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Quantum optics of a quantum dot: Local-field effects
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The role of local fields in quantum electrodynamics of isolated quantuntQIdi has been analyzed. The
system is modeled as a strongly confined in space two-level quantum oscillator illuminated by quantum light.
Relation between local and acting fields in QD has been derived in the dipole approximation from the integral
Maxwell equations for electromagnetic field operators. A formalism of the electromagnetic field quantization in
electrically small scatterers has been developed. As a result, Hamiltonian of the system has been formulated in
terms of the acting field with a separate term responsible for the effect of depolarizationdiBgbraquation
with that Hamiltonian has been solved in linear approximation. Interaction of QD with different quantum states
of light, such as Fock states, coherent states, Fock qubits, entangled states, has been analyzed. It has been
shown that the local-fields induce a fine structure of the QD absorfsimission spectrum: instead of a single
line with the frequency corresponding to the exciton transition, a doublet appears with one component shifted
to the blue(red). The value of the shift depends only on the geometrical and electronic properties of QD while
the intensities of components are completely determined by the quantum light statistics. It has been demon-
strated that in the limiting cases of classical light and single-photon state the doublet is reduced to a singlet
shifted in the former case and unshifted in the latter one. A physical interpretation of the predicted effect has
been proposed. Possible ways of experimental observation of the effect has been discussed together with the
potentiality of its utilization in the quantum information processing.
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[. INTRODUCTION terer. Further QDs are assumed to be electrically small. De-
polarization gives an especially significant impact on the

Optical and electronic properties of quantum d@@Ds) electromagnetic response in the case when scatterer is a reso-
is currently an area of active investigation owing to promis-nant system{e.g., QD. There is no reason to assume the
ing potential applications such as active media of doublalepolarization negligible in the interaction of nanoparticles
heterostructure lasg¢d]. Ultrahigh material and differential with quantum light. In classical electrodynamics, the local-
gain, orders of magnitude exceeding those in quantum wefield effects in isolated QDs were considered in a number of
lasers, has been experimentally confirmed. Recently QDpapers, e.g., Ref§14-16, on the basis of different macro-
have been proposed to serve as nodes of quantum networksopic phenomenological models. For the strong confine-
that store and process quantum information being transmitteghent regime, where QD linear extension is much less then
between nodes by entangled states of phof@r$]. An ex-  the Bohr radius of the bulk exciton, a phenomenological
perimental observation of a single-QD absorber has been réheory of linear electromagnetic response of regular 3D-
ported in Ref[6]. Application of semiconductor QDs in cav- ensembles of QDs has been elaborated in Héf&.18. In
ity quantum electrodynamic§7-9] and as potential particular, polarization-dependent splitting of the gain band
quantumlight emitter§10—17 is now intensively discussed. in anisotropically shaped QDs has been predicted. Local-
Spontaneous emission in QPK3] and electromagnetic fluc- field effects in 2D arrays of QDs in both strong and weak
tuations are also in the focus of interest. In connection withconfinement regimes were discussed in R&B]. Micro-
that problems, quantum electrodynam{€@ED) of quantum  scopic models of the local-field effects in spherical QDs have
dots and ensembles of QDs acquires a special significance. been presented in Refg20,21]. In the framework of these
this paper we analyze the role of local fields in interaction ofmodels, spontaneous emission problem has been considered
QDs with nonclassical light. semiclassically on the basis of the self-field appro®.

QD is a structural inhomogeneity in a host semiconductor At the same time we have to state that a consistent con-
which confines charge carrier motion producing thus discretsideration of local-field effects in QDs is still lacking; par-
energy spectrum, and scatters incident electromagnetic fielitular models are investigated instead. As a result, there ex-
inducing thus local fields. If scatterer is electrically small,ist qualitatively different predictions of the QD
that implies its linear extension to be small as compared witlelectromagnetic response. For instance, REfg4.—18,20
the wavelength inside the scatterer medium, the local-fielgpredict depolarization shift of the resonant line while such a
effects can be accounted for depolarizationof the scat-  shift is absent in Ref(21]; the sign of the shift turns out to

be different for the absorptiofl4,15,2Q and stimulated
emission[15-18. A lack of a consistent theory of local
*Email address: grsl@inp.minsk.by fields in QDs does not allow us to judge whether such dif-
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ferences reflect real properties of different optical processeson is used. We reproduce the known results concerning the
or they are provided by particular approximations. depolarization shift of the resonant frequency in Q04—

In general, QED provides necessary formalism for inves-16] and polarization-dependent splitting of the gain band
tigation of the problem. However, since QDs are electrically{ 17,18, obtained earlier phenomenologically. In Sec. Il we
small inhomogeneities with inherent energy dissipatialo- extend the Hamiltonian derived to nonclassical light and in-
sorption or gaih and dispersion, canonical quantization vestigate interaction of QD with factorized states of quantum
scheme of the electromagnetic field becomes invalid: dissil/ght- Sec. IV is devoted to local-field effects in QDs inter-
pation results in that the operators corresponding to the Maxacting with entangled states of light. Discussion of main re-

well equations turn out to be non-Hermitian. A general QEDsuIts and their consequences is presented in Sec. V. Conclud-

formalism for dissipative inhomogeneous media is now aciNd remarks are given in Sec. V.

tively elaborated and is still far from completion. Different
procedures, which are not always obviously identical and
leads to identical resultf22], of the electromagnetic field
quantization in such media have been propogst, e.g.,
Refs. [23—-35 and references therginPeculiarities of the A. Model Hamiltonian for QD in classical
electromagnetic field quantization in dielectric media with electromagnetic field

inverse population were discussed in R&6].

As in classical electrodynamics, both microscopic and,,
macroscopic models are investigated in the QED of inhomo
geneous media. The macroscopic apprda-3Q implies
phenomenological description of the medium by means of

complex-valued Kramers-Kronig dielectric function. In order approximated by a nonresonant dielectric functign We
to fulfill the commutation relations for the electromagnetic shall assume, to be equal to the dielectric function of the

fielql operators, auxiliary fields c_jescribin_g the med_iym MUS) 5st semiconductor. Thus, in our model interaction of quan-
be introduced. One of the possible version of auxiliary fleldtum oscillator with external electromagnetic field occurs in-

}zrﬁzligﬁsfof?;;egggseeg Irr;elz\r??fc%?czs_t?’hiéth?St gznerelll sjde a homogeneous boundless medium characterized by the
: u P een developefia|actric functione =¢,. For our consideration it is essen-

'Snczgﬁgso]s’ \;\{[Z?Tr]e dSSEC[r)ibr;adsbbe:r(‘:;gggllj:‘r:gde{/%rnzjg;ltra%ti:cll that e, can be assumed to be frequency independent and
g syster Y o Y NOfZal valued. This allows us to put,=1 without loss of

local susceptibility tensor. Individualizing of the formalism enerality. Substitutions in final exoressions

for electrically small scatterei®oint scatterers in the termi- 9 Y- P

Il. LOCAL FIELDS AND SECONDARY QUANTIZATION
OF ELECTRON-HOLE PAIRS

Let an isolated QD be exposed to classical electromag-
tic field. Further the QD is modeled as a strongly confined
in spacd 14] two-level quantum oscillator. Obviously, QD is

an essentially multilevel system. However, contribution all
%ransitions lying far away from a given resonance can be

nology of Savastat al.[30]) has been carried out. However, c—s C/\/e—h and M—>M/\/6—h (1)
resonant scatterers like QDs have remained beyond the con-
sideration.

