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Theory of optical near-resonant cone emission in atomic vapor
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A time-dependent theory for conical emission during near-resonant propagation of laser light in an atomic
vapor, which includes full propagation for the laser and frequency sidebands in a nonlinear two-level medium
is presented. The density-matrix equations for the dipole moment and population are solved in the dressed
atomic frame. The polarization source terms are accurate to orderg/R, whereg is a damping constant andR
is the generalized Rabi frequency. Analytical plane-wave solutions and numerical, cylindrically symmetric
propagation simulations including diffraction are presented. It is shown that the calculations with cylindrically
symmetric fields and atomic excitation profiles are incapable of accounting for the high levels of optical gain
that are responsible for the intense conical emission observed in experiments. This result is at first surprising,
since the model accounts rigorously for all of the physical phenomena that have been previously proposed as
being responsible for generating large gains, and the calculation matches the symmetry of the observations.
The lack of large calculated gain seems to imply the existence of higher-order (m.0) radial modes in the field
for the experimental conditions that give rise to cone emission. In the simulations, however, the cylindrically
symmetric fields do produce weak red-detuned cones with angular-frequency distributions similar to those seen
in experiments.
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I. INTRODUCTION

When a blue-detuned, intense, near-resonant laser b
propagates through an atomic vapor, a diffuse ring of li
may be observed around the laser spot in the far field. T
phenomenon has been referred to as conical emission or
emission~CE!. Spectral analysis shows that the CE is se
rated from the atomic resonance by approximately the la
detuning, but is on the opposite~red! side of the resonance

The cause of CE from a pulsed-laser excited atomic va
is the subject of this paper. However, the observation o
ring of light around a far-field laser beam is not unique
atomic vapors and has different causes in different cases
example, CE from glasses has been observed in the pres
of picosecond~ps! and femtosecond~fs! laser-beam self-
focusing; it appears to be reasonably consistent with fo
wave mixing~FWM! @1#. The red-detuned and blue-detun
sidebands are presumed to result from Stokes and
Stokes Raman transitions, and both sidebands emerg
cone angles related to FWM phase matching. The mediu
presumed to be weakly saturated, sufficient to confine
self-focused beam but not to significantly modify the ind
of refraction variation versus wavelength. Another exam
of CE results from spatial self-phase modulation@2#. Here
different radial intensities pick up different amounts of pha
during propagation through the nonlinear medium, result
in rings ~CE! in the far field around the central laser spo
These rings are at the same frequency as the laser.

CE in atomic vapors has generally been observed u
pulsed lasers of 2–15-ns pulse length. Such studies h
been conducted in sodium vapor@3–12#, potassium@13#,
barium @2,14–16#, cesium@2#, calcium @17#, and strontium
1050-2947/2002/66~6!/063816~19!/$20.00 66 0638
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@18,19#. This CE is normally, but not always@5,6,19,20#,
observed with blue laser detuning, a detuning that can a
yield self-focusing. In most of these experiments se
focusing or its absence was not measured, but where it
measured it was found to be necessary for the formation
CE @8,21,22#. One experiment has demonstrated that atom
vapor CE can be produced by ps laser pulses, but not b
pulses@23#.

One CE experiment using a cw laser has been reporte
Valley et al. @24#. The laser was blue detuned by an amou
comparable to the Doppler width, and the beam was s
focused in sodium vapor. Rabi sidebands on the red and
side of the laser frequency were observed in the forw
direction, with the red sideband in a cone. This paper
cludes a brief description of a very detailed calculation
FWM within this self-focused region of the vapor. Althoug
the laser beam is cylindrically symmetric, the calculati
does not impose cylindrical symmetry. Random noise in
form of resonance fluorescence is added for each freque
and location by using plasma-dispersion functions. Th
show that this noise stimulates coherent gain for both s
bands via four-wave mixing. The red-detuned sideba
forms a cone and the blue-detuned sideband propag
along the axis, receiving greater gain. The results of the
culation agreed with the character of their observed forw
emission. Thus, it appears that CE induced by cw pump
very close to resonance results from FWM gain, combin
with propagation effects in the strongly driven region of
self-focused laser beam.

Four-wave mixing of Rabi sidebands has also been
voked to explain pulsed-laser CE from atomic vapo
pumped far from resonance. But there is a problem with t
©2002 The American Physical Society16-1
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explanation for the atomic vapor experiments with ns pul
lasers; in the experiments the blue-detuned Rabi sideb
required for FWM is usually missing from the forward emi
sion @19#. In these pulsed-laser experiments, the laser is
tuned many Doppler widths to the blue side of the atom
transition and has negligible Fourier components at the re
nance frequency. The CE, on the red side of the atomic l
emerges at an average angle that can be represented by
a phase-matching condition or refraction at the boundary
tween a saturated and an unsaturated medium. This has l
suggestions of a Cherenkov-type process~phase matching!
@9,25,26# or Rabi sideband generation in the saturated reg
and boundary refraction@27#. However, these suggestions,
well as all FWM calculations, have not solved the proble
of the experimentally missing blue sideband or of how
obtain the large observed CE intensities within a self-focu
filament. They are also inconsistent with several feature
the full frequency versus angular spectrum@19#.

The most viable basis for explaining pulsed-laser CE
pears in a paper by Crenshaw and Cantrell@28#. They dem-
onstrated theoretically that a short (tFWHM5125 ps) self-
focused, blue-detuned pulse undergoes spatial temp
breakup and develops a small angularly and~somewhat!
spectrally isolated component at negative detuning from
laser frequency. They suggest that this component is CE
computational limitations prevented propagating the pu
sufficient distance to actually place it on the red side of re
nance or to see if its frequency saturates at an approp
value for CE. In addition, the intensity of this predicte
‘‘CE’’ component is far below the several percents of t
laser pulse that is observed, and they assert that it will
grow with further propagation. This implies that some ad
tional mechanisms are necessary to yield the experimen
observed strong CE. Their short pulse~used for computa-
tional ease! also has a much broader Fourier spectrum th
the experimental ns pulses, which are well isolated fr
resonance. Thus, while this calculation demonstrates inte
ing pulse breakup and generation of new forwa
propagating frequencies, it leaves major unresolved qu
tions. Guoet al. @29# addressed some of these in a plan
wave transient-pulse-breakup calculation. This calculat
yielded spectral components of more reasonable inten
and at easily understood frequencies: the Rabi sideba
However, without inclusion of the intensity variations with
a self-focused filament these sideband intensities and
quencies may be misleading, and in addition, in this calcu
tion both sidebands were generated with comparable inte
ties, that are at odds with experiments.

Thus, although scores of calculations have been publis
regarding CE in atomic vapors, even very basic questi
regarding the causes and behavior of pulsed CE genera
have not been answered. The primary issue investigated
is how sufficient sideband gain can occur within a se
focused filament to yield the measured CE intensities. Th
sidebands are distinctly separated from the laser freque
and propagate in a medium modified by the much stron
self-focused laser beam. We develop equations descri
the full spatial and temporal evolution of a self-focused la
beam and copropagating sidebands. However, becaus
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computational constraints we only solve these here
steady-state beams. This cw solution involves similar con
tions and equations to those investigated by Valleyet al.
@47#. However, there are a few key differences. As a resul
the greater intensities involved in pulsed-laser experime
the area of optimal interaction between systemically detu
sidebands is smaller than cw experiments. Even though b
works use a cylindrical symmetric input field, ours is r
stricted to cylindrical symmetry, whereas the Valleyet al.
calculations were done on anx-y grid allowing nonsymmetri-
cal fields.

The calculations presented here are for the case of a si
self-focused filament, whereas CE is often seen with be
breakup into multiple, copropagating, self-focused filamen
However, in Ref.@22# great care was taken to observe con
from single filaments, and the present calculations will
compared to that experiment. The theory presented her
valid for beam breakup, but only calculations for single se
focused filaments will be presented.

The model we develop below accounts for longitudin
and transverse propagation of laser and sidebands in
presence diffraction and the laser modified medium, incl
ing Doppler broadening. The density-matrix equations
the atomic response are solved self-consistently with
field wave equations. To facilitate computational speed,
time-dependent propagation equations are solved in ste
state with a constraint of cylindrical symmetry. The mod
accounts rigorously for all of the physical phenomena t
have been previously proposed for generating the large
served gains. Four-wave mixing and Cherenkov-type p
cesses are automatically included, without requiring ana
priori appeal to specific mechanisms. We also present
extension to a plane-wave model presented by Boydet al.
@30#.

The equations of motion are derived in Sec. II. Selec
solutions to the equations of motion are presented in Sec
Simple plane-wave solutions, which give insight to the mo
complicated numerical solutions, are presented in Sec. II
Section III B gives examples of cylindrically symmetric s
lutions with diffraction. The discussion in Sec. IV presen
cone spectra and comments on the paucity of observed g
Noncylindrically symmetric solutions and their implication
for sideband gain are also discussed here.

II. EQUATIONS OF MOTION

The electric field of the laser is assumed to be linea
polarized in thex̂ direction and to be propagating in theẑ
direction.~Experimentally it is known that the field remain
polarized.! This allows the electric fieldE and the polariza-
tion P to be written in the following form:

E5Ex̂5
1

2
@«~x,y,z,t !ei ~v l t2K l•z!1c.c.# x̂, ~1a!

