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Electron-He¿ elastic scattering
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In a previous paper@Bhatia and Temkin, Phys. Rev. A64, 032709-1~2001!#, electron-hydrogenS-wave
scattering phase shifts were calculated using the optical potential approach. This method is now extended to the
singlet and triplet electron-He1 scattering in the elastic region. Phase shifts are calculated using Hylleraas-type
correlation functions with up to 95 terms. Results are rigorous lower bounds to the exact phase shifts.
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Scattering by single-electron systems is always of inte
because the wave function of the target is known exac
Various approximations have been employed to take into
count distortion produced in the target. Among them are
method of polarized orbitals@1# and the close-coupling ap
proximation @2#. Recently, electron-hydrogen (e-H! scatter-
ing in the elastic region has been studied@3# using the Fes-
hbach projection operator formalism@4#. In this approach,
the usual Hartree-Fock and exchange potentials are
mented by an optical potential and the resulting phase sh
being lower bounds, are in general agreement with thos
Schwartz@5#. Now this method is being applied to thee-He1

system. Scattering by ionized helium, as fore-H, has been
studied in the past using the method of polarized orbitals@6#
and the close-coupling approximation@2#, providing fairly
accurate phase shifts. The optical potential approach is
plied to thee-He1 system to obtain accurate results in t
elastic region forS-wave scattering. The optical potential
constructed using Hylleraas-type correlations with up to
terms. The present results are rigorous lower bounds on
phase shifts, provided the total energy of the system is
than all the resonance positions@7#.

In the study of resonances and electron-impact excita
of He1, continuum functions are required. The optical p
tential approach has been employed to calculate such f
tions by a number of authors~cf., e.g., Refs.@8# and @9#!.
Similarly, the R-matrix approach has been used to calcu
such functions~cf., e.g., Refs.@10# and @11#!. The recent
measurements@12# of the sum of the cross sections for th
electron-impact excitation of He1 of the 22S and 22P states
agree very well with those obtained from the close-coupl
andR-matrix calculations. In all the above-mentioned calc
lations and other similar calculations, the continuum fun
tions have been calculated at energies much higher than
Ry. The region of interest in the present paper is the ela
region and therefore there are no results in the above pa
that can be compared with the present calculation. T
present approach can be generalized to the inelastic re
provided appropriate projection operators are used to pro
out all the lower hydrogenic states. However, in princip
the calculations mentioned above@8–11# could have been
carried out in the elastic region as well but they have
been. Therefore, the present calculation complements
above calculations.

The total spatial function for thee-He1 for theLth partial
wave is written as
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CL~r 1 ,r 2!5
uL~r 1!

r 1
YL0~ r̂ 1!f10~r 2!6~1↔2!1FL~r 1 ,r 2!.

~1!

The upper and lower signs correspond to singlet and t
let scattering, respectively. The first two terms containinguL
explicitly give rise to the exchange approximation and t
function FL is the correlation function. For arbitraryL this
function is most efficiently written in terms of symmetr
Euler angles@13#:

FL5(
k

@ f L
k,11~r 1 ,r 2 ,r 12!D L

k,11~u,f,c!

1 f L
k,21~r 2 ,r 1 ,r 12!D L

k,21~u,f,c!#. ~2!

The D k,e (e511,21) are the modified spherical ha
monics which depend upon the Euler angles@13#. The f ’s
above are radial functions, which depend on the three
sidual coordinatesr 1 , r 2, andr 12. The wave function of the
scattered electron is defined by

E @f10* ~r 2!~H2E!CL#dr250, ~3!

where H is the Hamiltonian andE is the total energy of
e-He1. We have, in Rydberg units,

H52¹1
22¹2

22
2Z

r 1
2

2Z

r 2
1

2

r 12
~4!

and

E5k22Z2, ~5!

wherek2 is the kinetic energy of the incident electron andZ
is the nuclear charge which is equal to two in the pres
calculation. Carrying out the integration leads to an integ
differential equation for scattering functionuL(r 1) and let-
ting r 15r ,

F2
d2

dr2
2

L~L11!

r 2
1Vd6Vex1Vop2k2GuL50. ~6!

