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Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions
of the nonlinear Schrödinger equation
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We present a representative set of analytic stationary-state solutions of the nonlinear Schro¨dinger equation
for a symmetric double-square-well potential for both attractive and repulsive nonlinearity. In addition to the
usual symmetry-preserving even and odd states, nonlinearity introduces quite exotic symmetry-breaking
solutions—among them are trains of solitons with different number and sizes of density lumps in the two wells.
We use the symmetry-breaking localized solutions to form macroscopic quantum superposition states and
explore a simple model for the exponentially small tunneling splitting.
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I. INTRODUCTION

Many features of Bose-Einstein condensates~BECs! of
dilute atomic gases in a single well external potential at z
temperature are well described by mean-field theory@1,2#. In
the mean field picture all condensate atoms have the s
macroscopic wave function satisfying the Gross-Pitaev
~GP! equation. In this paper we investigate the station
states of BEC in a symmetric double-square-well potent
We find analytic solutions of the GP equation for bo
symmetry-preserving and symmetry-breaking station
states of the attractive and repulsive nonlinearity. The so
tions presented in the paper give such analytic express
for what are seen to be stationary soliton trains in the dou
well—among them are such trains with different number a
sizes of density lumps in the two wells. Single dark solito
@3,4#, bright soliton@5#, and soliton trains@6# have been re-
cently experimentally observed in trapped BECs, sugges
that their double-well analogs may be experimentally acc
sible. In addition we present, as an application of the me
field symmetry-breaking solutions, a zero-order macrosco
mean-field description of macroscopic quantum superp
tion states~Schrödinger Cat state! in a double-well BEC sys-
tem.

Symmetry-breaking mean-field solutions, such as we
serve in this exact treatment, are expected in the attrac
case as an attractive condensate in the ground state ten
localize in one well or the other. Symmetry-breaking so
tions for a nonlinear Schro¨dinger equation were first pointe
out in the context of molecular states@7#. Symmetry-
breaking mean-field states for repulsive condensates h
been discussed in the two-state model of condensate dyn
ics in a double-well@8–11#, and seen in the nonlinear nu
merical studies of the GP equation in a symmetric qua
double-well @12#. The present analytic work thus confirm
the numerical work of D’Agosta and Presilla in Ref.@12# in
the context of a double-square-well. Such macroscopic qu
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tum self-trapped states have also appeared on the studi
transport on a dimer modeled by discrete nonlinear Sch¨-
dinger equation@13#.

BECs in a double-well and multiwell systems have be
studied in the context of coherence@14#, Josephson tunneling
@8,15,16#, squeezed states@17#, the superfluid to Mott transi-
tion @18# and condensate fragmentation@19#. In discussions
of condensate tunneling it is well known that a high barr
leads to condensate fragmentation in which two or more
tinct single-particle states are macroscopically occupied.
a repulsive condensate, raising the barrier leads to the
densate in the two wells from being coherent to being in
herent in a Fock state@19#. The analysis herein gives th
nonlinear modes of the entire double-well in a mean-fi
picture when all the atoms have the same single-part
wave function. Correlation effects leading to condens
fragmentation are neglected here and thus the theory
sented applies directly only to the case of strong tunneli
However, the mean-field states obtained could form the b
for a correlated description.

The GP equation is a cubic nonlinear Schro¨dinger equa-
tion ~NLSE! @20# where the particle interactions give rise
such effective nonlinearity. The NLSE has been successfu
modeling many other natural phenomena besides BEC
describes light pulses in optical fibers@21#, helical excita-
tions of a vortex line@22#, Bose-condensed photons@23#,
spin waves in magnetic materials@24#, and disordered media
@25#. Despite being a canonical physics problem@26#, the
symmetric double-square-well problem has not, to o
knowledge, been solved for nonlinear Schro¨dinger equation.
Although the discussions in the paper are exclusively
Bose-Einstein condensates, the analysis will apply to
system satisfying cubic NLSE.

The symmetry-breaking localized one-particle mean-fi
states can be used to form a zero-order two-configura
Schrödinger Cat states of the formf le f t

N 6f right
N . There have

been several reports of the creation of Schro¨dinger Cat states
in various condensed matter systems@27,28#. In the context
of BEC, several authors have suggested producing s
states@11,29–32#, although none have been demonstra
©2002 The American Physical Society07-1
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experimentally. In a double-well, as is found analytically
this paper, the mean-field ground state for an attactive c
densate is a symmetry-breaking state localized in one of
wells. The superposition of such degenerate localized st
is a ‘‘Cat’’ state. We calculate the tunneling splittings f
such states using correct mean-field single-particle st
starting from the full N-body Hamiltonian. Such two
configuration tunneling splittings are exponentially small
the N-body wave-function overlap. Particle correlations a
still neglected, but strong mean-field effects accounted fo

The article is organized as follows. In Sec. II we pres
the full set of symmetry-preserving and symmetry-break
analytic solutions of stationary NLSE for a symmetr
double-square-well potential. In Sec. III we discuss an ap
cation of the symmetry-breaking solutions—the possibi
of creating superpositions of macroscopic quantum sta
and calculate the tunneling splittings of such Cat states.
marks and discussions in Sec. IV conclude the paper.

