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Properties of a beam-splitter entangler with Gaussian input states
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An explicit formula is given for the quantity of entanglement in the output state of a beam splitter, given the
squeezed vacuum states’ input in each mode.
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I. INTRODUCTION

As one of the few quantum devices that may act as
entangler, beam splitters have been extensively studied
their entangler related properties@1–9#. In the laboratory,
coherent states and squeezed states are two practically
ing robust states. It is well known that no entanglemen
produced if the input states are coherent states. Therefo
is important to know the entanglement property wh
squeezed states are used as the input. The output enta
ment quantity is studied in Ref.@4#, given the squeezed sta
input. In particular, an explicit formula expressing the outp
state in the form of two mode squeezed states are gi
However, the result there is limited to a type of rather s
cific case. For example, the beam splitter there is limited
the 50:50 beam splitter, the input squeezed states can
have the real squeezing parameters, and so on. In this p
we shall investigate this problem in a rather general ba
ground. We will give an explicit formula for the entangle
ment quantity of the output state.

It has been shown in Refs.@8,9# that in order to obtain an
entangled output state, a necessary condition is that the i
state should be nonclassical. More generally, it was show
Ref. @9# that an arbitrary multimode classical state is s
classical after an arbitrary multimode rotation transform
tion. This means, for an arbitrary linear optical system
cluding passive devices such as beam splitters, polari
beam splitters, phase shifters, polarization rotators, and
on, the output multimode state must be classical~therefore
separable! if the input is classical. However, this is only
necessary condition to obtain the entangled output state,
not a sufficient condition in general. In certain cases one m
have the interest to know the exact amount of entanglem
in the output state of the beam splitter and how to maxim
it through adjusting the parameters in the passive linear
tical system. Here we make an explicit calculation with t
input of two single-mode squeezed states.

Consider a lossless beam splitter~see Fig. 1 in Ref.@9#!.
We can distinguish the field modea and modeb by the
different propagating directions. Most generally, the prope
of a beam-splitter operatorB̂ in the Schro¨dinger picture can
be summarized by the following equations~see, e.g., Ref.
@10#!:
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rout5B̂r inB̂21, ~1!

B̂†5B̂21, ~2!

B̂S â

b̂
D B̂215MBS â

b̂
D , ~3!

MB5S cosueif0 sinueif1

2sinue2 if1 cosue2 if0
D , ~4!

B̂u00&5u00&. ~5!

Herer in androut are the density operators for the input a
output states, respectively. Both of them are two mode st
including modea and modeb. The elements in the matrix
MB are determined by the beam splitter itself,â,b̂ are the
annihilation operators for modea and modeb, respectively;
u00& is the vacuum state for both modes. Equation~5! is due
to the simple fact of no input no output.

II. INSEPARABILITY QUANTITY WITH SQUEEZED
STATES’ INPUT

Suppose the input states are the squeezed vacuum s
in each mode, i.e.,

r in5Ŝa~za!Ŝb~zb!u00&^00uŜ†~za!Ŝ†~zb!, ~6!

where

Ŝa~za!5exp~ 1
2 za* â22 1

2 zaâ†2!,

Ŝb~zb!5exp~ 1
2 zb* b̂22 1

2 zbb̂†2!. ~7!

They have the following properties:

Ŝa
†~za!S a†

a D Ŝa~za!5S coshr a 2e2 ixa sinhr a

2eixa sinhr a coshr a
D S b†

b D ,

~8!

Ŝb
†~zb!S b†

b D Ŝb~zb!5S coshr b 2e2 ixb sinhr b

2eixb sinhr b coshr b
D S b†

b D ,

~9!

wherer a,b5uza,bu andxa,b5tanh21za,b /ra,b .
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For simplicity, we use the characteristic function for t
input stater in and the output staterout :

Cin~ja ,jb!5tr@exp ~jaâ2ja* â†1jbb̂2jb* b̂†!r in#

5tr$exp @ iA2~ja
I x̂a1ja

Rp̂a1jb
I x̂b1jb

Rp̂b!#r in%,

~10!

where the parameters ja,b5ja,b
R 1 i ja,b

I , (x̂a ,p̂a)

5N(â†,â)T, (x̂b ,p̂b)5N(b̂†,b̂)T, and N5(1/A2)(2 i i
1 1).

For convenience, we denoteD̂(ja ,jb)5exp (jaâ2ja* â†

1jbb̂2jb* b̂†). In the case of squeezed states input, the ch
acteristic function for the output state is

Cout~ja ,jb!5tr@D̂~ja ,jb!B̂Ŝa~za!Ŝb~zb!u00&

3^00uŜa
†~za!Ŝb

†~zb!B̂†#

5tr@Ŝa
†~za!Ŝb

†~zb!B†D̂~ja ,jb!B̂Ŝa~za!

3Ŝb~zb!u00&^00u#. ~11!

Suppose the output state of modea is roa . The quantity of
entanglement for the output state between modea and mode
b is

E~roa!5tr~roa ln roa!. ~12!

Using Eq.~11!, we can calculate the characteristic functi
for the output state in modea explicitly:

Coa~ja!5Cout~ja ,jb50!

