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Electron-He* elastic scattering
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In a previous papefBhatia and Temkin, Phys. Rev. 84, 032709-1(2001)], electron-hydrogerswave
scattering phase shifts were calculated using the optical potential approach. This method is now extended to the
singlet and triplet electron-Hescattering in the elastic region. Phase shifts are calculated using Hylleraas-type
correlation functions with up to 95 terms. Results are rigorous lower bounds to the exact phase shifts.

DOI: 10.1103/PhysRevA.66.064702 PACS nuniber34.80.Bm
Scattering by single-electron systems is always of interest u(ry) .
because the wave function of the target is known exactly. Vi (r1,r2)=—"—Y10(r1) ¢1rz) = (1=2)+ Py (ry,ro).
Various approximations have been employed to take into ac- ! 1)
count distortion produced in the target. Among them are the
method of polarized orbitalgl] and the close-coupling ap- The upper and lower signs correspond to singlet and trip-

proximation[2]. Recently, electron-hydrogere{H) scatter- let scattering, respectively. The first two terms containipg
ing in the elastic region has been studj&d using the Fes- explicitly give rise to the exchange approximation and the
hbach projection operator formalispd]. In this approach, function ®, is the correlation function. For arbitraty this
the usual Hartree-Fock and exchange potentials are audunction is most efficiently written in terms of symmetric
mented by an optical potential and the resulting phase shift&uler angleg13]:
being lower bounds, are in general agreement with those of
SchwartZ5]. Now this method is being applied to teeHe" _ k41 k1
system. Scattering by ionized helium, as &H, has been P EK: [FL(r 2. DU (0, 609)
studied in the past using the method of polarized orbfi&ls .1 4
and the close-coupling approximati¢@], providing fairly 0 (rar r)DE (6, 0,9) ] 2
accurate phase shifts. The optical potential approach is ap-
plied to thee-He" system to obtain accurate results in the
elastic region forSwave scattering. The optical potential is
constructed using Hylleraas-type correlations with up to 957, . :
terms. The present results are rigorous lower bounds on gridual coordlnatesll, F2, gndrlz. The wave function of the
phase shifts, provided the total energy of the system is |es§cattered electron is defined by
than all the resonance positiofig].

In the study of resonances and electron-impact excitation j [To(r2)(H—E)¥ ]dr,=0, (3
of He", continuum functions are required. The optical po-
tential approach has been employed to calculate such fungghere H is the Hamiltonian ancE is the total energy of
tions by a number of author&f., e.g., Refs[8] and[9]).  e.He". We have, in Rydberg units,
Similarly, the R-matrix approach has been used to calculate
such functions(cf., e.g., Refs[10] and [11]). The recent , 2Z 2Z 2
measurementEL2] of the sum of the cross sections for the H=-Vi-Vim———+— (4)
electron-impact excitation of Heof the 22S and 2P states
agree very well with those obtained from the close-couplingand
andR-matrix calculations. In all the above-mentioned calcu-
lations and other similar calculations, the continuum func- E=k*-2Z?, ®)

tions have been calculated at energies much higher than 1.96 5. o o
Ry. The region of interest in the present paper is the elasti/Nerek” is the kinetic energy of the incident electron and

region and therefore there are no results in the above papels € nuclear charge which is equal to two in the present
that can be compared with the present calculation. Thgglculatlpn. Carrymg out the |nt.egrat|on _Ieads to an integro-
present approach can be generalized to the inelastic regidfifferential equation for scattering functian (r,) and let-
provided appropriate projection operators are used to proje&ng ra=r,
out all the lower hydrogenic states. However, in principle,

The D€ (e=+1,—1) are the modified spherical har-
monics which depend upon the Euler ang[&8]. The f’'s
5above are radial functions, which depend on the three re-

2

the calculations mentioned aboy8-11] could have been _d__ L(L+1) w2l

. . ) ) ———+ Vg Vet Vop—k“|u =0. (6)
carried out in the elastic region as well but they have not dr? r2
been. Therefore, the present calculation complements the
above calculations. V4 and V., are the well known direct and exchange poten-

