
PHYSICAL REVIEW A 66, 063804 ~2002!
Quantum optics of a quantum dot: Local-field effects
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The role of local fields in quantum electrodynamics of isolated quantum dot~QD! has been analyzed. The
system is modeled as a strongly confined in space two-level quantum oscillator illuminated by quantum light.
Relation between local and acting fields in QD has been derived in the dipole approximation from the integral
Maxwell equations for electromagnetic field operators. A formalism of the electromagnetic field quantization in
electrically small scatterers has been developed. As a result, Hamiltonian of the system has been formulated in
terms of the acting field with a separate term responsible for the effect of depolarization. Schro¨dinger equation
with that Hamiltonian has been solved in linear approximation. Interaction of QD with different quantum states
of light, such as Fock states, coherent states, Fock qubits, entangled states, has been analyzed. It has been
shown that the local-fields induce a fine structure of the QD absorption~emission! spectrum: instead of a single
line with the frequency corresponding to the exciton transition, a doublet appears with one component shifted
to the blue~red!. The value of the shift depends only on the geometrical and electronic properties of QD while
the intensities of components are completely determined by the quantum light statistics. It has been demon-
strated that in the limiting cases of classical light and single-photon state the doublet is reduced to a singlet
shifted in the former case and unshifted in the latter one. A physical interpretation of the predicted effect has
been proposed. Possible ways of experimental observation of the effect has been discussed together with the
potentiality of its utilization in the quantum information processing.
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I. INTRODUCTION

Optical and electronic properties of quantum dots~QDs!
is currently an area of active investigation owing to prom
ing potential applications such as active media of dou
heterostructure laser@1#. Ultrahigh material and differentia
gain, orders of magnitude exceeding those in quantum w
lasers, has been experimentally confirmed. Recently Q
have been proposed to serve as nodes of quantum netw
that store and process quantum information being transm
between nodes by entangled states of photons@2–5#. An ex-
perimental observation of a single-QD absorber has been
ported in Ref.@6#. Application of semiconductor QDs in cav
ity quantum electrodynamics@7–9# and as potentia
quantumlight emitters@10–12# is now intensively discussed
Spontaneous emission in QDs@13# and electromagnetic fluc
tuations are also in the focus of interest. In connection w
that problems, quantum electrodynamics~QED! of quantum
dots and ensembles of QDs acquires a special significanc
this paper we analyze the role of local fields in interaction
QDs with nonclassical light.

QD is a structural inhomogeneity in a host semiconduc
which confines charge carrier motion producing thus disc
energy spectrum, and scatters incident electromagnetic
inducing thus local fields. If scatterer is electrically sma
that implies its linear extension to be small as compared w
the wavelength inside the scatterer medium, the local-fi
effects can be accounted for asdepolarizationof the scat-
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terer. Further QDs are assumed to be electrically small.
polarization gives an especially significant impact on t
electromagnetic response in the case when scatterer is a
nant system,~e.g., QD!. There is no reason to assume t
depolarization negligible in the interaction of nanopartic
with quantum light. In classical electrodynamics, the loc
field effects in isolated QDs were considered in a numbe
papers, e.g., Refs.@14–16#, on the basis of different macro
scopic phenomenological models. For the strong confi
ment regime, where QD linear extension is much less t
the Bohr radius of the bulk exciton, a phenomenologi
theory of linear electromagnetic response of regular 3
ensembles of QDs has been elaborated in Refs.@17,18#. In
particular, polarization-dependent splitting of the gain ba
in anisotropically shaped QDs has been predicted. Lo
field effects in 2D arrays of QDs in both strong and we
confinement regimes were discussed in Ref.@19#. Micro-
scopic models of the local-field effects in spherical QDs ha
been presented in Refs.@20,21#. In the framework of these
models, spontaneous emission problem has been consid
semiclassically on the basis of the self-field approach@21#.

At the same time we have to state that a consistent c
sideration of local-field effects in QDs is still lacking; pa
ticular models are investigated instead. As a result, there
ist qualitatively different predictions of the QD
electromagnetic response. For instance, Refs.@14–18,20#
predict depolarization shift of the resonant line while such
shift is absent in Ref.@21#; the sign of the shift turns out to
be different for the absorption@14,15,20# and stimulated
emission @15–18#. A lack of a consistent theory of loca
fields in QDs does not allow us to judge whether such d
©2002 The American Physical Society04-1
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ferences reflect real properties of different optical proces
or they are provided by particular approximations.

In general, QED provides necessary formalism for inv
tigation of the problem. However, since QDs are electrica
small inhomogeneities with inherent energy dissipation~ab-
sorption or gain! and dispersion, canonical quantizatio
scheme of the electromagnetic field becomes invalid: di
pation results in that the operators corresponding to the M
well equations turn out to be non-Hermitian. A general QE
formalism for dissipative inhomogeneous media is now
tively elaborated and is still far from completion. Differe
procedures, which are not always obviously identical a
leads to identical results@22#, of the electromagnetic field
quantization in such media have been proposed~see, e.g.,
Refs. @23–35# and references therein!. Peculiarities of the
electromagnetic field quantization in dielectric media w
inverse population were discussed in Ref.@36#.

As in classical electrodynamics, both microscopic a
macroscopic models are investigated in the QED of inhom
geneous media. The macroscopic approach@27–30# implies
phenomenological description of the medium by means o
complex-valued Kramers-Kronig dielectric function. In ord
to fulfill the commutation relations for the electromagne
field operators, auxiliary fields describing the medium m
be introduced. One of the possible version of auxiliary fie
is the noise current used in Refs.@27,29–31#. Most general
formalism for the noise current concept has been develo
in Ref. @30#, where QED has been formulated for arbitra
scattering system described by a casual and eventually
local susceptibility tensor. Individualizing of the formalis
for electrically small scatterers~point scatterers in the termi
nology of Savastaet al. @30#! has been carried out. Howeve
resonant scatterers like QDs have remained beyond the
sideration.

Microscopic approach@31–35# does not usea priori de-
fined dielectric function. Instead, electrodynamics is supp
mented with the charge carriers transport in the medium
that case canonical quantization procedure is carried ou
the system ‘‘electromagnetic field1 medium’’; there is no
need to introduce noise current operators~auxiliary fields!.
Note that such an approach is more physically justified co
paring with the macroscopic phenomenological descript
but loses generality: model of the charge-carrier transp
must be specified before the electromagnetic field quant
tion.

The present paper introduces local-field effects into qu
tum optics of QDs. Consideration is based on the mic
scopic approach analogous to that utilized in Refs.@31,33,35#
for plane semiconductor heterostructures. The paper is
ranged as follows. In Sec. II, we combine a local-field theo
for optically dense media@37,38#, based on the relation be
tween acting and local fields in the Liouville equations, w
the secondary quantization technique usually being app
to the electron-hole pairs in QDs. Such an approach allo
us to account for the local-field effects in systems with flu
tuating number of particles. As a result, we find a Ham
tonian of the light interaction with electron-hole pairs in Q
and we separate in this Hamiltonian a special term resp
sible for the local field effects. The Schro¨dinger representa
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tion is used. We reproduce the known results concerning
depolarization shift of the resonant frequency in QDs@14–
16# and polarization-dependent splitting of the gain ba
@17,18#, obtained earlier phenomenologically. In Sec. III w
extend the Hamiltonian derived to nonclassical light and
vestigate interaction of QD with factorized states of quant
light. Sec. IV is devoted to local-field effects in QDs inte
acting with entangled states of light. Discussion of main
sults and their consequences is presented in Sec. V. Con
ing remarks are given in Sec. VI.

II. LOCAL FIELDS AND SECONDARY QUANTIZATION
OF ELECTRON-HOLE PAIRS

A. Model Hamiltonian for QD in classical
electromagnetic field

Let an isolated QD be exposed to classical electrom
netic field. Further the QD is modeled as a strongly confin
in space@14# two-level quantum oscillator. Obviously, QD i
an essentially multilevel system. However, contribution
transitions lying far away from a given resonance can
approximated by a nonresonant dielectric function«h . We
shall assume«h to be equal to the dielectric function of th
host semiconductor. Thus, in our model interaction of qu
tum oscillator with external electromagnetic field occurs
side a homogeneous boundless medium characterized b
dielectric function«5«h . For our consideration it is essen
tial that eh can be assumed to be frequency independent
real valued. This allows us to put«h51 without loss of
generality. Substitutions in final expressions

c→c/Aeh and m→m/Aeh ~1!

for the speed of light and the oscillator dipole moment,
spectively, will restore the caseehÞ1.

