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Compatibility of quantum states
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We introduce a measure of compatibility between quantum states—the likelihood that two density matrices
describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural
definition. We list some properties of this measure, and discuss its relation to the problem of combining two
observers’ states of knowledge.
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The quantum superposition principle induces a qualitativedescriptions to beompatibleif and only if they could be
difference between classical and quantum states of knowlescribing the same physical system. They then addressed
edge. The state of a quantum system can be fully specifiedhe following question: under what conditions grgandpg
yet not predict with certainty the outcome of a measure-compatible? Their answer is quite simplei and pg are
ment—a state of affairs which has only the observers’ ignocompatible if and only if the intersection of their supports,
rance as classical analog. In quantum mechanics, incomplete=S(p,) NS(pg), is nonempty. The suppof(p) of a den-
knowledge is represented by a mixed density matrix—sity matrix p is the complement of its null spade(p); to
though a mixed density matrix does not necessarily reflecbtain the projectoP s, onto S(p), diagonalizep and re-
ignorance—which corresponds imperfectly to a classical displace each nonzero eigenvalue with 1. Thus,and pg are
tribution; the “quantum uncertainty” of pure states combinescompatible ifP (o) Psog) Nas at least one unit eigenvalue.

with the “classical uncertainty” of a distribution to yield an |5 other words, two states of knowledge are incompatible if
object, which can be represented by different decompositiongetween them they rule out all possible pure states.

or realizations. With this definition, statep,=|0)(0| is compatible with
The fidelity of two quantum statdd] p, andpg, state pp=€|0)(0|+(1—€)[1)(1] and state ph=(1

N PRI PR —€)|0)(0|+€|1)(1| as long as & e<1. Nevertheless, as
F(pa.pe)=Tr{N(pa) "pa(pa) 3 (D e—0, itis clear that the compatibility g, and pg should

. 2 I . vanish while that ofp, and pg should approach unity. The
(or more precisely"), measures the I'ke“h_OOd thgt Varlous yefinition of Ref[2] makes no distinction between these two
measurements_ma_de on the two states V\.”".Ob_tam the same,qes and this is what originally motivated the present work.
result. Thus, fidelity is a measure of similarity between .\ ihat requirement2) has been clarified, we can pro-
states, which do_es not distinguish between classical angeed with the definition of the compatibility rr;easure.
quantum uncertainty. Definition 1.Let B(H) be the set of all density matrices

| l? ﬂ];"g’ ?.?pet:’ \tNe k|1r.1trh0duceompat|tb|llty g measu’ret5|tm|- fon Hilbert space. For p e By(H), defineP(p) as the set
ar to fidelity, but which compares two observers’ states of ¢’ . oviono ofp:

knowledge, not the results of the measurements which they
could do. We want the compatibility to measure classical

admixture, while treating different pure states as fundamen-

tally different: if two observers claim to have complete P(P)={P3J P(0)0d0=p]7 2
knowledge of a system, their descriptions had better agreed Bo(7)

completely[8]. Hence, a compatibility measu@(pa,pg)

should satisfy the two following requirements. where theP are probability distributions oveB(#). Then,

(1) When[pa,ps]=0 (classical mixturgthe compatibil-  the compatibility ofp, and pg e Bo(H) is defined as
ity should be equal to the fidelity.

(2) The compatibility of incompatible states should be 0.

While our first requirement should be transparent, the sec-
ond sounds tautological, and requires further explanation. C(pa.pp)= max j% VPa(0)Pg(0)do,  (3)

. . . PaeP(pp) o(H)
Consider two observer§Alice and Bol) whose respective PaeP(on)
states of knowledge are describeddyandpg. (Through-
out this paper, we use subscripto designate eitheh or B.)
Brun, Finkelstein, and Mermif2] defined Alice’s and Bob’s the integral representing the classical fidef¢P,Pg) (or
statistical overlapof two classical distribution®, and Pg.
Lemma 1All distributions P € P(p) must vanish outside
*Present address: Physics Department and IQC, University of WaBo(p): the set of density matrices with support restricted to

terloo, Waterloo, Canada N2L 3G1. S(p).
Email address: dpoulin@igc.ca Proof. Let P(o) be a realization op. We can separaie
"Email address: rbk@socrates.Berkeley.edu into two parts:
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o=
By (p)

0

PWo)o do

o(p)

Po)o d0'+J (4)

=pp’+(1=p)p”, 5
wherep’, by definition, has support aK{p), p” has support
strictly onS(p) andpzf%é(p)Pk(a) do. If p#0, there ex-

ists ¢y M(p) such thatp does not annihilate. This contra-
dicts the definition ofAM{(p), so we conclude thgt=0 and
thereforeP is restricted td8q(p).

