eC?®(? produce the statfd)®V|).

function f(U) is then defined by We first bring the ancillary system into a superposition of
the firstm computational base states, such that an input state
f(U)=Tdiagf(\y), ..., F(Am)TT, |0)®| ) e (22" is mapped to the state
1 m—1
*Electronic address: klappi@cs.tamu.edu — E [yely). ©)
"Electronic address: roettele@ira.uka.de Jﬁ i=0
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FIG. 1. A quantum circuit realizing the block diagonal matrix
A=diag(1U,U?, ... u? 1,

This can be done by acting with & & 2* unitary matrixB
on the ancillary system, where the first columnBois of the
form 1/ym(1, ...,1,0 ... ,0). Efficient implementations of
B exist.
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The following theorem gives an upper bound on the com-
plexity of the method. We use the number of elementary
gates (that is, the number of single-qubit gates and
controlledNOT gate$ as a measure of complexity.

Theorem 1Let U be a 2'x 2" unitary matrix with mini-
mal polynomialx™— 7, 7eC. Suppose that there exists a
guantum algorithm fotJ usingK elementary gates. Then a
unitary matrix V=f(U) can be realized with at most
O(mK-+m?lnm) elementary operations.

Proof. A matrix acting onu € O(In m) qubits can be real-
ized with at mosO(m?In m) elementary operations, cf. Ref.
[1]. Therefore, the matriceB,B, and M can be realized
with a total of at mosD(3m?In m) operations.

If K operations are needed to impleméhtthen at most

Notice that there exists an efficient implementation of thel4K operations are needed to implemeént(U), the opera-

block diagonal matrixA=diag(1U,U?, ... ,U%" Y. In-
deed,A can be composed of the matricel”, 0< <,
conditioned on thew ancillae bits. The resulting implemen-
tation is shown in Fig. 1. The sta8) is transformed by this
circuit into the state

m—1

1 o

In the next step, we let a2 2* matrix M act on the
ancillae bits. We choosk! such that the stat&l) is mapped
to

m—1

T go [k)@ UMV ).

It turns out thatM can be realized by a unitary matrix, as-
suming that the minimal polynomial df is of the formx™
— 7, 7eC. This will be explained in some detail in the fol-
lowing section.

We apply the inversé" of the block diagonal matri.
This transforms the stai®) to

©)

1

m

m—1
> [kyeViy). 6)
k=0

ﬁ

We can clean up the ancillae bits by applying thex2#
matrix BT. This yields then the output state

[0)@V[y)=|0)af(U)|y). @)

The steps from the input staf@)®|) to the final output
state|0)®V|) are illustrated in Fig. 2 for the cage=2.

o :t
B _ M . |Bt

[0) * ] ¢

|} U U? v-2| (vt

FIG. 2. Generic circuit realizing a linear combinatidh The
caseu =2 is shown.

tion U controlled by a single qubit. The reason is that a
doubly controlledNoT gate can be implemented with 14 el-
ementary gatef6], and a controlled single-qubit gate can be
implemented with six or fewer elementary gafés

We observe that’2—1 copies ofA,(U) suffice to imple-

mentA. Indeed, we certainly can implementl(Uzk) by a
sequence of 2 circuits A;(U). This bold implementation
yields the estimate foA. Typically, we will be able to find
much more efficient implementations. Anyway, we can con
clude thatA and A" can both be implemented by at most
14(2*—1)K € O(14mK) operations. Combining our counts
yields the result. |

IIl. UNITARITY OF THE MATRIX M

It remains to show that the stat4) can be transformed
into the statg(5) by acting with a unitary matridM on the
system ofu ancillae qubits. This is the crucial step in the
previously described method.

Let U be a unitary matrix with a minimal polynomial of
degreem. A unitary matrixV=f(U) can then be represented
by a linear combination

m—1
V= aU'. )

1=0
We will motivate the construction of the matrid by exam-
ining in some detail the resulting linear combinations of the
matricesUXV. From Eq.(8), we obtain

m—1
ukv= EO a; Uk, (9)
=
Suppose that the minimal polynomial &f is of the form
m(x) =x"—g(x), with g(x)zE{“:’olgixi. The right-hand
side of Eq.(9) can be reduced to a polynomialithof degree
less thanm using the relatiotd™=g(U):

m-1

ukv= > ByU'.
i=0
The coefficients3,; are explicitly given by

(Bro:Bras - -

- Brm-1)) = (@, @1, . .. am—1) P,
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whereP denotes the companion matrix of(x), that is,

0 1 O 0

0 0 1 0
pP= :

0 0 O 1

9 91 9 Om-1

The 2¢X2* matrix M is defined by

o[ )

where C=(Bi)ki-o,...m-1, and 1 is a (2*—m)Xx(2*
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a—1

Sao=(rowdrow 0)= >, 7aj_aa;+ > aj_.a
j=0 j=a

(10

m—1

holds, whered, o denotes the Kronecker delta and the indices
of a are understood modulm.

m—1

i=o

Consider the equation
The right-hand side can be simplified to a polynomidaUiof
degree less tham using the identityrU™=1. The coeffi-
cient of U? in Eqg. (12) is exactly the right-hand side of Eq.
(10). Since the minimal polynomial of) is of degreem, it
follows that the matrice)®,U?, ... U™ ! are linearly in-

m—1

1:VTV=( Zoﬁr (11)

—m) identity matrix. Under the assumptions of Theorem 1,dependent. Thus, comparing coefficients on both sides of Eq.

it turns out that the matri# is unitary. Before proving this
claim, let us formally check that the mati transforms the
state(4) into the statg5). If we apply the matrixM to the
ancillary system, then we obtain from expressi@n the
state

2 Mliye U= 2: Bul k)@ V')

ﬁ
ﬁl

m—1

2 e 2 V')

ﬁl

Z Ky @UkvV|y),

ﬁl

which coincides with the statg), as claimed.