P5Px̂5
1

2
@P~x,y,z,t !ei ~v l t2K l•z!1c.c.# x̂, ~1b!
6-2
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where« andP are the envelope functions for the field an
the polarization, respectively,v l is the frequency of the lase
and K l is the free-space wave number. The slowly varyi
envelope approximation~SVEA! @31# is used to derive an
equation of motion for«. All variations of the wave numbe
from the free-space wave number are contained inside
envelope function«. This does not violate the SVEA becau
the magnitude of the index of refraction involved in th
problem is near unity (un21u;1025).

The atomic medium is treated as a closed two-level s
tem with an excited stateue& and a ground stateug& which
have an energy separation of\v0 . Equations of motion for
the population inversiond5ree2rgg andreg , wherer i j are
elements of the density matrix, can be written as follows

ḋ522i
`E

\
~reg2reg* !2G~d2do!, ~2a!

ṙeg52~g1 iv0!reg2 i
`E

\
d, ~2b!

where` is the dipole matrix element betweenue& andug&. The
decay ratesG andg5G/21gc correspond to the populatio
radiative decay rate and the dipole dephasing rate, res
tively. The dephasing rate due to collisions isgc . The atomic
variables will be labeled by atomic velocityv. Using the
concept of a convective derivative and the rotating wave
proximation~RWA! with the substitutions

reg5re2 i ~v l t2Klz!e2 iF and
«`

\
5uVueiF, ~3!

Eq. ~2! can be rewritten as

]d~v !

]t
52 i uVu@r~v !2r* ~v !#2G„d~v !11…, ~4a!

]r~v !

]t
52~g2 iD!r~v !2

i

2
uVud~v !, ~4b!

whereD5D01Ḟ2Klv andD05v l2v0 . The phase of the
laserF is explicitly included in Eq.~3! to facilitate the in-
clusion of phase fluctuations. The polarizationP may be ex-
pressed in terms ofr(v) as

P52`NE
2`

`

r* ~v !W~v !e2 iFdv, ~5!

whereN is the number density andW(v) is the normalized
velocity distribution in theẑ direction. It should be kept in
mind thatP andr(v) are both functions ofx, y, z, andt. The
SVEA Maxwell wave equation for the Rabi frequency~V! is

]V

]z
52

il

4p
¹'

2 V2
3i

4p
Nl2GE

2`

`

r* ~v !W~v !e2 iFdv,

~6!

where¹'
2 is the transverse Laplacian, and the relationsh
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corresponding to aJg50 to Je51 transition was used.
The longitudinal and radial coordinates (z, r̃ ) can be

transformed into dimensionless parameters (z,r ) via the fol-
lowing transformations:

z5hz5F3Nl2G

8puD0uGz, ~8a!

r 5s r r̃ 5FA3NlG

2uD0u G r̃ . ~8b!

These transformations allow Eq.~6! to be rewritten in the
following form:

]V

]z
52 i¹'

2 V22i uDou E
2`

`

r* ~v !W~v !eiFdv. ~9!

A motivation and explanation of the dimensionless parame
space is given in Refs.@22# and @32#.

A. Input field

In the model presented, sideband fields are imposed a
cell entrance, not generated within the cell. The details o
more realistic sideband seed for initiation are quite involv
and are not dealt with here, although a brief overview will
presented.~For the details of the quantum mechanics of t
seed, see You@33#.!

Amplified spontaneous emission~ASE!, spontaneous
emission~SE!, and Fourier components of the laser-pul
envelope are the three main candidates for the sideband s
The first two, ASE and SE, are purely quantum mechan
in nature. ASE is broadband stochastic light that originate
the laser and is incident on the input face of the cell,
opposed to SE, which may start at any location in the cel
has been shown that both of these processes can be mo
as a stochastic input field at the beginning of the cell@34#.
The third seeding possibility, the Fourier components of
input laser pulse, is obviously a field that can be applied a
seed at the input plane of the cell. This allows the full inp
field, expressed as a Rabi frequency, to be written as

V~r ,t !5@ uV l~r ,t !u1V r~r ,t !1Vb~r ,t !#eiF, ~10!

where the fieldsV r(r ,t) and Vb(r ,t) are stochastic fields
generated by methods described by You@33#. The input field
may be expanded in Fourier components as

V~r ,t !5F uV l~r ,t !u1(
n

ane2 i ~R01dn!t

1(
m

bmei ~R01dm!tGeiF, ~11!

where thean andbm depend on the statistics of the seed a
dn and dm are the detunings of the red and blue sideba
relative to 7R, respectively. For both ASE and SE
6-3
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^an* an8&5dnn8 and ^bn* bn8&5dnn8 , where ^ & indicates a
stochastic average. For ASE,^an* bn8&50 whereas for SE,
^an* bn8&Þ0. The sidebands are assumed to be cluste
around the frequencies6Ro . The relationship between dif
ferent frequencies are shown in Fig. 1. It is unnecessar
specify values for the initial intensities of the sidebands
cause the model presented here is linear in the sideb
fields.

The three fields of Eq.~10! may be put into Eqs.~4a! and
~4b!, giving

]d

]t
52 i $@ uV l u1V r~r ,t !1Vb~r ,t !#r2@ uV l u1V r* ~r ,t !

1Vb* ~r ,t !#r* %2G~d11!, ~12a!

]r

]t
52~g2 iD!r2 i

d

2
@ uV l u1V r* ~r ,t !1Vb* ~r ,t !#.

~12b!

These equations are coupled viauV l u, which can be arbi-
trarily large. To remove this strong coupling, these equati
are transformed into a dressed frame. The dressed state
defined as

u1&5b2ue&1b1ug&, ~13a!

u2&5b1ue&2b2ug&, ~13b!

where the coefficientsb1 andb2 are defined in terms of the
generalized Rabi frequency (R5AuVu21D2) as

FIG. 1. Definition of terms in frequency space. The short-das
line atv0 is the atomic line. The incident laser beam has an on-a
intensity of uV l u2 and is detuned to the blue side of the atomic li

by D01Ḟ. On either side of the laser are the weak sidebands,V r

andVb . The generalized Rabi frequencyR0 is measured with the
maximumV l at the center of the beam at the input of the vapor. T
generalized Rabi frequencyR( r̃ ) is a function of time and spac
and is usually within the gray region. The sidebands are shown
as symmetrically detuned about the laser byd8, andd5d82R0 .
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b15AR1D

2R , ~14a!

b252AR2D

2R . ~14b!

Using these transformations it is possible to write equati
that transform the bare population inversion~d! and the off-
diagonal density-matrix element~r! into the dressed popula
tion inversion ~D! and the dressed off-diagonal densit
matrix element~s!,

D5d~b1
22b2

2!22~r1r* !b1b2 , ~15a!

s5r* b1
22rb2

21db1b2 . ~15b!

Equations of motion forD ands can be derived by placing
Eqs.~12a! and~12b! into Eqs.~15a! and~15b!, then perform-
ing a time derivative resulting in the following equations:

]D
]t

52g̃D2 f 12q1~s1s* !2
i

4

uV l u2

R2 ~Vs2Vs* !~s

1s* !1 i @~Vs* b2
42Vsb1

4!s* 1~Vs* b1
42Vsb2

4!s#,

~16a!

]s

]t
52~a1 iR!s1x1q2D1vs* 1

i

2
~Vsb1

22Vs* b2
2!D

2
i

2

uV l u
R ~Vs1Vs* !s, ~16b!

whereVs5V r(r ,t)1Vb(r ,t) and

g̃5
1

R2 ~guV l u21GD2!, ~17a!

f 5
GD

R , ~17b!

q65
1

2R2 S 6D
d

dt
uV l u1uV l uF̈2uV l uD~g2G! D ,

~17c!

a5
1

2R2 ~gR21gD21GuV l u2!, ~17d!

x5
GuV l u
2R , ~17e!

v5
uV l u2

2R2 ~g2G!. ~17f!

Notice that all of the quantities defined in Eqs.~17a! through
~17f! are of orderg and are functions of space and time. T
quantitiesR andD are of the same order of magnitude a
are assumed to be large in comparison to the decay rate~g
andG!. The quantityV l may take on any value.

Equations~16a! and ~16b! can be solved using a pertu
bation method by lettingD5D(0)1D(1) ands5s (0)1s (1)

and by usingg/R as the small parameter. The zeroth-ord
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terms contain only the laser propagation because the s
bands are considered as first order, small quantities tha
not alter the laser propagation. The equations of motion
D(0) ands (0), are as follows:

Ḋ~0!52g̃D~0!2 f , ~18a!

s~0!'
x1q2D~0!

~a1 iR!
, ~18b!

where weak coupling via the terms 2q1@s (0)1(s (0))* # and
v(s (0))* have been dropped. Adiabatic expansion in
dressed frame requirest rD0@1, wheret r is the rise time of
the laser pulse. This was used in the derivation of Eq.~18b!.
These equations of motion are good to orderg/R. This is a
point of departure from the work of Valleyet al. @47#, who
produced calculations for relatively small laser detuning t
do not allow the assumption thatg/R is a small quantity.

Using Eqs.~18a! and ~18b! it is possible to write the
following time-dependent equation of motion for the las
beam Rabi frequency

]V l

]z
52 i¹'

2 V l2a l~ t !V l , ~19!

where

a l~ t !5
uD0u
R H iD~0!1

1

R FG2
D

R ~g2G!D~0!G J . ~20!

The self-focusing and time-dependent properties of Eq.~19!
are quite involved.

The sidebands are considered as first order, small qu
ties that do not alter the laser propagation. The only sign
cant contribution to the sideband polarization comes fr
thes (1) term. The equation of motion fors (1) is as follows:

]s~1!