Theorem 1Definition 1 satisfies both of our requirements.

Proof.

(1) If pp commutes withpg, then they have orthogonal
decompositions onto the same set of pure stajes:
=Zia| g dil;  pe=Zibil#i)(#il. Thus C(pa,.ps)
=3,\Jab;=F(pu,pg). Later(see property pwe show that
C(pa,pe)=<F(pa,pg); therefore for commuting density ma-

tricesC(pa.ps) =F(pa,ps)-

(2) If pa andpg are incompatible, their supports are dis-

joint, which implies thatP (o) andPg(o) are restricted to
disjoint sets, implying tha€(pa,pg) =0.

Note that this measure is not the only one that satisfies our

two requirements. For example, define

Dn(pa.pe)=Tr{[(pa) " (ps) " (pa) ™" (6)
Clearly, D,(pa.pg)=F(pa,pg) Whenn=1 or for anyn
when[pa,pg]=0, so it satisfies our first requirement. For
the second requirement, notice that

lim Dn(pAva)g lim Tr{[PS(pA)PS(pB)]”}, (7)

n—o n—oe

which is 0 if P s(og) Ps(og) has no unit eigenvalue, i.e., fifa
and pg are incompatible. Therefore, D(pa,pg)

=lim,_.Du(pa,pg) is a valid measure of compatibility.
Definition 1 can also be generalized to

max

PaeP(pa)
PgeP(pg)

Eolpa.pe)= J% (H)[PA(G)]“[PB(U)]l_“dU,

®

0<a<1, which is the Rayi overlap of P, and Pg, the
fidelity corresponding to the special cage=1/2. This defi-

nition allows for an asymmetry between Alice and Bob,
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C(pa,pg)= max 1
Qac Qpp) ¥ Bol
Qge 2pp)

H)VQA(lﬂ)QB(lﬁ)dlﬂ, (€)

whereB3(H) is the set of all pure states i and Q(p) is
the set of pure state realizations mf

Q(p)=[Q1J%1(

0

L= 0

Q are probability distributions ofB3(H).

Proof. Choose a standard pure state decompositiororfor
e Bo(H), o= wionf.(¥)|¥){¥|dy (e.g., eigendecompo-
sition). Then

j VPA(0o)Pg(o)da
Bo(H)

[ PRI P, (Pidady
Bo(H) J By(H)

(11)

< lem RN,
0

since fidelity can only increase under the marginalization
Qu(¥) = J 3 Pr(0) T, () do.
Theorem 3When one of the two states is puisay pg),

C(pa,pg)=+/p wherep is given by
p= min {q: det{pa—dps}=0}, (12
qe[01]  S(pa)

if pg lies within S(p,) andp=0 otherwise.

Proof. There is a unique realization fopg: Pg(o)
=38(o—pg). The maximum value of] for which we can
write pa=Qpg+(1—q)o (with o a valid density matrixis
p. The result follows.

Theorem 4(E). Any local maximum ofF (P ,Pg) over
P(pa) ®P(pg) is a global maximum.

Proof. Fidelity is a concave functionF(AP,+ [1
—N]PA,Pg)=NF(PA,Pg)+[1—-N]F(P4,Pg). The sets
P(pa) and P(pg) are convex: any convex combination of
valid probability distributions of meap is also a valid prob-
ability distribution with meanp. The result follows auto-
matically.

We now give a list of properties of the compatibility mea-
sure.

Property 1 D). C(pa,pg) iS Symmetric.

which can be useful when one of the participant is more Property 2 D and E). Compatibility is invariant under

trustworthy than the other.

Although these alternative definitions offer some interest-

unitary transformationC(Up,UT,UpgUT)=C(pa,pg).
Property 3 O andE). For pure state€(¢a,¢g)=1 if

ing features, we shall concentrate on Definition 1 in the fol-and only if|{ | ¢)|?=1 and 0 otherwise.

lowing. [LabelsD and E indicate that the results also hold
for measureD(pp,pg) and E (pa,pg), respectively, the
proofs are given foC(ppa,pg) only.]

