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Compatibility of quantum states
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We introduce a measure of compatibility between quantum states—the likelihood that two density matrices
describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural
definition. We list some properties of this measure, and discuss its relation to the problem of combining two
observers’ states of knowledge.
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The quantum superposition principle induces a qualita
difference between classical and quantum states of kno
edge. The state of a quantum system can be fully speci
yet not predict with certainty the outcome of a measu
ment—a state of affairs which has only the observers’ ig
rance as classical analog. In quantum mechanics, incom
knowledge is represented by a mixed density matrix
though a mixed density matrix does not necessarily refl
ignorance—which corresponds imperfectly to a classical
tribution; the ‘‘quantum uncertainty’’ of pure states combin
with the ‘‘classical uncertainty’’ of a distribution to yield a
object, which can be represented by different decomposit
or realizations.

The fidelity of two quantum states@1# rA andrB ,

F~rA ,rB!5Tr$A~rA!1/2rB~rA!1/2% ~1!

~or more preciselyF2), measures the likelihood that variou
measurements made on the two states will obtain the s
result. Thus, fidelity is a measure of similarity betwe
states, which does not distinguish between classical
quantum uncertainty.

In this paper, we introducecompatibility, a measure simi-
lar to fidelity, but which compares two observers’ states
knowledge, not the results of the measurements which t
could do. We want the compatibility to measure classi
admixture, while treating different pure states as fundam
tally different: if two observers claim to have comple
knowledge of a system, their descriptions had better agr
completely @8#. Hence, a compatibility measureC(rA ,rB)
should satisfy the two following requirements.

~1! When@rA ,rB#50 ~classical mixture! the compatibil-
ity should be equal to the fidelity.

~2! The compatibility of incompatible states should be
While our first requirement should be transparent, the s

ond sounds tautological, and requires further explanat
Consider two observers~Alice and Bob! whose respective
states of knowledge are described byrA andrB . ~Through-
out this paper, we use subscriptk to designate eitherA or B.!
Brun, Finkelstein, and Mermin@2# defined Alice’s and Bob’s
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descriptions to becompatibleif and only if they could be
describing the same physical system. They then addre
the following question: under what conditions arerA andrB
compatible? Their answer is quite simple:rA and rB are
compatible if and only if the intersection of their suppor
S5S(rA)ùS(rB), is nonempty. The supportS(r) of a den-
sity matrix r is the complement of its null spaceN(r); to
obtain the projectorPS(r) onto S(r), diagonalizer and re-
place each nonzero eigenvalue with 1. Thus,rA andrB are
compatible ifPS(rA)PS(rB) has at least one unit eigenvalu
In other words, two states of knowledge are incompatible
between them they rule out all possible pure states.

With this definition, staterA5u0&^0u is compatible with
state rB5eu0&^0u1(12e)u1&^1u and state rB85(1
2e)u0&^0u1eu1&^1u as long as 0,e,1. Nevertheless, as
e→0, it is clear that the compatibility ofrA andrB should
vanish while that ofrA and rB8 should approach unity. The
definition of Ref.@2# makes no distinction between these tw
cases and this is what originally motivated the present wo

Now that requirement~2! has been clarified, we can pro
ceed with the definition of the compatibility measure.

Definition 1.Let B0(H) be the set of all density matrice
on Hilbert spaceH. For rPB0(H), defineP(r) as the set
of realizations ofr:

P~r!5H P:E
B0(H)

P~s!sds5rJ , ~2!

where theP are probability distributions overB0(H). Then,
the compatibility ofrA andrBPB0(H) is defined as

C~rA ,rB!5 max
PAPP(rA)
PBPP(rB)

E
B0(H)

APA~s!PB~s!ds, ~3!

the integral representing the classical fidelityF(PA ,PB) ~or
statistical overlap! of two classical distributionsPA andPB .

Lemma 1.All distributions PPP(r) must vanish outside
B0(r): the set of density matrices with support restricted
S(r).

Proof. Let P(s) be a realization ofr. We can separater
into two parts:

a-
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s.

l

-

s-

o

or

b
or

s
ol
ld

za

r
-

ion

f

a-

RAPID COMMUNICATIONS

POULIN AND BLUME-KOHOUT PHYSICAL REVIEW A 67, 010101~R! ~2003!
r5E
B0

'(r)
Pk~s!s ds1E

B0(r)
Pk~s!s ds ~4!

5pr81~12p!r9, ~5!

wherer8, by definition, has support onN(r), r9 has support
strictly onS(r) andp5*B

0
'(r)Pk(s) ds. If pÞ0, there ex-

istscPN(r) such thatr does not annihilatec. This contra-
dicts the definition ofN(r), so we conclude thatp50 and
thereforeP is restricted toB0(r).