Vd and Vex are the well known direct and exchange pote
tials of the ‘‘exchange approximation’’@14#. The latter are
nonlocal potentials. The optical potential acting onuL~r! is
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TABLE I. Convergence@the phase shifts~in radians! have been optimized with respect tog and d for
each N(v)] of the S-wave phase shift as a function ofN(v) for k50.8.

1S 3S
N(v) g5d h (1) N(v) g d h (2)

EA a 0.33949 EAa 0.85195
3~1! 0.93 0.35964 4~1! 1.45 1.65 0.85833
7~2! 1.61 0.39543 10~2! 1.45 1.60 0.85933
13~3! 1.80 0.39719 20~3! 1.35 1.45 0.86040
22~4! 1.40 0.39810 35~4! 1.35 1.20 0.86060
34~5! 1.60 0.39833 56~5! 1.35 1.20 0.86065
50~6! 1.30 0.39844 84~6! 1.35 1.20 0.86069
70~7! 1.45 0.39855
95~8! 1.30 0.39857

aEA is the well-known exchange approximation phase shifts@14#; it corresponds to no correlation term
@N(v)50→Vop50 in Eq. ~6!#.
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VopuL5r K YL0* PHQ
1

E2QHQ
QHPCLL , ~7!

In defining the optical potential we have used the Fe
bach approach@4#, involving projection operatorsP and Q,
which for the hydrogenic~i.e., one-electron! target can be
written expicitly @7#

P5P11P22P1P2 , ~8!

Q512P, ~9!

where the spatial projectors are

Pi5e2ZriY00~ r̂ i !&^e
2ZriY00~ r̂ i !. ~10!

Note, P1 and P2 commute and are each idempotent, hen
the complete P and Q operators are idempotent (P2

5P; Q25Q) and orthogonal (PQ50).
The optical potental is expanded in terms of t

eigenspectrum of theQHQ problem,

dS ^FL* QHQFL&

^FL* QFL&
D 50 ~11!

This leads to radial eigenfunctionsFL
(s) and eigenvaluesEs .

Inserting a complete set of the functions obtained from
above equation into Eq.~7!, the optical potential can be writ
ten as

VopuL~r 1!

5r 1(
s

Nv K YL0* ~ r̂ 1!f10~r 2!
2

r 12
QFL

(s)L K QFL
(s) 2

r 12
PCLL

E2Es
,

~12!

As stated in the beginning, we calculate here onlyS-wave
~i.e., L50) elastic scattering phase shifts. This means, si
DL5const, that the correlation functionFL in Eq. ~2! is only
06470
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a function of the radial coordinatesr 1 , r 2, andr 12. HereFL
is taken of the Hylleraas form

FL505e2gr 12dr 2(
lmn

Nv

Clmnr 1
l r 2

mr 12
n 6~1↔2!, ~13!

where the sum includes all triples such thatl 1m1n5v and
v50,1,2, . . . , 8. Thetotal number of termsNv depends on
spin and whetherg5d or not.

To summarize the calculation: theQHQ problem is
solved~for a giveng andd andNv). The result is a set of
eigenvaluesEs(s51,2, . . . ,Nv) and associated eigenfunc
tions F (s). From them the optical potential, Eq.~12! is con-
structed, and the integro-differential Equation~6! is solved
noniteratively. The solution is unique~up to an arbitrary nor-
malization! with asymptotic form

lim
r→`

u~r !}sinFkr1
Z21

k
ln~2kr !

1argGS 12
i ~Z21!

k D1hG . ~14!

Fromu~r! and its derivative the phase shifth, a deviation
from the pure Coulomb field of (Z-1!, is readily extracted,
provided higher terms in the asymptotic expansion of C
lomb functionsF0 andG0 @15# are retained in the scatterin
function u(r ):

u~r !5A@F01tan~h!G0#, ~15!

whereF0 is the regular Coulomb wave function andG0 is
the irregular Coulomb wave function.