Theorem 2(E). To compute the compatibility of two

Property 4 D). (Upper boundl C(pa,pc)<F(pa.ps)-

Property 5 D andE). F(pa,pg) =0=C(pa,pg)=0 and
F(pa,pe)=1=C(pa,pe)=1=pa=ps.

Property 6(Lower bound C(pa,pg) =T+ eaep, Whereey

states, it is sufficient to maximize over pure state realizais the greatest value off for which one can writep,

tions. In other words,

=(g/r)Ps+(1—qg)o with o being a valid density matrix,
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see Eq.(12, and r=Tr{Pg is the dimension ofS  through measurement would indicate an inconsistency in
=S(pp) N S(pg). (For compatible stateg,=\?, the small- quantum theory9]. For example, they can each be given

est nonzero eigenvalue pf,.) many copies of a quantum system in statef which they
Property 7 E). (Multiplicativity) C(pa®ph,pa® ph) initially have no knowledge except the dimension. They
=C(pa.pe)Clohph)- carry out independent measurements on those copies and,

with the help of Bayesian rules, update their description of
the system(see Ref[4], and references therginAs men-
tioned earlier, their descriptions will always be compatible.
. . - _ Nevertheless, a low compatibility could result as a conse-
tions given by Theorem 2. We chooze R,(ZN 2 (YvhereN guence of one of the following situation) they were given
is the dimension oft) as a parametrization faBo(): ¥ copies of different states, i.e., the promise of identical sys-
= 4(x), and construct the purifications tems was brokerji) their measurement apparatus is miscali-
brated; or(iii) they are in a very improbable branch of the
| > v A universe.
W f QuONI¥)) @ xpdx (13 These eventualities cannot be detected by the fidelity of

R pa andpg. For example, suppose that, for a two-level sys-
where x is now treated as a quantum continuous variablqem,
(x|x"y=8(x—x') (e.g., position of an particle in a
N-dimensional ~ box  Then  C(pa,ps)=(¥a|l¥g)
<F(pa,pg), Since the fidelity is the maximum of this quan-
tity over all purifications.

This proof introduces an interesting distinction between €
fidelity and compatibility. Fidelity is the optimal inner prod- pe=(1—e€)|+)(+|+ b (15
uct between all purifications g, and pg. On the other
hand, compatibility involves purifications of a very special yhere|+)=(1/y2)(|0)+|1)). As the observers’ knowledge

Proofs. Properties 1, 2, and 3 are straightforward from
Definition 1.
Property 4: Assume tha,(¢) are the optimal distribu-

pa=(1-€)[0)(0]+ 51,

into fidelity is to replace Eq(13) by goes to 0, indicating one of the three situations listed above.
On the other hand, fidelity saturatesft=1/2, which is the
W)= f ‘/QA(w(i)Nl//(>2)>®UA|>z>d>?, same as if both Alice and Bob had a vague knowledge of the
state, e.g.,
I ol o s 1 1
I‘I’B>=f Qe((X)|g(x))@Uglxydx (14 pa=|5*all0)0l+| 5 —all1)(1],
for arbitrary unitary operatorg , andUg. 1 1
.Property 5 follows fromF(pa,pg)=1=pa=pg, re- pe=|%—allo)0|+| 5 +a||1)(1], (16)
quirement(1), and property 4. 2 2

Property 6: We can choose a distribution wheiehas . . . o
probability r ¢, at the pointo=P/r. with a=2/4. This clearly illustrates the fact that fidelity

Property 7: The product of the optimal distributions for makes no distinction between classical and quantum uncer-

’ ’ f f : talnty.
C(pa,pg) and C(pu,pg) are valid distributions over the . .
combined Hilbert space but might not be optimal. We do not Combining knowledgelow, assume that Alice and Bob

know if this inequality can be reduced to an equality. In otherVant to pool their information. I€(pa,pg) =0 (which can-

words, it is possible that the optimal distribution fpp n_ot result from measurementheir *knowledge” is 00””?'
) 871550, MU nonproduct ttes dctony, WHEnCn ) G, however, they con combine
It is worth mentioning that no smooth function of the This issue has recentl gbeengstudied b Jat{%but vA\l/)ﬁh

compatibility satisfyingf(C)=1&C=0 andf(C)=0=C "0 conciusion thgﬁ should lie iné( )N S(p)