Lemma 2 Let U be a unitary matrix with minimal poly-
nomialm(x) =x™— 7. LetV be a matrix satisfying Eq2). If
V is unitary, thenM is unitary.

Proof. It suffices to show that the matri€ is unitary.
Notice that the assumption on the minimal polynonmiglx)
implies thatC is of the form

ag ay Am—2  Em-1
Tam-1 g am-3  m-2
C= . . . . 1
T Ty TOMm-1 [£7))

that is,C is obtained from a circulant matrix by multiplying
every entry below the diagonal by. In other words, we
have

C=([7]i>j@j-i modm)i,j=0,... m—1

where[ 7]i~;=7if i>], and[ 7];~;=1 otherwise.

Note that the inner product of roeswith row b of matrix
C is the same as the inner product of rew 1 with row b
+1. Thus, to prove the unitarity @, it suffices to show that

(11) shows EQq.(10). Hence the rows o€ are pairwise or-
thogonal and of unit norm. |

A simple examplelet F,, be the discrete Fourier trans-
form matrix,

F,=2""2(exp — 2mik€I12")) ¢—0, .. 2-

with i2=—1. Recall that the Cooley-Tukey decomposition
yields a fast quantum algorithm, which implemeRiswith
0O(n?) elementary operations. The minimal polynomiaFgf
is x*—1 if n=3. Thus, any unitary matri%/, which is a
function of F,, can be realized witlD(n?) operations.

For instance, ifn=3, then the fractional poweF), x
e R, can be expressed as

FX=ao(X)| + a1 (X)Fpt ap(X)F2+ az(X)F3,

where the coefficientg;(x) are given by(cf. Ref.[7])

1 : 1 :
ag(X)= §(1+ e”)cosx, ai(X) =§(l— ie™)sinx,

1 : 1 )
ay(X)= 5(— 1+e™)cosx, ag(x)zz(—l—ie'x)sinx.
In this caseF} is realized by the circuit in Fig. 2 with

=F,andM= (al i(X))i,j=0,... 3 The circuit can be imple-
mented withO(n?) operations.

IV. LIMITATIONS

The previous sections showed that a unitary maft(id)
can be realized by a linear combination of the powets
O<i<m, if the minimal polynomialm(x) of U is of the
form x™— 7, reC. One might wonder whether the restric-
tion to minimal polynomials of this form is really necessary.
The next lemma explains why we had this limitation.

Lemma 3 Let U be a unitary matrix with minimal poly-
nomialm(x) =x"—g(x), degg(x)<m. If g(x) is not a con-
stant, then the matriM is in general not unitary.

Proof. Suppose thag(x) = m_olglx' We may choose for
instanceV=U"=g(U). Then the norm of first row iM is
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greater than 1. Indeed, we can calculate this norm to be m-1 o

|gol?+1]91]%+ - - - +]gm_1|>. However,|go|?=1, becausg, f(Up) =diagf(U),f(A))= >, a;diagU’,A"). (12
i=0

is a product of eigenvalues af. By assumption, there is

another nonzero coefficiet, which proves the result.l S . . )
o P The approach detailed in Sec. Il yields a unitary maifixo

realize this linear combination. On the other hand, we obtain
from Eq.(12) the relation

We describe in this section one possibility to extend our
approach to a larger class of unitary matritkdNe assumed i
so far thatf(U) is realized by a linear combinatiof?) of f(U)= i:zo a;U
linearly independenmatricesU'. The exponents were re-
stricted to the range €i<m, where m is degree of the
minimal polynomial ofU. We can circumvent the problem
indicated in the preceding section by allowingto be larger
than the degree of the minimal polynomial.

Theorem 4Let U c(2") be a unitary matrix such that
U™ is a scalar matrix for some positive integer i.e., the
guotient of any two eigenvalues & is a root of unity.
Suppose that there exists a quantum circuit which imple-

V. EXTENSIONS

m—1

by ignoring the auxiliary matriced!, 0<i<m. It is clear
that a circuit of the type shown in Fig. 2 wijla chosen such
that 2¢~1<m=2* implements this linear combination of the
matricesU’, 0<i<m, provided we use the matri¥ con-
structed above. |

VI. CONCLUSIONS

mentsU with K elementary gates. Then a unitary matvix Few methods are currently known that facilitate the engi-
=f(U) can be realized wittO(mK+m“Inm) elementary neering of quantum algorithms. Linear algebra allowed us to
operations. derive efficient quantum circuits fdi(U), given an efficient

Proof. By assumption,U™=71 for some reC. This  guantum circuit forU, as long adJ™ is a scalar matrix for
means that the minimal polynomiat(x) of U divides the  some small integem. This method can be used in conjuction
polynomial x™—7, that is, X™—7=m(x)mx(x) for some  ith the Fourier sampling techniques by S8}, the eigen-
m(X) e C[X]. value estimation technique by Kitag®], and the probability

~ We may assume without loss of generality that the funcamplitude amplification method by Grovgt0], to design
tion f is defined at all roots of™— 7. Indeed, we can replace more elaborate quantum algorithms.

f by an interpolation polynomiaj satisfyingf(U)=g(U) if
this is necessary.

Choose any unitary matri& e U(2") with minimal poly-
nomial m,(x). The minimal polynomial of the block diago- Research by A.K. was partly supported by NSF Grant No.
nal matrixU ,=diag(U,A) is x™— 7, the least common mul- EIA 0218582 and a Texas A&M TITF grant. Research by
tiple of the polynomialsn(x) andm,(x). Expressf(U,) by  M.R. was supported by EC Grant No. IST-1999-10%06
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