II. DOUBLE SQUARE WELL

The stationary NLSE with a potential has the form

@2]x
21hu f ~x!u21Vtrap~x!# f ~x!5m f ~x!, ~1!

wheref (x) is the mean-field condensate wave function in
longitudinal direction,m is the eigenvalue or the chemic
potential, andh is the nonlinearity parameter which is pro
portional to the number of atoms and thes-wave scattering
length. All quantities in Eq.~1! are dimensionless.

Analytic solutions of the GP equation for harmonic a
quartic double-well potentials are not possible, so we h
chosen to investigate the infinite square well with symme
cally placed finite rectangular potential barrier. The poten
is of the form

Vtrap~x!5H `, uxu>a

0, b,uxu,a

Vo , uxu,b.

~2!

For clarity, Fig. 1 shows a picture of this potential. Doub
well traps can be created in experiments with a combina
of optical and magnetic trapping. Varying the laser streng

FIG. 1. Symmetric double-square-well potential: the model u
in this paper.
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the barrier or the depth and the width of the trap can
easily tailored to experimental specifications. The doub
well traps created in experiments usually have Gaussian
riers; however, the qualitative behavior of the stationa
states of such wells would be the same as discussed in
paper for a double square well.

We present the analytic solutions of Eq.~1! with the po-
tential Eq.~2!. Solutions in an infinite well and a finite wel
have been presented for both attractive and repulsive con
sates@33–35#. In Eq. ~1! h.0 corresponds to repulsive con
densate whileh,0 corresponds to attractive condensa
The solutions of NLSE in a zero potential are Jacobian el
tic functions@36#. Such functions are well known in the sol
ton literature, and also as the solution to the anharmo
classical oscillator, i.e.,ü1u2u3/3!50. An example of the
standard notation for Jacobi elliptic functions is sn(xum),
where m is the elliptic parameter. The period is given b
4K(m), whereK(m) is the complete elliptic integral. The
value ofm is bounded between 0 and 1. It interpolates t
elliptic functions between trigonometric and hyperbo
functions. There are 12 elliptic functions all of which a
solutions to the NLSE. Of the 12 elliptic functions, six a
bounded and six are unbounded. Of the six bounded fu
tions, only sn(xum), cn(xum), dn(xum) have distinct physi-
cal forms. Others differ only by a translational shift or
rescaling of the amplitude. The six unbounded functions
be represented as a quotient of the above three function
different combinations. We will find that the pieces of the
unbounded functions are those appropriate in the barrier
gion of the double-well for a repulsive condensate. Tabl
summarizes the functions relevant to this work.

Solutions in the three regions will be written in the form

f ~x!5H f 1~x!, 2a,x,2b,

f 2~x!, uxu<b,

f 3~x!, b,x,a.

~3!

The solutions vanish on and outside the hard wall bound
at uxu>a. The solutions will be found subject to continuit
of f (x) and f 8(x) at x56b and the normalization condition
*2a

a dxu f (x)u251. The vanishing of the solutions at the ha
walls is taken as built into the elliptic functions and does n

TABLE I. Limits of Jacobian elliptic functions and integrals
The first two sn and cn are periodic solutions in the well while d
cn, ds, and cs are solutions in the barrier region. 4K(m) is the
periodicity and the elliptic integralsK(m) and E(m) both play a
role in the system of equations which describe the solutions.

m50 m51

sn(uum) sin(u) tanh(u)
cn(uum) cos(u) sech(u)
dn(uum) 1 sech(u)
ds(uum) csc(u) csch(u)
cs(uum) cot(u) csch(u)
K(m) p/2 `

E(m) p/2 1
d

7-2
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BOSE-EINSTEIN CONDENSATES IN A ONE- . . . PHYSICAL REVIEW A 66, 063607 ~2002!
form an additional boundary condition. The solutions are
vided into two different categories,symmetry preservingand
symmetry breaking. Taking advantage of the symmetry of th
problem finding symmetry-preserving states reduce to s
ing a set of three nonlinear algebraic equations. T
symmetry-breaking states require solving five simultane
nonlinear equations which is a far more difficult undertakin

A. Symmetry-preserving states

Symmetry-preserving states are the states that pres
the symmetry of theN-particle many-body Hamiltonian
Simply put, they are the even and odd solutions. As we w
find out in the following section, there can also be solutio
that do not preserve even or odd symmetry expected f
linear quantum mechanics.

1. Attractive nonlinearity

Symmetric solutions take the following form:

f 1~x!5A cn„k~x1a!2K~m!um…, ~4a!

f 2~x!5A2 dn„k2x1K~m2!um2…, ~4b!

f 3~x!5A cn„k~x2a!1K~m!um…, ~4c!

and antisymmetric solutions take the form

f 1~x!5A cn„k~x1a!2K~m!um…, ~5a!

f 2~x!5A2 cn„k2x1K~m2!um2…, ~5b!

f 3~x!52A cn„k~x2a!1K~m!um…, ~5c!

whereA, A2 , k, k2 , m, andm2 are free parameters.f 1(x) and
f 3(x) have been chosen to preserve odd and even pa
Note that the elliptic parameterK(m2) displaces the cn in the
barrier region to make it antisymmetric. In the followin
section we describe uniquely nonlinear-type solutions wh
do not preserve such parity. The condition that the sta
vanish at the hard walls ata and2a are built into the form
of the solutions.