]t
52~a1 iR!s~1!1A@V r~r ,t !1Vb~r ,t !#1B@V r* ~r ,t !

1Vb* ~r ,t !#, ~21!

where

A5
i

2 S D~0!b1
22

uV l u
R s~0!D , ~22a!

B52
i

2 S D~0!b2
21

uV l u
R s~0!D . ~22b!

As a result of the time dependence of Eq.~21!, it is not valid
to assume that only symmetrically detuned sidebands cou
as is done in steady-state four-wave mixing. Nonethel
one would expect that if the coefficientsA andB in Eq. ~21!
are slowly varying, the strongest coupling between the s
bands will still occur for symmetrically detuned sideband
To investigate coupling between symmetrically detuned s
bands, Eq.~21! may be solved formally, by Fourier trans
forms, for the special case ofVb* driving V r with the fol-
lowing result:
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s̄~1!~d r8!52
1

A2p
E

2`

`

W~n!E
2`

` B~v!Vb* ~r ,v2d r8!

a1 i S R1n
D

R2d r8D
3dvdn. ~23!

The bar overs (1) and any forthcoming variable will denot
Doppler averaging. The velocity distribution has been w
ten in terms of frequency asW(n). The quantityB(v) is the
Fourier transform ofB in Eq. ~22b!. The variablesd r8 anddb8
correspond to the left and rightd8’s, respectively, in Fig. 1.
This figure assumes thatd r85db8 . A similar integral yields
s̄ (1)(db8) in terms of A and V r* (r ,v2db8). The frequency
width of B(v) is of the order of the laser-pulse-transform
width ~;0.3 GHz!. This width can be justified by noticing
that each factor in Eq.~22b! is smoothly driven by the laser
The same argument holds forA(v). The width ofVb* (r ,v
2d r8) is of the order of the Doppler averaged gain width~;8
GHz!. This width is inferred from the plane-wave solution
presented in Sec. III A. WithB(v) much narrower than
Vb* (r ,v2d r8) it is possible to pullVb* (r ,v2d r8) outside of
the integral and evaluate it atv50. Under this set of ap-
proximations only symmetrically detuned sidebands coup
Also, from a numerical standpoint the problem becom
much more tractable. A complete derivation of Eq.~23! may
be found in Ref.@35#.

B. Sideband equations of motion

As a result of only considering symmetrically detun
sidebands only one sum in Eq.~11! is needed. It is possible
to rewrite the input field as

V5~ uV l u1V re
2 id8t1Vbeid8t!eiF, ~24!

where only one pair of sidebands have been included
principle, there should be a sum over all possibled8, but for
notational convenience this will be ignored.

The Doppler distribution in Eq.~23! has the following
form:

W~n!5
1

A2psn

expS 2n2

2sn
2 D , ~25!

wheresn is related to the FWHM of the Doppler profile vi
nFWHM5(A2 ln 2/p)sn . Note that nFWHM is measured in
cycles per second~Hz! and sn is measured in radians pe
second (s21). After evaluating the Doppler averaging a Do
pler time scale is evident, is of the form

tD5&S R
snD D . ~26!

Typical experimental values result intD<0.55 ns. If the co-
efficientsA andB are considered slowly varying on a Dop
pler averaging time scale, a formal solution of Eq.~21! with
the inclusion of Doppler averaging may be written as
6-5
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s̄~1!'e2 id8t~AV r1BVb* !E
0

`

exp2S sn
2D2

2R2 t21@a1 i ~R

2d8!#t Ddt1eid8t~AVb1BVt* !E
0

`

exp2S sn
2D2

2R2 t2

1@a1 i ~R1d8!#t Ddt. ~27!

The integrals in Eq.~27! can be expressed in terms of th
complex error function as

I ~A,B6!5E
0

`

e2~At212B6t!dt, ~28a!

5

eB6
2 /AApF12erfS B6

AAD G
2AA , ~28b!

5E
2`

`

W~n!
1

a1 i S R6d81n
D

RD dn, ~28c!

where

A5
sn

2D2

2R2 , ~29a!

B65
1

2
@a1 i ~R6d8!#. ~29b!

It can be shown thatI (A,B1)!I (A,B2), so terms contain-
ing I (A,B1) will be dropped. After inverting Eqs.~15a! and
~15b!, the expression fors (1) and (s (1))* may be substituted
into Eq. ~9! along with Eq.~24!. The sideband equations o
motion are found by collecting terms that oscillate at the
and blue sideband frequencies and by making the follow
transformations:V re

iF→V r andVbeiF→Vb , to produce a
more familiar form. The equations of motion for the red a
blue sidebands are as follows:

]V r

]z
52 i¹'

2 V r2ā rV r1x̄ rbVb* e22iF, ~30a!

]Vb

]z
52 i¹'

2 Vb2ābVb1x̄brV r* e22iF, ~30b!

where

ā r52uD0ub1
2S b1

2D2
uV l u
R~r !

s D I ~A,B2!, ~31a!

āb5uD0ub2
2S b2

2D1
uV l u
R~r !

s* D I ~A,B2!* , ~31b!
06381
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x̄ rb52uD0ub1
2S b2

2D1
uV l u
R~r !

s D I ~A,B2!, ~31c!

x̄br5uD0ub2
2S b1

2D2
uV l u
R~r !

s* D I ~A,B2!* . ~31d!

In these expressions for theā ’s and x̄ ’s, the first-order so-
lutions toD ands have had the superscript~0! dropped. For
the case of no Doppler averaging, the integralI (A,B2) is
replaced by a ‘‘resonant denominator,’’ such thata r has the
following form:

a r52uD0ub1
2

S b1
2D2

uV l u
R~r !

s D
a1 i @R~r !2R02d#

, ~32!

where the radial dependence ofR is now shown explicitly.
The generalized Rabi frequencyR0 is used as a referenc

and is defined asR05AV0
21D0

2, whereV0 is defined as the
on-axis (r̃ 50) Rabi frequency atz50. The frequency de-
pendence of Eqs.~31a! through~31d! aboutR0 are shown in
Fig. 2 for the special case of solving Eqs.~18a! and~18b! in
steady state. After removing diffraction, solving Eq.~18a! in
steady state, and not including Doppler averaging (A50),
Eqs.~30a! and~30b! simplify the plane-wave sideband equ
tions calculated by Boydet al. @30# and Meystre and Sargen
@31# with terms of order (g/R)2 dropped.

FIG. 2. Coupling coefficients of Eqs.~36a! and ~36b!. In plots
~a! through~e! the solid line is the real part and the dashed line
the imaginary part. The input parameters areV05327.4 GHz,D0

5212.3 GHz, R05390.3 GHz, G/g56.6, N51.031014 cm23,
andDk50 cm21. Plot ~f! is a contour plot of Re@m̄1# as a function
of Dk andd, with lighter shading representing larger values and;0
outside the shaded region. The solid line on plot~f! is a plot of
Dkz(d).
6-6



e

d,
d
rted
in
m.
.
are

. By
ri-

d in
w-

THEORY OF OPTICAL NEAR-RESONANT CONE . . . PHYSICAL REVIEW A 66, 063816 ~2002!
C. Calculation of the experimental observable

The far-field distribution of the field emerging from th
exit plane has the following form:

V~u,t !5V l~u,t !1(
n

anV r ,n~u,t !e2 i ~R01dn!t

1(
n

anVb,n8 ~u,t !ei ~R01dn!t

1(
n

bnVb,n~u,t !ei ~R01dn!t

1(
n

bnV r ,n8 ~u,t !e2 i ~R01dn!t. ~33!
th

id
. O
th

n

s.

06381
The V r ,n8 field is generated via coupling with the blue fiel
and theVb,n8 field is generated via coupling with the re
field. The radial dependence of the fields has been conve
to an angular~u! dependence via a Hankel transform or,
the case of noncylindrical symmetry, a Fourier transfor
The functionsV(u,t) are slowly varying envelope functions
The fast oscillations and stochastic nature of the fields
contained in thee6 i (R01dn)t term and thean’s andbn’s re-
spectively.

Following Eberly and Wodkiewicz@36#, it is possible to
calculate a time-dependent spectrum using a filtered field
using appropriate frequency widths, derived from expe
mental and theoretical insights for the parameters involve
calculating the intensity spectrum one arrives at the follo
ing expression for the intensity spectrum:
I ~u,vd!'
Gd

2

Gd
21vd

2 E uV l~u,t !u2dt1(
n̄

uan̄u2
Gd

2

Gd
21@vd1~R01d n̄!#2 E uV r ,n̄~u,t !u2dt

1(
n̄

ubn̄u2
Gd

2

Gd
21@vd2~R01d n̄!#2 E uVb,n̄~u,t !u2dt1(

n̄
uan̄u2

Gd
2

Gd
21@vd2~R01d n̄!#2 E uVb,n̄8 ~u,t !u2dt

1(
n̄

ubn̄u2
Gd

2

Gd
21@vd1~R01d n̄!#2 E uV r ,n̄8 ~u,t !u2dt

12 ReF(
n̄

an̄
* bn̄

Gd
2

Gd
21@vd1~R01d n̄!#2 E V r ,n̄

* ~u,t !V r ,n̄8 ~u,t !dtG
12 ReF(

n̄
bn̄
* an̄

Gd
2

Gd
21@vd2~R01d n̄!#2 E Vb,n̄

* ~u,t !Vb,n̄8 ~u,t !dtG . ~34!
to
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A complete description of the approximations used in
derivation of Eq.~34! is given in the thesis of Paul@35#. The
indexn of Eq. ~33! has been replaced withn̄ in equation Eq.
~34!. As a result of the resolution width of the detector (Gd),
the infinitesimally spaced modes of Eq.~33! are replaced
with the resolvable modes of Eq.~34!. The resolution width
of the detector sets the spacing of thed n̄’s needed to repro-
duce experimental spectra.

