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Engineering functional quantum algorithms
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Suppose that a quantum circuit withK elementary gates is known for a unitary matrixU, and assume that
Um is a scalar matrix for some positive integerm. We show that a function ofU can be realized on a quantum
computer with at mostO(mK1m2ln m) elementary gates. The functions ofU are realized by a generic
quantum circuit, which has a particularly simple structure. Among other results, we obtain efficient circuits for
the fractional Fourier transform.
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Let U be a unitary matrix,UPU(2n). Suppose that a fas
quantum algorithm is known forU, which is given by a
factorization of the form

U5U1U2•••UK , ~1!

where the unitary matricesUi are realized by controlled-NOT

gates or by single-qubit gates@1#. We are interested in the
following question:Are there efficient quantum algorithm
for unitary matrices, which are functions of U?

The question is puzzling, because the knowledge of
factorization~1! of U does not seem to be of much help
finding similar factorizations for, say,V5U1/3. The purpose
of this paper is to give an answer to the above question f
wide range of unitary matricesU.

Our solution to this problem is based on a generic circ
which implements arbitrary functions ofU, assuming that
Um is a scalar matrix for some positive integerm. If m is
small ~that is, polylogarithmic inn), then our method pro-
vides an efficient quantum circuit forV.

Notations. We denote byU(m) the group of unitary
m3m matrices, by1 the identity matrix, and byC the field
of complex numbers.

I. PRELIMINARIES

We recall some standard material on matrix functions,
Refs.@2–4# for more details. LetU be a unitary matrix. The
spectral theorem states thatU is unitarily equivalent to a
diagonal matrixD, that is,U5TDT† for some unitary ma-
trix T. The elements l i on the diagonal of D
5diag(l1 , . . . ,l2n) are the eigenvalues ofU.

Let f be any function of complex scalars such that
domain contains the eigenvaluesl i , 1< i<2n. The matrix
function f (U) is then defined by

f ~U !5T diag„f ~l1!, . . . ,f ~l2n!…T†,
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whereT denotes the diagonalizing matrix ofU, as above.
Notice that any two scalar functionsf and g, which take

the same values on the spectrum ofU, yield the same matrix
value f (U)5g(U). In particular, one can find an interpola
tion polynomialg, which takes the same values asf on the
eigenvaluesl i . It is possible to assume that the degree og
is smaller than the degree of the minimal polynomial ofU. In
other words,V5 f (U) can be expressed by a linear comb
nation of integral powers of the matrixU,

V5 f ~U !5 (
i 50

m21

a iU
i , ~2!

where m is the degree of the minimal polynomial of th
matrix U, anda iPC for i 50, . . . ,m21. In order forV to be
unitary, it is necessary and sufficient that the functionf maps
the eigenvaluesl i of U to elements on the unit circle.

Remark.There exist several different definitions for m
trix functions. The relationship between these definitions
discussed in detail in Ref.@5#. We have chosen the mos
general definition that allows to express the function valu
by polynomials.

II. THE GENERIC CIRCUIT

Let U be a unitary 2n32n matrix with minimal polyno-
mial of degreem. We assume that an efficient quantum c
cuit is known forU. How can we go about implementing th
linear combination~2!? We will use an ancillary system ofm
quantum bits, wherem is chosen such that 2m21,m<2m

holds. This will allow us to create the linear combination
manipulating somewhat larger matrices, which on inputu0&
^ uc&PC2m

^ C2n
produce the stateu0& ^ Vuc&.

We first bring the ancillary system into a superposition
the firstm computational base states, such that an input s
u0& ^ uc&PC2m

^ C2n
is mapped to the state

1

Am
(
i 50

m21

u i & ^ uc&. ~3!
©2003 The American Physical Society02-1
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This can be done by acting with a 2m32m unitary matrixB
on the ancillary system, where the first column ofB is of the
form 1/Am(1, . . .,1,0, . . . ,0)t. Efficient implementations of
B exist.

Notice that there exists an efficient implementation of
block diagonal matrixA5diag(1,U,U2, . . . ,U2m21). In-
deed,A can be composed of the matricesU2h

, 0<h,m,
conditioned on them ancillae bits. The resulting implemen
tation is shown in Fig. 1. The state~3! is transformed by this
circuit into the state

1

Am
(
i 50

m21

u i & ^ Ui uc&. ~4!

In the next step, we let a 2m32m matrix M act on the
ancillae bits. We chooseM such that the state~4! is mapped
to

1

Am
(
k50

m21

uk& ^ UkVuc&. ~5!

It turns out thatM can be realized by a unitary matrix, a
suming that the minimal polynomial ofU is of the formxm

2t, tPC. This will be explained in some detail in the fo
lowing section.

We apply the inverseA† of the block diagonal matrixA.
This transforms the state~5! to

1

Am
(
k50

m21

uk& ^ Vuc&. ~6!

We can clean up the ancillae bits by applying the 2m32m

matrix B†. This yields then the output state

u0& ^ Vuc&5u0& ^ f ~U !uc&. ~7!