Symmetric and antisymmetric solutions are solved us
the same method. Substituting the symmetric solutions
Eq. ~1! with the potential Eq.~2!, following conditions are
obtained:

A252mk2/h, A2
252k2

2/h, ~6a!

m5~122m!k2, m5~m222!k2
21Vo . ~6b!

The boundary conditionf 1(2b)5 f 2(2b) is equivalent to
f 2(b)5 f 3(b), and requires

A cn„kv2K~m!um…5A2 dn„2k2b1K~m2!um2…, ~7!

wherev[a2b is the width of each of the wells. Continuit
of the first derivative requires
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Aksn„kv2K~m!um…dn„kv2K~m!um…

5A2m2k2 sn„2k2b1K~m2!um2…

3cn„2k2b1K~m2!um2…. ~8!

Finally, the normalization condition is

2A2E
b

a

dx cn2
„k~x2a!1K~m!um…

12A2
2E

0

b

dx dn2
„k2x1K~m2!um2…51. ~9!

Equation~9! can be written as

2A2
2

k2
@E„k2b1K~m2!um2…2E~m2!#2

2A2

m
~12m!v

1
2A2

mk
@E~m!2E„2kv1K~m!um…#51, ~10!

whereE(k2l um) is standard notation for an incomplete ellip
tic integral @36#.

Equating of Eqs.~6b! gives us a constraint on the energ
Substitution of Eqs.~6a! into Eqs.~7!, ~8!, and~10! produces
a system of four simultaneous equations—an energy co
tion, a nontrivial normalization, and two enforcing the co
tinuity of the wave function and its first derivative at th
interior discontinuity of the potential. The four equations c
be reduced to three equations in three unknowns. These

Amkcn„kv2K~m!um…5l dn„2lb1K~m2!um2…,
~11a!

Amk2 sn„kv2K~m!um…dn„kv2K~m!um…

5m2l2 sn„2lb1K~m2!um2…cn„2lb1K~m2!um2…,

~11b!

4l

h
@E„lb1K~m2!um2…2E~m2!#2

4k2

h
~12m!v

1
4k

h
@E~m!2E„2kv1K~m!um…#51, ~11c!

where l5A@Vo2(122m)k2#/(22m2[k2 and v[a2b.
This is a system of three nonlinear algebraic equations w
three unknown variablesm, m2, andk and four experimenta
parameters—the box width 2a, barrier heightVo , barrier
width 2b, and nonlinearity parameterh.

This system of equations~11! is analogous to the set o
equations for linear Schro¨dinger equation for a particle on
box double-well potential@26#. However, the normalization
equation~11c! here is nontrivial and gives an additional co
dition. These equations can ideally be solved by a mult
mensional secant method, and that is the method we us
find the roots. However, the nonlinear parameter space is
large to choose a good starting point for the roots to c
verge. As we will see in the following section when we de
7-3
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MAHMUD, KUTZ, AND REINHARDT PHYSICAL REVIEW A 66, 063607 ~2002!
with a set of five equations for the symmetry breaking so
tions, it is almost impossible to find the roots and the analy
solutions without a good initial choice of parameters from
approximate numerical solution.

Such numerical approximations to the exact solutions
Eq. ~1! with the double-well potential Eq.~2! can be gener-
ated by the shooting method@37#. However, the cubic non
linearity generated from the mean-field interactions of
atoms introduces numerical stiffness into the resulting tw
point boundary-value problem. To accurately compute
numerical solutions, Gear’s methods@38# are employed
which are efficient in overcoming the numerical stiffness
utilizing backward differencing formulas. The resultin
shooting scheme is then easily implemented and both
normalized symmetry-preserving and symmetry-break
states are computed along with their chemical potential.
note that by adjusting the shooting angle, the normaliza
to unity can be satisfied.

Knowing the chemical potential and the value of the s
lution at barrier boundaryx5b from the shooting routine
numerics we can find the three approximate roots of E
~11!. With the form of the solutions and the approxima
roots at hand, secant method is used to solve the Eqs.~11! to
find the exact analytic solutions. In Fig. 2 we show the fi
four odd and even states. The states are ordered accordi
the chemical potentialm. A barrier height ofVo5100, bar-
rier width of 2b51/5, well width 2a51, and nonlinearity of
h52100 were used. Table II shows the solution parame
for Fig. 2. The true mean-field ground state for an attract
condensate in this case is a symmetry-breaking state w
the condensate localizes in one well or the other as is
scribed in the following section. The first excited even st
for this well in Fig. 2~c! where the condensate has one of t
peaks on top of the barrier is a uniquely nonlinear state@12#
which does not have any counterpart in linear Schro¨dinger
equation. Form.Vo all even solutions are of this kind, how
ever, even form,Vo strong nonlinearity can give rise t
such states. Symmetric solutions of this kind have the fo
f 2(x)5A2 cn(k2xum2).