As a result of the work done by Youet al. @34# we are
able to completely separate the physics of seeding the s
bands from the propagation and gain of the sidebands
course, the final observable is dependent on the form of
input seed as shown in Eq.~34! by the inclusion of the ap-
propriatean̄’s and bn̄’s coefficients. In this paper our mai
concern is the propagation properties of Eqs.~30a! and
~30b!, the equations of motion for the sidebands.

III. COMPUTATIONAL RESULTS

In general a full solution would consist of solving Eq
~18a!, ~19!, ~30a!, and~30b! self-consistently. This could be
e

e-
f
e

done by first solving Eqs.~18a! and~19! at a given time step
(t i) resulting inD(x,y,z,t i), s(x,y,z,t i), andV l(x,y,z,t i)
at every grid point. This information can then be used
solve Eqs.~30a! and ~30b! for a givend n̄ ; once for a red
input seed and once for a blue input seed. The sideb
propagation is then repeated for all of thed n̄’s in ques-
tion. At the end of a given time step the following field
should be saved for further analysis:V l(x,y,zexit ,t i),
V r ,n̄(x,y,zexit ,t i), V r ,n̄8 (x,y,zexit ,t i), Vb,n̄(x,y,zexit ,t i), and

Vb,n̄8 (x,y,zexit ,t i). At the end of this time-dependent calcu
lation the saved fields may be placed into Eq.~34! with the
appropriate values for the coefficientsan̄ andbn̄ to model the
input statistics in question. Even though many computatio
time-saving simplifications have been made in deriving
equations of motion, a full time-dependent calculation is s
not feasible with available facilities; only steady-state so
tions will be presented.

In the following a plane-wave solution with an effectiv
diffraction will be presented, which will give valuable in
sight for a more complete calculation. Steady-state soluti
6-7
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to Eqs.~18a!, ~19!, ~30a!, and~30b! with cylindrically sym-
metric input seeds will be presented. It will be shown tha
this level of approximations the sidebands do not experie
significant gain. Finally, possible explanations will be giv
to account for the lack of significant predicted gain.

A. Plane-wave solutions

Solving Eq.~18a! in steady state allows the evaluation
the ā ’s and x̄ ’s in steady state. After neglecting diffractio
and assuming the laser is not attenuated during propaga
the following solution for the laser propagation may be wr
ten down:

V l~z!'V0e2 iklz, ~35!

where kl5Im@āl#. With similar definitions forkr5Im@ār#
and kb5Im@āb#, the quantitiesDkz52kl2kr2kb and Dk
5Dkz1Dk¹ , whereDk¹ is an assumed additional effectiv
phase resulting from diffraction, may be used to rewrite
sideband Eqs.~30a! and ~30b! as

]V r

]z
52~Re@ā r #2 iDk!V r1x̄ rbVb* , ~36a!

]Vb*

]z
52Re@āb#Vb* 1x̄br* V r . ~36b!

The parameterDk is considered to be an adjustable para
eter that can be varied to maximize the gain of the sideba
The justification for this is that when diffraction is include
spatial-dependent phase variations will arise, effectiv
sampling allDk values resulting in those with large ga
being observed.

The solution to Eqs.~36a! and ~36b! has the form~for i
51, 2!

V i5C1,ie
m̄1z1C2,ie

m̄2z, ~37!

where

m̄65
1

2
@2~Re@āb#1Re@ā r #2 iDk!6Ab#, ~38!

and

b5~Re@ā r #2 iDk2Re@āb# !214x̄br* x̄ rb . ~39!

The m̄2 term is responsible for transient behavior nearz
50 and in general is not of interest for long cell lengths„z
.28puD0u/(3 Re@m̄2#Nl2G)…. The m̄1 term is responsible
for the gain of the sidebands. A plot ofm̄1 for typical ex-
perimental values is shown in part~e! of Fig. 2. Part~f! of
Fig. 2 is a contour plot of Re@m̄1# versusDk and d. The
parameterDkz is a function ofd and is the special case ofDk
with no additional phase added to simulate diffraction, i
Dk¹50. WhenDk5Dkz , all three waves, the laser, and th
two sidebands are colinear, and the two sidebands experi
loss (Re@m̄1(Dkz)#,0). If the sidebands do experience ga
(Re@m̄1#.0), the output intensity of the blue sideband is
06381
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ways greater than the output intensity of the red sideband
long propagation lengths and blue laser detuning, regard
of the initial conditions of the red and blue sidebands. T
results from the lower atomic absorption at the blue det
ing.

The plane-wave calculations presented here are very s
lar to Boydet al. @30#, with the difference being that we hav
included Doppler averaging and made approximations s
thatD0@g must be satisfied. In the theory of ours and Bo
et al. the shape of the gain profile is the same and the b
sideband intensity is always predicted to be greater than
red sideband intensity for long propagation lengths.

With expressions forkl , kr , andkb it is possible to for-
mulate a simple expression for the angle of the conical em
sion at the red sideband. Many different physical mod
have been presented~see Ref.@26# for a short overview of
many different models!, all with the same basic result:

uc5
k

A8p
A3l3GAN/D0, ~40!

where uc is the cone half-angle andk is a dimensionless
constant of proportionality~of order unity! that varies be-
tween different theories. This cone angle is the angle of
peak intensity of the frequency integrated red sideband.

The ac model

One of the shortcomings of a plane-wave model, wh
compared to experiment, is that it predicts that the cohere
propagating sidebands always have more blue intensity
red. This observation is consistent with what is known ab
the power spectrum of light scattered by two-level system
the Mollow spectrum@37#. The red sideband in our case,
more generally the sideband closest to the atomic resona
will experience a greater amount of incoherent scatteri
This fact results in the sideband closest to resonance ha
greater intensity in the Mollow scattering spectrum. For c
herent propagation along the axis, the opposite must be
However, in the experiment more red detuned cone ligh
seen than blue detuned on-axis light; see Refs.@19# and@22#.
In the ac model, we apply a plane-wave calculation to
imagined filament with coherent loss from the on-axis re
detuned sideband. This loss is added coherently to for
forward direction red cone.

Imagine a single self-focused filament, which has writt
a radially varying index of refraction@n(r ,v)# in the me-
dium to produce self-focusing. It might also be possible
this n(r ,v) to confine the blue sideband via internal refle
tion, sincen(r ,v) decreases with increasingr. The red side-
band, on the other side of the resonance, would not
trapped and would leak out of the filament region. This r
sideband light that is leaking out of the filament is coher
and does not contribute to the 4p incoherent scattered light
If the spatial rate at which this coherent light leaks out of t
filament region is denoted byac it is possible to add up this
light coherently to form a cone. This model results in t
following equations of motion:
6-8
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]Vc

]z
5acV rc , ~41a!

]V rc

]z
52~Re@ā r #2 iDk1ac!V rc1x̄ rbVbc* , ~41b!

]Vbc*

]z
52Re@āb#Vbc* 1x̄br* V rc , ~41c!

whereVc is the amplitude of the red light that leaks out
the filament and is added up to produce the cone;V rc and
Vbc are the red and blue sideband fields, respectively,
are within the filament.

Solutions to Eqs.~41a! through~41c! are presented in Fig
3. Both sideband input fields are given the same magnit
of 1 with a relative phase difference of 3p/2. ~The initial
phase difference is inconsequential for large propagation
tances.! For comparison, the solutions to the normal plan
wave equations@Eqs.~36a! and~36b!# are shown. The inten
sity of the cone and the two on-axis sidebands at the en
a 1 cm propagation, as a function ofac is also shown.

Upon solving Eqs.~41a! through~41c!, it is evident that
the red intensity within the filament (uV rcu2) is always less
than the blue intensity (uVbcu2), as seen in Fig. 3. The reaso
is the same as before: the incoherent scattering is greate
the red than the blue sideband, whereas the cone ligh
coherent loss from the red field in the imagined filament.
the limit of largeac the red sideband in the filament is lost

FIG. 3. Solutions to Eqs.~41a! through~41c! and Eqs.~36a! and
~36b! are shown in plot~a! with ac5100 cm21. The quantities
uVcu2, uV rcu2, anduV rcu2 are the intensities in the cone, on-axis r
sideband and on-axis blue sideband, respectively. The quan
uV r u2 anduVbu2 are the intensities of the on-axis red and blue si
bands in the absence of a cone (ac50). Plot~b! shows the intensity
of the cone and the two on-axis sidebands at the end of a 1 cm
propagation, as a function ofac .
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the red sideband in the cone such that the feedback to
blue sideband in the filament through thex̄br* coefficient is
reduced to the point that the blue sideband can only exp
ence three-photon gain. The interaction between the la
and the blue sideband produces red sideband light viax̄ rb in
Eq. ~41b!, which is lost to the cone. The most importa
result of this model is that for large values ofac (ac
.20 cm21 for the conditions used for Fig. 2 along withd
51.5 GHz), the intensity in the red cone is greater than
intensity of the on-axis blue sideband. This prediction is
agreement with experiment, in contrast with the prediction
the plane-wave model. We present this model for the purp
of illustrating the large impact that diffraction and transver
propagation can have on the gain dynamics.