In the strong confinement regime the Coulomb interact
is assumed to be negligible, so that electrons and hole
QD are moved independently and spatial quantization is
tailed by the interaction of the particles with QD bounda
In this section we aim at the development of the Hamilt
formalism, which would describe the system ‘‘QD1 elec-
tromagnetic field’’ taking into account the role of QD boun
aries. Apparently, the most sequential and rigorous appro
to the problem is based on the concept of spatially vary
interaction coefficient developed in Refs.@33,35#. However,
utilization of the approach for systems with the stepwise
teraction coefficient meets the problem that the Hamil
equations are inapplicable at the discontinuity. The sa
problem exists in macroscopic electrodynamics of stratifi
media. By analogy, introducing a transient layer and red
ing its thickness, one can obtain boundary conditions co
plimentary to the Hamilton equations for the system un
analysis. However, in the practical use, the described
proach turned out to be too complicated and was realized
the only simplest configuration: interaction of a mater
layer with the normally incident light@33,35# ~see also Ref.
@39#!. Note that even in this simplest case the local-fie
effects are left beyond the consideration.
4-2
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As applied to QDs, in our paper we develop a more c
structive approach which utilizes the property of QDs to
electrically small. This property allows us to assume lo
and acting fields to be homogeneous inside the QD. In f
this implies that we introduce a spatial averaging of the e
tric field over the QD volume. The approach enables us
solve the problem considering fields only inside the Q
Moreover, it proves to be possible to examine separately,
certain extent, the electromagnetic field and the particles~see
Appendix A!. On the other hand, the simplification restric
the analysis to the strong confinement regime; the the
should be drastically modified to include inhomogeneity a
nonlocality into consideration.

In the framework of the above stated approximation,
system ‘‘QD 1 electromagnetic field’’ is described by th
Hamiltonian H5H01HIL , where H05eeae

†ae1egag
†ag is

the Hamiltonian of the carriers motion,eg,e are the energy
eigenvalues,ag,e

† andag,e stand for the creation and annih
lation operators~here and below indicese andg correspond
to the excited and ground states of electron, respective!.
These operators satisfy the anticommutative relations u
for fermions. The termHIL describes interaction with th
electromagnetic field. In this paper we use a 3D Cartes
coordinate systemua (a5x,y,z) with the unite vectorux
parallel to the electron-hole pair dipole moment:m5mux . In
the chosen coordinates the termHIL takes the form as fol-
lows:

HIL52VP̂xELx , ~2!

where P̂x5V21(2mb†1m* b) is the polarization operator
the operatorsb†5agae

† and b5ag
†ae are the creation and

annihilation operators for electron-hole pairs,V is the QD
volume. Thus, we define the light-matter interaction Ham
tonian in the dipole approximation@40,41#, i.e., we reject a
negligibly small term proportional toA2. Such an approxi-
mation is valid, at least, in the vicinity of the exciton res
nance~see Refs.@42,31#!. Here and below we mark operato
by the label ‘‘ ˆ ’’ if it is necessary to distinguish them from
their macroscopically averaged values denoted by the s
letters. We use underlined letters to mark tensors. Note
our model also describes higher excitonic modes; in that c
operatorsb† andb move up the exciton into the next energ
level and return it back.

The field inside the QD,EL , involved in Eq.~2!, is dif-
ferent from the external acting fieldE0. Since we postulate
the QD to be electrically small, and, as consequence,
field inside QD to be homogeneous, this difference is de
mined by the depolarization field@43# ~see also Fig. 1 for
clarity!:

EL5E024pN P. ~3!

HereP5^P̂& is the macroscopic polarization,N is the depo-
larization tensor. This tensor is symmetrical@44# and de-
pends only on the shape of the scattering object. Equation~3!
is obtained from the integral equations of electrodynamic
the dipole approximation@44# ~see Appendix A!. Using Eq.
~3! one can easily obtain
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where the depolarization coefficientNx is as follows: Nx
5(m•Nm)/umu2[(ux•Nux).

In view of the above consideration, the total Hamiltoni
is represented by

H5H01HI01DH, ~5!

where

HI052VP̂xE0x ~6!

and

DH54pNxPx~2mb†1m* b!

5
4p

V
Nx~m* b2mb†!~m* ^b&2m^b†&!. ~7!

Thus, in the total Hamiltonian we have separated contri
tion of the interaction of electron-hole pairs with acting fiel
HI0, from contribution of depolarization,DH. Such a sepa-
ration allows us to include the local-field effects into cons
eration without explicit solution of the electrodynamic
boundary-value problem. This is of special importance wh
we come to the quantization of the electromagnetic fie
Note that the quantityDH is expressed in terms of dynam
variables of the particle motion. Thus, coefficientNx con-
tains complete information about electromagnetic interact
@45#.

B. Equations of motion

Let uc̃(t)& be the wave function of the system ‘‘QD
1 classical electromagnetic field.’’ In the interaction repr
sentation this system is described by the Schro¨dinger equa-
tion

i\
]uc&
]t

5Hintuc& ~8!

FIG. 1. Schematic picture of correlation between acting a
local fields in electrically small scatterer. Local field is assumed
be homogeneous.
4-3
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SLEPYAN et al. PHYSICAL REVIEW A 66, 063804 ~2002!
with uc(t)&5exp(iH0t/\)uc̃(t)& and Hint5exp(iH0t/\)(HI0
1DH)exp(2iH0t/\). We represent thenuc(t)& by the sum as
follows:

uc~ t !&5A~ t !ue&1B~ t !ug&,

whereA(t) andB(t) are unknown coefficients to be found
ug& and ue& are the wave functions of QD in ground an
excited states, respectively. Taking into account the w
known identities b†ue&5bug&50 and bue&5ug&, b†ug&
52ue&, from Eq. ~8! we obtain the set of equations of mo
tion

i\
]A

]t
5~4pNxPx2E0x!mBeiv0t,

~9!

i\
]B

]t
5~4pNxPx2E0x!m* Ae2 iv0t,

with macroscopic polarization determined by

Px5^c̃uP̂xuc̃&5
1

V
m* A~ t !B* ~ t !e2 iv0t1c.c. ~10!

Further we restrict ourselves to the slow-varying amp
tude approximation. For that aim, we present the acting fi
by E0x5Re@E(t)exp(2ivt)# with E(t) as a slow-varying am-
plitude. Then, taking relation~10! into account and neglect
ing the fast-oscillating terms in Eq.~9!, we derive final ex-
pressions for equations of motion@46#

i\
]A

]t
5\DvAuBu22

1

2
E~ t !mBei (v02v)t,

~11!

i\
]B

]t
5\DvBuAu22

1

2
E* ~ t !m* Ae2 i (v02v)t,

where

Dv5
4p

\V
Nxumu2. ~12!

These equations constitute a basic self-consistent system
scribing the interaction of QD with electromagnetic fiel
The consistency is provided by the depolarization-indu
first terms in the right-hand parts of the equations. Phy
cally, system~11! is analogous to the Bloch equations f
optically dense media derived in Ref.@37#. The relaxation
can easily be included into Eqs.~11! either by introduction of
the phenomenological transverse and longitudinal relaxa
times@37# or by corresponding modification of initial Hamil
tonian ~5!.

C. Polarization of QD in classical electromagnetic field

The case of excited QD can be analyzed using Eqs.~11!
with the initial conditionsA(0)51 andB(0)50 imposed. In
linear approximation with respect to electromagnetic field
can putA(t)'1. Physically, this means that we restrict t
analysis to temporal intervals essentially less than the re
06380
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Eqs.~11! are simplified and reduced to

i\
]B

]t
5\DvB2

1

2
E* ~ t !m* ei (v02v)t. ~13!

For time-harmonic excitation, i.e., forE(t)5E5const, this
equation is exactly integrable:

B~ t !'2
E* m*

2\~v02Dv2v!
@e2 i (v02v)t2e2 iDvt# ~14!

with Dv determined by Eq.~12!. Thus, one can see that th
local-field ~depolarization! leads to the shiftDv of the reso-
nant frequency. This shift was predicted in a number of
pers @14–16# on the basis of different phenomenologic
models. In Refs.@17,18# it has been predicted and exper
mentally verified that this shift in anisotropically shape
QDs provides polarization splitting of the gain band. No
also that the depolarization effect has been proposed
Gammonet al. @47# as a hypothesis explaining the expe
mentally observed polarization-dependent splitting of the
spectrum of single anisotropically shaped QD.

Equation~12! is identical to that obtained in Refs.@17,18#.
In order to demonstrate it we should make a substitut
umu2→um0u2/3 wherem0 is the matrix element of the dipole
moment of a corresponding bulk sample~coefficient 1/3 is
appeared as a result of orientational averaging in b
samples!. We should also take into account the spin deg
eracy of electron-hole pairs which results in duplication
Dv. This is because the total polarization of the system
provided by superposition of two partial polarizations cor
sponding to two spin components. Then, expressing ma
scopic polarization in terms ofB(t), we find

Px5
1

8p
axx~v!E@e2 ivt2e2 i (2Dv1v0)t#1c.c., ~15!

where

axx~v!5
4pumu2

\V~v1Dv2v0!
~16!

is the component of the QD polarizability tensor. Pheno
enological consideration for QD modeled as sing
resonance medium with the Lorentz dispersion«(v)5«h
1g0 /(v2v0) @17,18# gives the same result if we putg0
54pumu2/\V. This means that the Hamiltonian defined b
Eqs. ~5!–~7! comprises that phenomenological model as
particular case.