The antisymmetric solutions were found using a simi
method. For reference the system of equations is

FIG. 2. Shown are the first four symmetry-preserving states
attractive nonlinearity. The barrier walls are atx560.1.
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Am2l cn„2lb1K~m2!,m2…

5Amkcn„k~a2b!2K~m!,m…;

Am2l2 sn„2lb1K~m2!,m2…dn„2lb1K~m2!,m2…

5Amk2 sn„kv2K~m!,m…dn„kv2K~m!,m…;

~4l/h!@E„lb1K~m2!um2…2E~m2!#

2~4k2/h!~12m!v2~4l2/h!~12m2!b1~4k/h!

3@E~m!2E„2kv1K~m!um…#51,

where

l5A@Vo1~122m!k2#/~2m221[k2.

We would like to note that unlike linear quantum mechani
for attractive condensate the eigenvalue or chemical pote
of the antisymmetric state for this well dimension has
lower value than the symmetric case. This behavior is o
true for strong nonlinearity. The total energy per particle
the antisymmetric state is, however, always greater than
symmetric case. Similar behavior of symmetric and antisy
metric state chemical potentials has also been found in
case of ring potentials@33#.

2. Repulsive nonlinearity

Symmetric solutions take the form

f 1~x!5A sn„k~x1a!um…, ~12a!

f 2~x!5A2 ds„k2x1K~m2!um2…, ~12b!

f 3~x!52A sn„k~x2a!um…, ~12c!

and antisymmetric solutions take the form

f 1~x!5A sn„k~x1a!um…, ~13a!

f 2~x!5A2 cs„k2x1K~m2!um2…, ~13b!

TABLE II. Solutions parameters for symmetry-preserving sta
of attractive and repulsive nonlinearity for Figs. 2 and 3. The nu
bers shown are of sufficient precision as initial estimate to be u
in the numerical solution of the nonlinear equations of Sec.
However, asm→1 use of high precision arithmetic is required.

m m2 k m

Fig. 2~a! 0.9684 0.9959 13.25 2164.42
Fig. 2~b! 0.9758 0.9935 13.04 2161.90
Fig. 2~c! 0.6352 0.9298 12.47 242.03
Fig. 2~d! 0.4763 0.7426 15.36 11.18
Fig. 3~a! 0.8539 0.9976 9.88 181.06
Fig. 3~b! 0.8514 0.9977 9.98 184.51
Fig. 3~c! 0.4338 0.9912 14.79 313.75
Fig. 3~d! 0.4313 0.9909 15.00 322.24r
7-4
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BOSE-EINSTEIN CONDENSATES IN A ONE- . . . PHYSICAL REVIEW A 66, 063607 ~2002!
f 3~x!5A sn„k~x2a!um…. ~13c!

Substitution of these solutions into Eq.~1! with the double-
well potential Eq.~2! gives the following equations for th
amplitude and the chemical potential:

A252mk2/h, A2
252k2

2/h, ~14a!

m5~11m!k2, m52~2m221!k2
21Vo . ~14b!

Just like for the attractive case the three simultaneous e
tions obtained from the boundary conditions, normalizat
and the energy conditions are the following:

Amksn~kvum!5l ds„2lb1K~m2!um2…, ~15a!

Amk2 cn~kvum!dn~kvum!

52l2cs„2lb1K~m2!um2…

3ns„2lb1K~m2!um2…, ~15b!

4l2b/h24l2m2b/h1
4k2

h
v1

2l

h
@cs„2lb1K~m2!um2…

3dn„2lb1K~m2!um2…2cs„lb1K~m2!um2…

3dn„lb1K~m2!um2…#2
2l

h
@2E„lb1K~m2!um2…

1E„2lb1K~m2!um2…#2
4k

h
E~kvum!51, ~15c!

where l5A@(11m)k22Vo#/(122m2)[k2. A similar set
of equations is obtained for the antisymmetric case.

The ground state and the first three symmetry-preserv
excited states are shown in Fig. 3. The well dimensions u
here are different than the attractive case which was cho
to show the peculiarities of attractive condensate. A bar
height of Vo51000, barrier width of 2b51/10, well width
2a51, and nonlinearity ofh5100 were used here. Table
shows the solution parameters for Fig. 3. In addition to
even and odd excited states there can also be symm

FIG. 3. Shown are the first four symmetry-preserving states
repulsive nonlinearity. The barrier walls are atx560.05.
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repulsive condensate the lowest symmetry-preserving sta
always the ground state.

B. Symmetry-breaking states

Symmetry-breaking states are uniquely nonlinear sta
where different size or number of ‘‘lumps’’ are present in t
two wells. Such stationary states with strong localization a
different number of nodes in the two symmetric wells are n
possible for linear Sturm-Liouville systems. Finding such s
lutions confirms and extends the numerical work@12# and the
two-state tunneling models@8–10,39# of the double-well
where macroscopic quantum self-trapping has been
dicted. On theN-particle level the stationary-states shou
preserve the symmetry of the Hamiltonian and can only
symmetric and antisymmetric. So these asymmetric st
arise due to the nonlinearity associated with the mean-fi
approximation.