B. Steady-state cylindrically symmetric solutions with
diffraction

In this section, Eq.~19! for the pump field will be solved
numerically in steady state. This seemingly simple equat
is the subject of many articles@32,38–43#. However, our
main concern is the impact of the pump behavior on
propagation of the red- and blue-detuned sidebands, in
~30a! and~30b!. The figures presented in this section will b
for the propagation of one set of parameters that resul
single-filament laser propagation. These parameters are
within the range for our experimental conditions@22#, and
have been observed to produce reasonably stable propag
in z. The experimental parameters used for this propaga
correspond to the point$F/FK ,r1/2%5$40.0,2.57% in a di-
mensionless self-focusing space@22,32#. All propagations
are for strontium vapor with resonance line wavelengthl
5460.377 nm. A contour plot of this laser propagation
shown in Fig. 4. This propagation yields nearly consta
beam diameter through the vapor. The radial shape of
input beam is Gaussian, which does not match the station
filament solution. As a result a Gaussian beam will alwa
have oscillations in its diameter while propagating@32#. Parts
~a! and ~b! show a contour plot of uV l( r̃ ,z)u2 and
r̃ uV l( r̃ ,z)u2, respectively, with linearly spaced contour line
Parts~c! and~d! show these with logarithmically spaced co
tour lines, each a factor of& below the previous line. The
main part of the self-focusing occurs between the horizon
dotted lines atz50 cm andz55 cm where the number den
sity is constant. Beforez50 cm and afterz55 cm the num-
ber density smoothly drops to zero, similar to the expe
ment. The thick line on Fig. 4 is ther̃ 1/2 line, which is a
measure of the radius of the beam. The parameterr̃ 1/2,
which is the radius which contains half of the power~P! of
the beam, is defined as

P5E
0

`

2pr uV~r !u2dr52E
0

r̄ 1/2
2pr uV~r !u2dr. ~42!

The dashed line is ther̃ 1/2 line for free diffraction in the
absence of the vapor.

Plot ~a! of Fig. 4 most clearly displays the overall prop
gation of the laser filament, when the predominant effec
self-focusing. Plot~d! of Fig. 4 most clearly displays the

ies
-
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laser intensity at larger̃ . Although clear evidence of self
focusing is present in plot~d!, it is also possible to observ
the propagation of the low-intensity laser wings. To emp
size CE angles, contour plots of the sidebands will be p
sented in the form of plot~d! of Fig. 4.

The coupling coefficients (ā ’s and x̄ ’s), which are func-
tions of uV l u2, are now functions ofr̃ andz, becauseuV l u2 is
a function of r̃ and z. Plots of a r( r̃ ) are shown in parts
~a!–~c! of Fig. 5 for a Gaussian laser beam and differe
values ofd. In each plot the solid line is Re@ar(r̃)# and the
dashed line is Im@ar(r̃)#. Part~d! of Fig. 5 is the normalized
Gaussian laser profile that was used to produce plots~a!–~c!.
Here the Re@ar(r̃)# peaks occurs when the denominator
Eq. ~32! is a minimum. Note that this resonance conditi
covers a small range inuV l u2, hence a smallD r̃ range. As a
result, large sideband gain occurs in a small fraction of
beam area for a given sideband detuning.

With the addition of diffraction, even in the simplest ca
of cylindrical symmetry, the sideband propagation probl
becomes much more complicated. Each of the coupling
efficients in Eqs.~30a! and ~30b! has a maximum or mini-
mum, whereua r( r̃ )u is a maximum. Within some range,D r̃
around this maximum is the optimal interaction region wh
the majority of four-wave mixing can take place if the co
dition of appropriate phase matching is present. Within

FIG. 4. Steady-state laser propagation. The free space i
beam is a Gaussian withr̃ 525mm and V05327.4 GHz. Other
input parameters areD05212.3 GHz,R05390.3 GHz,G/g56.6,
and N51.031014 cm23. Plots in the top row have linear contou
lines, while the logarithmic contour lines in the bottom plots diff
by a factor of&. The left columns are plots ofuV l( r̃ ,z)u2, while the
right columns are plots ofr̃ uV l( r̃ ,z)u2. The number density is a
constant fromz50 – 5 cm; beforez50 cm and afterz55 cm, it
smoothly drops to zero. The thick line is ther̃ 1/2 of the laser as a
function of z. The dashed line is ther̃ 1/2 for free diffraction.
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single filament an optimal interaction region for a given s
of sidebands~a given value ofd! will be a ring that will vary
in radius during the propagation inz. It is important to notice
that the entire optimal interaction region is within only;5%
change in the laser intensity, as can be seen by lookin
plots ~a! and~d! of Fig. 5. Visualizing the propagation of th
sidebands is further complicated by the propagation of
laser. The radial shape of the laser will vary, changing
shape,r̃ location, and width of the optimal interaction re
gion. As a result of the coupling coefficients being a functi
of uV l u2, the optimal interaction region for a givend will
follow one of the contour lines of plots~a! or ~c! of Fig. 4. It
is important to notice that there are values ofd that will
produce an interaction region that will propagate with nea
constant radius, as do some of the contour lines of plots~a!
and~c! of Fig. 4. Also there are values ofd that will produce
an interaction region which will come in and out of existen
during laser propagation, as do some of the contour line
plots ~a! and ~c! of Fig. 4.

The optimal interaction region is influenced by many p
rameters. The value ofd, which is referenced to the genera
ized Rabi frequency (R0) at z50 and r̃ 50, determines
where in r̃ the optimal interaction region is located. Ifd
,0 then the optimal interaction region is away from t
origin. The more negatived becomes, the farther the optima
interaction region moves away from the origin. Whend.0
only the tail of the optimal interaction region is present. T
width of the optimal interaction region is effected by th
radial intensity shape of the laser. As the laser propaga
the width, shape, and location of the optimal interaction
gion will change.

1. Propagation results

The experimental observable is outlined in Eq.~34!. As a
result of considering only steady state in this section,
time integrals may be ignored. All that will be presented w
be the field terms in the summations of Eq.~34!. This is a

ut

FIG. 5. Radial dependence ofa r is shown in plots~a!–~c! for
the Gaussian laser beam shown in plot~d!. The four-wave interac-
tion region is centered about the maximum ofua r u2. The solid line
is Re@ar#, and the dashed line is Im@ar#.
6-10
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FIG. 6. Four sideband propagations with a blue-detuned input seed. Each row is a different propagation withd shown in the left-column
plot. In each plot the laser is denoted with a solid line, the blue sideband with a long-dashed line, and the red sideband with a do
The left column is the far field scaled to the input laser power. The second column is the power in the fields as a function ofz, scaled to the
input laser power. The right two columns are logarithmic contour plots ofr̃ uV r u2 and r̃ uVbu2 for the red and blue sidebands, respective
Each of the contour plots displays ther̃ 1/2 lines for each of the fields and for free diffraction. Ther̃ 1/2 for free diffraction is denoted with a
short-dashed line.~Laser, solid line; free diffraction, short-dashed line; blue sideband, long-dashed line; red sideband, dotted line.!
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reasonable representation of the calculations because
main concern is to investigate the gain and propagation p
erties of the sidebands.

Description of plots. Two sets of sideband propagation
are presented in Figs. 6 and 7, using the laser propaga
shown in Fig. 4 with a blue and red seed, respectively. T
06381
our
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laser and sideband input atz520.45 cm is calculated such
that free space propagation toz50 cm will produce a Gauss
ian with flat phase front and width of 50mm FWHM (r̃ 1/2
525mm). This corresponds to what was done in the expe
ment @22#. All the plots in Fig. 6 are for a blue input seed
Four seed-frequency simulations, with thed values shown on
6-11
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FIG. 7. Four sideband propagations with a red input seed. All of the plots and symbols are the same as in Fig. 6.
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the plots, correspond to the four rows of Fig. 6.~The defini-
tion of d is presented in Fig. 1.! Note, that the values ofd in
Figs. 6 and 7 are much larger than in the previous examp
This is a result of howd is defined.d is a relative detuning
from the on-axis generalized Rabi frequency of the in
laser at the entrance of the medium. As the laser propag
the on-axis and radial values of the generalized Rabi
quency varies over a large range~see Fig. 1!. This variation
results in the optimal interaction region being produced fo
wide range ofd values. The left column shows the far field
of the laser, and the two sidebands, with the input seed sc
06381
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to the input laser power. The far field of the laser is the sa
in each plot. The laser is slightly wider than would be e
pected for the free diffraction of a 50mm FWHM spot be-
cause when the laser exits the self-focusing region of the
(z55 cm), it is smaller than 50mm FWHM. The second
column shows the relative power in the laser and the t
sidebands; the loss in laser power during propagation is
noticeable in these graphs. In the calculations presented
only mechanism for laser attenuation comes from absorpt
as seen in Eq.~20!. The two columns on the right are contou
plots with logarithmic~& ratio! contour lines ofr̃ uV r u2 and
6-12



t

ig

o

he
nd
lu
at

u

-
t
a
er

o
e-

i
ti
d
in
su
t

lly

ly
e

la

e

th

d
fin
ac
a
o

an

. 6
-

u
x

in
,

io
ir
id

den
rac-
ots.
field
in

e
field

wer.
of

ut
ar

ted

lcu-
d
ase
ct-

tion
g

ion.
ns
nd

al
the

lt
on

f all

on.
nd
e

pro-

ced
ight
d is
n

to
ce

is
in

n in
e

ep
tion
e

THEORY OF OPTICAL NEAR-RESONANT CONE . . . PHYSICAL REVIEW A 66, 063816 ~2002!
r̃ uVbu2, respectively, as in plot~d! of Fig. 4 for the laser. In
this type of plot it is easy to follow low-intensity light a
larger̃ . On each one of the contour plots are ther̃ 1/2 lines for
each of the fields and for free diffraction. The layout of F
7 is the same as Fig. 6.