For a ground-state QD, the initial conditions has the fo
as follows: A(0)50, B(0)51. Applying to this case the
above presented procedure, we obtain

A~ t !'
Em

2\~v01Dv2v!
@ei (v02v)t2e2 iDvt#. ~17!

Thus, for the ground state the local-field effects manif
themselves in the same shiftDv of the resonance but with
the opposite sign. If we introduce now into consideration
4-4
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QUANTUM OPTICS OF A QUANTUM DOT: LOCAL- . . . PHYSICAL REVIEW A 66, 063804 ~2002!
finite radiation linewidth, interaction of a ground-state Q
with the electromagnetic field corresponds to the absorpt
while interaction with an excited QD corresponds to the c
of stimulated emission. In other words, the optical absorpt
and gain of an isolated QD could be distinguished owing
the depolarization shift, blue in the former case and red
the latter one.

III. INTERACTION OF QD WITH
FACTORIZED STATES OF LIGHT

A. Model Hamiltonian for the case of nonclassical light

The light states which can be expressed by a superp
tion of fields with different linear polarizations shall furthe
be referred to as factorized states. Linearly polarized qu
tum light is a particular realization of such states. In order
obtain Hamiltonian of a QD interacting with quantum ele
tromagnetic field, one needs to supplement Eq.~5! by the
termHF corresponding to the free space field, and to cha
over in the termHI0 the electromagnetic field strength by th
corresponding operator,E0x→Ê0x . In quantum optics of in-
homogeneous media there is a problem of presentation o
electromagnetic field operator since the local fields are in
mogeneous. Unlike conventional approaches, the propo
scheme of the electromagnetic field quantization does
meet this problem since the interaction Hamiltonian is p
sented in terms of acting field but not the local one. As
result, usual plane-wave expansion is applicable to the
erator Ê0x ; the role of the QD boundary is taken into a
count by the termDH ~7!. Thus, the Hamiltonian for the cas
of quantum electromagnetic field is as follows:

H5H01DH1HI01HF , ~18!

whereHI052VP̂xÊ0x and

Ê0x5 i(
k
A2p\vk

V
~cke

ikr 2ck
†e2 ikr !. ~19!

In this equationvk5cuku is the frequency of the photo
modek, V is the normalization volume,ck

† and ck are the
photon creation and annihilation operators, correspondin
Taking into account Eq.~19! we obtain

HF5\(
k

vkS ck
†ck1

1

2D , ~20!

HI052\(
k

~gkb
†ck2gk* bck

†!, ~21!

wheregk52 imA2pvk /\V exp(ikr c), and r c is the radius
vector of the QD geometrical center.

Hamiltonian ~18! conforms to the use of relation~A15!
for field operators instead relation~3! for classical fields. The
termÊ0 in Eq. ~A15! presented by a superposition of photo
@48# is an auxiliary field which can be interpreted as an
cident field only in the classical limit. For the quantum lig
such a simple interpretation is inapplicable: operatorÊ0, in
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general, is not identical to the field inside or outside the Q
moreover, this term can arise even in the absence of
external sources~for example, in spontaneous transitions!.
Note that the fieldÊ0 is transverse. As has been pointed o
in Ref. @48#, it is such a field that can be represented by
superposition of ‘‘genuine’’ photons. The total field insid
QD is not transverse due to the second term in Eq.~A7! ~see
also Refs.@49,50#!. Direct application of conventional quan
tization schemes to such fields leads to a crucial prob
which is impossibility to fulfill commutative relations fo
electromagnetic field operators without introduction of au
iliary fields @27–30#. In our approach we reduce the proble
of quantization of local field to that for acting field. Since th
acting field is a superposition of plane waves, quantizat
procedure gets routined.

B. Equations of motion

In the interaction representation the system ‘‘QD1 quan-
tum electromagnetic field’’ with Hamiltonian~18! is de-
scribed by Eq.~8! where the substitutionH0→H01HF
should be performed. In that case, wave function of the s
tem can be presented by

uc~ t !&5 (
k,nk50

@Ak
nk~ t !ue&1Bk

nk~ t !ug&] unk&, ~22!

whereAk
nk(t), andBk

nk(t) are unknown functions of time to
be found,unk& denotes the field states where there isn pho-
tons in modek and no photons in all other modes,u0& is the
wave function of the electromagnetic field in the vacuu
state. In view of relation~22!, formulas~10! for macroscopic
polarization is transformed to

Px5
1

V
m* u~ t !e2 iv0t1c.c., ~23!

where

u~ t !5 (
k,nk50

Ak
nk~ t !@Bk

nk~ t !#* . ~24!

Then, after some standard manipulations with Schro¨dinger
equation~8! we come to the infinite chain of coupled non
linear differential equations for slowly varying amplitudes

i
dAk

0

dt
5DvBk

0 (
q,mq

Aq
mq~Bq

mq!* 1(
q

gqBq
1qe2 i (vq2v0)t,

~25!

i
dBk

0

dt
5DvAk

0 (
q,mq

~Aq
mq!* Bq

mq , ~26!

i
dBk

1k

dt
5DvAk

1k (
q,mq

~Aq
mq!* Bq

mq1gk* Ak
0ei (vk2v0)t, ~27!
4-5
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i
dAk

nk

dt
5DvBk

nk (
q,mq

Aq
mq~Bq

mq!*

1gkAnk11Bk
nk11e2 i (vk2v0)t, ~28!

i
dBk

nk11

dt
5DvAk

nk11 (
q,mq

~Aq
mq!* Bq

mq

1gk* Ank11Ak
nkei (vk2v0)t, ~29!

for arbitrary nk . This system will serve us as a basis f
further analysis at different initial conditions. Note th
namely accounting for the depolarization field is a spec
property of this system which makes it nonlinear and coup
all quantum states of electromagnetic field, distinguishi
thus, this system from conventional equations of quant
electrodynamics. In the limitNx→0 the system~25!–~29!
splits into recurrent sets of linear equations coupling o
unk& and unk11& states. In that limit the system becom
equivalent to the ordinary system of the equations of mot
of a two-level atom exposed to quantum electromagn
field @41#. It can easily be shown that system of equatio
~25!–~29! satisfies the following conservation law:

d

dt (
k,nk50

~ uAk
nku21uBk

nku2!50. ~30!

Thus, letting the wave function to be orthonormal in t
initial point of time, we obtain the relation

(
k,nk50

@ uAk
nk~ t !u21uBk

nk~ t !u2#51 ~31!

for arbitrary point of time.

C. Interaction with single-photon states

1. Spontaneous emission

The process of spontaneous emission from a QD can
treated as interaction of an excited QD with two states
electromagnetic field,u0& andu1k&. Neglecting in Eqs.~25!–
~29! all other states, we reduce the system to the follow
form:

i
dAk

0

dt
5DvBk

0(
q

Aq
1q~Bq

1q!* 1(
q

gqBq
1qe2 i (vq2v0)t,

i
dBk

0

dt
5DvAk

0(
q

~Aq
1q!* Bq

1q , ~32!

i
dBk

1k

dt
5DvAk

1k(
q

~Aq
1q!* Bq

1q1gk* Ak
0ei (vk2v0)t,

i
dAk

1k

dt
5DvBk

1k(
q

Aq
1q~Bq

1q!* ,

with initial conditions given by
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Ak
0~0!51, Bk

0~0!5Bk
1k~0!5Ak

1k~0!50. ~33!

These conditions correspond to the excited state of elect
hole pair with zero number of photons in the initial time.
view of initial conditions~33!, from system~32! follows that
the termsBk

0(t) andAk
1k(t) are of the higher-order infinitesi

mal and can be neglected. Then system~32! is reduced to

dAk
0

dt
52 i(

q
gqBq

1qe2 i (vq2v0)t,

dBk
1k

dt
52 igk* Ak

0ei (vk2v0)t. ~34!

In investigation of this system we should take into acco
natural width of the resonant transition. By this reason
cannot assumeAk

0(t)'1 as we have done under derivatio
of Eq. ~14!. Let us integrate second equation in system~34!:

Bk
1k~ t !52 igk* E

0

t

Ak
0~ t8!ei (vk2v0)t8dt8. ~35!

Substitution of this expression into first equation of the s
tem leads us to the integro-differential equation

dAk
0

dt
5E

0

t

K~ t2t8!Ak
0~ t8!dt8 ~36!

with operator of the Volterra type and kernel

K~ t !52(
k

ugku2e2 i (vk2v0)t. ~37!