In the work of D’Agosta and Presilla@12# a nonlinear trial
function and relaxation method for partial differential equ
tions was used to numerically find both the symmet
preserving and symmetry breaking states of the GP equa
in a symmetric harmonic or quartic double-well. The difficu
task of choosing the right trial functions and the possibil
of false minima leading to artifacts in such methods mo
vated us to treat the model double-square-well potential
to find the roots of these algebraic equations, and thus
the exact analytic solutions. The qualitative behavior of
lutions in any symmetric double-well potential should be t
same as ours, and, wherever the set of parameters used
laps with those of Ref.@12# there is a one-to-one correspo
dence in the solutions.

1. Attractive nonlinearity

Solutions with no nodes inside the barrier region take
form

f 1~x!5A1 cn„k1~x1a!2K~m1!um1…, ~16a!

f 2~x!5A2 dn„k2~x1d!1K~m2!um2…, ~16b!

f 3~x!5A3 cn„k3~x2a!1K~m3!um3…, ~16c!

and solutions with nodes inside the barrier are

f 1~x!5A1 cn„k1~x1a!2K~m1!um1…, ~17a!

f 2~x!5A2 cn„k2~x1d!1K~m2!um2…, ~17b!

f 3~x!52A3 cn„k3~x2a!1K~m3!um3…, ~17c!

d in Eqs.~16! and~17! is a measure of how far the solutio
under the barrier is displaced from being symmetric. T
amplitudes and the chemical potentials are

A1
252m1k1

2/h, A2
252k2

2/h, A3
252m3k3

2/h,
~18a!

m5~122m1!k1
2 , m5~m222!k2

21Vo ,

r
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MAHMUD, KUTZ, AND REINHARDT PHYSICAL REVIEW A 66, 063607 ~2002!
m5~122m3!k3
2 . ~18b!

The set of five equations in five unknowns are

Am1a cn„l3~m1!um1…5b dn„l1~d,m2!um2…, ~19!

Am3g cn„l4~m3!um3…5b dn„l2~d,m2!um2…, ~20!

Am1a2 sn„l3~m1!um1…dn„l3~m1!um1…

5m2
2b2 sn„l1~d,m2!um2…cn„l1~d,m2!u2…, ~21!

Am3g2 sn„l4~m3!um3…dn„l4~m3!um3…

5m2
2b2 sn„l2~d,m2!um2…cn„l2~d,m2!u2…, ~22!

2
2g2

h
~12m3!v1

2g

h
@E~m3!2E„l4~m3!um3…#

2
2a2

h
~12m1!v1

2a

h
@E~m1!1E„l3~m1!um1…#

3
2b

h
@E„l2~d,m2!um2…2E„l1~d,m2!um2…#51,

~23!

where a5Am/(122m1)[k1 , b5A(m2Vo)/(m222)
[k2 , g5Am/(122m3)[k3 , l1(d,m2)5k2(d2b)
1K(m2), l2(d,m2)5k2(d1b)1K(m2), l3(m1)5av
2K(m1), andl4(m3)52gv1K(m3). This is a set of five
nonlinear equations in five unknownsm1 , m2 , m3 , d, and
m. A similar set of equations is obtained for the solutions t
has nodes inside the barrier.

As described in the preceding section we use a shoo
method to find the approximate numerical solutions. Kno
ing the eigenvalue and the values of the functions at
barrier boundaries atx56b, we can reduce five equation
with five unknowns to equations with two unknowns. Wi
just two unknowns we can use a graphical method@35# to
find the approximate solutions. Such approximate roots
then used to find the exact analytic roots of these five eq
tions using a multidimensional secant method, and thus
obtain the analytic solution of the symmetry-breaking sta
Without a good bracketing on the roots obtained from fi
solving it numerically its extremely unlikely for a seca
method to converge for a set of five nonlinear equations

For Fig. 4 we use a well dimension of 2a51, 2b
51/10, Vo51000, and nonlinearityh52100. We use a dif-
ferent well dimension here than the attractive symmetric c
just to show the varieties of asymmetric solutions. Table
shows the solution parameters for Fig. 4. The solutions
be classified as multiple node solutions—zero node,
node, two node and such. The lowest symmetry-break
state for attractive condensate is the ground state of the
tem as the clustering of particles in one of the wells mi
mizes the energy for strong enough self-interaction. Th
can be ground- and excited-state solutions with assym
cally placed peaks on top of the barrier. The analytic form
such solutions isf 2(x)5A2cn„k2(x1d)um2…. For an asym-
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metric ground state, increasing the barrier height locali
the condensate more into the well, on the other hand incr
ing the barrier width pushes the peak of the condensate
sity more towards the center of the well on top of the barr

Figures 2 and 4 are the bright soliton solutions in a dou
well. It shows the one-, two-, three- and four-soliton so
tions. Bright soliton and soliton trains have recently be
observed in attractive condensates of7Li @5,6#. Unlike sta-
tionary soliton trains of equal density lumps in a sing
potential well, double-well geometry has stationary solit
train solutions with unequal density lumps as is shown
Fig. 4. There exists a whole class of such many-soliton
lutions. As an example, Fig. 5 shows an analytic solution
a symmetry-breaking eight-soliton bright soliton train in
well of dimensions 2a51, 2b50.1, Vo51000, and for non-
linearity h52500.