Numerical method. A Crank-Nicholson method is used t
propagate the laser and the sidebands@44#. The singularity
resulting from the Laplacian in cylindrical coordinates at t
origin is dealt with by methods described by Drummo
@45#. All the functions relevant to the propagation are eva
ated on a radial grid with a higher concentration of d
points near the origin than at larger̃ . Only 1% of the data
used in the calculations for Figs. 6 and 7 are used to prod
the contour plots.

Sideband propagation. The influence of the optimal inter
action region, discussed in Sec. III B, can be seen on plo~c!
of Figs. 6 and 7. Both plots of the red sideband show a sh
cut-off in intensity that approximately follows the last las
contour line of plot~a! of Fig. 4. This optimal interaction
region is able to produce a radially dependent ‘‘index
refraction’’ @n( r̃ )# that is capable of trapping the red sid
band. This trapping is seen again in plot~g! of both figures.
Here, ‘‘index of refraction’’ was placed in quotes because
is not a well-defined quantity. There are two levels of es
mating the ‘‘index of refraction.’’ The first is the standar
dispersion line shape of the unexcited vapor, which with
creasing saturation approaches the vacuum value. This
gests that the red sideband should be refracted out of
filament and the blue sideband should be partially or fu
held within the filament via internal reflection@27#. By look-
ing at the right two columns of Figs. 6 and 7 this is obvious
not the case. A more descriptive index of refraction includ
the atomic response at the sideband frequencies to the
field, and it can be found by using Im@ar(r̃)# for the red
sideband and Im@ab(r̃)# for the blue sideband. With this, on
finds that the radial shape ofn(r )21 for the red sideband is
the same as the dashed line in plots~a!–~c! of Fig. 5. The
shape ofn(r )21 for the blue sideband is the same as
red, but it is one to two orders of magnitude smaller.~The
relative size ofa r andab can be seen in Fig. 2.! Therefore,
there is a trapping ‘‘index of refraction’’ for both the red an
blue sidebands, but the index gradient is too small to con
the blue sideband. This interpretation of the index of refr
tion is useful, and it will be used to explain other observ
tions. However, it should be kept in mind that when tw
waves are strongly coupled, as the red and blue sideb
are, an index of refraction is not a well-defined quantity.

For the propagations in the bottom two rows of Figs
and 7,d.0. This results in only the tail of the optimal in
teraction region being present atz50. But in both cases the
laser beam self-focused into an intensity that is great eno
to bring the center of the optimal interaction region into e
istence. This happened in two places, once atz'1 cm and
then again atz'4.6 cm. The result of this can best be seen
plots ~l! and ~p! of Fig. 7, and, with careful observation
evidence can be seen in plots~k!, ~l!, ~o!, and ~p! of both
figures. When the center of the optimal interaction reg
comes in and out of existence rapidly in space, the requ
ments for phase matching between the red and blue s
06381
.

-
a

ce

rp

f

t
-

-
g-

he

s
ser

e

e
-
-

ds

gh
-

n
e-
e-

bands also change rapidly in space. This results in sud
changes in gain and refraction. The sudden change in ref
tion is what is seen as sharp wiggles on the contour pl
The sudden change in gain can be seen in the generated
for the first appearance of the optimal interaction region
plots ~j! and~n! of both Figs. 6 and 7. In plots~j! and~n! of
Fig. 7, aroundz51 cm a sudden jump in gain for the blu
sideband is observed. The change in gain for the seeded
is not noticed except in plot~j! of Fig. 7 where, aroundz
51 cm, the red sideband experiences a sudden loss of po
There is no change in gain evident for the second location
the interaction region coming into existence aroundz
'4.6 cm. This is a result of the blue sideband diffracting o
from the origin, leaving only a small relative intensity ne
the origin which will experience the gain.

In all eight propagations in Figs. 6 and 7, the genera
field experiences strong gain beforez'0.5 cm, but never
increases without bound, as is seen in the plane-wave ca
lations @30#. The initial rapid growth of the generated fiel
results from the fact that it is created with the correct ph
matching to experience gain. Once both fields start diffra
ing and the laser propagation moves the optimal interac
region to a newr̃ , the requirements for phase matchin
change. This is not an issue in a plane-wave calculat
However, it is expected that there will be other locatio
where the conditions for phase matching will be met, a
both sidebands will again experience large gain.

The fact that the blue sideband diffracts out of the optim
interaction region can be seen clearly with a blue seed in
plots in the right column of Fig. 6. Especially in plots~h!, ~l!,
and~p! the blue sidebandr̃ 1/2 line follows the free diffraction
r̃ 1/2 line. The only deviation from free diffraction is a resu
of small amounts of gain received in the optimal interacti
region. This is seen in plots~b! and ~d! of Fig. 6. Plot ~b!
shows the blue sideband that receives the most gain o
cases, and therefore ther̃ 1/2 line on plot ~d! is most influ-
enced by this gain received in the optimal interaction regi
The plots in the left column also show that the blue sideba
is predominantly influenced by diffraction. Notice that th
laser and the blue sideband have comparable far-field
files.

The blue field generated by a red seed is also influen
by the optimal interaction region, as can be seen in the r
column of Fig. 7. In each case, once the blue sideban
created it begins to diffract out of the optimal interactio
region. Again in plot~d!, the blue sidebandr̃ 1/2 line is slowed
by the fact that the red sideband is trapped and is able
continue the production of blue light. The main differen
between the propagations atd52160 GHz and d5
2100 GHz is that the incoherent scattering of red light
much less in thed52160 GHz case. Even though the ga
for blue light is initially greater for thed52100 GHz case,
the red light is lost to incoherent scattering as can be see
plot ~f!, resulting in less over all gain in blue light for th
d52100 GHz case versus thed52160 GHz. In plots~l!
and ~p!, the blue light is suddenly refracted out at a ste
angle as a result of the appearance of the optimal interac
region aroundz51 cm. Notice that the far field of the blu
sideband in plots~e!, ~i!, and~m! of Fig. 7, and the far field
6-13
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of the blue sideband in plots~e!, ~i!, and~m! of Fig. 6, have
a similar structure foru.5 mrad. Especially in plot~e! of
both figures a peak is seen atu'10 mrad. This implies tha
the blue light that is generated via mixing with the red is s
out into high angles.

Cones. In all cases, in Figs. 6 and 7 the red sideba
produces a cone. The most important observation for the
sideband propagation is the formation of a cone regardles
which sideband is seeded. This implies that both refrac
and phase matching contribute to the formation of a
cone. In the case of a red seed refraction is the main cau
the calculated observed cones. As a result of the red side
experiencing little relative gain only refraction is left to r
shape the input seed into a cone. In the case of a blue s
the red sideband is created with appropriate phase to b
rected into a cone. Of course in both cases both effects
present, directing red light into a cone. This is not the c
for the blue sideband. With a blue seed, the blue sideb
undergoes virtually free diffraction, and with a red seed
blue sideband is in some cases phase matched into a
cone as seen in plots~i! and ~m! of Fig. 7.

Only for the cased52160 GHz,@plot ~a! in both Fig. 7
and Fig. 6# the largest red peak is on axis, not in a cone. T
on-axis red light near the atomic transition is also seen in
experiment, as shown in Fig. 8. The angular width of t
main peak of the red far-field pattern is wider than both
laser and blue sideband. This implies that the majority of
red sideband was confined inside of a filament smaller t

FIG. 8. Intensity distribution of an experimental cone. The e
perimental parameters for this cone are as follows:D5210 GHz,
G/g56.6, N59.231013 cm23, input beam size 50mm FWHM,
and input laser energy 2.21mJ. From these experimental param
eters, V05331 GHz, R05392 GHz, and $F/FK ,r1/2%
5$38.6,2.48% can be estimated. The bottom axis is the frequen
relative to the atomic line. The top axis is the frequency relative
the atomic line scaled by the laser detuning. The left axis is
emission angle. The peak of the cone intensity is at$v,u%5

$2150 GHz,13.5 mrad%. The bottom right region shows the on-ax
red light near the atomic line. The dashed contour lines in the
treme bottom right corner are spaced at ten times that of the s
lines, much of this is laser light scattered around the freque
block in the monochromator.
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the trapped laser beam. This is confirmed in plot~c! of Figs.
6 and 7.

The theoretical shape of a cone is shown in Fig. 9. Thi
simply a contour plot with logarithmic levels of many fa
field calculations for the red sideband, as shown in the
column of Figs. 6 and 7 for many values ofd, the detuning
from R0 . Plot ~a! of Fig. 9 shows propagation results whe
a blue input seed is used; plot~b! is for a red seed. Plot~a! is
the integrand of the fifth term in Eq.~34!, where thed axis

-

y
o
e

x-
lid
y

FIG. 9. A blue input seed was used for the simulation in plot~a!.
A red input seed was used for the simulation in plot~b!. Both plots
are logarithmic contour plots of the far field of the red sideba
Lighter regions represent greater intensity.
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THEORY OF OPTICAL NEAR-RESONANT CONE . . . PHYSICAL REVIEW A 66, 063816 ~2002!
corresponds to then̄ and the time integral is ignored becau
of the condition of steady state. Plot~b! is the integrand of
the second term in Eq.~34!.

