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Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions
of the nonlinear Schradinger equation
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We present a representative set of analytic stationary-state solutions of the nonlineair§ehrequation
for a symmetric double-square-well potential for both attractive and repulsive nonlinearity. In addition to the
usual symmetry-preserving even and odd states, nonlinearity introduces quite exotic symmetry-breaking
solutions—among them are trains of solitons with different number and sizes of density lumps in the two wells.
We use the symmetry-breaking localized solutions to form macroscopic quantum superposition states and
explore a simple model for the exponentially small tunneling splitting.
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[. INTRODUCTION tum self-trapped states have also appeared on the studies of
transport on a dimer modeled by discrete nonlinear Schro
Many features of Bose-Einstein condensaB&Cs of  dinger equatiof13].
dilute atomic gases in a single well external potential at zero BECs in a double-well and multiwell systems have been
temperature are well described by mean-field théarg|. In  studied in the context of coherenct], Josephson tunneling
the mean field picture all condensate atoms have the sanf8,15,16, squeezed stat¢47], the superfluid to Mott transi-
macroscopic wave function satisfying the Gross-Pitaevskition [18] and condensate fragmentatifi®]. In discussions
(GP) equation. In this paper we investigate the stationaryof condensate tunneling it is well known that a high barrier
states of BEC in a symmetric double-square-well potentialleads to condensate fragmentation in which two or more dis-
We find analytic solutions of the GP equation for bothtinct single-particle states are macroscopically occupied. For
symmetry-preserving and symmetry-breaking stationarya repulsive condensate, raising the barrier leads to the con-
states of the attractive and repulsive nonlinearity. The soludensate in the two wells from being coherent to being inco-
tions presented in the paper give such analytic expressiortwerent in a Fock statfl9]. The analysis herein gives the
for what are seen to be stationary soliton trains in the doubl@onlinear modes of the entire double-well in a mean-field
well—among them are such trains with different number ancpicture when all the atoms have the same single-particle
sizes of density lumps in the two wells. Single dark solitonswave function. Correlation effects leading to condensate
[3,4], bright soliton[5], and soliton traing6] have been re- fragmentation are neglected here and thus the theory pre-
cently experimentally observed in trapped BECSs, suggestingented applies directly only to the case of strong tunneling.
that their double-well analogs may be experimentally accesHowever, the mean-field states obtained could form the basis
sible. In addition we present, as an application of the meanfor a correlated description.
field symmetry-breaking solutions, a zero-order macroscopic The GP equation is a cubic nonlinear Salinger equa-
mean-field description of macroscopic quantum superposition (NLSE) [20] where the particle interactions give rise to
tion stategSchralinger Cat statein a double-well BEC sys- such effective nonlinearity. The NLSE has been successful in
tem. modeling many other natural phenomena besides BEC. It
Symmetry-breaking mean-field solutions, such as we obdescribes light pulses in optical fibef21], helical excita-
serve in this exact treatment, are expected in the attractiviions of a vortex line[22], Bose-condensed photoiig3],
case as an attractive condensate in the ground state tendssf@n waves in magnetic materid4], and disordered media
localize in one well or the other. Symmetry-breaking solu-[25]. Despite being a canonical physics probléa6], the
tions for a nonlinear Schdinger equation were first pointed symmetric double-square-well problem has not, to our
out in the context of molecular statdg]. Symmetry- knowledge, been solved for nonlinear Satirger equation.
breaking mean-field states for repulsive condensates havdthough the discussions in the paper are exclusively for
been discussed in the two-state model of condensate dynarBose-Einstein condensates, the analysis will apply to any
ics in a double-wel[8—11], and seen in the nonlinear nu- system satisfying cubic NLSE.
merical studies of the GP equation in a symmetric quartic The symmetry-breaking localized one-particle mean-field
double-well[12]. The present analytic work thus confirms states can be used to form a zero-order two-configuration
the numerical work of D’Agosta and Presilla in REE2] in  Schralinger Cat states of the forgh;, = ¢”ght. There have
the context of a double-square-well. Such macroscopic quaribeen several reports of the creation of Schmger Cat states
in various condensed matter systef%,2§. In the context
of BEC, several authors have suggested producing such
* Author to whom correspondence should be addressed. states[11,29-32, although none have been demonstrated
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4 4 TABLE I. Limits of Jacobian elliptic functions and integrals.
The first two sn and cn are periodic solutions in the well while dn,
cn, ds, and cs are solutions in the barrier regiok (@) is the
periodicity and the elliptic integral&(m) and E(m) both play a
role in the system of equations which describe the solutions.