Microscopic approach31-39 does not usa priori de-  for the speed of light and the oscillator dipole moment, re-
fined dielectric function. Instead, electrodynamics is supplespectively, will restore the casg #1.
mented with the charge carriers transport in the medium. In In the strong confinement regime the Coulomb interaction
that case canonical quantization procedure is carried out fds assumed to be negligible, so that electrons and holes in
the system “electromagnetic fieldd medium”; there is no QD are moved independently and spatial quantization is en-
need to introduce noise current operat@asxiliary fields.  tailed by the interaction of the particles with QD boundary.
Note that such an approach is more physically justified comin this section we aim at the development of the Hamilton
paring with the macroscopic phenomenological descriptiorformalism, which would describe the system “Qb elec-
but loses generality: model of the charge-carrier transportromagnetic field” taking into account the role of QD bound-
must be specified before the electromagnetic field quantizaaries. Apparently, the most sequential and rigorous approach
tion. to the problem is based on the concept of spatially varying

The present paper introduces local-field effects into quaninteraction coefficient developed in Ref83,35. However,
tum optics of QDs. Consideration is based on the micro-utilization of the approach for systems with the stepwise in-
scopic approach analogous to that utilized in Rgg%,33,3§  teraction coefficient meets the problem that the Hamilton
for plane semiconductor heterostructures. The paper is aequations are inapplicable at the discontinuity. The same
ranged as follows. In Sec. I, we combine a local-field theoryproblem exists in macroscopic electrodynamics of stratified
for optically dense medig37,38, based on the relation be- media. By analogy, introducing a transient layer and reduc-
tween acting and local fields in the Liouville equations, withing its thickness, one can obtain boundary conditions com-
the secondary quantization technique usually being appliedlimentary to the Hamilton equations for the system under
to the electron-hole pairs in QDs. Such an approach allowanalysis. However, in the practical use, the described ap-
us to account for the local-field effects in systems with fluc-proach turned out to be too complicated and was realized for
tuating number of particles. As a result, we find a Hamil-the only simplest configuration: interaction of a material
tonian of the light interaction with electron-hole pairs in QD layer with the normally incident lighit33,35 (see also Ref.
and we separate in this Hamiltonian a special term respori39]). Note that even in this simplest case the local-field
sible for the local field effects. The Scllinger representa- effects are left beyond the consideration.
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As applied to QDs, in our paper we develop a more con-
structive approach which utilizes the property of QDs to be
electrically small. This property allows us to assume local
and acting fields to be homogeneous inside the QD. In fact,
this implies that we introduce a spatial averaging of the elec-
tric field over the QD volume. The approach enables us to
solve the problem considering fields only inside the QD.
Moreover, it proves to be possible to examine separately, to a
certain extent, the electromagnetic field and the partices
Appendix A). On the other hand, the simplification restricts
the analysis to the strong confinement regime; the theory
should be drastically modified to include inhomogeneity and
nonlocality into consideration.

In the framework of the above stated approximation, the
system “QD + electromagnetic field” is described by the
Hamiltonian H=Hq+H,_, where Ho= e.ala.+ ezalay is
the Hamiltonian of the carriers motiow, . are the energy
eigenvaluesa;e anday . stand for the creation and annihi-
lation operatorghere and below indices andg correspond
to the excited and ground states of electron, respeciively o . . )
These operators satisfy the anticommutative relations usué@fhere the dezpi)larlzatlon coefiicienly is as follows: Ny
for fermions. The ternH,_ describes interaction with the = (- Np/|p]*=(us-Nuy. . .
electromagnetic field. In this paper we use a 3D Cartesian In view of the above consideration, the total Hamiltonian
coordinate systemu, (a=X,y,z) with the unite vector, Is represented by
parallel to the electron-hole pair dipole momepts pu, . In
the chosen coordinates the teiy takes the form as fol-
lows:

FIG. 1. Schematic picture of correlation between acting and
local fields in electrically small scatterer. Local field is assumed to
be homogeneous.

E «=Eox—47N,Py, 4

H:H0+H|O+AH, (5)

where
HiL=—VPELy, 2 .
R Hio=—VPsEox (6)

where P,=V~}(— ub'+ u*b) is the polarization operator,
the operatorS)T=agal and b=a;ae are the creation and and
annihilation operators for electron-hole paiksé,is the QD
volume. Thus, we define the light-matter interaction Hamil- AH=47N,P(— ub'™+ u*b)
tonian in the dipole approximatio[mo,gll], i.e., we reject a 4
negligibly small term proportional té\“. Such an approxi- _°m *h_ o hDV (%R — T
mation is valid, at least, in the vicinity of the exciton reso- \ Nx(wb= ubT) (w7 (B) = u(b7)). @
nance(see Refs[42,31]). Here and below we mark operators
by the label «" nititis necessary to distinguish them from Thus, in the total Hamiltonian we have separated contribu-
their macroscopically averaged values denoted by the sani®n of the interaction of electron-hole pairs with acting field,
letters. We use underlined letters to mark tensors. Note thdt o, from contribution of depolarizatiom\H. Such a sepa-
our model also describes higher excitonic modes; in that cag@tion allows us to include the local-field effects into consid-
operators™ andb move up the exciton into the next energy eration without explicit solution of the electrodynamical
level and return it back. boundary-value problem. This is of special importance when

The field inside the QDE, , involved in Eq.(2), is dif- we come to the quantization of the electromagnetic field.
ferent from the external acting fiel,. Since we postulate Note that the quantitAH is expressed in terms of dynamic
the QD to be electrically small, and, as consequence, theariables of the particle motion. Thus, coefficiedf con-
field inside QD to be homogeneous, this difference is detertains complete information about electromagnetic interaction
mined by the depolarization fielt43] (see also Fig. 1 for [45].
clarity):

B. Equations of motion

A Let |~z,/;(t)> be the wave function of the system “QD
HereP=(P) is the macroscopic polarizatiohl is the depo- + classical electromagnetic field.” In the interaction repre-
larization tensor. This tensor is symmetridd4] and de- sentation this system is described by the Sdmger equa-
pends only on the shape of the scattering object. Equéjon tion
is obtained from the integral equations of electrodynamics in
the dipole approximatiof44] (see Appendix A Using Eg. ihM:H- ) 2
(3) one can easily obtain at int
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with | i(t))=expHt/A)[9(t)) and H;,=exp(Hdt/A)(H,, ation time of the given resonant state. In such a situation,
+AH)exp(—iHt/h). We represent thehj(t)) by the sum as  Eas.(11) are simplified and reduced to
follows:

iﬁ§=ﬁAwB—£€*(t) *gl(wo o)t (13

[#(D)=A()]e)+B(D)]g), at 2" '

whereA(t) andB(t) are unknown coefficients to be found, For time-harmonic excitation, i.e., faf(t)=E=const, this
|g) and |e) are the wave functions of QD in ground and equation is exactly integrable:
excited states, respectively. Taking into account the well-
known identities b'|e)=b|g)=0 and ble)=|g), b'|g) B(t)~ E p e
=—|e), from Eq.(8) we obtain the set of equations of mo- 2h(wg—Aw—w)
tion

*

—i(wg— o)t _ efiAwt] (14)

with Aw determined by Eq(12). Thus, one can see that the
local-field (depolarization leads to the shifA w of the reso-
nant frequency. This shift was predicted in a number of pa-
(9) Ppers [14-16 on the basis of different phenomenological
4B , models. In Refs[17,18 it has been predicted and experi-
IﬁE:(4WNXPX_EOX)M*AG_Ith! mentally verified that this shift in anisotropically shaped
QDs provides polarization splitting of the gain band. Note
with macroscopic polarization determined by also that the depolarization effect has been proposed by
Gammonet al. [47] as a hypothesis explaining the experi-
TP T . Ciont mentally observed polarization-dependent splitting of the PL
Pu=(YIP )= 5w A(D)B* (e "' +c.c. (100 gpectrum of single anisotropically shaped QD.
Equation(12) is identical to that obtained in Ref<.7,18|.
Further we restrict ourselves to the slow-varying ampli-In order to demonstrate it we should make a substitution
tude approximation. For that aim, we present the acting fieldu|?— | uwo|?/3 whereu, is the matrix element of the dipole
by Eox= Re &(t) exp(—iwt)] with £(t) as a slow-varying am- moment of a corresponding bulk samgkoefficient 1/3 is
plitude. Then, taking relatioil0) into account and neglect- appeared as a result of orientational averaging in bulk
ing the fast-oscillating terms in E@9), we derive final ex- sampleg We should also take into account the spin degen-
pressions for equations of moti¢A6] eracy of electron-hole pairs which results in duplication of
Aw. This is because the total polarization of the system is
provided by superposition of two partial polarizations corre-
sponding to two spin components. Then, expressing macro-
(11) scopic polarization in terms d(t), we find

A |
ih—-=(47NP,— Eq) uBe“,

_OA 1 _
ifi—-= hAwA|B|?— Eé‘(t)MBe'(“’O"")‘,

|ﬁ§=ﬁAwB|A|2— Egk(t)M*Aefi(wO*w)t 1 X .
ot 2 ' szgaxx(w)g[eilwt—efl(iAerwO)t]‘*'C-C-v (15

where
where

4ar ) )
A= goNul a2 4l

ol @)= T T Aw—wg)

(16)

These equations constitute a basic self-consistent system de- o
scribing the interaction of QD with electromagnetic field. IS the component of the QD polarizability tensor. Phenom-
The consistency is provided by the depolarization-induce@nological consideration for QD modeled as single-
first terms in the right-hand parts of the equations. Physif€sonance medium with the Lorentz dispersiofw)=sp
cally, system(11) is analogous to the Bloch equations for *90/(@—wo) [17,18 gives the same result if we puf
optically dense media derived in RdB7]. The relaxation =47|u|*/AV. This means that the Hamiltonian defined by
can easily be included into Eq4.1) either by introduction of ~ Eds. (5)—(7) comprises that phenomenological model as a
the phenomenological transverse and longitudinal relaxatioRarticular case. o -
times[37] or by corresponding modification of initial Hamil- ~ For a ground-state QD, the initial conditions has the form
tonian (5). as follows: A(0)=0, B(0)=1. Applying to this case the
above presented procedure, we obtain