The total spatial function for the-He" for theLth partial ~ tials of the “exchange approximation’14]. The latter are

wave is written as nonlocal potentials. The optical potential actingwrr) is
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TABLE |. Convergencdthe phase shiftéin radiang have been optimized with respect 4oand & for
each N)] of the Swave phase shift as a function B w) for k=0.8.

s s

N(w) y=4 7 N(w) y B) 7
EA® 0.33949 EA 0.85195
3(1) 0.93 0.35964 @) 1.45 1.65 0.85833
7(2) 1.61 0.39543 1@) 1.45 1.60 0.85933
13(3) 1.80 0.39719 20) 1.35 1.45 0.86040
22(4) 1.40 0.39810 39) 1.35 1.20 0.86060
34(5) 1.60 0.39833 56) 1.35 1.20 0.86065
50(6) 1.30 0.39844 86) 1.35 1.20 0.86069
70(7) 1.45 0.39855

95(8) 1.30 0.39857

8EA is the well-known exchange approximation phase shif#); it corresponds to no correlation terms
[N(w)=0—V,,=0 in Eq.(6)].

a function of the radial coordinates, r,, andr,,. Here®,

VopUL=T onPHQmQHP‘PL>, (7) s taken of the Hylleraas form

In defining the optical potential we have used the Fesh- N

— A — \ |
bach approach4], involving projection operator® and Q, P _o=e " &2% Cimnf1far1,*(1-2), (13
which for the hydrogenidi.e., one-electrontarget can be

written expicitly [7] where the sum includes all triples such th&atm+n=w and

P=P,+P,—P,P,, (8) wfo,l,z, ..., 8. Thetotal number of term&l, depends on
spin and whethety= 6 or not.
Q=1-P, (9) To summarize the calculation: thQHQ problem is
solved(for a giveny and § andN,). The result is a set of
where the spatial projectors are eigenvalueséy(s=1,2,...N,) and associated eigenfunc-
R i tions ®(®. From them the optical potential, E€L2) is con-
Pi=e iYoo) (e #Yoqri). (10)  structed, and the integro-differential Equatit8) is solved

noniteratively. The solution is uniquep to an arbitrary nor-
Note, P; and P, commute and are each idempotent, hencanalization with asymptotic form
the completeP and Q operators are idempotentPt
=P; Q2=Q) and orthogonal PQ=0). Z—1
kr+ ——In(2kr)

The optical potental is expanded in terms of the lim u(r)ecsin K
eigenspectrum of th®@HQ problem, =
(D*QHQD,) rargr|1-EY) (14)
ar - .
S L*—L =0 (11) 9 k n
(PEQD)

Fromu(r) and its derivative the phase shift a deviation
This leads to radial eigenfunctiods(® and eigenvalue§;.  from the pure Coulomb field ofZ-1), is readily extracted,
Inserting a complete set of the functions obtained from theyrovided higher terms in the asymptotic expansion of Cou-
above equation into Eq7), the optical potential can be writ- Jomb functionsF, andG, [15] are retained in the scattering

ten as function u(r):
Vol (1) u(r)=A[Fo+tan 7)Go], (15)
- 2 2
No <on(f1)¢1o(fz)r—Q¢(Ls)> < QCD(LS)I._ P‘I’L> whereF, is the regular Coulomb wave function a®} is
=r,> 12 12 ., theirregular Coulomb wave function.
s E-& Examples demonstrating the convergence pffor k
(120  =0.8 as a function oN,, are given in Table I. By virtue of

the fact thaty’s are rigorous lower bounds on the phase shift
As stated in the beginning, we calculate here dhlyave  [7], the convergence then becomes a good indication of the
(i.e.,L=0) elastic scattering phase shifts. This means, sincaccuracy of the result. The number of terms for a particular
D, =const, that the correlation functiab, in Eq.(2)isonly  w is also indicated in Table | fotS as well as3S in the
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TABLE Il. Phase shifts of*S for variousk for N=95. TABLE llI. Phase shifts of*S for variousk for N=84.