By means of the substitution

(
k

@•#→ V

~2p!3E0

2p

dwE
0

p

sinuduE
0

`

k2@•#dk, ~38!

which correspond to the limit transitionV→`, and subse-
quent integration@51#, we reduce Eq.~37! to the simple no-
tation K(t)52Gspd(t)/2, where

Gsp5
4umu2v0

3

\c3
5

4um0u2v0
3

3\c3
~39!

is the radiative linewidth. Note that the account for nonre
nant transitions by means of substitutions~1! gives the result
identical to that obtained in Ref.@13#. Analogous result has
been obtained in Ref.@34# under consideration of the spon
taneous emission of an excited atom imbedded in a lo
dispersive dielectric medium. Equation~36! leads to the el-
ementary relation

Ak
0~ t !5exp~2Gspt/2!. ~40!

Although relations~35! and ~40! have been obtained as
result of approximate integration of Eqs.~32!, it can easily
be shown that these relations together with the conditi
4-6
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Bk
0(t)5Ak

1k(t)50 generate an exact solution of system~32!
independently on whether or not the role of depolarizat
fields is small.

Solution ~40! defines the spontaneous emission proc
characterized by the resonant line

1

v2v01 iGsp/2
.

It should be emphasized that the spontaneous emission
unlike absorption and stimulated emission, does not exp
ence depolarization shift~this line shows only a small Lamb
shift neglected in our analysis!. The depolarization does no
also influence the resonance linewidth. Analogous situa
appears in interaction of QD with any pure state of elect
magnetic field. To make clear physical sense of the re
obtained, let us consider mean value of the electric field
the operatorÊ0x ~19! with wave function defined by Eq
~22!:

^Ê0x&5^c̃uÊ0xuc̃&

522 ImH (
q,nq

A2p\vq

V
ei (qrc2vqt)

3Anq11@~Aq
nq!* Aq

nq11
1~Bq

nq!* Bq
nq11

#J .

~41!

It follows from this expression that^Ê0x&50 for any state of
electromagnetic field with a fixed number of photons. Th
if initial state of electromagnetic field is a pure state~as it
take place in the case of spontaneous emission!, its mean
value is equal zero and it does not induce depolariza
field. The situation is drastically changed in the case of fi
states with fluctuating number of photons. This problem
considered below in Sec. III D.

2. Absorption of a single photon

Absorption of a single photon with the wave numberq
5uqu is described by system of Eqs.~32! imposed to the
initial conditions

Bk
1k~0!5dkq , Ak

0~0!5Bk
0~0!5Ak

1k~0!50. ~42!

In accordance with the procedure presented in the prev
section, we can putBk

0(t)5Ak
1k(t)50 in Eqs.~32! and thus

reduce them to set~34!. Solution of this set with the abov
stated initial conditions leads us to

Aq
0~ t !5

gq

v2v01 iGsp/2
@ei (v02v)t2e2Gspt/2#, ~43!

Bk
1k~ t !5dkq2 igk* E

0

t

Aq
0~ t8!ei (vk2v0)t8dt8. ~44!

The absorption cross section for a single photon is de
mined by the formulassph5w(`)V/c, where w(t)
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5]uAq
0u2/]t is the probability of the transition in a given poin

of time. After some standard manipulations with Eqs.~43!
and ~44!, we come to

sph5
ugqu2VGsp /c

~v2v0!21Gsp
2 /4

. ~45!

Thus, as different from the emission and absorption of cl
sical electromagnetic waves, defined by Eqs.~14! and ~17!,
spontaneous emission and absorption of a single photon
characterized by the same resonant frequency and the s
radiative linewidth. From that we conclude that the sing
photon processes are insensitive to the depolarization fi
This can easily be understood from that the mean elec
field of a single photon, in accordance with Eq.~41!, is equal
zero.

D. Polarization of QD by coherent state of light

Now, let us consider interaction of an isolated QD with
elementary coherent state of lightusq& which is determined
as eigenfunction of the photon annihilation operator@40# of a
given photonic modeq5uqu: cqusq&5squsq&. This coherent
state can be expanded into a series in the energy statesunq&:

usq&5 (
nq50

`

Fsq
~nq!unq&. ~46!

Here the coefficientsFsq
(nq) are given by Ref.@40#

Fsq
~nq!5exp~2usqu2/2!

sq
nq

Anq!
,

and usqu25^nq&s stands for the mean value of number
photons. The coefficientsFsq

(nq) satisfy the orthonormaliza
tion condition

(
nq50

`

Fsq

2 ~nq!51.

Mean value of the complex-valued electric field amp
tude for the incident coherent state is given, in line with E
~41!, by the expression

^Ê&522
\gq

m (
nq50

`

Anq11 Fsq
~nq!Fsq

~nq11!. ~47!

The initial conditions for a ground-state QD exposed to
coherent light state are as follows:

Bk
nk~0!5dkqFsq

~nq!, Ak
nk~0!50. ~48!

In such a case, only terms withk5q can be retained in Eqs
~25!–~29!. Further we restrict ourselves to the temporal
tervals as small as compared to the radiation lifetime:t!t
;1/Gsp . Then the approximate relationsBq

nq(t)'Fsq
(nq)
4-7
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hold true for arbitrarynq>0. Multiplying Eq. ~28! by
Fsq

(nq) and Eq.~25! by Fsq
(0), after summation we obtain

the equation

i\
]uq

]t
5\Dvuq2

1

2
^Ê~ t !&mei (v02v)t, ~49!

where

uq~ t !5 (
nq50

`

Aq
nq~ t !Fsq

~nq!. ~50!

Equation~49! is identical to Eq.~13! correct to the change
E→^Ê&. Thus, we state the correspondenceuq(t)→A(t). As
a result, solution of Eq.~49! gives us the polarization

Px52
1

8p
axx~v!^Ê&@e2 ivt2e2 i (Dv1v0)t#1c.c., ~51!

where axx(v) is determined by Eq.~16! with the change
Dv→2Dv. Thus, by analogy with the prediction of class
cal electrodynamics, absorption line for the coherent ligh
shifted by the valueDv.

Now, let us dwell on the problem of an excited QD e
posed to the coherent light. In that case, the initial conditi
take the form

Ak
nk~0!5dkqFsq

~nq!, Bk
nk~0!50; ~52!

they can be reduced to the approximate relationsAq
nq(t)

'Fsq
(nq). Further manipulations lead us to the equation

i\
]uq*

]t
5\Dvuq* 2

1

2
^Ê~ t !&* m* e2 i (v02v)t ~53!

for the quantity

uq* ~ t !5 (
nq50

`

Bq
nq~ t !Fsq

~nq!.

This equation states the correspondenceuq* (t)→B(t). Thus,
an excited QD exposed to the coherent light shows the s
Dv of resonant line in the direction opposite to that for
ground-state QD.

To conclude this section, note that the expressions for
macroscopic polarization obtained here in the framework
quantum electrodynamics are identical to the expressions
lowing from the classical electrodynamics correct to t
changeE→^Ê&. However, in quantum electrodynamics, u
like classical one, electromagnetic response of a syste
irreducible to macroscopic polarization. This statement is
lustrated in the following section.

E. Scattering of electromagnetic Fock qubits

A superposition of two arbitrary quantum field states a
referred to as qubit. Accordingly, Fock qubit is a superpo
tion of two arbitrary Fock states which are eigenfunctions
the HamiltonianHF ~20!; Fock states are the states with
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fixed number of photons. Let a ground-state QD intera
with electromagnetic field in the Fock qubit state of t
modeq: bNq

uNq&1bNq11uNq11&. HerebNq
andbNq11 are

the complex-valued quantities, for which the normalizati
relation ubNq

u21ubNq11u251 is fulfilled. Physical principles
of generation of arbitrary quantum states of light and, p
ticularly, electromagnetic qubits, were considered in Re
@52–57#.

In the case being considered, explicit expressions
wave functions can easily be found; this allows analyti
treatment of the scattering problem. We start with the c
Nq>2. The other cases,Nq50 andNq51, can be consid-
ered by analogy but lead to mathematically differing resu
More detail consideration of the caseNq50 is given at the
end of this section. Dynamical properties of the system
described by Eqs.~25!–~29! imposed to the initial condi-
tions:

Bk
nk~0!5~dNk ,nk

bNk
1dNk11,nk

bNk11!dkq ,

Ak
nk~0!5Ak

0~0!5Bk
0~0!50, ~54!

with nk>1. Since we deal with the given photon mode, i
dex q in Nq is further omitted. As in previous section, w
restrict the analysis to temporal intervals small as compa
to the radiation lifetime. Then the approximate relations

Bq
N~ t !'bN5const, Bq

N11~ t !'bN115const ~55!

hold true. As a result, amplitudesAq
N and Aq

N11 satisfy the
coupled differential equations

d

dt S Aq
N

Aq
N11D 52 iDvS ubNu2 bNbN11*

bN* bN11 ubN11u2 D S Aq
N

Aq
N11D

1S f q~ t !

0 D , ~56!

while amplitudeAq
N21 satisfies the single differential equa

tion

dAq
N21

dt
52 igqANbNe2 i (vq2v0)t. ~57!