Theorem 1.Definition 1 satisfies both of our requirement
Proof.
~1! If rA commutes withrB , then they have orthogona

decompositions onto the same set of pure states:rA
5( iai uf i&^f i u; rB5( ibi uf i&^f i u. Thus C(rA ,rB)
>( iAaibi5F(rA ,rB). Later ~see property 4! we show that
C(rA ,rB)<F(rA ,rB); therefore for commuting density ma
tricesC(rA ,rB)5F(rA ,rB).

~2! If rA andrB are incompatible, their supports are di
joint, which implies thatPA(s) andPB(s) are restricted to
disjoint sets, implying thatC(rA ,rB)50.

Note that this measure is not the only one that satisfies
two requirements. For example, define

Dn~rA ,rB!5Tr$@~rA!1/2n~rB!1/n~rA!1/2n#n%. ~6!

Clearly, Dn(ra ,rB)5F(rA ,rB) when n51 or for any n
when @rA ,rB#50, so it satisfies our first requirement. F
the second requirement, notice that

lim
n→`

Dn~rA ,rB!< lim
n→`

Tr$@PS(rA)PS(rB)#
n%, ~7!

which is 0 if PS(rB)PS(rB) has no unit eigenvalue, i.e., ifrA

and rB are incompatible. Therefore, D(rA ,rB)
5 limn→`Dn(rA ,rB) is a valid measure of compatibility.

Definition 1 can also be generalized to

Ea~rA ,rB!5 max
PAPP(rA)
PBPP(rB)

E
B0(H)

@PA~s!#a@PB~s!#12ads,

~8!

0,a,1, which is the Re´nyi overlap of PA and PB , the
fidelity corresponding to the special casea51/2. This defi-
nition allows for an asymmetry between Alice and Bo
which can be useful when one of the participant is m
trustworthy than the other.

Although these alternative definitions offer some intere
ing features, we shall concentrate on Definition 1 in the f
lowing. @LabelsD and E indicate that the results also ho
for measureD(rA ,rB) and Ea(rA ,rB), respectively, the
proofs are given forC(rA ,rB) only.#

Theorem 2(E). To compute the compatibility of two
states, it is sufficient to maximize over pure state reali
tions. In other words,
01010
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C~rA ,rB!5 max
QAPQ(rA)
QBPQ(rB)

E
B0

1(H)
AQA~c!QB~c!dc, ~9!

whereB0
1(H) is the set of all pure states inH andQ(r) is

the set of pure state realizations ofr:

Q~r!5H Q:E
B0

1(H)
Q(c)uc&^cudc5rJ , ~10!

Q are probability distributions onB0
1(H).

Proof. Choose a standard pure state decomposition fos
PB0(H), s5*B

0
1(H) f s(c)uc&^cudc ~e.g., eigendecompo

sition!. Then

E
B0(H)

APA~s!PB~s!ds

5E
B0(H)

E
B0

1(H)
APA~s! f s~c!PB~s! f s~c!dsdc

<E
B0

1(H)
AQA~c!QB~c!dc, ~11!

since fidelity can only increase under the marginalizat
Qk(c)5*B0(H)Pk(s) f s(c) ds.

Theorem 3.When one of the two states is pure~sayrB),
C(rA ,rB)5Ap wherep is given by

p5 min
qP[0,1]

$q: det
S(rA)

$rA2qrB%50%, ~12!

if rB lies within S(rA) andp50 otherwise.
Proof. There is a unique realization forrB : PB(s)

5d(s2rB). The maximum value ofq for which we can
write rA5qrB1(12q)s ~with s a valid density matrix! is
p. The result follows.

Theorem 4(E). Any local maximum ofF(PA ,PB) over
P(rA) ^ P(rB) is a global maximum.

Proof. Fidelity is a concave function:F(lPA1 @1
2l#PA8 ,PB)>lF(PA ,PB)1@12l#F(PA8 ,PB). The sets
P(rA) and P(rB) are convex: any convex combination o
valid probability distributions of meanr is also a valid prob-
ability distribution with meanr. The result follows auto-
matically.

We now give a list of properties of the compatibility me
sure.