C. Polarization of QD in classical electromagnetic field Su

A~ 2h(wogtAw—w) e

i(wg— o —iAw
The case of excited QD can be analyzed using Ebb. (oo elt—g i8] (17)

with the initial conditionsA(0)=1 andB(0)=0 imposed. In

linear approximation with respect to electromagnetic field weThus, for the ground state the local-field effects manifest
can putA(t)~1. Physically, this means that we restrict the themselves in the same shiftw of the resonance but with
analysis to temporal intervals essentially less than the relaxhe opposite sign. If we introduce now into consideration a
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finite radiation linewidth, interaction of a ground-state QD general, is not identical to the field inside or outside the QD;
with the electromagnetic field corresponds to the absorptiormoreover, this term can arise even in the absence of any
while interaction with an excited QD corresponds to the cas@xternal sourcegfor example, in spontaneous transitipns

of stimulated emission. In other words, the optical absorptionpte that the fielcE, is transverse. As has been pointed out
and gain of an isolated QD could be distinguished owing ton Ref. [48], it is such a field that can be represented by a
the depolarization shift, blue in the former case and red insuperposition of “genuine” photons. The total field inside

the latter one. QD is not transverse due to the second term in(BJ) (see
also Refs[49,50). Direct application of conventional quan-
Il. INTERACTION OF QD WITH tization schemes to such fields leads to a crucial problem
FACTORIZED STATES OF LIGHT which is impossibility to fulfill commutative relations for

electromagnetic field operators without introduction of aux-

iliary fields[27—-30. In our approach we reduce the problem
The light states which can be expressed by a superposof quantization of local field to that for acting field. Since the

tion of fields with different linear polarizations shall further acting field is a superposition of plane waves, quantization

be referred to as factorized states. Linearly polarized quarprocedure gets routined.

tum light is a particular realization of such states. In order to

obtain Hamiltonian of a QD interacting with quantum elec-

tromagnetic field, one needs to supplement E).by the

termHg corresponding to the free space field, and to change In the interaction representation the system “QDguan-

over in the ternH o the electromagnetic field strength by the tum electromagnetic field” with Hamiltoniar18) is de-

corresponding operatdEq,— Eo, . In quantum optics of in- SCribed by Eq.(8) where the substitutiorHo—Ho+He

homogeneous media there is a problem of presentation of tri'ould be performed. In that case, wave function of the sys-

electromagnetic field operator since the local fields are inhol€M can be presented by

mogeneous. Unlike conventional approaches, the proposed

scheme of the electromagnetic field quantization does not lp(t)= > [AKDI+BHDIIINY, (22

meet this problem since the interaction Hamiltonian is pre- k=0

sented in terms of acting field but not the local one. As a

result, usual plane-wave expansion is applicable to the opNhereAEk(t), and BEk(t) are unknown functions of time to

erator EOX; the role of the QD boundary is taken into ac- be found,|n,) denotes the field states where ther igsho-

count by the ternAH (7). Thus, the Hamiltonian for the case tons in modek and no photons in all other modé®) is the

A. Model Hamiltonian for the case of nonclassical light

B. Equations of motion

of quantum electromagnetic field is as follows: wave function of the electromagnetic field in the vacuum
state. In view of relatiori22), formulas(10) for macroscopic
H=Ho+AH+Ho+Hg, (18 polarization is transformed to
whereH,,=—VP,Eo, and 1 _
P,=—pu*6(t)e '“dt+c.c., (23
\Y,
Ao 2mh oK e b ik
E0x=|; T(Cke —c e ). (29
where
In this equationw,=cl|k| is the frequency of the photon
modek, Q is the normalization volumes, andc, are the _ Ny N, 4y 1o
photon creation and annihilation operators, correspondingly. a(t)_k,%() ALDIBAOT (24

Taking into account Eq.19) we obtain

1 Then, after some standard manipulations with Sdimger
= f —Z ion(8 to the infinite chain of coupled non-
Hp—ﬁz oyl clegt =], (20) equation(8) we come p
k 2 linear differential equations for slowly varying amplitudes:

- ta T 0
HIO_ hzk (gkb Ck gzbck)! (21) I%=Aw822 Amq(qu)*+2 qulqe—i(wq—wo)t'
dt dmg 94 g q
whereg,= —iuV27w,/hQ exp(kr.), andr; is the radius (25
vector of the QD geometrical center. 0
Hamiltonian (18) conforms to the use of relatiofA15) _dBy

_ 0 m m
for field operators instead relatid8) for classical fields. The 'W =4 “’Akq%q (Aq " Bq 4 (26)

termE, in Eq. (A15) presented by a superposition of photons
[48] is an auxiliary field which can be interpreted as an in- 4B
cident field only in the classical limit. For the quantum light i X =AwAlk2 (Aqmq)* B;ﬁq+g:AEei(wk—wo)t, (27)

such a simple interpretation is inapplicable: operzﬁg,r in dt K a.mq
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dA™ A%0)=1, B0)=B*0)=AX0)=0. (33
i =AeBE S AT(B]Y* “ “
4:Mq These conditions correspond to the excited state of electron-
Fge/net 1B Te—ilw—wo)t 28 h_oIe pair y\(lth zero number of photons in the initial time. In
GV k (28) view of initial conditions(33), from system(32) follows that
dpnktl the termsB(k)(t) andAik(t) are of the higher-order infinitesi-
iL:AwAEkHE (A:‘q)*quq mal and can be neglected. Then syst@&® is reduced to
dt q‘mq dAE
+g5 N+ 1A Ke! (ek wolt, (29 rra > gqBgie i(wa ok,
q
for arbitrary n,. This system will serve us as a basis for 1
further analysis at different initial conditions. Note that dB, — _ig* AOai (@ —w)t
namely accounting for the depolarization field is a specific dt —19Ace ' (34

property of this system which makes it nonlinear and couples

all qguantum states of electromagnetic field, distinguishingjn investigation of this system we should take into account
thus, this system from conventional equations of quantummatural width of the resonant transition. By this reason we
electrodynamics. In the limiN,—0 the system25—(29)  cannot assumA2(t)~1 as we have done under derivation

splits into recurrent sets of linear equations coupling onlyof Eq. (14). Let us integrate second equation in sysi(@&4):
[n) and|n,+1) states. In that limit the system becomes

equivalent to the ordinary system of the equations of motion Ley ik 0y i(op—wg)t! 457
of a two-level atom exposed to quantum electromagnetic B(t)= —igy OAk(t yettTtotdt. (39
field [41]. It can easily be shown that system of equations
(25—(29) satisfies the following conservation law: Substitution of this expression into first equation of the sys-

q tem leads us to the integro-differential equation

_— Nk 2+ Ng|2 —

dtk%‘éo('A"' B?)=0. (30) e

T K(t—t")Ag(t")dt (36)
Thus, letting the wave function to be orthonormal in the 0
initial point of time, we obtain the relation with operator of the Volterra type and kernel
Nk 2 Nk 27— i(w—
k,%;OHAk (D2 +[BXD[*]=1 (31) K(t):_zk |g,J2e (kw0 (37)

for arbitrary point of time. By means of the substitution

C. Interaction with single-photon states Q

> 1-

1. Spontaneous emission K (2m)3

fozwdgojowsin 9daf:k2[-]dk, 39)

The process of spontaneous emission from a QD can be

treated as interaction of an excited QD with two states oIWSg,: i%?gersar:i%?ﬁ% E) wg rl;rggct;agszgo?; Eei?r% S|:b:§:
electromagnetic field0) and|1,). Neglecting in Eqs(25)— q g ’ q P

(29) all other states, we reduce the system to the followingIatlon K(t)= ~T'spo(t)/2, where

form: AplPod 4l pol?}
dA? - b= e aned %9
iszwBEZ AL(BY)* + 2, ggB e (wam oo, ¢ ¢
a 4 is the radiative linewidth. Note that the account for nonreso-
dB? nant transitions by means of substitutigf$ gives the result
id—tszwAEE (A;Q)*B:Q, (32) identical to that obtained in Ref13]. Analogous result has
q been obtained in Ref34] under consideration of the spon-
4Bk taneous emission of an excited atom imbedded in a lossy
N 1 1 Lg mx A0 (0 — wg)t dispersive dielectric medium. Equati¢86) leads to the el-
T _A“’Akk% (Aqq)* qu+9kAkeI < ementary relation
gAL ARty =exp(—Tst/2). (40)
. _k: 1k lq 1q *
: dt AwBy zq: Aq (Bq) ' Although relations(35) and (40) have been obtained as a
result of approximate integration of Eg®82), it can easily
with initial conditions given by be shown that these relations together with the conditions
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BY(t)=A/*(t)=0 generate an exact solution of systésa) =&|A8|2/&t is the probability of the transition in a given point
independently on whether or not the role of depolarizatiorPf time. After some standard manipulations with E¢#43)
fields is small. and (44), we come to
Solution (40) defines the spontaneous emission process
characterized by the resonant line |gql?QLsp/cC 45
Oph=— " 4+ 5 -
1 P (0= wo)2+T2 /4
N iTsp/2° us, as different from the emission and absorption of clas-
w=wotilsy2 Th different from th d ab f cl