5exp@2 1
2 cos2uuja* eif0 coshr a

1jae2 if01 ixa sinhr au2#

3exp@2 1
2 sin2uujae2 if1coshr b

1ja* eif12 ixb sinhr bu2#. ~13!

In obtaining the above equation, we have used Eqs.~3!,
~4! and ~8!, ~9! to reduce the part

Ŝa
†~za!Ŝb

†~zb!B†D̂~ja ,jb!B̂Ŝa~za!Ŝb~zb!.

The right-hand side of Eq.~13! can be written in the formjR
andj I , wherejR1 i j I5ja , i.e.,

Coa5exp@2 1
2 ~jR ,j I !Moa~jR ,j I !

T#. ~14!

HereMoa is the 232 covariance matrix as

Moa5S m11 m12

m21 m22
D .

After calculation we obtain the matrix elements

m115Sa cos2u1Sb sin2u12xa cos2u cosDa

12xb sin2u cosDb , ~15!
06430
r-

m125m2152xa cos2u sinDa12xb sin2u sinDb , ~16!

and

m225Sa cos2u1Sb sin2u22xa cos2u cosDa

22xb sin2u cosDb , ~17!

where Sa5cosh2 ra1sinh2 ra , Sb5cosh2 rb1sinh2 rb , xa
5sinhra coshra , xb5sinhrb coshrb , Da52f02xa , and
Db52f12xb . We can choose an appropriate unitary tran
formation to roa to obtain another density operatorroa8
whose characteristic function is

Coa8 ~ja!5expF2
1

2
~jR ,j I !S d 0

0 d D ~jR ,j I !
TG ~18!

and

d5Am11m222m12
2 . ~19!

We know that the Wigner characteristic function for a the
mal state (12e2b)e2ba†a is @11#

Cth~j!5expF2
1

2
~jR ,j I !S 11e2b

12e2b
0

0
11e2b

12e2b

D ~jR ,j I ! G .

~20!

This is to say, the state defined by the characteristic func
in Eq. ~18! is a thermal state of the form

roa8 5~12e2b!e2ba†a, ~21!

with the parameterb satisfying

e2b5
d21

d11
. ~22!

Since the trace value does not change under any un
transformation, the entanglement quantity defined in Eq.~12!
is

E~roa!5tr rao8 ln rao8 . ~23!

For the thermal state defined by Eq.~21!, calculation for the
quantity trrao8 ln rao8 is straightforward. Thus we have th
following result for the quantity of entanglement for the ou
put state, given the squeezed state input in each mode:

E~rout!5 ln~12e2b!1
be2b

12e2b
5 ln

2

d11
2

d21

2
ln

d21

d11
,

~24!

with d being defined by Eq.~19! and Eqs.~15!–~17!. The
above equation together with the previous equations for
definition of d gives a direct calculation formula for the en
tanglement quantity given the independent squeezed sta
4-2
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the input to each mode. This is to say, the maximum value
detMoa gives the largest entanglement. In order to maxim
the entanglement, we should maximize the value ofd. After
calculation, we can see that

d25~Sa1Sb1sinh 2r a1sinh 2r b!~sin4u1cos4u!

1 1
2 SaSb sin22u22xaxb sin22u cos~Db2Da!.

~25!

Obviously the following condition is required to maximiz
the value ofd2 for the maximum entanglement:

Db2Da52~f11f0!2~xb2xa!5~2k11!p, ~26!

wherek is an arbitrary integer. And we know that the valu
of both xb2xa and f11f0 are practically detectable an
controllable in a beam-splitter experiment. This constrain
independent ofu or r a ,r b . In particular, taking the specia
casef050 anducosuu51/2 it is just the result given by Kim
et al. @12#. However, our result is more general than that
Ref. @4#. Reference@4# has only given the maximum point i
the case of 50:50 beam splitter withf050. No explicit for-
mula for the quantity of entanglement is given there@4#. Our
result is more general, in that it can not only be used for
exact amount of entanglement but also to find the maxim
point of entanglement for the output state of a beam spli
with arbitrary transmission rate and with arbitrary phase v
ues off0 ,f1 ,xa , andxb .

III. CONCLUDING REMARK

In summary, we have studied the entanglement quan
for the output state of a beam splitter, given a squee
A
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vacuum state as the input state in each mode. Different f
the previous result@4#, our result is not limited to the 50:50
result. We do not know how to obtain the more general
sult, given the general Gaussian state, since so far there
good entanglement for the impure Gaussian state. It has b
shown in Ref.@4# that a nonclassical separable input sta
can be changed to an entangled state in the output. The
verse of such a process exemplifies that even though
input state is nonclassical, the output could be still separa
Some specific examples are given in Ref.@7#. The necessary
and sufficient condition for an inseparable output state is
given so far. It is possible to obtain the necessary and su
cient condition for the inseparability of the output sta
given the Gaussian input state. We give this condition exp
itly in this paper. However, one may still easily find th
criterion on whether the output state is inseparable thro
the inseparability criterion@13#:

Mout1 i s̃>0, ~27!

where M is the correlation matrix of the output state, th
434 matrix s̃5JA

T
% JB , JA5JB5(1 0

0 21). A detailed calcu-
lation of this is given in Ref.@14#.
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