=1 can be used to build a metric ®y(). This is best W y that the eote obtained § PA g.B gt
illustrated by the following two-dimensional example. As- c p;0£05e| a ﬁ slae 0 halne rorr? Eo.m ning V}llo
sume that statep, and p_ are pure, derived frony..) states (')bl noyvheggehs fOl;d beTth_e one whnic ('js ][P?‘?“ma fy
— cosd0)=sinel1), and po=(1— €)|0)(0| + ¢|1)(1], where compatible with both of them. This requires a definition o

e—0. One can easily verify thatC(p,,p_)=0 and three-way compatibility:

C(p+,p0)=C(p-,p0)=1-0(e) so f(C(p:+,p-))=1 5
>f(C(p+,po))+f(C(p-,pg))—0 ase—0. Thisisincon-  C(pa,pg,pc)= max LB YPa(0)Pg(a)Pc(o)do.

trast with classical distributions: wherpa,pg]=0, PacP(pp)
cos F(Vpapp) is a valid distance measufa]. ggzgﬁg
MeasurementSuppose that Alice and Bob acquire their (17)

knowledge ofp, andpg through measurement. These states
will always be compatible: incompatible knowledge acquiredHence, our rule for combining states of knowledge reads
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pas=ard maxC(pa,pg.p)l; (18) between a statep and an ensemble{q;,o;} as
P maxp ) F(P,Q), where Q(o)=2q;6(c—0;). While the
in the eventuality that the maximum overis not unique, pure staté+)=(1/y/2)(|0)+|1)) is compatible with the en-
one can discriminate with a maximum entroffp) criteria ~ sembleE;={(1,p|0)(0|+ (1—p)|1)(1|)}, it is incompatible
which is well motivated in the current context. For any fixedwith the ensemblé&,={(p,|0)(0|),((1—p),|1)(1])}, even
P, andPg, the P that optimizes Eq(17) is proportional to  if they are realizations of the same state.

the geometric average &, andPg . Therefore, defining® An ensemble embodies more knowledge than its associ-

~ . . ated (average state. In our prescription for combining
and P as the distributions that optimized E}), we get knowledge, we have assumed that all of Alice’s and Bob’s

knowledge was encapsulated in their respective density ma-
pABzf Pag(o)o do, (190  trices. Note that all knowledge can be represented in this
0 form by including ancillary systemi®.g., Eq.(13)].

\/~—~ ] Suppose, instead, that both Alice’s and Bob’s states of
where Pag=VPAPe/C(pa,pg). Furthermore, there is a nowledge are represented by the ensenile Obviously,
simple relation between the optimal three-way compatibilityineir combined density matrix should bexg; = p|0)(O|
and the comé)atibility ofzthe two original descriptions: +(1—p)|1)(1]. On the other hand, when both their states of
C(pa.ps:pae)”=C(pa,pe)"- knowledge areE,, Bayesian rules would suggest that their

Knowledge.Knowledge of a quantum system can take combined state should b@ags = p2|0)(0|+ (1—p)2|1)(1]
many forms; as Bennett expresses it, “It is possibl&now  (ith proper normalization—but this assumes that their
or possess quantum state in infinitely many physically in- o\ledge was acquireithdependently5]. If their knowl-
equivalent ways, ranging from complete classical knowl-gqge came from a redundant source, the Bayesian rule would
edge, through possession of a single specimen of the state, {9, yield stateoagy, as would our prescription.
weaker and less compactly embodiable forms such as the yence, this illustrates that our rule for combining states of
ability to simulate the outcome of a single POMMositive . gwledge assumes no more information than what is encap-
operator valued measyrmeasurement on the std]. sulated in the density matrices. Furthermore, it can quite sim-

The compatibility measurement of E() is meaningful o e adapted to different forms of knowledge, either

when we consider classical description of the quantumyy.qgh the use of ancillary systems or of generalized com-
states; the quantum fideliffeq. (1)] corresponds to a situa- patibility measures.

tion where single specimens of the quantum states are avail-

able (respectively “knowledge of the quantum” and “quan-  The authors would like to acknowledge Howard Barnum,
tum knowledge). One can define compatibility KurtJacobs, Harold Ollivier, and Wojciech Zurek for discus-
measurements according to thype of knowledgene is  sions on this subject. R.B.K. would also like to thank Todd
dealing with. For example, we can define the compatibilityBrun for discussions and inspiration.
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