Examples demonstrating the convergence ofh for k
50.8 as a function ofNv are given in Table I. By virtue of
the fact thath ’s are rigorous lower bounds on the phase sh
@7#, the convergence then becomes a good indication of
accuracy of the result. The number of terms for a particu
v is also indicated in Table I for1S as well as3S in the
2-2
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expansion given in Eq.~13!. Phase shifts as a function ofk
are given in Tables II and III for1S and 3S, respectively.

The convergence of the results suggests that they are
curate to one or two units in the fourth place after the de
mal point. We have given five digits because to that accur
they are rigorous lower bounds. The phase shifts are c
pared to the close-coupling~C.C.! results of Burke and Tay
lor @2# and polarized orbital~P.O.! results of Sloan@6#. The
close-coupling results have been obtained by using 1s, 2s,
and 2p target states and 16 correlation terms of the Hyller
type. These results given as a function ofk2 have been in-
terpolated to obtain phase shifts as a function ofk to compare
with the present calculations; all the figures in the interp
lated numbers might not be accurately given by the inter
lation. Only thek51.0 is a common point. There, the1S
phase shift is higher than the close-coupling result while
results are the same for3S phase shifts. In general, the agre
ment is good. The presently calculated phase shifts are
pected to be higher than the close-coupling results@2# be-
cause of the larger number of correlations included but t
are found to be only slightly higher in the singlet case a

TABLE II. Phase shifts of1S for variousk for N595.

k g5d h hc.c.
a hP.O.

b

0.4 1.20 0.42601 0.4301
0.5 1.90 0.41964 0.4169
0.6 1.30 0.41278 0.4111 0.4153
0.7 1.50 0.40561 0.4046
0.8 1.30 0.39857 0.3974 0.3986
0.9 1.50 0.39202 0.3906
1.0 1.65 0.38634 0.3850 0.3823
1.1 1.70 0.38187 0.3805
1.2 1.30 0.37899 0.3780 0.3685
1.3 1.30 0.37832 0.3774
1.4 1.40 0.38560 0.3579

aClose-coupling plus correlations phase shifts obtained by Bu
and Taylor@2#.
bPhase shifts obtained by Sloan@6# using the polarized orbita
method.
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rather slightly lower in the triplet case, except fork50.5.
The difference could be due to the explicit inclusion of 2s
and 2p target functions in the calculation of the scatteri
functions. It should be noted that the phase shifts decreas
a function ofk, but atk51.4 the 1S phase shift has starte
rising due to the proximity of the lowest resonance which
above the total energy of thee-He1 system. Since the3S
resonance lies higher than the1S resonance, the phase sh
at k51.4 in this case is still decreasing as a function ofk.
The phase shifts obtained by Sloan@6#, including the ex-
change polarization terms are also given in Tables II and
for 1S and 3S, respectively. The polarized orbital metho
does not provide any bound on the phase shifts but they
seen to contain the dominant part of the correlation enhan
ment over the exchange approximation~cf. Table I!.

The effects of polarization and other long-range potent
are expected to be much less than that ine-H scattering.
Since they are not included in the calculation, no attempt
been made to extrapolate the calculated results. Moreo
the inclusion of such effects in any approximate manner
sults in a loss of the bound property, an important feature
this calculation.

e

TABLE III. Phase shifts of3S for variousk for N584.

k g d h hc.c.
a hP.O.

b

0.4 0.70 1.90 0.91300 0.9235
0.5 1.00 1.70 0.90275 0.9019
0.6 0.80 1.90 0.89050 0.8910 0.9015
0.7 1.00 2.10 0.87640 0.8777
0.8 1.45 1.60 0.86069 0.8617 0.8723
0.9 1.70 0.90 0.84356 0.8440
1.0 1.35 1.80 0.82531 0.8253 0.8371
1.1 1.20 2.10 0.80625 0.8062
1.2 1.21 2.25 0.78666 0.7868 0.7984
1.3 1.90 1.40 0.76684 0.7672
1.4 2.10 1.50 0.74697 0.7591

aClose-coupling plus correlations phase shifts obtained by Bu
and Taylor@2#.
bPhase shifts obtained by Sloan@6# using the polarized orbita
method.
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