Vo m=0 m=1
sn(u|m) sinu) tanh(u)
cn(u|m) cos()) sech()
dn(u|m) 1 sech(l)

0 ds(u|m) csc(u) csch)
-a -b b a cs(u|m) cot(u) csch)
K(m) 72 o

FIG. 1. Symmetric double-square-well potential: the model used

in this paper. E(m) ml2 1

experimentally. In a double-well, as is found analytically in \he parrier or the depth and the width of the trap can be
fjh's paper, the mean—ﬂetl)d glr(qund Stat? forllan daﬁtactwe ?Orr]léasily tailored to experimental specifications. The double-

ensate Is a symmetry-breaking state localized in one of thgq)| (raps created in experiments usually have Gaussian bar-
yvells. The superposition of such degenerf?lte Iocgh;ed Stat‘:f%rs; however, the qualitative behavior of the stationary
is a “Cat” state. We calculate the tunneling splittings for giates of such wells would be the same as discussed in this
such states using correct mean-field single-particle Stateﬁaper for a double square well

starting from the full N-body Hamiltonian. Such two- = \ye phresent the analytic solutions of Ea) with the po-
configuration tunnellng. splittings are ex_ponen'ually §mal| Ntential Eq.(2). Solutions in an infinite well and a finite well
the N-body wave-function °Ve”aF’- Particle correlations arey, ;e peen presented for both attractive and repulsive conden-
still neglected, but strong mean-field effects accounted for. sateg33—35. In Eq.(1) >0 corresponds to repulsive con-

h Tfhe“ artlclef is organized as foI_Iows. :jn Sec. Il Webpresk_entdensate whilen<<0 corresponds to attractive condensate.
the Tull set of symmetry-preserving and symmetry-bréakingrye go|ytions of NLSE in a zero potential are Jacobian ellip-

3nalt))/ltic solutions” of sta.ticl)n;arys NLﬁIE fo(;_ a symmetriclltic functions[36]. Such functions are well known in the soli-

ouble-square-well potential. In Sec. Il we discuss an appliy,, literature, and also as the solution to the anharmonic

cation of the symmetry-breaking solutions—the possibility lassical illator. i.ed+o— 0331=0. A le of th

of creating superpositions of macroscopic quantum state§,a53'cad oscl a}or,](l.e.% _b ”.'_. .f n example of the

and calculate the tunneling splittings of such Cat states. R tandard notation for Jacobi elliptic functions is )q""(])’

marks and discussions in Sec. IV conclude the paper. wherem is the elliptic parameter. The period is given by
4K(m), whereK(m) is the complete elliptic integral. The

value of m is bounded between 0 and 1. It interpolates the

ll. DOUBLE SQUARE WELL elliptic functions between trigonometric and hyperbolic

The stationary NLSE with a potential has the form functions. There are 12 elliptic functions all of which are
solutions to the NLSE. Of the 12 elliptic functions, six are
[— 02+ 5| f(x)|2+ VI"2P(x)]f (x) = wf(x), (1)  bounded and six are unbounded. Of the six bounded func-

tions, only snk|m), cn(x|m), dn(x|m) have distinct physi-

wheref(x) is the mean-field condensate wave function in thecal forms. Others differ only by a translational shift or a
longitudinal direction,u is the eigenvalue or the chemical rescaling of the amplitude. The six unbounded functions can
potential, andy is the nonlinearity parameter which is pro- be represented as a quotient of the above three functions in
portional to the number of atoms and teevave scattering different combinations. We will find that the pieces of these
length. All quantities in Eq(1) are dimensionless. unbounded functions are those appropriate in the barrier re-