The theoretical cones shown in Fig. 9 can be compare
the experimental cone in Fig. 8. The horizontal axis of Fig
is detuning from the atomic line, while the horizontal axes
Fig. 9 ared, which is detuning fromR0 . The conversion
v5D02R02d may be used. For the plots in Fig. 9 th
atomic line is at the left axis. A full cone spectrum wou
involve summing the terms in Eq.~34! and producing one
contour plot. We have not done this because of the lack
significant predicted gain. However, the general shape of
cones displayed in Fig. 9 do show similar characteristics
those of the experimental cone in Fig. 8. Both plots of Fig
shows on-axis red light near the atomic transition and
characteristicAN/v shape. Also both plots show the trans
tion toward a constant, nonzero angle at large detunings f
v0 . The two plots of Fig. 9 are repeated in Fig. 11 wi
AN/v lines overlaid, along with other cone results.

Gain. Figure 10 shows relative gain of each sideband th
for example, is defined for the red sideband by

gr5
Pout2Pin

Pseed
, ~43!

wherePout is the red sideband output power,Pin is the input
power, andPseedis the seed input power.

The upper limit of relative gain that would occur witho
diffraction can be obtained by considering a ring of thickne
D r̃ at a radiusr̃ g , where the sidebands are expected to
ceive gain. By the exit plane the input seed will retain t
same shape as a result of neglecting diffraction, but will n
have a large intensity spike atr̃ g with a thickness ofD r̃ . If a
Gaussian radial profile is used for the input seed the rela
gain can be written as

gr;H 2.77S r̃ gD r̃

r̃ 1/2
2 DexpF21.386S r̃

r̃ 1/2
D G2J e2m̃1z. ~44!

Estimating the values ofr̃ g and D r̃ to be 6mm and 2mm
from Fig. 5, respectively, it is possible to calculategr

FIG. 10. A blue~red! input seed was used for the simulation
the left~right! column. Plots~a! and~b! show relative gain, which is
defined in Eq.~43! for both the sidebands. The blue sideband
denoted by the dashed line and the red sideband is denoted b
dotted line.
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50.05e2m̄1z'2.5631033. This value is 34 orders of magni
tude larger than what is calculated and presented in Fig.
demonstrating that diffraction plays a crucial role and pla
wave solutions are not appropriate. However, the gains
sented are much less than what is observed in the exp
ment.

2. The search for gain

The lower limit of gain needed to see conical emission
the experiment is about 13108, that is, the productm̄1

3zcell must be greater than 10. This estimate comes fr
assuming one photon initiating the coherent process that
duces the cone. It is apparent from the sudden turn-on of
unseeded field in Figs. 6 and 7 that it is possible to prod
a largem̄1 , but only for very short distances. The param
eters relevant for the search for gain are as follows.~1! The
scaled dimensionless power of the laser (F/FK). ~2! The
dimensionless radius of the laser (r 1/2). ~3! The radial shape
of the laser.~4! The free-space focus of the laser and/or t
sideband seed.~5! The detuning~d! of the sideband from
Ro . ~6! The radial shape of the input seed.~7! Phase fluc-
tuations in the laser.~8! Amplitude fluctuations of the laser
~9! The Doppler width.~10! The time of sideband propaga
tion, only relevant for sideband propagation during a tim
dependent laser pulse. For the gain to be considered real
at least an increase of 5 orders of magnitude over what
been calculated previously is needed. Due to this large fac
in the following discussion only qualitative descriptions w
be used.

A Powell method was used to attempt to find the ma
mum gain while varying the parametersF/FK , r 1/2, andd.
Different starting values gave different ending values,
would be expected simply by looking at any one of the re
tive gain plots shown in the detuning scans. But none of
maximization runs gave gains that were orders of magnit
larger than what has been previously calculated.

The radial shape of the laser beam has been changed
more flat topped. This widens the optimal interaction reg
that produces more gain, but not much. Other radial sh
changes also did not change the gain of the sidebands by
significant amount. Stationary solutions for the laser be
have been used which maintain their radial shape du
propagation, resulting in the optimal interaction region n
moving around inr̃ and z which increases the gain length
No significant increase in gain was observed. Changing
radial shape of the input seed made even smaller chang
the gain of the sidebands. The shape of the laser and
shape of the input seed is a difficult parameter to adjust
systematic way. However, it is also believed that the g
should not be significantly affected by shape, because c
emission is seen in the experiments with good Gauss
beams as well as poorly shaped beams.

In the sideband propagations shown earlier the blue s
band was seen to diffract. This motivated moving the fre
space focus of the seed and the laser from the input fac
the middle of the cell, hoping that the optimal interactio
region would track the diffracting blue sideband in such
way that both sidebands would receive more gain. Ag

the
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there was no significant increase in the gain for either s
band.

Rapid intensity fluctuations of the laser could possib
increase the gain. Testing this possibility requires a tim
dependent calculation for the laser. Our procedure is firs
calculate the time-dependent laser propagation up to s
time Tc , at which time a sideband propagation is don
However, before a sideband propagation is done the l
field is multiplied by a constant, then repropagated throu
the medium at this time step. After this propagation the va
of V l( r̃ ,z,Tc) has been adjusted in response to the inten
fluctuation, and the values ofD( r̃ ,z,Tc), and s( r̃ ,z,Tc) in
Eqs. ~31a! through~31d! remain unchanged. At this point
sideband propagation is performed. This method was use
a variety ofTc values with and without fluctuations in th
intensity. Again there was no significant change in t
achieved gain.

Phase fluctuation can be added as a first approximatio
assuming a Lorentzian distribution of widthg l for the fluc-
tuations inḞ. After performing a convolution of a Lorentz
ian with the ā ’s and x̄ ’s the result is the addition of the
phase fluctuation width (g l) to the a in Eqs. ~31a! through
~31d!. This additional width makes the optimal interactio
region wider, i.e., makes the path length longer but it a
decreased the effectivem̄1 value. The net result of longe
path lengths and smaller effectivem̄1 values is no significan
change in the gain.

Changing the Doppler width has a similar effect on t
gain. Again a wider optimal interaction region is created w
increased Doppler width, but along with this increased wi
comes decreased effectivem̄1 values. Therefore, as befor
with the inclusion of phase fluctuations, there is no chang
the achieved gain. At this level, this might be used as
argument to not include Doppler averaging in the calcu
tions. However, as the Doppler width goes to zero the wi
of the optimal interaction region becomes so narrow that
numerics become increasingly difficult.

It is encouraging to see that this model produces c
shapes very similar to those seen in the experiment, but
smaller angle. However, there is a significant lack of p
dicted gain on both of the sidebands. This surprising re
implies that additional physics, not accounted for in the
lindrically symmetric model, must be accounted for in ord
to predict realistically large gains.

IV. DISCUSSION

The current leading models attempting to account
cone emission angles are Cherenkov-type emission@9,30#,
four-wave mixing with phase matching@15#, refraction of the
red sideband at the filament boundary@27#, and a first-order
perturbation theory@46#. All of these models reduce to th
same result shown in Eq.~40!. All of the physics that is
included in any one of the previous models is included in
model presented in Sec. II. Yet we have shown that
physics does not, in fact, account for large CE gain in
case of large detuning and radial symmetry.

The advantage of a full propagation model as studied h
is the ability to not only predict the cone angle, but the en
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shape of the cone as seen on a plot of angle~u! versus fre-
quency~d!. The detuning scans shown in Fig. 9 for the f
field of the red sideband are shown again in Fig. 11 w
propagations done at other laser initial conditions. Super
posed on each graph are three plots of Eq.~40! with k
51.0, 1.5, 2.0, the constant of proportionality in Eq.~40!.
The experimental values fork lay between 1.0 and 1.77. On
of the experimental features of the cone is the constant a
tail at larged, as shown in Fig. 8, which most definitely doe
not follow the scaling of Eq.~40!. In plots~a!, ~b!, and~d! of
Fig. 11 one can see evidence of a constant angle tail
uD02R02du.150 GHz.

As discussed in the Introduction, a full semiclassic
steady-state calculation with diffraction has been done
Valley et al. @24,47# and it is qualitatively similar to that
presented here. Their calculations were restricted to de
ings, D'nFWHM , wherenFWHM is the Doppler width, and
they did not assume cylindrically symmetry.~Their calcula-

FIG. 11. A blue input seed was used for the propagation in
left column. A red input seed was used for the propagation in
right column. The solid lines are plots of Eq.~40! with k51.0, 1.5,
2.0. The value 0 GHz on the horizontal axis is the atomic transiti
6-16
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THEORY OF OPTICAL NEAR-RESONANT CONE . . . PHYSICAL REVIEW A 66, 063816 ~2002!
tion used a fast Fourier transform~FFT! on a Cray super-
computer.! Doppler averaging was included for the las
propagation as well as for the propagation of the sideb
because of the small laser detuning. The Valley calcula
also includes a random seedb i . Valley et al. @24# write as
follows:

The transverse dependence@through V l(x,y,z)] of the
resonance fluorescenceb i from moving atoms is calculate
for each frequency and eachx, y, zusing plasma-dispersio
functions. Its phase is chosen arbitrarily between 0 andp
by a random-number generator at eachx, y, z.