2. Repulsive nonlinearity

Solutions with no nodes inside the barrier are

f 1~x!5A1 sn„k1~x1a!um1…, ~24a!

f 2~x!5A2 ds„k2~x1d!1K~m2!um2…, ~24b!

f 3~x!5A3 sn„k3~x2a!um3…. ~24c!

Solutions with nodes inside the barrier are

f 1~x!5A1 sn„k1~x1a!um1…, ~25a!

f 2~x!5A2 cs„k2~x1d!1K~m2!um2…, ~25b!

f 3~x!52A3 sn„k3~x2a!um3…. ~25c!

The amplitude and chemical potentials for the states that
no nodes inside the barrier are

A1
252m2k1

2/h, A2
252k2

2/h, A3
252m3k3

2/h,
~26a!

m15~11m1!k1
2 , m25~122m2!k2

21Vo ,

m35~11m3!k3
2 . ~26b!

FIG. 4. Shown are the first four zero-node, one-node, and t
node symmetry-breaking states for attractive nonlinearity. The
rier walls are atx560.05.
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TABLE III. Solutions parameters for symmetry-breaking states of attractive and repulsive nonlinear
Figs. 4 and 6. The numbers shown are of sufficient precision as initial estimate to be used in the nu
solution of the nonlinear equations of Sec. II. However, asm→1 use of high precision arithmetic is require

m1 m2 m3 d m

Fig. 4~a! 0.9999 121028 1210216 20.0680 2625.27
Fig. 4~b! 121028 0.9999 0.7640 0.0618 2174.10
Fig. 4~c! 0.8257 0.9994 0.6171 0.0219 262.829
Fig. 4~d! 0.8401 0.9992 0.6177 0.0184 262.820
Fig. 6~a! 0.9273 0.9958 0.2612 20.0035 243.16
Fig. 6~b! 0.9273 0.9959 0.2529 20.0043 248.95
Fig. 6~c! 0.9612 0.9992 0.0016 20.0491 308.14
Fig. 6~d! 0.0787 0.9876 0.6012 0.0122 412.30
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For reference the equations are

Am1a sn~avum1!5b ds„l1~d,m2!um2…, ~27!

Am3g sn~2gvum3!5b ds„l2~d,m2!um2…, ~28!

Am1a2 cn~av,m1!dn~av,m1!

52b2 ns„l1~d,m2!um2…cs„l1~d,m2!um2…, ~29!

Am3g2 cn~2gvum3!dn~2gvum3!

52b2 ns„l2~d,m2!um2…cs„l2~d,m2!um2…, ~30!

4b2b/h24b2m2b/h1
2a2

h
v1

2g2

h
v

1
2b

h
@cs„l1~d,m2!um2…dn„l1~d,m2!um2…

2cs„l2~d,m2!um2…dn„l2~d,m2!um2…#

2
2a

h
E~avum1!2

2g

h
E~gvum3!

2
2b

h
@2E„l1~d,m2!um2…1E„l2~d,m2!um2…#51,

~31!

FIG. 5. Shown is a symmetry-breaking eight-soliton bright so
ton train solution in a double well. The barrier walls are atx5
60.05.
06360
where the same notations as in the attractive case has
used. Here the five unknown variables arem1 , m2 , m3 , d,
and m; a, b and g are functions of the elliptic parameter
and the chemical potentialm. A similar set of equations is
obtained for the solutions that has nodes inside the barri

The first four states are plotted in Fig. 6 for a nonlinear
of h5100 and the same well dimension as the repuls
symmetry-preserving case, 2a51, 2b51/10, and Vo
51000. Table III shows the solution parameters for Fig.
Again the solutions can be classified as one-node, two-n
three-node symmetry-breaking states. For repulsive cond
sates the asymmetric ground state has a much higher en
and is in fact the second excited state of the double-w
Note that for the two two-node solutions keeping one no
inside the barrier and another outise the barrier is energ
cally more favorable than having two nodes outside the b
rier. In Fig. 7 we show the symmetry-breaking ground st
as we change the nonlinearity. It evolves from being alm
localized for small nonlinearity to having three distinct de
sity lumps for high enough nonlinearity.