Here f q(t)52 igqAN11bN11 exp@2i(vq2v0)t#.
First, let us analyze system of Eqs.~56!. If we let f q(t)

50, the partial solutions of the typeAq
N11,N;exp(2ilt) sat-

isfy the characteristic equationl22lDv50, which has two
roots, l150 and l25Dv, with Dv defined by Eq.~12!.
Thus, the eigenstate spectrum of system~56! contains states
with resonant frequency both unshifted and shifted due to
depolarization; these eigenstates degenerate atNx→0. Note
that the gap between resonances significantly exceeds
linewidth: Dv@Gsp/2, where coefficientGsp is given by ex-
pression~39!.

General solution of Eqs.~56! is represented by a superpo
sition of two eigenstates considered and can be found by
variation of constants
4-8
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Aq
N~ t !5c1q~ t !1c2q~ t !e2 iDvt,

~58!

Aq
N11~ t !52

bN*

bN11*
c1q~ t !1

bN11

bN
c2q~ t !e2 iDvt,

where

c1q~ t !52gqAN11bN11ubN11u2
ei (v02v)t21

v02v
,

c2q~ t !52gqAN11bN11ubNu2
ei (v02v1Dv)t21

v02v1Dv
.

Solving Eq.~57! we obtain

Aq
N21~ t !52gqANbN

@ei (v02v)t21#

v02v
. ~59!

The wave functions derived allows us to express the tra
tion probability in the system by

w~ t !5
d

dt
@ uAq

N21~ t !u21uAq
N~ t !u21uAq

N11~ t !u2#

5
d

dt F uAq
N21~ t !u21Uc1q~ t !

bN11
U2

1Uc2q~ t !

bN
U2G . ~60!

After some elementary manipulations and substitut
sin(at)/pa→d(a) in the limit t→`, we find

w~`!52pugqu2$@NubNu21~N11!ubN11u4#d~v02v!1~N

11!ubNu2ubN11u2d~v01Dv2v!%. ~61!

This quantity defines the QD effective scattering cross s
tion: s5w(`)/I , where I 5@N1ubN11u2#c/V is the flux
density of incident photons. Figure 2 schematically rep
sents the QD optical response defined by Eq.~61! for absorp-
tion of Fock qubit. In the case of stimulated emission t
substitutionDv→2Dv should be performed in Eq.~61!.

FIG. 2. Fine structure of the electromagnetic response of
illuminated by quantum light. For the depicted cases of absorp
and emission, the weighting coefficientsbN and bN11 have been
chosen different.
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Let us analyze the limiting cases of Eq.~61!. Neglecting
the local-field effects, i.e., in the limitDv→0, Eq. ~61! re-
duces to

w~`!52pugqu2@N1ubN11u2#d~v02v!, ~62!

giving unshifted resonance. In the case when incident-fi
contains the only photon state, we must substitute in Eq.~61!
bN11→0 and bN→1, or vice versa,bN11→1 and bN
→0. In the former case we obtain

w~`!52pugqu2Nd~v02v!, ~63!

while the latter one leads to the identical expression withN
→N11 substituted. Thus, single-photon states are charac
ized by unshifted resonances like it take place under negl
ing depolarization. However, amplitudes of resonances
quite different.

The above analysis demonstrates that two spectral l
are presented in the effective scattering cross section. On
these lines has the frequency of the exciton transition
another one is shifted owing to the induced depolarization
QD. The shifted line is due to macroscopic polarization
QD. This can easily be shown explicitly by evaluation
macroscopic polarization from Eq.~23! taking into account
relations~55! and ~58!. As a result, we obtain

Px52
m*

V
bN* bN11gqAN11

@e2 ivt2e2 i (v01Dv)t#

v02v1Dv
1c.c.

~64!

Since, in accordance with Eq.~41!, the complex-valued am
plitude of the mean incident field is given bŷÊ&5
22\bN* bN11gqAN11/m, polarization ~64! can be pre-
sented in the form~51!. Thus, we can conclude that th
shifted line is related only with the classical polarizatio
Unlike that, presence of the unshifted line is conditioned
the quantum nature of electromagnetic field. This line do
not exist in the framework of classical electrodynamics.
deed, the classical approach implies that the scattering c
section is completely determined by the QD macrosco
polarization. We can illustrate it using the results of S
II C. Since for the classic lightw(t)5duAu2/dt, Eq. ~17!
yields us w(`)5puEu2umu2d(v01Dv2v)/2\2. Quantum
nature of the electromagnetic field gives rise to electrom
netic response, which is not related to the medium polar
tion and is conditioned by the field eigenstates with a fix
number of photons. Spontaneous emission is an examp
such kind of response. The key result of our paper is that
have shown that the electromagnetic field states with fi
and fluctuating numbers of photons differently react to
local fields. The states of the first type do not feel the lo
fields while states of the second type demonstrate a shi
resonant frequency.

Consider now the caseN50, which corresponds to inter
action with QD of a single-photon related to the vacuu
state of the electromagnetic field. This process is descri
by the system of Eq.~56! at N50 with initial conditions

Aq
0~0!5Aq

1~0!50, Bq
0~0!5b0 , Bq

1~0!5b1 . ~65!

D
n

4-9
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The only difference that in the previous case system~56! was
supplemented by independent Eq.~57! whose analog is ab
sent under consideration of interaction of QD with virtu
photons. This circumstance leads to an essential modifica
of the solution. Indeed, in the given case the transition pr
ability w(t) is expressed by the formulas

w~ t !5
d

dt
@ uAq

0~ t !u21uAq
1q~ t !u2#5

d

dt FUc1q~ t !

b1
U2

1Uc2q~ t !

b0
U2G ,
~66!

which in the limit t→` is reduced to

w~`!52pugqu2ub1u2@ ub1u2d~v02v!

1ub0u2d~v01Dv2v!#. ~67!

This relation, the same as Eq.~61!, presents the transition
probability by superposition of two lines separated by
frequency gapDv. However, because of absence in Eq.~66!
the third term defined by Eq.~57!, the ratio of amplitudes
differs from that given by Eq.~61!. In the limiting caseb0
→0 ~single photon!, Eq. ~67! is reduced to Eq.~63! with N
51. In the opposite caseb0→1 ~virtual photon!, from Eq.
~66! follows the resultw(`)50 which is not the case in Eq
~61!. Physically this result reflects disability of the vacuu
state to change an equilibrium state of quantum system.

IV. INTERACTION OF QDS WITH
ENTANGLED STATES OF LIGHT

Problem of interaction of a QD with entangled states
light require to be carefully considered from the standpo
of the results obtained in previous sections. Since the
tangled states are generated by photons with different po
ization, the itemsHF , HI0, and DH in Hamiltonian ~18!
should be modified to take polarization into account:

HF5\ (
s51,2

(
k

vkS cks
† cks1

1

2D , ~68!

HI052\ (
s51,2

(
k

~gksb†cks2gks* bcks
† !, ~69!

DH54p (
s,s851,2

Nss8Ps8~2msb†1ms* b!, ~70!

where the indexs enumerates the photon polarization stat
gks52 imsA2pvk /\V exp(ikr c), Ps5V21(ms* ^b&
2ms^b†&). The termH0 in Eq. ~18! remains unchanged.

Let the ground-state QD be exposed to an arbitrary
tangled stateC00u00&1C01u01&1C10u10&1C11u11& being
characterized by a given wavevectorq. The notationu i j &
denotes the productu i &s51u j &s852 of single-photon wave
functions with different polarizations. The arbitrary comple
valued coefficientsCi j satisfy the normalization condition
( i j uCi j u251. In the case of a fixed wave vector, expressio
~68!–~69! as well as an expression for the wave function
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the system ‘‘QD1electromagnetic field,’’ are drastically sim
plified; the latter takes the form as follows:

c5 (
i , j 50,1

~Ai j ue&1Bi j ug&)u i j &, ~71!

whereAi j andBi j are the coefficients to be found. Using th
Schrödinger equation in the interaction representation~8!,
one can derive a system of differential equations for th
amplitudes. In matrix notation this system is given by

d

dt
A52 iDvBB†A2 iGB exp$ i ~v02vq!t%,

~72!
d

dt
B52 iDvAA†B2 iG †A exp$2 i ~v02vq!t%,

where

G5S 0 gq2 gq1 0

0 0 0 gq1

0 0 0 gq2

0 0 0 0

D .

Initial conditions for this system are as follows:

A~0!50, B~0!5C. ~73!

In the above equationsA, B, andC are the column matrices
with Ai j , Bi j , and Ci j as components, respectively. In th
linear approximation with respect to electromagnetic fie
and by analogy with Sec. II we can assume the approxim
relationsB(t)'C to be held. Taking this into account w
transform system~72! into the set of linear equations:

d

dt
A52 iDvCC†A2 iGC exp$ i ~v02vq!t%. ~74!

Initial conditions for this system are stated by the first equ
ity in relations~73!.