Analytic solutions of the GP equation for harmonic andgion of the double-well for a repulsive condensate. Table |
quartic double-well potentials are not possible, so we haveummarizes the functions relevant to this work.
chosen to investigate the infinite square well with symmetri- Solutions in the three regions will be written in the form
cally placed finite rectangular potential barrier. The potential

is of the form f1(x), —a<x<-b,
=< fo(x), [X|<b,
o |x>a fo)=1 f2(0, x| €)
f3(x), b<x<a.
Viap(x)=1 0,  b<|x|<a 2)
Vo, |x|<b. The solutions vanish on and outside the hard wall boundary

at |[x|=a. The solutions will be found subject to continuity
For clarity, Fig. 1 shows a picture of this potential. Double-of f(x) andf’(x) atx= *b and the normalization condition
well traps can be created in experiments with a combinatiorf ® ;dx|f(x)|?=1. The vanishing of the solutions at the hard
of optical and magnetic trapping. Varying the laser strengthsvalls is taken as built into the elliptic functions and does not
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form an additional boundary condition. The solutions are di- Aksn(ko— K(m)|m)dn(ke — K(m)|m)
vided into two different categoriesymmetry preservingnd
symmetry breakingraking advantage of the symmetry of the =Aomyk, sn(—kob + K (my)[my)

problem finding symmetry-preserving states reduce to solv- .
ing a set of three nonlinear algebraic equations. The X en(—kgb+K(mz)|my). ®
symmetry-breaking states require solving five simultaneouginally, the normalization condition is
nonlinear equations which is a far more difficult undertaking.
a
2
A. Symmetry-preserving states 2A fb dxcnz(k(x )+ K(m)|m)

Symmetry-preserving states are the states that preserve b
the symmetry of theN-particle many-body Hamiltonian. +2A§f dxdr(k,x+K(my)|my)=1. (9
Simply put, they are the even and odd solutions. As we will 0
find out in the following section, there can also be solutions . .
that do not preserve even or odd symmetry expected frorﬁquatlon(Q) can be written as
linear quantum mechanics. 2 2

2A5 2A
o o [Ekeb+K(my)|my)—E(my)]— ——(1-m)w
1. Attractive nonlinearity 2 m

Symmetric solutions take the following form: 2A?
+W[E(m)—E(—kw+K(m)|m)]=1, (10
f1(x)=Acn(k(x+a)—K(m)|m), (43
whereE(k,l|m) is standard notation for an incomplete ellip-
fo(x)=A, dn(kox+ K(my)|my), (4b) tic integral[36].
Equating of Eqs(6b) gives us a constraint on the energy.
f3(x)=Acn(k(x—a)+ K(m)|m), (4¢) Substitution of Eqs(6a) into Egs.(7), (8), and(10) produces
a system of four simultaneous equations—an energy condi-
and antisymmetric solutions take the form tion, a nontrivial normalization, and two enforcing the con-
tinuity of the wave function and its first derivative at the
f1(x)=A cn(k(x+a)— K(m)|m), (50  interior discontinuity of the potential. The four equations can
be reduced to three equations in three unknowns. These are
f2(x) = Az cn(kox+ K(mg)[my), (5b) Ymken(kw—K(m)|m)=\ dn(—\b+K(m,)|m,),
f3(x)=—Acn(k(x—a)+K(m)|m), (50 (113

mk? sn(kew — K(m)|m)dn(ke — K(m)|m
whereA, A,, k, k,, m, andm, are free parameter§,;(x) and Jmi stk () mydinticeo =K (m) | m)

f3(x) have been chosen to preserve odd and even parity. =myA2 sn(— Nb+K(m,)|my)en(—Ab+ K (m,)|my),
Note that the elliptic paramet&r(m,) displaces the cn in the (11b)
barrier region to make it antisymmetric. In the following
section we describe uniquely nonlinear-type solutions which A 4K2
do not preserve such parity. The condition that the states —[E(\b+K(m,)|my)—E(my)]— —(1-m)w
vanish at the hard walls @ and —a are built into the form 7 K
of the solutions. 4k