III. SCHRÖ DINGER CAT STATE OF BEC
IN A DOUBLE-WELL

As was shown in the preceding section, the mean-fi
ground state of attractive condensate and some of the ex

- FIG. 6. Shown are the first four one-node, two-node, and thr
node symmetry-breaking states for repulsive nonlinearity. The
rier walls are atx560.05.
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states of both attractive and repulsive condensates
symmetry-breaking states. For the symmetry-breaking lo
ized states such as the attractive ground state, coherent q
tum tunneling between the degenerate states removes th
generacy and forms a superposition of the mean-field sta
Such localized superposition states of the formf le f t

N

6f right
N are Schro¨dinger Cat states. On the other hand, t

usual even and odd symmetry-preserving delocalized st
of the formCN5(f le f t6f right)

N are not traditional Schro¨-
dinger Cat states. For the Cat states, tunneling splittin
exponentially small in theN-body wave-function overlap. In
the following we find the zero-order two-configuratio
mean-field Cat state tunneling splitting starting with t
N-particle Hamiltonian with pseudopotential interaction.
has not gone unnoticed that the ground state of the attrac
condensate is Cat-like@40,41#. Ciracet al. @11# have studied
the ground state of the Josephson-coupled two-species
densates, which has similarities with condensate in a dou
well. In the following section we deliberate on the expe
mental realization of cat states of BEC in a double well.

A. Schrödinger Cat state tunneling splitting

The N-body Hamiltonian for a system ofN weakly inter-
acting identical bosons each of massm in an external poten-
tial Vext is

HN5(
i 51

N S 2
\2

2m
¹ i

21Vext~r i ! D11/2(
iÞ j

V~r i ,r j !.

~32!

Here V(r i ,r j )5gd(r i2r j ) is the Fermi ‘‘contact’’
pseudopotential, andg54pas\

2/m whereas is the s-wave
scattering length characterizing the binary atomic collisio

For a fully condensed Bose condensate theN-body wave
function can be written as a symmetric product of sing
particle wave functions,

CN~r1 ,r2 , . . . ,rN!5f~r1!f~r2!•••f~rN![fN, ~33!

FIG. 7. Symmetry-breaking repulsive ground state as a func
of nonlinearity. The barrier walls are atx560.05. ~a! h515, ~b!
h530, ~c! h550, and~d! h5100.
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wheref(r i)’s are the single-particle mean-field wave fun
tions normalized to unity,*dr ufu251.

The expectation value gives us theN-particle mean-field
energy,

^fNuHNufN&5mN2
N~N11!

2
gE dr ufu4, ~34!

wherem is the chemical potential. We can generalize these
the left and right localized GP solutions in a double-we
which in the above equation would correspond to replac
f by fL andfR . The expectation value with respect to th
left and right localized states contains overlap integrals t
no longer vanish because of their nonorthogonality,

^fL
NuHNufR

N&5
N~N21!

2
gE dr ~fL* !2fR

2~L!N22

2gN2E dr fL* ufRu2fR~L!N211mN~L!N,

~35!

whereL5*dr fL* fR is the overlap integral. The even an
odd combinations of the left and right localized solutio
f le f t

N 6f right
N are a two-configuration model for Schro¨dinger

Cat superposition states. TakingfL and fR to be real, the
expectation value of the energy at this simplest level of
proximation is

ES,A5
^fL

NuHNufL
N&6^fL

NuHNufR
N&

16^fLufR&N
. ~36!

Although this equation is identical in appearance with E
~20! of Cirac et al. @11#, our use and inclusion of the exac
mean-field effect on the fully localized left and right we
solutions differ from their treatment of spinor condensat
The tunneling splitting is the difference in antisymmetric a
symmetric energy,

DE5EA2ES . ~37!

For the case when the overlap is extremely small and fo
large number of particles the normalization factor in the d
nominator can be ignored and the splitting can be written

DE'22mN~L!N12gN2E dr fLufRu2fR~L!N21

2N~N21!gE dr fL
2fR

2~L!N22. ~38!

This shows explicitly how the Cat state tunneling splittin
depends on the overlap of the localized single-particle me
field wave functions. However, in our calculations we fin
the exact splitting by use of Eq.~37! since physically realiz-
able splitting can only be generated for a significant over
such that we cannot completely ignore theLN term in the
denominator. SinceL is always less than 1 the splitting i
exponentially small in the wave-function overlap.

n
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BOSE-EINSTEIN CONDENSATES IN A ONE- . . . PHYSICAL REVIEW A 66, 063607 ~2002!
We use the solution of the one-dimensional GP equa
~1! to find the tunneling splitting and its dependence on ot
quantities. The conversion factor to get the energy from
dimensionless quantity is\2/(2ml2) @35#, where l is the
length of the box. To find the splittings in one dimension, t
coupling constant ‘‘g’’ should be replaced by the dimension
less effective one-dimensional coupling constantge f f . The
dimensionless nonlinearityh of the NLS equation~1! is re-
lated toge f f by the relationshiph5ge f fN, whereN is the
total number of particles. For experimental purposes whe
condensate is three dimensional or can be quasi-o
dimensional the effective coupling constantge f f depends on
the transverse dimensions of the trap, the species of at
~whether attractive or repulsive! and the total number of par
ticles in a nonlinear and nontrivial way. Even without know
ing the exactge f f for realistic three-dimensional condensa
we can explore the dependence of the tunneling splittings
the number of particlesN and on the effective coupling con
stant. The relationship between the effective coupling c
stantge f f and the transverse dimensions of realistic doub
well traps that will give the correct experimental predictio
is under investigation.