Evaluation from system~74! the QD response to an arb
trary entangled state is a complicated and intricate prob
which is beyond the scope of our consideration. Nevert
less, a significant conclusion follows from set~74! without
its explicit integration. Indeed, characteristic equation of
homogeneous system is given by Det(l-D v CC1)[l3(l
2Dv)50. Thus, we conclude that the response conta
two spectral components divided by the gapDv. The ratio
of intensities of the components depends on the exciting
tangled state, i.e., on the coefficientsCi j . Let us demonstrate
this for particular case of the state withC105C0150 which
is a superposition of independent qubit and virtual phot
C00u00&1C10u10&5(C00u0&11C10u1&1)u0&2; consequently,
this state is not ‘‘genuine’’ entangled state. From the l
formula follows that the transition probabilityw(`) for the
considered state is given by relation~67! with b0→C00,
b1→C10, and gq→gq1. Immediately, we conclude that in
4-10
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the case under consideration the QD response exhibits
spectral lines with ratio of intensities determined by the ra
C00/C10.

Consider now interaction of a QD with the Bell state
light, F65(u00&6u11&)/A2 and C65(u01&6u10&)/A2,
which play a fundamental role in electrodynamics of e
tangled states. The Bell states are characterized by max
entanglement and form a complete system, i.e., an arbit
entangled state can be presented as a superposition o
Bell states.

So farC0051/A2, C105C0150, andC11561/A2 for the
statesF6, system~74! is significantly simplified for these
states and is reduced to

d

dt
A0157 i

gq1

A2
exp$ i ~v02vq!t%,

~75!
d

dt
A1057 i

gq2

A2
exp$ i ~v02vq!t%,

with trivial solutions A00(t)5A11(t)50. The transition
probability for both statesF6 is given by the expression
w(t)5d(uA10(t)u21uA01(t)u2)/dt. After some elementary
manipulations, in the limitt→` we obtain

w~`!5p~ ugq1u21ugq2u2!d~v2v0!. ~76!

Analogous consideration for the statesC6, for thoseC00

5C1150, C0151/A2, andC10561/A2, leads to the equa
tions

d

dt
A0052 i

1

A2
~gq16gq2!exp$ i ~v02vq!t%, ~77!

andA10(t)5A01(t)5A11(t)50. Consequently, the transitio
probability for C6 is as follows:

w~`!5pugq16gq2u2d~v2v0!. ~78!

Thus, Eqs.~76! and ~78! show that the QD response to th
Bell states of light contains only one spectral compon
with the unshifted frequencyv0. To interpret this fact physi-
cally let us evaluate mean value of the electric field opera
For wave function defined by expression~71! this mean
value has the form analogous to that given by Eq.~41!:

^Ê&522A2p\vq

V
Im (

i 50,1
$@e1~A1iA0i* 1B1iB0i* !

1e2~Ai1Ai0* 1Bi1Bi0* !#ei (qrc2vqt)%. ~79!

From this relation follows that̂Ê&50 for all Bell states. In
other words, Bell states behave like single photons or
states with a fixed number of photons: their interaction w
QDs does not induce macroscopic polarization and, con
quently, does not produce depolarization field. Continu
this analogy, we can state that superposition of Bell sta
can induce in QD two lines separated by the gapDv.
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V. DISCUSSION

1. Observability of the depolarization effect

The basic physical result of the analysis presented in
given paper is the prediction of a fine structure of the abso
tion ~emission! line in a QD interacting with quantum light
Instead of a single line with a frequency corresponding to
exciton transitionv0, a doublet is appeared with one com
ponent shifted to the blue~red! by the valueDv ~12!. We
have revealed that the fine structure is due to depolariza
of QD and has no analogs in classical electrodynamics.
value of the shift depends only on the geometrical proper
of QD while the intensities of components are complet
determined by statistics of the quantum light. It has be
shown that in the limiting cases of classical light and sing
photon states the doublet is reduced to a singlet shifted in
former case and unshifted in the latter one. Let us estim
the shift using well-known data for QD characteristics. F
that aim, we rewrite Eq.~12! using Eq.~39!, corrected to the
host medium influence by means of substitutions~1!:

Dv5
pNx

Vt S c

A«hv0
D 3

. ~80!

For a GaAs spherical QD (Nx51/3) with the radiusR
.3 nm, dielectric constant«h512 and radiation lifetimet
51/Gsp.1 ns @1#, at the wavelengthl51.3 mm formula
Eq. ~80! gives \Dv.1 meV. This value correlates we
with the theoretical estimate given in Ref.@21# and is of the
same order of magnitude as polarization-dependent split
described in Refs.@17,18#. Note that the Bohr radius for suc
QDs is about 10 nm@58#, so that the strong confinemen
approximation used in our paper is valid. The frequency g
of the order of 1 meV has been observed in Refs.@47#. Re-
cent low-temperature measurements of the QD dipole m
ment @6# give t.0.0520.15 ns. However, QDs studied i
Ref. @6# have lateral extension much larger then their thic
ness and the Bohr radius. SinceNx→0 in this case, we do
not predict an observable depolarization shift for such Q

For experimental detection of the predicted fine structu
the value\Dv must exceed the linewidths of the doubl
components:Dv@Gsp/2 and Dv@Ghom/2, whereGhom is
the homogeneous broadening of the spectral line due
dephasing. As follows from Eq.~80!, the first inequality is
fulfilled at Nx@(2p)2V/l3, i.e., for any realistic arbitrary
shaped QDs. Analysis shows that the dominant contribu
to the magnitude ofGhom gives exciton-phonon interaction
Recent low-temperature (T520–40 K) measurement
@11,59,60# give \Ghom;1 –20meV. Analogous estimate fol-
lows from calculations presented in Ref.@61# at T577 K.
Thus, at low temperatures the predicted value of the s
turns out to be sufficiently large to be measured. At roo
temperatures the quantity\Ghom growths up to 0.2
21 meV @1,60,61#. In such a situation line broadening ma
result in overlapping of the doublet components. Howev
even in that case local-field effects are of importance
adequate prediction of the spectral line shape of QD illum
nated by quantum light.
4-11
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2. Physical interpretation

Physical interpretation of the depolarization effect can
given by analogy with thek•p–theory of bulk crystals@62#
utilizing the concept of the electron-hole effective mass. F
spherical QD, using the expressions forv0 @14# and forDv
~12!, we obtain

\v01\Dv5eg1
\2knl

2

2R2M
1

umu2

R3
, ~81!

whereM is the mass of electron-hole pair in QD,eg is the
width of the forbidden band gap,knl is the nth root of the
Bessel functionJl 11/2(x), indicesn and l defines the work-
ing mode in the quantum oscillator spectrum. The third te
in the right-hand part of the equation describes contribut
of the depolarization field. The right-hand part of the equ
tion can be rewritten aseg1\2knl

2 /2R2Me f f with Me f f given
by

Me f f5
M

11
2umu2M

\2knl
2 R

. ~82!

The quantityMe f f can be interpreted as effective mass of t
electron-hole pair in the QD. Thus, electromagnetic edge
fects at the QD boundary responsible for the QD depolar
tion, change the exciton effective mass. Analogous consi
ation for the case of asymmetrically shaped QDs leads to
tensorial effective mass that gives rise to the polarizati
dependent splitting of the gain band predicted and dete
in Ref. @17#.

In our paper we have only taken into account the lo
fields due to the QD boundary. In Ref.@63# is stated that the
dipole-dipole interaction entailed by the electromagne
field inhomogeneity on the interatomic scale@37,38#, excites
the local fields that compensate completely contribution fr
the boundary. Accordingly to Ref.@63#, electromagnetic field
acting on exciton in QD differs from the mean~on the inter-
atomic scale! field which is considered in our theory as ac
ing field inside QD, see Eq.~3!. However, we cannot agre
with the statement of Ref.@63#. Indeed, typical exciton Boh
radius exceeds significantly the interatomic distance a
thus, exciton wave function is disposed over a volume la
on the interatomic scale~QD volume in the strong confine
ment regime and sphere with the Bohr radius in the w
confinement regime!. This means that exciton feels the ele
tromagnetic field averaged over the QD~or exciton! volume;
consequently, the use of Eq.~3!, the key relation in our
theory, is physically justified.

3. Energy balance

Another key result of the paper is that the depolarizat
shift ~if it exists! has opposite signs for absorptive and
verted exciton levels. This property of QDs exposed to cl
sical light has been elucidated in Refs.@15,17# on the basis of
classical electrodynamics. As a rule, results obtained for
classical light are extended to the quantum light using
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concept of the Einstein coefficients@48#. In the case under
consideration, such a transformation being applied to sin
photon states leads to the energetic paradox: energies o
sorbed and emitted photons differ by the quantity 2\Dv. At
the first glance, there is no physically correct interpretat
to this energy defect. However, the presented theory w
draws this paradox. Indeed, in accordance with Sec. III
the single-photon processes are insensitive to the depola
tion field, so that the spontaneous emission and absorptio
a single-photon occur at the same resonant frequencyv0. As
it was stated in Sec. III D, depolarization shift occurs only
QDs exposed to the light with fluctuating number of photo
~classical light is the limiting case of such states of elect
magnetic field!; in that situation, the energy defect 2\Dv
can physically be interpreted in the following way. The d
fect 2\Dv is stipulated in the total nonclassical Hamiltonia
~18! by the termDH defined by Eq.~A14!. This equation
describes electromagnetic interaction of oscillating elect
and hole. In the QED, this interaction is transferred by
virtual photon with the energy\Dv, which is extracted from
the external field and returns back at random fashion. Ob
ously, such an interaction mechanism is impossible in ex
nal fields with a fixed number of photons, like the Fo
states. Namely by this reason the depolarization field is
excited in QDs exposed to the Fock states and, conseque
the depolarization shift does not exist.