It should be emphasized that the spontaneous emission Iing',Cal eIectromagr_let!c wavgs,bdef|ngd bny(q:g‘) alnd %7)’
unlike absorption and stimulated emission, does not experPoNtaneous emission and absorption of a single photon are

ence depolarization shifthis line shows only a small Lamb characterized by the same resonant frequency and the same

shift neglected in our analysisThe depolarization does not radiative linewidth. Fro_m that_ we conclude that _the_smg_le-
also influence the resonance linewidth. Analogous situatio hoton processes are insensitive to the depolarization field.

appears in interaction of QD with any pure state of electro—.hl'g cfan ‘?asl"y kr)]e undgrstood dfrom thfith thelm_ean elelctrlc
magnetic field. To make clear physical sense of the resulfﬂe of a single photon, in accordance with £41), is equa

obtained, let us consider mean value of the electric field fof€"°-
the operatorEy, (19) with wave function defined by Eq.

(22): D. Polarization of QD by coherent state of light
~ o Now, let us consider interaction of an isolated QD with an
(Eox) = (¥|Eox|¥) elementary coherent state of lighs;;) which is determined
5% as eigenfunction of the photon annihilation operad] of a
=—2Im{ > T O (are— wg) given photonic mode=|q|: cq|s,)=54Sy). This coherent
4.ng state can be expanded into a series in the energy $tajes
Ngy* ANg+1 Ngy* pNg+1 *
X \/nq+ l[(Aq ) Aq + (Bq ) Bq ]] . |Sq>=n20 qu(nq)|nq>. (46)
=

(41)
N Here the coefficient& (n,) are given by Ref{40]
It follows from this expression thdE,,)=0 for any state of !

electromagnetic field with a fixed number of photons. Thus, s
if initial state of electromagnetic field is a pure staes it Fe (ng)=exp—|sy%2) —

. . - Sq q q ] i
take place in the case of spontaneous emigsiits mean Vng!

value is equal zero and it does not induce depolarization
field. The situation is drastically changed in the case of fieldand ISq|2=(nq>S stands for the mean value of number of
states with fluctuating number of photons. This problem isphotons. The CoefficienFssq(nq) satisfy the orthonormaliza-

considered below in Sec. Il D. tion condition
2. Absorption of a single photon *
2 _
Absorption of a single photon with the wave numlagr n§=:0 qu(”q)—l-
=|q| is described by system of Eq&32) imposed to the K
initial conditions Mean value of the complex-valued electric field ampli-

tude for the incident coherent state is given, in line with Eq.

1 _ 0 _po _al —
B (0)=biq: A0)=B(0)=AK0)=0. (42 (41) py the expression

In accordance with the procedure presented in the previous 5 o

. 1 . A
section, we can pLBE(t)=Akk(t):0 in Egs.(32) and thus (&)= _zﬂ > /nq+l Fs (Ng)Fs (Ng+1). (47)
reduce them to seB4). Solution of this set with the above M ng=0 a a

stated initial conditions leads us to o -
The initial conditions for a ground-state QD exposed to the
dq coherent light state are as follows:

04y i(0g— @)t _ ATy /2
Aq() w—w0+iF5p/2[e ° e e, (43

BEk(O)zb‘qusq(nq), AK(0)=0. (48)
t
1 — H 0/+1\ pi (0 — o)t N+/
B (1) = diq— 10k JOAq(t jelleedtidt’. (44 guch a case, only terms wikh=q can be retained in Egs.
(25—(29). Further we restrict ourselves to the temporal in-
The absorption cross section for a single photon is detertervals as small as compared to the radiation lifetitrer
mined by the formulaso,,=w(>)Q/c, where w(t) ~1Ms,. Then the approximate reIationgq(t)wqu(nq)
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hold true for arbitraryn,=0. Multiplying Eq. (28) by fixed number of photons. Let a ground-state QD interacts
qu(nq) and Eq.(25 by qu(O), after summation we obtain with electromagnetic field in the Fock qubit state of the

the equation modeq: IBNq|Nq>+BNq+l|Nq+ 1). Here,BNq andBNqH are
50 1 the complex-valued quantities, for which the normalization
; q_ 2 i(wg—w relation 2+ 2=1 is fulfilled. Physical principles
Ihﬁ—ﬁAwﬂq— §<S(t)>,ue'( o=@t (49) |BNq| |ﬁNq+1| y princip

of generation of arbitrary quantum states of light and, par-
ticularly, electromagnetic qubits, were considered in Refs.

where [52-57,
o In the case being considered, explicit expressions for
Oy(1) = E qu(t)ps (ng)- (500 wave functions can easily be found; this allows analytical
ng=0 d treatment of the scattering problem. We start with the case

=2, = = -
Equation(49) is identical to Eq.(13) correct to the change er%dzbyz;;lgg]; Tt ot o ?n:tr;wilr\wlwqatiié@a;ﬁbeeriﬁg et
£—(£). Thus, we state the correspondergét) ~A(t). AS  More detail consideration of the cab=0 is given at the
a result, solution of Ec(49) gives us the polarization end of this section. Dynamical properties of the system are
described by Eqs(25)—(29) imposed to the initial condi-

1 N . ,
PX=—gaxx(w)<6’)[e_""‘—e_'(A‘"+‘°0)t]+c.c., (51  tions:

N _

where a,,(w) is determined by Eq(16) with the change Bi(0)=0ny Bt Oncr B+ 1) O
Aw— —Aw. Thus, by analogy with the prediction of classi-
cal electrodynamics, absorption line for the coherent light is
shifted by the value\ w.

Now, let us dwell on the problem of an excited QD ex-
posed to the coherent light. In that case, the initial condition
take the form

A(0)=A2(0)=BY(0)=0, (54)

with n,=1. Since we deal with the given photon mode, in-
9exq in Ng is further omitted. As in previous section, we
restrict the analysis to temporal intervals small as compared
to the radiation lifetime. Then the approximate relations

A(0)=bigFs,(Ng), B, (0)=0; (52 By (t)~pn=const, B{ '(t)~pBy.=const (55

they can be reduced to the approximate relatiédﬁg(t) hold true. As a result, amplitudeﬁsg‘ andAg'” satisfy the
~qu(nq). Further manipulations lead us to the equation coupled differential equations

6% 1. . AN 2 N Ay
iho,)—tqZﬁAa)ag—§<5(t)>*ﬂ*e_l(wo_w)t (53) i( Nil):—iAw( |:3N| IBNBNJer)( Ncll)

dt\ Aq BB+ |Bn+al® )\ Ag
for the quantity +(fq(t))

. 0 (56)
05 ()= 2 BR(t)Fs (ng). _ R , , _
Ng=0 while amplitudeA, ~ satisfies the single differential equa-

This equation states the correspondeﬁ@@)eB(t). Thus, tion

an excited QD exposed to the coherent light shows the shift dAg“l
Aw of resonant line in the direction opposite to that for a —_—
ground-state QD. dt
To conclude this section, note that the expressions for th N s .
macroscopic polarization obtained here in the framework o ergfq(t)— ~19qVN+ 1.1 exl~i(wg—wolt]
quantum electrodynamics are identical to the expressions fol- FIrSt: Iet us analyze system of E&%‘ﬂ- If we let fq(t)
lowing from the classical electrodynamics correct to the=0, the partial solutions of the typ&, "~ ~exp(~i\t) sat-
changes— (&). However, in quantum electrodynamics, un- 'S the characteristic equatior? ~ \Aw=0, which has two
like classical one, electromagnetic response of a system [90tS:A1=0 andi;=Aw, with Aw defined by Eq.(12).

irreducible to macroscopic polarization. This statement is il- hus, the eigenstate spectrum of $yst(6r&) con?alns states
lustrated in the following section. with resonant frequency both unshifted and shifted due to the

depolarization; these eigenstates degeneralg,-at0. Note
that the gap between resonances significantly exceeds the
linewidth: Aw>T'g /2, where coefficient’s, is given by ex-