They report very good qualitative agreement of th
model calculation with experiment. They present gain
both sidebands with only the red sideband going into a co
In the case of small detuning the radial variation of theā ’s
and thex̄ ’s becomes much wider relative to the laser-be
width. Consequently one would qualitatively expect mo
gain. They do not comment on the propagation of the si
bands in the medium or the frequency-angle distribution
the cones.

Where is the gain?

During the extensive search of parameter space descr
in Sec. III B 2 and in all of the sideband propagations sho
in Figs. 6 and 7, the blue sideband simply diffracts out of
optimal interaction region.The lack of gain in the calcula
tion appears to be a consequence of the lack of trapping
the blue sideband. So the theoretical search for gain may
turned into a search for parameters that trap the blue s
band. The phenomenologicalac model presented in Sec
III A 1 shows that if the blue sideband is trapped there can
large gain for the red cone. Estimates of the critical angle
trapping the blue sideband usingD@n(r )21# are always
smaller than the diffraction angle for the blue sideband. T
is only a rough result because when the two sidebands
strongly coupled via thex̄ ’s, the concept of an index of re
fraction is unclear.

Once cylindrical symmetry is assumed~no dependence on
azimuthal anglef!, the fields are restricted tom50 modes,
wherem is the azimuthal mode number. It is known that t
free diffraction of a field of the form«(r )eimf with mÞ0
will have zero intensity atr 50 for everyz. It is possible to
envision a ray picture for a combination of these modes. T
ray picture corresponds to a ‘‘skew mode’’ that never pas
through the origin. This skew mode ray may be imagined
being trapped in a radial index of refraction, spiraling arou
the z axis.

Imagine a radial index of refraction with the form o
āb( r̃ ) @from Eq. ~31b!#, which contains the blue index o
refraction and the blue three-photon gain. The shape
āb( r̃ ) is proportional to2ā r* ( r̃ ), which is shown in Fig. 5.
There are two regions in which (d/dr)(Im@āb(r̃)#),0, which
are candidates for trapping a skew mode. It is known t
blue sidebands withm50 are not trapped. Thesem50
modes correspond to rays that pass through the origin.
instead, imagine an off-axis ray that is given in an init
input direction such that it spirals around thez axis. The ray
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is then able to skim the radial index of refraction with
smaller grazing angle. There may come a point where
angle will be small enough to allow for total internal refle
tion, which leads to trapping of the blue sideband. A wav
guide analogy to this would be the modes near the cut
mode in a concentric cylinder geometry. The important d
ference is that instead of the cut-off mode being damped,
blue sideband would actually experience greater gain
cause of increased path length. In other words, the slower
mode propagates the bigger its gain. It is now possible
imagine this trapping region oscillating int̄ alongz as was
seen in plots~c! and ~g! of Figs. 6 and 7.

A generalization of Snell’s law has been used to test t
possibility. In every case that was tried it was possible to fi
a skew ray at the blue sideband frequency that would rem
trapped. In this picture it is possible to increase the p
length without bound and, therefore we presume, get an
bitrarily large amount of gain. Two examples of ray paths a
shown in Fig. 12. Plot~a! corresponds to trapping a ray i
the inner region, where plot~b! corresponds to trapping in
the outer region.

The cylindrically symmetric code has been modified
accommodate an input field withmÞ0. The first successfu
test of the code was to propagate a stationary laser m
with mÞ0. The inclusion ofmÞ0 modes adds two more
parameters to the search for gain. There ismb for the blue
sideband andmr for the red sideband. In principle, there is a
ml for the laser, but in the experiment the input beam is
Gaussian that requiresml50. With no prior knowledge of
the values of them’s, the search for gain can be rather t
dious. Only a few combinations ofm values have been tried
The ray picture involves a sum of very largem values, which
are difficult to propagate even in the modified code. Prelim
nary simulations did not show large gain.

A steady-state FFT calculation has also been attemp
An FFT calculation done on anx-y grid, in principle, can
propagate allm values at once. However, the numerical r
quirements exceeded our computational resources~DEC al-
pha 333 MHz!. A time-dependent FFT calculation for th
large detunings needed to match our experimental calc
tions requires much smaller time steps and finerx-y grid
spacing than were needed by Valleyet al.

The gain seen by Valleyet al. in their FFT-based simula
tions is believed by us to have been achieved becaus
radially wider trapping index of refraction than the trappin

FIG. 12. Ray path of skew modes. Plots~a! and ~b! show the
path of a ray in three dimensions as it spirals around thez axis.
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index of refraction found for the large detunigns that we
interested in modeling. But, more importantly, the seeding
mÞ0 modes via random phase of theirb i terms at eachx, y,
z point. Valleyet al. make no mention of blue sideband tra
ping or propagation of specificmÞ0 modes. As a result o
using an FFT method for the propagation, there is no nee
ask questions about differentm modes. Only after propagat
ing m50 modes with very little gain does the importance
mÞ0 modes become apparent.

At present, we believe that noncylindrically symmetr
(mÞ0) trapped modes of the sidebands are a likely exp
nation for the observed experimental gain. If the blue si
band was trapped, the achievable gain lengths would
greatly increased. This expectation is strengthened by
calculations presented in Sec. III A 1, and by the observa
in experiments that the blue-detuned emission at the 4W
frequency is much weaker than CE, and the blue-detu
light that does escape the cell is predominately on axis. T
suggests a need for new simulations that use the state-of
art computer resources.

V. A NEW MODEL FOR CONE EMISSION

A complete model for the propagation that describe
time-dependent laser beam with large detuning relative to
natural line width and weak spectral sidebands has been
sented. The density-matrix equations have been cast into
dressed-atom frame to eliminate the strong coupling
rapid temporal oscillations present in the bare-atom fra
The dressed-atom frame also allows the expansion of co
cients in the field equations to orderg/R. The sidebands are
assumed to be symmetrically detuned about the laser
large detuning relative to the width of the laser and the wi
of the sidebands. Also, theac model, an extension to th
plane-wave FWM model developed by Boydet al. @30#, has
been presented.

One of the observations of cone emission that is diffic
to explain is the large gain experienced by the red sideb
in the forward cone direction along with the lack of gain f
the blue sideband. Theac model presented in Sec. III A 1
shows that if the blue and red sidebands are trapped in
the laser filament with some of the red light coherently
caping the filament, it is possible to predict more energy
the red-detuned cone than in the blue sideband.

The time-dependent theory presented in Sec. II is sol
in steady state with cylindrical symmetry in Sec. III. As
result of making these approximations, transient propaga
effects are lost, but more importantly is the restriction to
m50 radial modes. This is inconsequential for the la
propagation because the input laser in the experimen
nearly Gaussian (m50). However, the sidebands are seed
with stochastic light that can, in principle, seed allm modes.

Even with the restriction of propagating onlym50
modes, much has been learned about the propagation o
sidebands. In Sec. III B it was shown that red sidebands w
m50 modes are directed into weak cones via refraction
phase matching. These red cones have frequency and an
distributions similar to those of cones seen in our exp
ment. It is important to point out that there are several ca
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where the red sideband is trapped in a filament smalle
radius than the laser filament. The boundary of this filam
is where the region of optimal interaction between the
and blue sideband occurs. Also at this filament boundary,
light is directed into a cone. In contrast, the blue sideba
with m50 is only very slightly affected by the gradient i
the index of refraction at the blue sideband frequency, res
ing in the blue sideband diffracting out of the laser filame
region. Theac model presented in Sec. III A 1 implies that
the red and blue sidebands can be trapped inside a filam
with the red sideband coherently leaking into a red cone,
possible to produce more energy in the red cone than in b
the blue and red on-axis filament. A generalization of Sne
law is used in Sec. IV A to show that it is possible to tra
blue sidebands with large mode numbersm@0.

From all of the calculations presented in this paper
comprehensive picture of cone emission can be hypo
esized. The medium, as modified by the laser, is seeded
stochastic light. For the blue sideband it is known that mo
with small m values will diffract out of the filament region
receiving very little gain. A blue sideband with largem val-
ues will be able to be trapped inside the laser filament wh
it will be able to interact with the laser and red sideban
This results in the blue sideband modes with largem values
receiving more gain than modes with smallm values. It is
known that them50 mode for the red sideband can b
trapped and therefore can receive gain. Also the red sideb
with m50 can produce a cone in the far field. However, t
gain preference for differentm modes for the red sideband
not known. Inside the laser filament a red sideband wit
strong m50 mode component and a blue sideband w
strongm@0 components will be trapped. The blue sideba
will receive gain via three-photon gain from the laser. Th
blue light will then couple with the red sideband to produ
red gain. This red light, which is partially trapped, will als
coherently leak out of the filament region to produce a co
in the far field. The greater the rate at which the red light
coherently leaked into the cone, the weaker the blue filam
will become. In effect, the blue receives energy from t
laser via three-photon gain. This is then transferred to the
sideband, which in turn produces a red cone.

Given this model, conservation of photon orbital angu
momentum\m ~not to be confused with photon spin, o
polarization@48#! would imply that the red cone would b
generated with orbital angular momentum opposite to tha
the blue light. In particular, when only linearly polarize
light is present, there should be no red cone light genera
with m50. This prediction suggests that a new class of
periments, in which orbital angular momentum is measur
could be carried out in order to test this conjectured n
model.
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