As it is mentioned in Appendix A, the termDH ~A14!,
judging from its appearance, corresponds to the longitud
electromagnetic oscillations in QD@50,64#. Thus, the ex-
change mechanism described above can be treated as p
cal interpretation from the QED standpoint of the formati
in QD of the such longitudinal electromagnetic field. If w
neglect the retardation inside the QD@see Eq.~A13!#, the
interaction process is reduced to the dynamical Coulomb
teraction of electrons and holes in QD. Thus, effect of
depolarization field in QDs is analogous to effect of the s
tial charge in free-electron beams~or, e.g., in microwave
electronic devices! @65#. However, mathematical formalism
utilized in our paper and key results of the theory are dr
tically different from that presented in Ref.@65#. The reason
is that in microwave electronic devices, classical electro
interact with classical electromagnetic fields, whereas in Q
quantum carriers interact with quantum light.

4. To the problem of quantum states sources testing

Predicted in our paper effect of fine structure of excit
spectral line may find a number of challenging potential a
plications. Recent progress in quantum optics has made
sible single-photon and single Bell state sources for the g
eration of entangled states of light@66#. However, such
sources are not perfect. For a realistic single-photon sou
the dominant stateu1k& is accompanied by a weak back
ground of other states. Analogous situation takes place
generators of entangled states. As it has been shown in
paper, the QD electromagnetic response to a single-photo
single Bell state from hypothetical idealistic source wou
contain unshifted single spectral line; presence of the ba
ground will manifest itself in appearance of the shifted lin
Intensity of this line will inform us about contribution of th
4-12
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background and, consequently, about quality of the sou
Thus, interaction of QDs with quantum light can be appli
for testing of quantum light sources.

5. Outlook

Let us discuss now some prospects for further deve
ment of the presented theory. First, note that our model d
not account for the real lineshape in the electromagnetic
sponse: practically everywhere in the paper~excluding Sec.
III C ! the line is approximated by the Diracd –function. As
the next step, radiative and nonradiative mechanisms o
laxation should be involved into consideration. Nonradiat
processes can be taken into account both phenomeno
cally ~approximation of the longitudinal and transverse rela
ation time@37#! and microscopically@a special term respon
sible for the phonon and electron-phonon interactions@67# is
introduced in total Hamiltonian~18!#. To include radiative
corrections into treatment, higher terms in the expansionk
of the kernel of integral~A1! must be taken into accoun
Even in this case we come to relation~A3!; however, depo-
larization tensorN becomes complex valued@16,68#.

Another essential assumption of the present theory is
the electric field is assumed to be homogeneous over
Thus, nonlocal effects in QDs, related namely to the in
mogeneity, remain beyond the scope of the paper. For
classical light, theory of nonlocal effects in QDs is well d
veloped @19,49,50,64,69,70#. Elaboration of corresponding
theory for QDs exposed to quantum light is a self-maintain
problem which will be considered elsewhere.

In the paper we have considered an isolated QD. Na
rally, one can expect that the described effects will manif
themselves in different more complicated physical situatio
where QDs interact with the quantum light, such as QD i
microcavity@9#, response of a QD ensemble@71#, role of the
image effects@50#, etc. The image effects originated from th
discontinuity of the dielectric function nonresonant part
the QD boundary. In the general case of a dispersive
lossy medium, accounting for the image effects is a com
cated problem which can be solved by introducing of
noise current@27,40#. The problem is significantly simplified
if the nonresonant dielectric function is nondispersive a
nonabsorptive.

In the absence of depolarization field (N→0) Hamil-
tonian~18! is reduced to the Friedrichs Hamiltonian@72,73#.
Eigenstates of this Hamiltonian are so-called dress st
~dress particles as well as dress photons!. Fundamental
theory of dress states, covering both stable and unst
cases, has been elaborated in Refs.@72,73#. The concept of
dress states can be applied for further development of
theory presented. Indeed, eigenfunctions of Hamiltonian~18!
can be expanded in the Friedrichs Hamiltonian eigenfu
tions. As a result, a new system of dress states would ap
with local-field effects incorporated. At that, the compone
DH can be considered as a small perturbation of
Friedrichs Hamiltonian. Such an approach may be found
tremely useful under treatment of different problems
quantum optics of QDs.
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VI. CONCLUSION

In the paper we have developed consecutive formalism
the electromagnetic field quantization in electrically sm
scatterers taking into account local fields. The formalism
been applied for the analysis of the role of local fields
electrodynamics of an isolated QD which is modeled a
spatially confined two-level quantum oscillator. As the fir
step, we have formulatedgeneral self-consistent microscop
nonlinear equations~11! describing interaction of an isolate
QD with classical electromagnetic field. Physically, system
analogous to the Bloch equations for optically dense me
The general system derived can be applied to investigatio
different nonlinear processes in QDs which are expected
be strongly influenced by the local fields.

In this paper, we generalize the system to nonclass
light. We have shown that the resonant interaction of n
classical light with QD is realized via two different mech
nisms. The first, quasiclassical, one is related to macrosc
polarization of QD in external electromagnetic field. Th
mechanism providesdepolarization shiftof the resonant fre-
quency, blue for the ground-state QD and red for the exc
one. Value of the shift depends only on the geometrical a
electronic properties of QD and is independent on the in
dent light statistics. For typical semiconductor QDs, the s
is predicted to be of the order of several meV. Seco
mechanism of the QD-light interaction has quantu
electrodynamical origination and cannot be interpreted in
framework of classical electrodynamics. This mechani
leaves the resonant frequency unshifted. Thus, in our pa
we predicts a fine structure of the absorption~emission! line
in a QD interacting with the quantum light. Instead of
single line with a frequency corresponding to the excit
transition, a doublet is appeared with one component shi
to the blue~red!. Proportion between intensities of comp
nents is completely determined by the quantum light sta
tics.

Both components of the doublet corresponds to the sa
field polarization and, consequently, splitting occurs even
symmetrically shaped QDs~sphere, cub!. This distinguishes
the predicted effect from the polarization-dependent splitt
considered in Refs.@47,17,18#.

In the limiting case of classical light the doublet is tran
formed into shifted single line reproducing thus semiclass
results obtained earlier@14–16#. Unlike that, interaction of
QD with a single Fock state or single Bell state is charac
ized by a single unshifted resonance. In particular, emiss
of photon from QD~interaction with vacuum stateu0&) or its
absorption~interaction with the stateu1&) occurs at the un-
shifted frequency. Physically it can easily be understo
from the fact that both Fock and Bell states are character
by the zero mean electric field and thus they do not ind
macroscopic polarization in QD. Since macroscopic po
ization that is responsible for the difference between ope
tors of local and acting fields, this difference disappear
the Fock and Bell states. In general case, both lines are
sented in the spectrum and have comparable intensities.
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APPENDIX A: RELATION BETWEEN ACTING
AND LOCAL FIELDS IN QDS

1. Classical fields

We start with the frequency-domain integral relation f
complex-valued field amplitudes@44,64#

EL~r !5E0~r !1~““•1k2!E
V
P~r 8!

exp~ ikur2r 8u!

ur2r 8u
, d3r 8

~A1!

which follows from the Maxwell equations; herer , r 8PV
and P(r ) is the polarization amplitude defined byP(r ,t)
5Re@P(r )exp(2ivt)#. This relation couples the complex
valued amplitudes of the localEL(r ) and the actingE0(r )
fields inside QD. Letting the QD to be electrically small, w
can neglect retardation in this equation and transform i
the equation for fields as follows:

EL~r ,t !5E0~r ,t !1““•E
V
P~r 8,t !

d3r 8

ur2r 8u
. ~A2!

Also, the above made supposition allows us to guess
acting field and, consequently, the polarizationP to be con-
stant over the QD volume. As a result, Eq.~A2! is trans-
formed to

EL5E024pNP. ~A3!

Here N is the depolarization tensor those components
defined by

Nab52
1

4p

]2

]xa]xb
E

V

d3r 8

ur2r 8u
. ~A4!