A superposition of two arbitrary quantum field states arepression(39).
referred to as qubit. Accordingly, Fock qubit is a superposi- General solution of Eq$56) is represented by a superpo-
tion of two arbitrary Fock states which are eigenfunctions ofsition of two eigenstates considered and can be found by the
the HamiltonianHg (20); Fock states are the states with a variation of constants

=—igqVNBye (a0, (57)

E. Scattering of electromagnetic Fock qubits
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o | absorption Let us analyze the limiting cases of E&1). Neglecting
) the local-field effects, i.e., in the limik w—0, Eq.(61) re-
8 duces to

g — 2 2

5 OJ w(%e) =27|gg| [N+ [Bn+1|*]18(wo— w), (62)
=11]

§ ®y ogtA® giving unshifted resonance. In the case when incident-field
§ emission contains the only photon state, we must substitute in(&%).
§ Bnr1—0 and By—1, or vice versa,By;1—1 and By
] —0. In the former case we obtain

&

© ® W(*)=27|gq|*No(wo—w), (63

0y-Aw o,
while the latter one leads to the identical expression With
FIG. 2. Fine structure of the electromagnetic response of QD N+ 1 substituted. Thus, single-photon states are character-
illuminated by quantum light. For the depicted cases of absorptionzed by unshifted resonances like it take place under neglect-
and emission, the weighting coefficienfy and By., have been ing depolarization. However, amplitudes of resonances are
chosen different. quite different.
) The above analysis demonstrates that two spectral lines
Af(t) =cyq(t) +Coq(t)e 4, are presented in the effective scattering cross section. One of
(58 these lines has the frequency of the exciton transition and
- By Bt . another one_is shi_fted_owing to the induced_ depola_riza_tion of
Aq (t)y=-— *—clq(t)+ﬂ—c2q(t)e"“’t, QD. The shifted line is due to macroscopic polarization of
N+1 N QD. This can easily be shown explicitly by evaluation of
macroscopic polarization from E@23) taking into account
where relations(55) and (58). As a result, we obtain

ei(wofw)t_l 7iwt_efi(wo+Aw)t]

*
Cig(t)=—gqVN+18y1|Bn1l? T o—w PX=—M7,8§,,8N+1gq\/N+1[ pra——w +c.c.
(64)

i(wg—w+tAw)t _ 1
Since, in accordance with E@1), the complex-valued am-
plitude of the mean incident field is given by&)=
Solving Eq.(57) we obtain —2hBNBn+19qVN+1/p, polarization (64) can be pre-
sented in the form(51). Thus, we can conclude that the
[el(wom@)t_1] shifted line is related only with the classical polarization.
. (59 Unlike that, presence of the unshifted line is conditioned by
the quantum nature of electromagnetic field. This line does
The wave functions derived allows us to express the transi?ot exist in the framework of classical electrodynamics. In-
tion probability in the system by deed, the classical approach implies that the scattering cross
section is completely determined by the QD macroscopic
d polarization. We can illustrate it using the results of Sec.
W(t)=a[|Ag'_1(t)|2+|Ag'(t)|2+|Ag‘+1(t)|2] Il C. Since for the classic lightv(t)=d|A|%/dt, Eq. (17)
yields usw(%)= || u|?8(wo+ Aw— w)/2h2. Quantum
2 nature of the electromagnetic field gives rise to electromag-
B } (60) netic response, which is not related to the medium polariza-
N tion and is conditioned by the field eigenstates with a fixed
After some elementary manipulations and subs’[itutiorpumbe.r of photons. Spontaneous emission is an e.xample of
sin(at)/ra— &) in the limit t—oc, we find such kind of response. The key resu_lt of our paper is tha_t we
have shown that the electromagnetic field states with fixed
_ 2 2 4 _ and fluctuating numbers of photons differently react to the
W(2) = 2| e {INIB[*+ (N+ 1) By 4118w = @) +(N local fields. The states of the first type do not feel the local
+1)| Bl Bns1l?8(wo+ Aw— )} (61) fields while states of the second type demonstrate a shift of
resonant frequency.
This quantity defines the QD effective scattering cross sec- Consider now the cage=0, which corresponds to inter-
tion: o=w(=)/l, where | =[N+|By.1/?]c/Q is the flux action with QD of a single-photon related to the vacuum
density of incident photons. Figure 2 schematically represtate of the electromagnetic field. This process is described
sents the QD optical response defined by &d) for absorp- by the system of Eq(56) at N=0 with initial conditions
tion of Fock qubit. In the case of stimulated emission the 0 1 0 N
substitutionA w— — Aw should be performed in Eq61). Aq(0)=A5(0)=0, B4(0)=pBy, Bz(0)=p;. (69

Coq(t) =—0gqVN+ 1Bn+1lBnl?

wg—wtAw

Ay ()= —gqVNBy

wWo— w

Cig(H)|?

IBN+1

Coq(t
|AN=L(t)[ 2+ 4|2V

d
T dt
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The only difference that in the previous case sys(@was the system “QDrelectromagnetic field,” are drastically sim-
supplemented by independent E§7) whose analog is ab- plified; the latter takes the form as follows:
sent under consideration of interaction of QD with virtual

photons. This circumstance leads to an essential modification B .

of the solution. Indeed, in the given case the transition prob- w_i,jzo,l (Aijle)+Bylg)lii),
ability w(t) is expressed by the formulas

(71)

whereA;; andB;; are the coefficients to be found. Using the

W(t)=i[|A°(t)|2+|A1q(t)|2]=i C1q(1) ? Caq(t) ? Schralinger equation in the interaction representatigi
dt-" q dt|| B Bo ' one can derive a system of differential equations for these
(66) amplitudes. In matrix notation this system is given by
which in the limitt—c is reduced to d . fa )
. , &AI—IA(»BB A—igBexpli(wo—wq)t},
w(%)=2m7|gq|*| B1|T| B1l*6(wo— w) (72)
2 _ d
+[Bol* (0ot Aw—w)]. (67) B=—iAwAA*B—igTAexp{—i(wo—wq)t},

dt
This relation, the same as E(1), presents the transition
probability by superposition of two lines separated by thewhere
frequency gap\ w. However, because of absence in E&f)

the third term defined by Eq57), the ratio of amplitudes 0 9g2 91 O
differs from that given by Eq(61). In the limiting caseg, 0 0 0 g

—0 (single photon, Eg. (67) is reduced to Eq(63) with N G= al
=1. In the opposite casg,— 1 (virtual photon), from Eq. =10 0 0 gg
(66) follows the resultw (o) =0 which is not the case in Eq. 0O O 0 0

(61). Physically this result reflects disability of the vacuum
state to change an equilibrium state of quantum system. |nitial conditions for this system are as follows:

IV. INTERACTION OF QDS WITH A(0)=0, B(0)=C. (73
ENTANGLED STATES OF LIGHT
In the above equations, B, andC are the column matrices

) Problem of interaction of a QD with entangled states OfW|th AI] , BIJ , and CI] as ComponentS’ respective|y. In the
light require to be carefully considered from the standpointinear approximation with respect to electromagnetic field,
of the results obtained in preViOUS sections. Since the erhnd by ana'ogy W|th Sec. |l we can assume the approximate
tangled states are generated by photons with different polafs|ationsB(t)~C to be held. Taking this into account we
ization, the itemsHg, Hjo, and AH in Hamiltonian (18)  transform systen(72) into the set of linear equations:
should be modified to take polarization into account:

d
—A=—i th i o
%, (689) qiA= T1AeCCTA-IGCexpi(wo—wg)ty. (74

HF:hrr:zl.ZEk “k

+
Ck(rckrr +

Initial conditions for this system are stated by the first equal-
ity in relations(73).
Hio= _ﬁ(r:El ) ; (gk(rbTCk(r_g:(rbcla)' (69) Evaluation from systen(74) the QD response to an arbi-
' trary entangled state is a complicated and intricate problem
which is beyond the scope of our consideration. Neverthe-
AH=47 D, Nyor Py (— b +u*b), (70 less, a significant conclusion follows from @) without
o0’ =12 its explicit integration. Indeed, characteristic equation of the
homogeneous system is given by Det{ ® CC")=\3(\
where the indexr enumerates the photon polarization states,— A »)=0. Thus, we conclude that the response contains

Oko=—1 o2, [hQ explkr,), P,=V~ ' (us(b)  two spectral components divided by the gap. The ratio
— us(b")). The termH, in Eqg. (18) remains unchanged.  of intensities of the components depends on the exciting en-

