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Properties of a beam-splitter entangler with Gaussian input states
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An explicit formula is given for the quantity of entanglement in the output state of a beam splitter, given the
squeezed vacuum states’ input in each mode.
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I. INTRODUCTION Pout= BPinB_la (1)

As one of the few quantum devices that may act as the Bt=g-1 @)
entangler, beam splitters have been extensively studied for '
their entangler related properti¢s—9]. In the laboratory, 3 3
coherent states and squeezed states are two practically exist- é( A) B~ 1=Mg| .|, (3)
ing robust states. It is well known that no entanglement is b b
produced if the input states are coherent states. Therefore it _ _
is important to know the entanglement property when cosge' o singe'”1
squeezed states are used as the input. The output entangle- B™| _singe %1 cosge %)’ )

ment quantity is studied in Ref4], given the squeezed state
input. In particular, an explicit formula expressing the output |§,|00>: 00). (5)
state in the form of two mode squeezed states are given.
However, the result there is limited to a type of rather speHerep;, andp., are the density operators for the input and
cific case. For example, the beam splitter there is limited t@utput states, respectively. Both of them are two mode states
the 50:50 beam splitter, the input squeezed states can onigcluding modea and modeb. The elements in the matrix
have the real squeezing parameters, and so on. In this papefg are determined by the beam splitter itsélfp are the
we shall investigate this problem in a rather general backannihilation operators for mode and modeh, respectively;
ground. We will give an explicit formula for the entangle- |00) is the vacuum state for both modes. Equatignis due
ment quantity of the output state. to the simple fact of no input no output.

It has been shown in Reff8,9] that in order to obtain an
entangled output state, a necessary condition is that the input II. INSEPARABILITY QUANTITY WITH SQUEEZED
state should be nonclassical. More generally, it was shown in STATES’ INPUT
Ref. [9] that an arbitrary multimode classical state is still .
classical after an arbitrary multimode rotation transforma-, Suppose the_ input states are the squeezed vacuum states
tion. This means, for an arbitrary linear optical system in-N €ach mode, i.e.,
cluding passive devices such as beam splitters, polarizing o - ot ot
beam splitters, phase shifters, polarization rotators, and so Pin=Sa(£a) Sp(£p)|00)(00/S"(£a) S (L), (6)
on, the output multimode state must be classita¢refore
separablgif the input is classical. However, this is only a
necessary condition to obtain the entangled output state, it is

where

< _ 1 ex32_ 1 ¢ A1F2
not a sufficient condition in general. In certain cases one may Salda) =Xz (za"— 3 (A '),
have the interest to know the exact amount of entanglement . P,
in the output state of the beam splitter and how to maximize So(Lp)=exp(3 {5 b?— 5 ,b"?). (7)

it through adjusting the parameters in the passive linear op- _ _
tical system. Here we make an explicit calculation with theThey have the following properties:
input of two single-mode squeezed states.

Consider a lossless beam splittsee Fig. 1 in Ref[9]). (0 a' 80— coshr,  —e 'Xasinhr,) /b’
We can distinguish the field moda and modeb by the ars>a’zl g JTaisa —e'Xa sinhr, coshr, b/’
different propagating directions. Most generally, the property
of a beam-splitter operat(fi in the Schrdinger picture can o
be summarized by the following equatiofsee, e.g., Ref. &(s )(bT)éb(g )= coshr, ~ —e "o sinhr, (bT)
[10)): Sel(do)]| "7\ —eix sinhr,  coshr, b/’

9
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For simplicity, we use the characteristic function for the M= My=2X, COSHSINA,+ 2X, SirPdsinA,, (16)
input statep;,, and the output state,;:
and
Cin(éa,&p)=trexp (£aa—Exal+ &b — &b p; .
in(&a. o) =texp(£a= & 0= £500pin] My,=3, COSF O+ 3, Sirfh—2x, coSH CcosA,
— ; 13 R 10 R )
_tr{eXp[|\/E(gaxa+gapa+§bxb+§bpb)]l)ln}i _be SiHZQCOSAb, (17)

(10
o where 3 ,=coslfr +sintfr,, S,=costfry+sintfry, X,
where the parameters &, p=¢&X +i&.,, (Xa,Pa)  =sinhrycoshry, xy=sinhrycoshr,, A,=2¢o—x,, and
=N(@a",3)", (X,,py)=N(b",B)T, and N=(1/\/§)(,1i i1 _ Ap=2¢,— xp. We can choose an appropriate unitary trans-

. - - - formation to p,, to obtain another density operatoi,
For convenien w n =ex —&a oa e oa
or convenience, we denot® (£, &) =exp Ea—&a whose characteristic function is

+&b—&b"). In the case of squeezed states input, the char-
acteristic function for the output state is 1 6 0
A o R Céa(fa):exl{_z(gmfl)(o 5)(§Ra§I)T} (18
Coutl €a+ép) =t D(&a,€0)BSa({a) S({p)|00)