Property 1 (D). C(rA ,rB) is symmetric.
Property 2 (D and E). Compatibility is invariant under

unitary transformation:C(UrAU†,UrBU†)5C(rA ,rB).
Property 3 (D and E). For pure statesC(cA ,cB)51 if

and only if u^cAucB&u251 and 0 otherwise.
Property 4 (D). ~Upper bound! C(rA ,rC)<F(rA ,rB).
Property 5 (D andE). F(rA ,rB)50⇒C(rA ,rB)50 and

F(rA ,rB)51⇔C(rA ,rB)51⇔rA5rB .
Property 6~Lower bound! C(rA ,rB)>rAeAeB, whereek

is the greatest value ofq for which one can writerk
5(q/r )PS1(12q)s with s being a valid density matrix,
1-2
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see Eq. ~12!, and r 5Tr$PS% is the dimension ofS
5S(rA)ùS(rB). ~For compatible states,ek>lk

0 , the small-
est nonzero eigenvalue ofrk .)

Property 7 (E). ~Multiplicativity ! C(rA^ rA8 ,rB^ rB8 )
>C(rA ,rB)C(rA8 ,rB8 ).

Proofs. Properties 1, 2, and 3 are straightforward fro
Definition 1.

Property 4: Assume thatQk(c) are the optimal distribu-
tions given by Theorem 2. We choosexWPR(2N22) ~whereN
is the dimension ofH) as a parametrization forB0

1(H): c

5c(xW ), and construct the purifications

uCk&5E AQk„c~xW !…uc~xW !& ^ uxW &dxW , ~13!

where xW is now treated as a quantum continuous varia

^xW uxW8&5d(xW2xW8) ~e.g., position of an particle in a
N-dimensional box!. Then C(rA ,rB)5^CAuCB&
<F(rA ,rB), since the fidelity is the maximum of this quan
tity over all purifications.

This proof introduces an interesting distinction betwe
fidelity and compatibility. Fidelity is the optimal inner prod
uct between all purifications ofrA and rB . On the other
hand, compatibility involves purifications of a very spec
kind @Eq. ~13!#. All that is needed to transform compatibilit
into fidelity is to replace Eq.~13! by

uCA&5E AQA„c~xW !…uc~xW !& ^ UAuxW &dxW ,

uCB&5E AQB„c~xW !…uc~xW !& ^ UBuxW &dxW ~14!

for arbitrary unitary operatorsUA andUB .
Property 5 follows from F(rA ,rB)51⇔rA5rB , re-

quirement~1!, and property 4.
Property 6: We can choose a distribution whererk has

probability r ek at the points5PS /r .
Property 7: The product of the optimal distributions f

C(rA ,rB) and C(rA8 ,rB8 ) are valid distributions over the
combined Hilbert space but might not be optimal. We do
know if this inequality can be reduced to an equality. In oth
words, it is possible that the optimal distribution forrA

^ rA8 andrB^ rB8 involves nonproduct states.
It is worth mentioning that no smooth function of th

compatibility satisfyingf (C)51⇔C50 and f (C)50⇔C
51 can be used to build a metric onB0(H). This is best
illustrated by the following two-dimensional example. A
sume that statesr1 and r2 are pure, derived fromuc6&
5coseu0&6sineu1&, and r05(12e)u0&^0u1eu1&^1u, where
e→0. One can easily verify thatC(r1 ,r2)50 and
C(r1 ,r0)5C(r2 ,r0)512O(e) so f „C(r1 ,r2)…51
. f „C(r1 ,r0)…1 f „C(r2 ,r0)…→0 ase→0. This is in con-
trast with classical distributions: when@rA ,rB#50,
cos21F(ArArB) is a valid distance measure@3#.

Measurement.Suppose that Alice and Bob acquire the
knowledge ofrA andrB through measurement. These sta
will always be compatible: incompatible knowledge acquir
01010
e
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through measurement would indicate an inconsistency
quantum theory@9#. For example, they can each be give
many copies of a quantum system in stater of which they
initially have no knowledge except the dimension. Th
carry out independent measurements on those copies
with the help of Bayesian rules, update their description
the system~see Ref.@4#, and references therein!. As men-
tioned earlier, their descriptions will always be compatib
Nevertheless, a low compatibility could result as a con
quence of one of the following situations:~i! they were given
copies of different states, i.e., the promise of identical s
tems was broken;~ii ! their measurement apparatus is misca
brated; or~iii ! they are in a very improbable branch of th
universe.