The steps from the input stateu0& ^ uc& to the final output
stateu0& ^ Vuc& are illustrated in Fig. 2 for the casem52.

FIG. 1. A quantum circuit realizing the block diagonal matr

A5diag(1,U,U2, . . . ,U2m21).

FIG. 2. Generic circuit realizing a linear combinationV. The
casem52 is shown.
01030
e

The following theorem gives an upper bound on the co
plexity of the method. We use the number of element
gates ~that is, the number of single-qubit gates a
controlled-NOT gates! as a measure of complexity.

Theorem 1. Let U be a 2n32n unitary matrix with mini-
mal polynomialxm2t, tPC. Suppose that there exists
quantum algorithm forU usingK elementary gates. Then
unitary matrix V5 f (U) can be realized with at mos
O(mK1m2ln m) elementary operations.

Proof.A matrix acting onmPO(ln m) qubits can be real-
ized with at mostO(m2ln m) elementary operations, cf. Re
@1#. Therefore, the matricesB,B†, and M can be realized
with a total of at mostO(3m2ln m) operations.

If K operations are needed to implementU, then at most
14K operations are needed to implementL1(U), the opera-
tion U controlled by a single qubit. The reason is that
doubly controlled-NOT gate can be implemented with 14 e
ementary gates@6#, and a controlled single-qubit gate can b
implemented with six or fewer elementary gates@1#.

We observe that 2m21 copies ofL1(U) suffice to imple-
ment A. Indeed, we certainly can implementL1(U2k

) by a
sequence of 2k circuits L1(U). This bold implementation
yields the estimate forA. Typically, we will be able to find
much more efficient implementations. Anyway, we can co
clude thatA and A† can both be implemented by at mo
14(2m21)KPO(14mK) operations. Combining our count
yields the result. j

III. UNITARITY OF THE MATRIX M

It remains to show that the state~4! can be transformed
into the state~5! by acting with a unitary matrixM on the
system ofm ancillae qubits. This is the crucial step in th
previously described method.

Let U be a unitary matrix with a minimal polynomial o
degreem. A unitary matrixV5 f (U) can then be represente
by a linear combination

V5 (
i 50

m21

a iU
i . ~8!

We will motivate the construction of the matrixM by exam-
ining in some detail the resulting linear combinations of t
matricesUkV. From Eq.~8!, we obtain

UkV5 (
i 50

m21

a iU
i 1k. ~9!

Suppose that the minimal polynomial ofU is of the form
m(x)5xm2g(x), with g(x)5( i 50

m21gix
i . The right-hand

side of Eq.~9! can be reduced to a polynomial inU of degree
less thanm using the relationUm5g(U):

UkV5 (
i 50

m21

bkiU
i .

The coefficientsbki are explicitly given by

~bk0 ,bk1 , . . . ,bk(m21)!5~a0 ,a1 , . . . ,am21!Pk,
2-2
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whereP denotes the companion matrix ofm(x), that is,

P5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

g0 g1 g2 ••• gm21

D .

The 2m32m matrix M is defined by

M5S C 0

0 1D ,

where C5(bki)k,i 50, . . . ,m21, and 1 is a (2m2m)3(2m

2m) identity matrix. Under the assumptions of Theorem
it turns out that the matrixM is unitary. Before proving this
claim, let us formally check that the matrixM transforms the
state~4! into the state~5!. If we apply the matrixM to the
ancillary system, then we obtain from expression~4! the
state

1

Am
(
i 50

m21

M u i & ^ Ui uc&5
1

Am
(

k,i 50

m21

bkiuk& ^ Ui uc&

5
1

Am
(
k50

m21

uk& ^ (
i 50

m21

bkiU
i uc&

5
1

Am
(
k50

m21

uk& ^ UkVuc&,

which coincides with the state~5!, as claimed.
Lemma 2. Let U be a unitary matrix with minimal poly-

nomialm(x)5xm2t. Let V be a matrix satisfying Eq.~2!. If
V is unitary, thenM is unitary.

Proof. It suffices to show that the matrixC is unitary.
Notice that the assumption on the minimal polynomialm(x)
implies thatC is of the form

C5S a0 a1 ••• am22 am21

tam21 a0 ••• am23 am22

� � � �

ta1 ta2 ••• tam21 a0

D ,

that is,C is obtained from a circulant matrix by multiplyin
every entry below the diagonal byt. In other words, we
have

C5~@t# i . ja j 2 i modm! i , j 50, . . . ,m21 ,

where@t# i . j5t if i . j , and@t# i . j51 otherwise.
Note that the inner product of rowa with row b of matrix

C is the same as the inner product of rowa11 with row b
11. Thus, to prove the unitarity ofC, it suffices to show that
01030
,

da,0

!

5^row aurow 0&5 (
j 50

a21

t̄ a j 2āa j1 (
j 5a

m21

a j 2āa j

~10!

holds, whereda,0 denotes the Kronecker delta and the indic
of a are understood modulom.

Consider the equation

15V†V5S (
i 50

m21

a īU
2 i D S (

i 50

m21

a iU
i D . ~11!