Let the ground-state QD be exposed to an arbitrary entangled state, i.e., on the coefficiedts . Let us demonstrate
tangled stateCgg00) + Cp|01) + C1¢/10) +C14/11) being this for particular case of the state wi@y,=Cqy;=0 which
characterized by a given wavevectgr The notation|ij)  is a superposition of independent qubit and virtual photon:
denotes the produdfi),_1|j), —» Of single-photon wave Cg00)+ C;¢10)=(Cpo0);+C1q1)1)|0),; consequently,
functions with different polarizations. The arbitrary complex- this state is not “genuine” entangled state. From the last
valued coefficientsC;; satisfy the normalization condition formula follows that the transition probability(«) for the
=i;|Cij|?=1. In the case of a fixed wave vector, expressionsonsidered state is given by relati¢67) with Bo— Coo,
(68)—(69) as well as an expression for the wave function of 3;—Cy,, andgq,—gq:. Immediately, we conclude that in
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the case under consideration the QD response exhibits two V. DISCUSSION
spectral lines with ratio of intensities determined by the ratio
Coo/Crpo- 1. Observability of the depolarization effect

. CO”S'E'er now interaction of a QD+ with the Bell state of The basic physical result of the analysis presented in the
“ght’ = (|Oo>i|11>)/\/§ and_ V= (|01>i|10})/\/§’ given paper is the prediction of a fine structure of the absorp-
which play a fundamental role in electrodynamics of en-tjon (emission line in a QD interacting with quantum light.
tangled states. The Bell states are character!zed by ma_><|mﬁ43tead of a single line with a frequency corresponding to the
entanglement and form a complete system, i.e., an arbitraryy .iton transitionw,, a doublet is appeared with one com-
entangled state can be presented as a superposition of tBSnent shifted to the bluged by the valueAw (12). We
Bell states. have revealed that the fine structure is due to depolarization
So farCop= 1Nz, C10=Cp=0, andCyy= il/\/§ forthe  of QD and has no analogs in classical electrodynamics. The
states® ™, system(74) is significantly simplified for these yajue of the shift depends only on the geometrical properties
states and is reduced to of QD while the intensities of components are completely
determined by statistics of the quantum light. It has been

Bl W, %exp{i(w — )t} shown that in the limiting cases of classical light and single-
dt’ o 2 o Falth photon states the doublet is reduced to a singlet shifted in the
(75) former case and unshifted in the latter one. Let us estimate
d 9 the shift using well-known data for QD characteristics. For
—Ajo=Fi izexp{i(wo— ot} that aim, we rewrite Eq(12) using Eq.(39), corrected to the
dt V2 host medium influence by means of substitutiois
with trivial solutions Ag(t)=Aq;(t)=0. The transition N c )3
probability for both statesb* is given by the expression Ap= —> —) . (80)
w(t)=d(|Ao(t)|?2+|Agi(t)|?)/dt. After some elementary VT Jenwg
manipulations, in the limit—o we obtain
For a GaAs spherical QDN,=1/3) with the radiusR
W() = 7(|gqal?+19g2l?) 8@ — wy). (76) =3 nm, dielectric constant,=12 and radiation lifetimer

) ) . =1T¢,=1 ns[1], at the wavelengtih=1.3 um formula
Analogous consideration for the statds™, for thoseCqo  Eq. (80) gives #Aw=1 meV. This value correlates well
=C1;1=0, Co1= 12, andCy= = 1/2, leads to the equa- with the theoretical estimate given in RE21] and is of the
tions same order of magnitude as polarization-dependent splitting
described in Refg17,18. Note that the Bohr radius for such
d o1 . QDs is about 10 nni58], so that the strong confinement
gt oo™~ E(gqling)exp[l (wo=wg)th,  (77) approximation used in our paper is valid. The frequency gap
of the order of 1 meV has been observed in Rpf3]. Re-
andA(t) = Agy(t)=A,4(t)=0. Consequently, the transition cent low-temperature measurements of the QD dipole mo-

probability for ¥ is as follows: ment[6] give 7=0.05-0.15 ns. However, QDs studied in
Ref.[6] have lateral extension much larger then their thick-
W(%) = 7] Jq1 % Jgol 80— wo). (78  ness and the Bohr radius. Sinbg—0 in this case, we do

not predict an observable depolarization shift for such QDs.
Thus, Egs(76) and (78) show that the QD response to the  For experimental detection of the predicted fine structure,
Bell states of light contains only one spectral componenthe valuei A must exceed the linewidths of the doublet
with the unshifted frequency,. To interpret this fact physi- componentsA w>I's/2 and Aw>T',,/2, wherel'y,p, is
cally let us evaluate mean value of the electric field operatoithe homogeneous broadening of the spectral line due to
For wave function defined by expressi¢nil) this mean dephasing. As follows from Eq80), the first inequality is
value has the form analogous to that given by &d): fulfilled at N,>(27)2V/I\®, i.e., for any realistic arbitrary

shaped QDs. Analysis shows that the dominant contribution

- 2mho to the magnitude of i iton-ph interacti
_ q kR RE gnitude of },,,, gives exciton-phonon interaction.
(E)=-2 Q |mi:20Y1{[e1(All 0i T B1iBgi) Recent low-temperature TE20-40 K)  measurements
, [11,59,6Q give il',, o~ 1—20 ueV. Analogous estimate fol-

+e (A A+ B; Bl Je! (e}, (79 lows from calculations presented in R¢61] at T=77 K.

R Thus, at low temperatures the predicted value of the shift
From this relation follows thatE) =0 for all Bell states. In  turns out to be sufficiently large to be measured. At room
other words, Bell states behave like single photons or anyemperatures the quantityil',,,,, growths up to 0.2
states with a fixed number of photons: their interaction with—1 meV[1,60,61. In such a situation line broadening may
QDs does not induce macroscopic polarization and, conseesult in overlapping of the doublet components. However,
quently, does not produce depolarization field. Continuingeven in that case local-field effects are of importance for
this analogy, we can state that superposition of Bell stateadequate prediction of the spectral line shape of QD illumi-
can induce in QD two lines separated by the dap. nated by quantum light.
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2. Physical interpretation concept of the Einstein coefficienfd48]. In the case under
Physical interpretation of the depolarization effect can beconsideration, such a transformation being applied to single-
given by analogy with thé- p—theory of bulk crystal$62] photon states I(_eads to the energetic paradox: energies of ab-
utilizing the concept of the electron-hole effective mass. ForS0rbed and emitted photons differ by the quantiyA2o. At
spherical QD, using the expressions s [14] and forAw the first glance, there is no physically correct interpretation

(12), we obtain to this energy defect. Howev_er, the presenteq theory with-
draws this paradox. Indeed, in accordance with Sec. Ill C,
72,2 |2 the single-photon processes are insensitive to the depolariza-
hwg+hidw= e+ n! ’U“_, (81  tion field, so that the spontaneous emission and absorption of
2R°M  R® a single-photon occur at the same resonant frequecys

it was stated in Sec. lll D, depolarization shift occurs only in
whereM is the mass of electron-hole pair in QB is the  QDs exposed to the light with fluctuating number of photons
width of the forbidden band gap;, is thenth root of the  (classical light is the limiting case of such states of electro-
Bessel functionJ; , 1/5(x), indicesn and| defines the work-  magnetic field; in that situation, the energy defech®w
ing mode in the quantum oscillator spectrum. The third termcan physically be interpreted in the following way. The de-
in the right-hand part of the equation describes contributiorfect 24 A w is stipulated in the total nonclassical Hamiltonian
of the depolarization field. The right-hand part of the equa{(18) by the termAH defined by Eq(A14). This equation
tion can be rewritten asy+#2«5/2R?M e With Mg given  describes electromagnetic interaction of oscillating electron

by and hole. In the QED, this interaction is transferred by a
virtual photon with the energfA w, which is extracted from
M the external field and returns back at random fashion. Obvi-
Meff:w- (82 ously, such an interaction mechanism is impossible in exter-
o Lo B nal fields with a fixed number of photons, like the Fock
ﬁZKﬁ|R states. Namely by this reason the depolarization field is not

excited in QDs exposed to the Fock states and, consequently,

The quantityM ¢ can be interpreted as effective mass of thethe depolarization shift does not exist.
electron-hole pair in the QD. Thus, electromagnetic edge ef- As it is mentioned in Appendix A, the terH (A14),
fects at the QD boundary responsible for the QD depolarizajudging from its appearance, corresponds to the longitudinal
tion, change the exciton effective mass. Analogous consideklectromagnetic oscillations in QI560,64. Thus, the ex-
ation for the case of asymmetrically shaped QDs leads to thehange mechanism described above can be treated as physi-
tensorial effective mass that gives rise to the polarizationcal interpretation from the QED standpoint of the formation
dependent splitting of the gain band predicted and detected QD of the such longitudinal electromagnetic field. If we
in Ref. [17]. neglect the retardation inside the Bee Eq.(A13)], the