This tensor is symmetrical@44# and depends only on th
shape of the scattering object, i.e., QD. For instance, fo
sphereN5I /3. For an spheroid the tensorN is diagonal in a
basis related to the spheroid’s axes@43#:

Nzz5
e211

e3
~e2arctane!,

Nxx5Nyy5
1

2
~12Nzz!, ~A5!

where e5Aael
2 /bel

2 21 is the spheroid eccentricity,ael and
bel are the spheroid semiaxes in thex0y plane and thez
direction, respectively. These formulas hold true for both d
klike (ael.bel) and cigarlike spheroids (ael,bel). Infinite
stretching of the spheroids (ael /bel→0) results inNzz→0,
Nxx→1/2 and Eq.~A5! reproduce the polarizabilities of th
cylinders~see, e.g., Ref.@17#!. It should be noted that for an
arbitrary three-axis ellipsoid, the tensorN does not depend
on the coordinates. Consequently, the local fieldEL(r ) is
06380
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also constant over the QD volume. For nonellipsoidal QD
the tensorN and thus the local field become spatially inh
mogeneous what contradicts to the basic assumption use
Sec. II A under formulation of the Hamiltonian. To elimina
the contradiction, we should average relation~A3! over the
QD volume. This leads us again to Eq.~A3! with EL ,E0 ,P
5const and

Nab52
1

4pVEV
E

V

]2

]xa]xb

d3rd3r 8

ur2r 8u
. ~A6!

2. Quantum fields

At the first glance, for nonclassical fields Eq.~A3! re-
mains valid if we insert operators instead correspond
fields. However, such is not the case and relation betw
acting and local fields in QED require a special discussi
Indeed, correct procedure of insertion of operators should
carried out in the time-domain integral Maxwell equation

ÊL~r ,t !5Ê0~r ,t !1S““•2
1

c2

]2

]t2D
3E

2`

t E
V
G(ret)~r2r 8,t2t8!P̂~r 8,t8!d3r 8dt8,

~A7!

where retarded Green function satisfies the equation

S ¹22
1

c2

]2

]t2D G(ret)~r ,t !5d~r !d~ t ! ~A8!

with the initial conditionG(ret)(r ,t)50 at t,0. In accor-
dance with Ref.@35#, the retarded Green function is given b

G(ret)~r ,t !5
1

~2p!4E E exp@ i ~kr 2vt !#

k22~v1 i e!2/c2
d3k dv,

~A9!

with e→10.
Polarization operator in Eq.~A7! is given by the relation

P̂(r ,t) 5 V21(2mb† 1m* b) 5 V21(mue&^gu 1 m* ug&^eu).
Thus, eigenstates of electron-hole pair in QD are genera
functions for the polarization operator. These functions c
not be considered as slowly varying over the QD volum
Consequently, polarization operator in Eq.~A7! cannot be
approximated by its value in a certain point of the space
removed from the integrand. Finally, we can conclude t
relation~A3! cannot be automatically extended to the case
field operators.

To derive a relation for the field and polarization oper
tors, we first construct the interaction Hamiltonian

HIL52
1

2
V~P̂ÊL1ÊLP̂!. ~A10!
4-14
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Here we took into account that the operatorsP̂ and ÊL are
generally noncommutative since the fieldÊL is not transver-
sal @48# @second term in Eq.~A7! contains longitudinal com-
ponent#. Next, we substitute into Eq.~A10! representation
~A7! and separate out the Hamiltonian component co
sponding to the depolarization field:

DH52
1

2 S ]2

]xa]xb
2dab

1

c2

]2

]t2D
3E

2`

t E
V
G(ret)~r2r 8,t2t8!@ P̂a~r 8,t8!P̂b~r ,t !

1 P̂b~r ,t !P̂a~r 8,t8!#d3r 8 dt8. ~A11!

This notation implies summation over repetitive indices.
The last equation can be drastically simplified by the fi

averaging over the QD volume. This procedure is analog
to that was used for the classical light under derivation
Hamiltonian~5!. The spatial averaging technique turns out
be similar to the Hartry approximation in the self-consiste
field method for electron-electron interactions@74#. In accor-
dance with the method, we insert

P̂a~r 8,t8!→^P̂a~r 8,t8!& Î ~A12!

into Eq. ~A11! and, then, approximate averaged value of
operator by a constant. This allows us to remove the a
aged operator from the integrand of Eq.~A11!. Further we
take into account that QD is an electrically small object a
neglect the retardation effects inside the QD. In such a c
the Green function reduces to

G(ret)~r2r 8,t2t8!'
d~ t2t8!

ur2r 8u
~A13!

and termsO(]2/]t2) in Eq. ~A11! can be omitted. As a re
sult, Eq.~A11! reduces to the expression

DH54pNabP̂b^P̂a&, ~A14!

which corresponds to Hamiltonian~18! describing interac-
tion of QD with nonclassical light. Analogous approxim
tions being applied to Eq.~A7! lead to the formula

ÊL5Ê024pN P Î , ~A15!

which offers for the nonclassical light an alternative to E
~A3!. Note that this relation has been derived under assu
tion that the oscillators and the vacuum are separate syst
This assumption lies in the basis of the approach applie
Ref. @34# under construction of QED of an atom imbedded
a lossy dispersive dielectric medium. In accordance w
Ref. @34#, relation~A15! provides the relationGsp8 5AehGsp

for the QD radiative linewidth in the medium.
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APPENDIX B: CORRELATION BETWEEN
SCHRÖDINGER AND HEIZENBERG REPRESENTATIONS

Interaction of QDs with classical and quantum light c
be performed both in Schro¨dinger and Heizenberg represe
tations. Both approaches are completely equivalent. H
ever, for correlation between different publications, it wou
be helpful to establish correspondence of basic parame
and equations for these approaches. Since the paper use
Schrödinger picture, below we formulate Heizenberg equ
tions for Hamiltonian~5!, carry out their transformation to
the Bloch equations and then establish their corresponde
to Eqs.~11!. Classical electromagnetic field is only consi
ered.

In accordance with Ref.@62#, we present the Heizenber
equation in the following form:

i\
dO

dt
52@H,O#, ~B1!

whereO is an arbitrary operator. LettingO5b, we obtain

i\
db

dt
5~ee2eg!b24pNxPxm~dg

†1de2 Î !

1E0xm~dg
†1de2 Î !. ~B2!

By analogy, lettingO5dg
†5agag

† andO5de5ae
†ae , we de-

rive

i\
d

dt
dg

†5 i\
d

dt
de524pNxPx~m* b1mb†!

1E0x~m* b1mb†!. ~B3!

Equations of motion for operators create a basis for der
tion of modified Bloch equations. Indeed, let us present
acting field by E0x5 1

2 @E(t)exp(2ivt)1c.c.# with E(t) as
slow-varying amplitude. The change over in Eqs.~B2! and
~B3! to averaged values after averaging over the periodT
52p/v gives the set of equation as follows:

i\
d^b&
dt

5\v0^b&2\Dv^b&@^dg
†&1^de&21#

1
1

2
E~ t !m@^dg

†&1^de&21#e2 ivt, ~B4!

i\
d^dg

†&
dt

5 i\
d^de&

dt
5

1

2
@E* ~ t !m* ^b&eivt2c.c.#,

~B5!

where v05(ee2eg)/\. Note that the term related to th
depolarization is absent in Eq.~B5!. This is a result of aver-
aging of Eq.~B3! over the periodT52p/v. Physically, sys-
tem~B4!–~B5! is analogous to the system of Bloch equatio
for optically dense media derived in Ref.@32# @Eqs.~25! and
~26!# on the basis of the Liouville equations.

Note that Eq.~10! for the macroscopic polarization give
the relations^b†(t)&→2A* (t)B(t)exp(iv0t) and ^b(t)&→
4-15



E
in

-

va-

e

qs.

SLEPYAN et al. PHYSICAL REVIEW A 66, 063804 ~2002!
A(t)B* (t)exp(2iv0t). Then, multiplying the first Eq.~11! by
B* (t) and an equation complex conjugated to second
~11! by A(t), after summation of these equations we obta

i\
d^b&
dt

5\v0^b&24pNx^b&m~ uAu22uBu2!1E0xm~ uAu2

2uBu2!. ~B6!

Next, let us multiply Eq.~11! by A(t), and the complex
conjugated equation byA* (t). Summation of these equa
tions gives us

i\
duAu2

dt
5

1

2
@E* ~ t !m* ^b&eivt2c.c.#. ~B7!

Analogous procedure being applied to second Eq.~11!
leads to
D

ki

.

to

nd

d,

s.

v.

ys

.P
h
.

06380
q. i\
duBu2

dt
52

1

2
@E* ~ t !m* ^b&eivt2c.c.#. ~B8!

Composition of the last two equation results in the conser
tion law

d

dt
~ uA~ t !u21uB~ t !u2!50, ~B9!

which, obviously, can also be represented byuA(t)u2
1uB(t)u251. The relations derived allow us to reveal th
correspondenceuAu22uBu2→^dg

†&1^de&21, which leads us
to conclusion that Eq.~B6! is identical to the Bloch equation
for polarization while Eqs.~B7! and ~B8! correspond to the
Bloch equation for the charge density. Thus, the derived E
~11! are completely equivalent to the Bloch equations~B2!
and ~B3!.
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