The right-hand side can be simplified to a polynomial inU of
degree less thanm using the identityt̄Um51. The coeffi-
cient of Ua in Eq. ~11! is exactly the right-hand side of Eq
~10!. Since the minimal polynomial ofU is of degreem, it
follows that the matricesU0,U1, . . . ,Um21 are linearly in-
dependent. Thus, comparing coefficients on both sides of
~11! shows Eq.~10!. Hence the rows ofC are pairwise or-
thogonal and of unit norm. j

A simple example.Let Fn be the discrete Fourier trans
form matrix,

Fn522n/2
„exp~22p ik,/2n!…k,,50, . . . ,2n21 ,

with i 2521. Recall that the Cooley-Tukey decompositio
yields a fast quantum algorithm, which implementsFn with
O(n2) elementary operations. The minimal polynomial ofFn
is x421 if n>3. Thus, any unitary matrixV, which is a
function of Fn , can be realized withO(n2) operations.

For instance, ifn>3, then the fractional powerFn
x , x

PR, can be expressed as

Fn
x5a0~x!I 1a1~x!Fn1a2~x!Fn

21a3~x!Fn
3 ,

where the coefficientsa i(x) are given by~cf. Ref. @7#!

a0~x!5
1

2
~11eix!cosx, a1~x!5

1

2
~12 ieix!sinx,

a2~x!5
1

2
~211eix!cosx, a3~x!5

1

2
~212 ieix!sinx.

In this case,Fn
x is realized by the circuit in Fig. 2 withU

5Fn andM5„a j 2 i(x)…i , j 50, . . . ,3. The circuit can be imple-
mented withO(n2) operations.

IV. LIMITATIONS

The previous sections showed that a unitary matrixf (U)
can be realized by a linear combination of the powersUi ,
0< i ,m, if the minimal polynomialm(x) of U is of the
form xm2t, tPC. One might wonder whether the restric
tion to minimal polynomials of this form is really necessar
The next lemma explains why we had this limitation.

Lemma 3. Let U be a unitary matrix with minimal poly-
nomialm(x)5xm2g(x), degg(x),m. If g(x) is not a con-
stant, then the matrixM is in general not unitary.

Proof.Suppose thatg(x)5( i 50
m21gix

i . We may choose for
instanceV5Um5g(U). Then the norm of first row inM is
2-3
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greater than 1. Indeed, we can calculate this norm to
ug0u21ug1u21•••1ugm21u2. However,ug0u251, becauseg0
is a product of eigenvalues ofU. By assumption, there is
another nonzero coefficientgi , which proves the result.j

V. EXTENSIONS

We describe in this section one possibility to extend o
approach to a larger class of unitary matricesU. We assumed
so far thatf (U) is realized by a linear combination~2! of
linearly independentmatricesUi . The exponents were re
stricted to the range 0< i ,m, where m is degree of the
minimal polynomial ofU. We can circumvent the problem
indicated in the preceding section by allowingm to be larger
than the degree of the minimal polynomial.

Theorem 4. Let UPU(2n) be a unitary matrix such tha
Um is a scalar matrix for some positive integerm, i.e., the
quotient of any two eigenvalues ofU is a root of unity.
Suppose that there exists a quantum circuit which imp
mentsU with K elementary gates. Then a unitary matrixV
5 f (U) can be realized withO(mK1m2ln m) elementary
operations.

Proof. By assumption,Um5t1 for some tPC. This
means that the minimal polynomialm(x) of U divides the
polynomial xm2t, that is, xm2t5m(x)m2(x) for some
m2(x)PC@x#.

We may assume without loss of generality that the fu
tion f is defined at all roots ofxm2t. Indeed, we can replac
f by an interpolation polynomialg satisfying f (U)5g(U) if
this is necessary.

Choose any unitary matrixAPU(2n) with minimal poly-
nomial m2(x). The minimal polynomial of the block diago
nal matrixUA5diag(U,A) is xm2t, the least common mul
tiple of the polynomialsm(x) andm2(x). Expressf (UA) by
powers of the block diagonal matrixUA :
,

01030
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f ~UA!5diag„f ~U !, f ~A!…5 (
i 50

m21

a idiag~Ui ,Ai !. ~12!

The approach detailed in Sec. III yields a unitary matrixM to
realize this linear combination. On the other hand, we obt
from Eq. ~12! the relation

f ~U !5 (
i 50

m21

a iU
i

by ignoring the auxiliary matricesAi , 0< i ,m. It is clear
that a circuit of the type shown in Fig. 2 withm chosen such
that 2m21,m<2m implements this linear combination of th
matricesUi , 0< i ,m, provided we use the matrixM con-
structed above. j

VI. CONCLUSIONS

Few methods are currently known that facilitate the en
neering of quantum algorithms. Linear algebra allowed us
derive efficient quantum circuits forf (U), given an efficient
quantum circuit forU, as long asUm is a scalar matrix for
some small integerm. This method can be used in conjuctio
with the Fourier sampling techniques by Shor@8#, the eigen-
value estimation technique by Kitaev@9#, and the probability
amplitude amplification method by Grover@10#, to design
more elaborate quantum algorithms.
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