k y=6 ” e, 7p0.° k y B) 7 Nee.®  7Mpo.°
0.4 1.20 0.42601 0.4301 0.4 0.70 1.90 0.91300 0.9235
0.5 1.90 0.41964 0.4169 0.5 1.00 1.70 0.90275 0.9019
0.6 1.30 0.41278 0.4111 0.4153 0.6 0.80 1.90 0.89050 0.8910 0.9015
0.7 1.50 0.40561 0.4046 0.7 1.00 2.10 0.87640 0.8777
0.8 1.30 0.39857 0.3974 0.3986 0.8 1.45 1.60 0.86069 0.8617 0.8723
0.9 1.50 0.39202 0.3906 0.9 1.70 0.90 0.84356 0.8440
1.0 1.65 0.38634 0.3850 0.3823 1.0 1.35 1.80 0.82531 0.8253 0.8371
1.1 1.70 0.38187 0.3805 1.1 1.20 2.10 0.80625 0.8062
1.2 1.30 0.37899 0.3780 0.3685 1.2 1.21 2.25 0.78666 0.7868 0.7984
1.3 1.30 0.37832 0.3774 1.3 1.90 1.40 0.76684 0.7672
1.4 1.40 0.38560 0.3579 1.4 2.10 1.50 0.74697 0.7591

&Close-coupling plus correlations phase shifts obtained by BurkéClose-coupling plus correlations phase shifts obtained by Burke

and Taylor[2]. and Taylor{2].
®Phase shifts obtained by Slodf] using the polarized orbital PPhase shifts obtained by Slodf] using the polarized orbital
method. method.

. ) ) ) ] rather slightly lower in the triplet case, except for=0.5.
expansion given in Eq(13). Phase shifts as a function kf  The difference could be due to the explicit inclusion f 2
are given in Tables Il and Ill for'S and °S, respectively.  and 2p target functions in the calculation of the scattering

The convergence of the results suggests that they are ainctions. It should be noted that the phase shifts decrease as
curate to one or two units in the fourth place after the decia function ofk, but atk=1.4 the 'S phase shift has started
mal point. We have given five digits because to that accuracyising due to the proximity of the lowest resonance which is
they are rigorous lower bounds. The phase shifts are conmabove the total energy of the-He" system. Since théS
pared to the close-coupling.C) results of Burke and Tay- resonance lies higher than tH& resonance, the phase shift
lor [2] and polarized orbita{P.O) results of Sloari6]. The  atk=1.4 in this case is still decreasing as a functiorkof
close-coupling results have been obtained by usisg2s, The phase shifts obtained by Slof#l, including the ex-
and 2o target states and 16 correlation terms of the Hyllerraghange polarization terms are also given in Tables Il and IlI
type. These results given as a functionkdfhave been in- for 'S and 3S, respectively. The polarized orbital method
terpolated to obtain phase shifts as a functiok tof compare  does not provide any bound on the phase shifts but they are
with the present calculations; all the figures in the interpo-seen to contain the dominant part of the correlation enhance-
lated numbers might not be accurately given by the interpoment over the exchange approximati@f. Table .
lation. Only thek=1.0 is a common point. There, thkS The effects of polarization and other long-range potentials
phase shift is higher than the close-coupling result while theare expected to be much less than thateill scattering.
results are the same fd6 phase shifts. In general, the agree- Since they are not included in the calculation, no attempt has
ment is good. The presently calculated phase shifts are exeen made to extrapolate the calculated results. Moreover,
pected to be higher than the close-coupling resiflisbe-  the inclusion of such effects in any approximate manner re-
cause of the larger number of correlations included but thegults in a loss of the bound property, an important feature of
are found to be only slightly higher in the singlet case andhis calculation.
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