In our paper we have only taken into account the localinteraction process is reduced to the dynamical Coulomb in-
fields due to the QD boundary. In R¢63] is stated that the teraction of electrons and holes in QD. Thus, effect of the
dipole-dipole interaction entailed by the electromagneticdepolarization field in QDs is analogous to effect of the spa-
field inhomogeneity on the interatomic scg8¥,38, excites  tial charge in free-electron beanter, e.g., in microwave
the local fields that compensate completely contribution fromelectronic devices[65]. However, mathematical formalism
the boundary. Accordingly to Reff63], electromagnetic field  utilized in our paper and key results of the theory are dras-
acting on exciton in QD differs from the me#on the inter- tjcally different from that presented in Ré65]. The reason
atomic scalgfield which is considered in our theory as act- s that in microwave electronic devices, classical electrons
ing field inside QD, see Ed3). However, we cannot agree interact with classical electromagnetic fields, whereas in QDs
with the statement of Ref63]. Indeed, typical exciton Bohr quantum carriers interact with quantum light.
radius exceeds significantly the interatomic distance and,
thus, exciton wave function is disposed over a volume large 4. To the problem of quantum states sources testing
on the interatomic scaléQD volume in the strong confine-
ment regime and sphere with the Bohr radius in the Wealgp
confinement regimee This means that exciton feels the elec-
tromagnetic field averaged over the Q@ excitor) volume;
consequently, the use of E¢3), the key relation in our
theory, is physically justified.

Predicted in our paper effect of fine structure of exciton
ectral line may find a number of challenging potential ap-
plications. Recent progress in quantum optics has made pos-
sible single-photon and single Bell state sources for the gen-
eration of entangled states of ligi66]. However, such
sources are not perfect. For a realistic single-photon source,
the dominant statél,) is accompanied by a weak back-
ground of other states. Analogous situation takes place for
Another key result of the paper is that the depolarizationgenerators of entangled states. As it has been shown in our
shift (if it exists) has opposite signs for absorptive and in- paper, the QD electromagnetic response to a single-photon or
verted exciton levels. This property of QDs exposed to classingle Bell state from hypothetical idealistic source would
sical light has been elucidated in Ref$5,17 on the basis of contain unshifted single spectral line; presence of the back-
classical electrodynamics. As a rule, results obtained for thground will manifest itself in appearance of the shifted line.
classical light are extended to the quantum light using théntensity of this line will inform us about contribution of the

3. Energy balance
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background and, consequently, about quality of the source. VI. CONCLUSION
Thus, interaction of QDs with quantum light can be applied In the paper we have developed consecutive formalism of

for testing of quantum light sources. the electromagnetic field quantization in electrically small
scatterers taking into account local fields. The formalism has
5. Outlook been applied for the analysis of the role of local fields in
) electrodynamics of an isolated QD which is modeled as a
Let us discuss now some prospects for further developspatially confined two-level quantum oscillator. As the first
ment of the presented theory. First, note that our model doesep, we have formulategeneral self-consistent microscopic
not account for the real lineshape in the electromagnetic renonlinear equation$l1) describing interaction of an isolated
sponse: practically everywhere in the pagexcluding Sec. QD with classical electromagnetic field. Physically, system is
Il C) the line is approximated by the Dira®-function. As  analogous to the Bloch equations for optically dense media.
the next step, radiative and nonradiative mechanisms of reLhe general system derived can be applied to investigation of
laxation should be involved into consideration. Nonradiativedifferent nonlinear processes in QDs which are expected to
processes can be taken into account both phenomenolodi€ Strongly influenced by the local fields. .
cally (approximation of the longitudinal and transverse relax-, In this paper, we generalize the system 1o nonclassical

ation time[37]) and microscopicallfa special term respon- light. We have shown that the resonant interaction of non-
P P P classical light with QD is realized via two different mecha-

sible for the phonon and electron-phonon interacti@®is  pisms. The first, quasiclassical, one is related to macroscopic

introduced in total Hamiltoniari18)]. To include radiative polarization of QD in external electromagnetic field. This

corrections into treatment, higher terms in the expansida in mechanism providedepolarization shifof the resonant fre-

of the kernel of integralAl) must be taken into account. quency, blue for the ground-state QD and red for the excited

Even in this case we come to relatioh3); however, depo- one. Value of the shift depends only on the geometrical and

larization tensoiN becomes complex valudd6,69. electronic properties of QD and is independent on the inci-
Another essential assumption of the present theory is th&tent light statistics. For typical semiconductor QDs, the shift

the electric field is assumed to be homogeneous over QDS Predicted to be of the order of several meV. Second
mechanism of the QD-light interaction has quantum-

Thus, nonlocal effects in QDs, related namely to the inho- | d ical originati d be i din th
mogeneity, remain beyond the scope of the paper. For thg ectro yrllamf|ca| 0r|g|n|at|c|)n an dcannqt e ||:]'gerpreteh in the
lassical light, theory of nonlocal effects in QDs is well de- amework of classical electrodynamics. This mechanism
¢ gnt, y _ 'Y€ leaves the resonant frequency unshifted. Thus, in our paper
veloped[19,49,50,64,69,70 Elaboration of corresponding e predicts a fine structure of the absorptiemission line
theory for QDs exposed to quantum light is a self-maintainedn a QD interacting with the quantum light. Instead of a
problem which will be considered elsewhere. single line with a frequency corresponding to the exciton
In the paper we have considered an isolated QD. Natutransition, a doublet is appeared with one component shifted
rally, one can expect that the described effects will manifesto the blue(red). Proportion between intensities of compo-
themselves in different more complicated physical situationsients is completely determined by the quantum light statis-
where QDs interact with the quantum light, such as QD in dICS.
microcavity[9], response of a QD ensemli&L], role of the Both components of the doublet corresponds to the same

image effect§50], etc. The image effects originated from the field pola_rization and, consequently, splitting occurs even for
discontinuity of the dielectric function nonresonant part atSymmetrically shaped QDsphere, cub This distinguishes

the QD boundary. In the general case of a dispersive anwe predicted effect from the polarization-dependent splitting

lossy medium, accounting for the image effects is a compliconsidered in Ref447,17,1§. _
In the limiting case of classical light the doublet is trans-

cated problem which can be solved by introducing of thef di hifted sinale i ducing th iclassical
noise currenf27,40. The problem is significantly simplified ormed into shilted single ine reproducing thus semiclassica

if the nonresonant dielectric function is nondispersive an(fesu“,S obta!ned earligl4-18. U_nllke that, |nte(act|on of
nonabsorptive. QD with a single Fock state or single Bell state is character-

In the absence of depolarization fieltd4-0) Hamil- ized by a single unshifted resonance. In particular, emission
tonian(18) is reduced to the Friedrichs Hamiltonigre, 73, ©f Photon from Qlinteraction with vacuum stat@)) or its
Eigenstates of this Hamiltonian are so-called dress stateSOrption(interaction with the statgl)) occurs at the un-

(dress particles as well as dress phojorBundamental S ifted frequency. Physically it can easily be understood
theory of dress states, covering both stable and unstab rom the fact that both Fock and Bell states are characterized

cases, has been elaborated in RET2,73. The concept of y the Z€ro mean glegtric_field and.thus they do nqt induce
dress states can be applied for further development of thEi@croscopic polarization in QD. Since macroscopic polar-
theory presented. Indeed, eigenfunctions of Hamiltofzh ization that is respor)S|bI¢ for the_dﬁerence bet_vveen opera-
can be expanded in the Friedrichs Hamiltonian eigenfunctOrs Of local and acting fields, this difference disappear for
tions. As a result, a new system of dress states would appelfte Fock and Bell states. In general case, both lines are pre-
with local-field effects incorporated. At that, the componentS€nted in the spectrum and have comparable intensities.
AH can be considered as a small perturbation of the

Friedrichs Hamiltonian. Such an approach may be found ex- ACKNOWLEDGMENT
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helpful discussions. the tensoMN and thus the local field become spatially inho-
mogeneous what contradicts to the basic assumption used in

APPENDIX A: RELATION BETWEEN ACTING Sec. Il A under formulation of the Hamiltonian. To eliminate

AND LOCAL FIELDS IN QDS the contradiction, we should average relati@®8) over the

N QD volume. This leads us again to E¢3) with E, ,Ey,P

1. Classical fields — const and
We start with the frequency-domain integral relation for
complex-valued field amplitudg44,64] N 1 f f 2 d3rd3r ”6)
) expriklr—r')) W amV v Ivaxaxg Jr—r|
ELN=&(r)+(VV-+k9) P(r’)ﬁ, d=r’
v r—r’
(A1) 2. Quantum fields