N A N and
X (0018](¢2)80(¢6)B]
. . . . 5= \Jmymy,—m>,. 19
{812 3£ BTD (£, £)BSL( L) 1Mz~ Mz 19
- We know that the Wigner characteristic function for a ther-
X 00)(00/]. 11
S6(£5)/00)(00] ) mal state (+-e #)e 2’2 is [11]
Suppose the output state of modés p,,. The quantity of -
entanglement for the output state between madad mode 1+e
b iS 1 l_e7,3
Cin(§)=exp| — 5(&r. &) (ér. 1)
E(poa) =tr(poa IN poa). 12 2 , lre”
Using Eq.(11), we can calculate the characteristic function 1-e”
for the output state in moda explicitly: (20
_ _ This is to say, the state defined by the characteristic function
Coal£a) = Coul £a,65=0) in Eq. (18) is a thermal state of the form
=exd — 1 cog|£Xe'%o coshr
: - & : pha=(1—e P Fa'a, (D)
+ &, 90T xa sinhr ,|?]
_ with the parametep satisfying
X exqd — 3 sirfg|£,e"1coshry, 51
+£Xel 917X sinhry|?]. (13) e f=sg (22

In obtaining the above equation, we have used H85. Since the trace value does not change under any unitary
(4) and(8), (9) to reduce the part transformation, the entanglement quantity defined in(E2).

R . R . R is
SM(Z2) SH(¢0)B D (£a,60)BSA(L2) Sh( L)
E(poa) =tr ps, Inpl,. (23
The right-hand side of Eq13) can be written in the forngg 8 ° ao
and ¢, , whereég+ig =¢,, ie., For the thermal state defined by E&1), calculation for the
quantity trp.In p., is straightforward. Thus we have the
Coa=eXd — 3 (£r.E)Moa(£r. €D 1. (14)  following result for the quantity of entanglement for the out-

) ) ) put state, given the squeezed state input in each mode:
HereM,, is the 2x2 covariance matrix as

e m . n(1—eb pe P | 2 5—1| 5—1
oa:( 11 My . (pou=In(1—e )+1—e_ﬁ_n5+1 5 n6+1'
My My (24)
After calculation we obtain the matrix elements with & being defined by Eq(19) and Egs.(15)—(17). The
Mi=3 . coLO+S. sirto+2x. coLd CosA above equation together with the previous equations for the
1= b 2 a definition of & gives a direct calculation formula for the en-
+2X,, SIf6cosA,, (15  tanglement quantity given the independent squeezed state as
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the input to each mode. This is to say, the maximum value ofacuum state as the input state in each mode. Different from
detM,, gives the largest entanglement. In order to maximizethe previous resuli4], our result is not limited to the 50:50
the entanglement, we should maximize the valué.o\fter  result. We do not know how to obtain the more general re-
calculation, we can see that sult, given the general Gaussian state, since so far there is no
. . . good entanglement for the impure Gaussian state. It has been
0°=(2a+Zptsinh 2+ sinh 2p)(sirf' 6+ cos'6) shown in Ref.[4] that a nonclassical separable input state
+33,.3, Sirf260—2x,X, Sif26 cogA,—A,). can be changed to an entangled state in the output. The in-
verse of such a process exemplifies that even though the
(25 input state is nonclassical, the output could be still separable.
Obviously the following condition is required to maximize Some specific examples are given in R&f. The necessary
the value ofs? for the maximum entanglement: and sufficient condition for an inseparable output state is not
given so far. It is possible to obtain the necessary and suffi-
Apy—A,=2(¢1+ ¢o) —(xp—xa)=(2k+1)m, (260  cient condition for the inseparability of the output state,
. . . given the Gaussian input state. We give this condition explic-
thgrelh< IS Ein arblt:jary integer. And we krlllovxtljthat tht?l valugsiﬂy in this paper. However, one may still easily find the
of both x, — x4 and ¢+ ¢ are practically detectable and e rion on whether the output state is inseparable through
controllable in a beam-splitter experiment. This constraint i$he inseparability criterion13]:
independent o or r,,r,. In particular, taking the special '
caseg,=0 and|cosf|=1/2 it is just the result given by Kim
et al. [12]. However, our result is more general than that of i~
Ref.[4]. Referencg4] has only given the maximum point in Mouttio=0, (27
the case of 50:50 beam splitter wighy=0. No explicit for-
mula for the quantity of entanglement is given thetg Our ] ) .
result is more general, in that it can not only be used for thevhere M is the correlation matrix of the output state, the
exact amount of entanglement but also to find the maximurd X 4 matrix o=Jx&Jg, Ja=Jg=(} ~5). A detailed calcu-
point of entanglement for the output state of a beam splittefation of this is given in Ref[14].
with arbitrary transmission rate and with arbitrary phase val-
ues of g, d1,xa, andyyp -
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