These eventualities cannot be detected by the fidelity
rA andrB . For example, suppose that, for a two-level sy
tem,

rA5~12e!u0&^0u1
e

2
1,

rB5~12e!u1&^1u1
e

2
1, ~15!

whereu1&5(1/A2)(u0&1u1&). As the observers’ knowledge
becomes more and more accurate (e→0), the compatibility
goes to 0, indicating one of the three situations listed abo
On the other hand, fidelity saturates atF251/2, which is the
same as if both Alice and Bob had a vague knowledge of
state, e.g.,

rA5S 1

2
1aD u0&^0u1S 1

2
2aD u1&^1u,

rB5S 1

2
2aD u0&^0u1S 1

2
1aD u1&^1u, ~16!

with a5A2/4. This clearly illustrates the fact that fidelit
makes no distinction between classical and quantum un
tainty.

Combining knowledge.Now, assume that Alice and Bo
want to pool their information. IfC(rA ,rB)50 ~which can-
not result from measurement!, their ‘‘knowledge’’ is contra-
dictory. WhenC(rA ,rB).0, however, they can combin
their states of knowledge to get a new density matrixrAB .
This issue has recently been studied by Jacobs@5# but with
the only conclusion thatrAB should lie inS(rA)ùS(rB).

We propose that the state obtained from combining t
states of knowledge should be the one which is maxima
compatible with both of them. This requires a definition
three-way compatibility:

C~rA ,rB ,rC!5 max
PAPP(rA)
PBPP(rB)
PCPP(rC)

E
B0(H)

A3 PA~s!PB~s!PC~s!ds.

~17!

Hence, our rule for combining states of knowledge reads
1-3
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rAB5arg@max
r

C~rA ,rB ,r!#; ~18!

in the eventuality that the maximum overr is not unique,
one can discriminate with a maximum entropyS(r) criteria
which is well motivated in the current context. For any fix
PA andPB , thePC that optimizes Eq.~17! is proportional to
the geometric average ofPA andPB . Therefore, definingP̃A

and P̃B as the distributions that optimized Eq.~3!, we get

rAB5E
B0(H)

PAB~s!s ds, ~19!

where PAB5AP̃AP̃B/C(rA ,rB). Furthermore, there is a
simple relation between the optimal three-way compatibi
and the compatibility of the two original description
C(rA ,rB ,rAB)35C(rA ,rB)2.

Knowledge.Knowledge of a quantum system can ta
many forms; as Bennett expresses it, ‘‘It is possible toknow
or possessa quantum state in infinitely many physically in
equivalent ways, ranging from complete classical kno
edge, through possession of a single specimen of the sta
weaker and less compactly embodiable forms such as
ability to simulate the outcome of a single POVM~positive
operator valued measure! measurement on the state@6#.’’

The compatibility measurement of Eq.~3! is meaningful
when we consider classical description of the quant
states; the quantum fidelity@Eq. ~1!# corresponds to a situa
tion where single specimens of the quantum states are a
able ~respectively ‘‘knowledge of the quantum’’ and ‘‘quan
tum knowledge’’!. One can define compatibility
measurements according to thetype of knowledgeone is
dealing with. For example, we can define the compatibi
-

ro
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between a stater and an ensemble$qj ,s j% as
maxP(r)F(P,Q), where Q(s)5( jqjd(s2s j ). While the
pure stateu1&5(1/A2)(u0&1u1&) is compatible with the en-
sembleE15$„1,pu0&^0u1(12p)u1&^1u…%, it is incompatible
with the ensembleE25$(p,u0&^0u),„(12p),u1&^1u…%, even
if they are realizations of the same state.

An ensemble embodies more knowledge than its ass
ated ~average! state. In our prescription for combinin
knowledge, we have assumed that all of Alice’s and Bo
knowledge was encapsulated in their respective density
trices. Note that all knowledge can be represented in
form by including ancillary systems@e.g., Eq.~13!#.

Suppose, instead, that both Alice’s and Bob’s states
knowledge are represented by the ensembleE1. Obviously,
their combined density matrix should berAB15pu0&^0u
1(12p)u1&^1u. On the other hand, when both their states
knowledge areE2, Bayesian rules would suggest that the
combined state should berAB25p2u0&^0u1(12p)2u1&^1u
~with proper normalization!—but this assumes that the
knowledge was acquiredindependently@5#. If their knowl-
edge came from a redundant source, the Bayesian rule w
then yield staterAB1, as would our prescription.

Hence, this illustrates that our rule for combining states
knowledge assumes no more information than what is enc
sulated in the density matrices. Furthermore, it can quite s
ply be adapted to different forms of knowledge, eith
through the use of ancillary systems or of generalized co
patibility measures.

The authors would like to acknowledge Howard Barnu
Kurt Jacobs, Harold Ollivier, and Wojciech Zurek for discu
sions on this subject. R.B.K. would also like to thank To
Brun for discussions and inspiration.
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