At the first glance, for nonclassical fields EGA3) re-
mains valid if we insert operators instead corresponding
fields. However, such is not the case and relation between
valued amplitudes of the loca, (r) and the actingSy(r) acting and local fields in QEI_D reqyire a special discussion.
fields inside QD. Letting the QD to be electrically small, we Indeed, correct procedure of insertion of operators should be

can neglect retardation in this equation and transform it tg@ried out in the time-domain integral Maxwell equation
the equation for fields as follows: 1 2
A Zp —)

c? gt?

which follows from the Maxwell equations; here r’' eV
and P(r) is the polarization amplitude defined B¥(r,t)
=R P(r)exp(—iwt)]. This relation couples the complex-

E (r.t)=Eq(r,t)+

3,7

E,_(r,t)=Eo(r,t)+VV~f P(r’,t)| |. (A2)
v r—r’ t R

xf fG(”“)(r—r’,t—t’)P(r’,t’)d?’r’dt’,
Also, the above made supposition allows us to guess the —=JV

acting field and, consequently, the polarizati®o be con- (A7)
stant over the QD volume. As a result, E&2) is trans-
formed to where retarded Green function satisfies the equation
E =Eo—47NP. (A3) ,

Here N is the depolarization tensor those components are (Vz— 2 P) GUel(r,t)=8(r) 8(t) (A8)
defined by

1 2 a3 with the initial conditionG("®9(r,t)=0 att<0. In accor-

Nog=— 7= f . (A4)  dance with Ref[35], the retarded Green function is given by
4T O')Xa(E’XB Vv |r_r’|

This tensor is symmetricdl44] and depends only on the Ge) (r 1) 1 f f exdi(kr —wt)] &k d
shape of the scattering object, i.e., QD. For instance, for a o2mt k2—(w+ie)?/c?
sphereN=1/3. For an spheroid the tenshris diagonal in a (A9)
basis related to the spheroid’s aXds]:

5 with e— +0.
N _¢© +1(e— arctare) Polarization operator in EGA7) is given by the relation
zz 1 a3 — _
e P(r,t) = V71— ub" + p*b) = V™1 (ule)(g| + p*[g)(e]).

Thus, eigenstates of electron-hole pair in QD are generating
1 functions for the polarization operator. These functions can-
Nyx= Nyyzi(l_sz)' (A5) ot be considered as slowly varying over the QD volume.
Consequently, polarization operator in E&7) cannot be
wheree=/aZ/b%—1 is the spheroid eccentricitg,, and approximated by its value in a certain point of the space and
bes are the spheroid semiaxes in th@y plane and thez remqved from the integrand. Elnally, we can conclude that
direction, respectively. These formulas hold true for both dis/€lation(A3) cannot be automatically extended to the case of
Klike (as>be) and cigarlike spheroidsag,<by,). Infinite ~ field operators. _ o
stretching of the spheroidsa; /b, —0) results inN,,—0, To den_ve a relation for Fhe f|elq and po_larlzgtlon opera-
N, 1/2 and Eq.A5) reproduce the polarizabilities of the tors, we first construct the interaction Hamiltonian
cylinders(see, e.g., Ref17]). It should be noted that for an L
arbitrary three-axis ellipsoid, the tensirdoes not depend B An o aa
on the coordinates. Consequently, the local fiEldr) is HiL=—3V(PEL+E.P). (AL0)
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APPENDIX B: CORRELATION BETWEEN

Here we took into account that the operatérand E, are .
SCHRODINGER AND HEIZENBERG REPRESENTATIONS

generally noncommutative since the fidlg is not transver-
sal[48] [second term in EqA7) contains longitudinal com- Interaction of QDs with classical and quantum light can
ponent. Next, we substitute into EqA10) representation be performed both in Schdinger and Heizenberg represen-
(A7) and separate out the Hamiltonian component corretations. Both approaches are completely equivalent. How-
sponding to the depolarization field: ever, for correlation between different publications, it would
be helpful to establish correspondence of basic parameters
1 92 1 42 and equations for these approaches. Since the paper uses the
AH=— E(W —Sap —2) Schralinger picture, below we formulate Heizenberg equa-
Xa0Xp cat tions for Hamiltonian(5), carry out their transformation to
¢ . . the Bloch equations and then establish their correspondence
X fﬁwfVG(’e‘)(r—r’,t—t’)[Pa(r’,t’)PB(r,t) teorelzqs.(ll). Classical electromagnetic field is only consid-
In accordance with Ref62], we present the Heizenberg

B D Y 3,7 ’
TP OPL(r, 1) 1dr dt’. (AL1) equation in the following form:

This notation implies summation over repetitive indices. ~do

The last equation can be drastically simplified by the field i =—[H.0], (B1)
averaging over the QD volume. This procedure is analogous
to that was Used for the C|aSSica| ||ght Under deriVation Of\NhereO iS an arbitrary Operator_ Let“n@: b, we Obtain
Hamiltonian(5). The spatial averaging technique turns out to
be similar to the Hartry approximation in the self-consistent ) + .
field method for electron-electron interactidité]. In accor- 17 = (€e™ €g)b—4mNPu(dg+de—1)
dance with the method, we insert

+Equu(di+de—T). (B2)
[ LA YN Yy

Palt’ 1) = (Palr’,t)] (AL2) By analogy, lettingd=d]=aza} andO=d.=ala., we de-

into Eq.(A11) and, then, approximate averaged value of the V€
operator by a constant. This allows us to remove the aver-

aged operator from the integrand of E411). Further we iﬁid;:iﬁide: — 47N P (u*b+ ub")
take into account that QD is an electrically small object and dt dt
neglect the retardation effects inside the QD. In such a case, +Egy(u*b+ pub'). (B3)

the Green function reduces to

Equations of motion for operators create a basis for deriva-
S(t—t") tion of modified Bloch equations. Indeed, let us present the
1 (A13)  acting field by Eg,= :[&(t)exp(—iwt)+c.c] with £(t) as

slow-varying amplitude. The change over in E¢82) and
oo _ (B3) to averaged values after averaging over the pefiod

and termsO(9/dt%) in Eqg. (A11) can be omitted. As a re- =27/ gives the set of equation as follows:
sult, Eq.(A11) reduces to the expression

Gre(r—r' t—t')~

, d(b) _ - N -
AH=4mN, (B, (A12) i~ g =hwo(b) A w(b)[(d)) +(de) ~ 1]

1 :
which corresponds to Hamiltoniafi8) describing interac- +—5(t),u[(dg>+(de>—1]e*"°t, (B4)
tion of QD with nonclassical light. Analogous approxima- 2
tions being applied to EqA7) lead to the formula
d(d) _ d(dy)
dt dt

i% = %[8"(t)u*<b)ei“’t—c.c.],

EL:EO—ME P, (A15) (E5)
which offers for the nonclassical light an alternative to Eq.where wo=(€e.— €4)/%. Note that the term related to the
(A3). Note that this relation has been derived under assummepolarization is absent in E@B5). This is a result of aver-
tion that the oscillators and the vacuum are separate systenmeging of Eq.(B3) over the periodl =27/ w. Physically, sys-
This assumption lies in the basis of the approach applied item (B4)—(B5) is analogous to the system of Bloch equations
Ref.[34] under construction of QED of an atom imbedded infor optically dense media derived in R§82] [Egs.(25) and

a lossy dispersive dielectric medium. In accordance with26)] on the basis of the Liouville equations.

Ref. [34], relation (A15) provides the relatioﬂ“gpz \/e—hl“sp Note that Eq(10) for the macroscopic polarization gives
for the QD radiative linewidth in the medium. the relations(b’(t))— — A* (t)B(t)explwot) and (b(t))—
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A(t)B* (t)exp(—iwgt). Then, multiplying the first Eq(11) by _d|B|? 1 -
B*(t) and an equation complex conjugated to second Eq. if dt :_5[9(0“*@)8' —c.cl. (B8)
(11) by A(t), after summation of these equations we obtain
d(b) Composition of the last two equation results in the conserva-
i~ =hwo(b) ~ 4mN,(b)su(| A~ |BI2) + Equu(|a2 o 1aw

d
—[BJ?). (B6) gi{IAMDP+[B(DI%)=0, (B9)

Next, let us multiply Eqg.(11) by A(t), and the complex ) . )
conjugated equation bp*(t). Summation of these equa- Which, obviously, can also be represented by(t)|

tions gives us +|B(t)|2=1. The relations dTerived allow us to reveal the
correspondencfA|*—[B|?—(dg) +(de) — 1, which leads us
_d|A? 1 . ot to conclusion that EqB6) is identical to the Bloch equation
h—g = E[g*(t)f“ (b)e''~c.c]. (B7) " for polarization while Eqs(B7) and (B8) correspond to the

Bloch equation for the charge density. Thus, the derived Egs.
Analogous procedure being applied to second @&4) (11) are completely equivalent to the Bloch equati¢B)

leads to and (B3).
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