B. Discussions

Pairs of symmetry-breaking mean-field states in a dou
well are shown in Fig. 8, coherent tunneling between th
will produce a Cat state. Experimentally such macrosco
Cat states could be observed by starting with a locali
attractive condensate in the lower well of an asymme
double-well potential, and then varying the symmetry of t
two wells. In Fig. 9 we show the log of tunneling splittin
for a condensate of7Li as a function of particle number fo
a double-well of dimensions 12.5mm separated by 75mm
in a box width of 100mm and barrier height ofVo5133. A
constant effective coupling constant ofge f f520.145 has

FIG. 8. A pair of symmetry-breaking solutions, which produc
the Cat states:~a! attractive ground state;~b! repulsive excited state
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been assumed. In Fig. 10 we show the log of tunneling sp
ting in the same well as a function ofuge f fu for a fixed num-
ber of particles, in this case for 500 particles. For a Cat st
with the addition of more and more particles the sing
particle overlap becomes smaller, and the tunneling splitt
becomes vanishingly small due to its exponential dep
dence on the overlap and the number of particles. Figure
shows the GP single-particle tunneling splitting between
attractive antisymmetric and symmetric state forge f f
520.911, which sharply contrasts with the Cat state tunn
ing splitting.

For an example of a Cat state, forN5440 and ge f f
520.145 the peaks of the degenerate states are asymm
cally placed on top of the barrier and the separation of
peaks is 1.5mm, the tunneling splitting is 48 Hz, and th
tunneling time is 21 ms, which are within the experimen
range of detection. For higher peak separations the overla
small and the splitting becomes negligble. An optimal C
state with Gaussian barriers as is often used in experim
where the peaks are well separated and the splitting is wi
the range of detection should be attainable with extern
tuning the coupling constant through Feshbach resona
@42#. The number of particles in our study is limited to th
order of hundred atoms which is within the range of stabil
of attractive condensates@43# such as7Li or 85Rb. Changing
the scattering length by Feshbach resonance will allow sta
attractive condensates to be prepared with several thou
atoms@6#. For a repulsive condensate, Cat states may als
prepared making use of the excited localized conden
which must be tuned to the right regime to get a well loc
ized condensate as shown in Fig. 7~a!.

FIG. 9. Cat state tunneling splitting as described in the tw
configuration model: it shows the exponential dependence of
splitting on the number of particles for a fixed coupling consta
Energy is in frequency units of Hertz.

FIG. 10. Cat state tunneling splitting as described in the tw
configuration model: it shows the exponential dependence of
splitting on the effective coupling constantuge f fu. Energy is in fre-
quency units of Hertz.
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IV. CONCLUSION

We have presented the stationary states of nonlin
Schrödinger equation in one dimension for a symmet
double-square-well potential for both attractive and repuls
nonlinearity. In addition to the symmetry-preserving ev
and odd states, we find analytic expressions for symme
breaking states that have different numbers and sizes of
sity lumps in the two wells. For attractive condensates th
provide the analytic solutions of the stationary bright solit
trains in a double well. Symmetry-breaking states do
preserve the even and odd parity of theN-particle many-
body Hamiltonian. Finding such analytical solution of co
tinuous GP equation puts the self-trapping states as fo
numerically @12#, in the ‘‘two-state’’ tunneling models
@8–11#, and in the discrete nonlinear Schro¨dinger equation
@13# on an exact footing. Such unique symmetry-break
states, which are not possible for a linear Scro¨dinger equa-

FIG. 11. GP single-particle energy splitting between the low
antisymmetric and symmetric states of an attractive condensate
splitting of mean-field delocalized states slowly increases with p
ticle number, and this runs in a direction opposite to that of the
state tunneling splitting. Energy is in frequency units of Hertz.
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tion, result from the nonlinearity introduced by the mea
field approximation.

The superposition of mean-field localized states of
form f le f t

N 6f right
N are Schro¨dinger Cat states that arise du

to coherent tunneling between the two degenerate st
strongly localized in two different wells. Attractive conden
sate in the ground state or repulsive condensate in
symmetry-breaking excited state can be used to produce
Cat states. In a zero-order two-configuration model the sp
ting is exponentially small in theN-body wave-function
overlap. Tailoring the width and barrier height of a doub
well and with adequate number of particles in the trap to g
the optimal splitting, macroscopic superposition sta
should be attainable with current BEC technology.

The use of mean-field picture in describing BEC ful
delocalized in a double well is valid only when the conde
sates in the two wells are fully coherent. For sufficiently lo
tunneling, condensate in a double well cannot maintain
coherence and therefore mean-field analysis of a fully coh
ent condensate as was presumed here is not adequate.
fragmented condensate with number squeezed configura
can only be treated using theories which go beyond
mean-field theory. However, the availability of the mea
field analytic solutions as presented in this paper provides
zeroth-order nonlinear wave functions needed to include
portant and large mean-field effects in models which tr
fragmentated condensates.
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