Symmetric and antisymmetric solutions are solved using + —[E(m)—E(—ko+K(m)|m)]=1, (1190
the same method. Substituting the symmetric solutions into K
Eqg. (1) with the potential Eq(2), following conditions are where A= \[V,— (1— 2m)K2]/(2—m,=k, and w=a—b.

obtained: This is a system of three nonlinear algebraic equations with
three unknown variable®, m,, andk and four experimental
parameters—the box widtha? barrier heightV,, barrier
width 2b, and nonlinearity parametey.
p=(1-2mk?  p=(m,—2)k5+V,. (6b) This system of equationdl) is analogous to the set of
equations for linear Schdinger equation for a particle on a
The boundary conditiorf;(—b)=f,(—b) is equivalent to box double-well potential26]. However, the normalization
fo(b)=f5(b), and requires equation(119 here is nontrivial and gives an additional con-
dition. These equations can ideally be solved by a multidi-
Acn(ko—K(m)|m)=A, dn(—k,b+K(m,)|m,), (7)  mensional secant method, and that is the method we use to
find the roots. However, the nonlinear parameter space is too
wherew=a-b is the width of each of the wells. Continuity large to choose a good starting point for the roots to con-
of the first derivative requires verge. As we will see in the following section when we deal

A2=2mK/ 7y, A3=2k37, (6a)
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£(x) @ o ® TABLE II. Solutions parameters for symmetry-preserving states
1?, 1.5 of attractive and repulsive nonlinearity for Figs. 2 and 3. The num-
o % o.é /\/\ _bers shown are of suffi_cient precision as initial est_imate to be used
0 0 in the numerical solution of the nonlinear equations of Sec. Il.
-0.5 0-3 However, asn—1 use of high precision arithmetic is required.
-1.5 -1.5
~0.4-0.2 0 0.20.a -0.4-0.2 0 0.2 0.4, m m k s
0, © T, @ :
15 1.5 Fig. 2(a) 0.9684 0.9959 13.25 —164.42
0 % \ o.é /\ Fig. 2(b) 0.9758 0.9935 13.04 —161.90
0 0 Fig. 2(c) 0.6352 0.9298 12.47 —42.03
w03 \/ \/ 03 \/ Fig. 2d) 04763 07426 1536 11.18
-1.5 -1.5 Fig. 3@) 0.8539 0.9976 9.88 181.06
—0.4-0.2 0 0.20.4 -0.4-0.2 0 0.2 0.4 Fig. 3b) 0.8514 0.9977 9.98 184.51
] ) Fig. 3(c) 0.4338 0.9912 14.79 313.75
FIG_. 2. Sh(_)wn are the first f_our symmetry-preserving states forFig. 3d) 0.4313 0.9909 15.00 30224
attractive nonlinearity. The barrier walls arexat +0.1.
with a set of five equations for the symmetry breaking solu- Jmoh en(—Ab+K(m,),m,)
tions, it is almost impossible to find the roots and the analytic
solutions without a good initial choice of parameters from an = Jmken(k(a—b) —K(m),m);

approximate numerical solution.

Such numerical approximations to the exact solutions of VM2 sn(—Nb+K(my), my)dn(— Ab+K(my),m,)
Eq. (1) with the double-well potential Eq2) can be gener- _ .
ated by the shooting methd87]. However, the cubic non- = Jmié stk —K(m),mydn(ke—K(m),m);
linearity generated from the mean-field interactions of the
atoms introduces numerical stiffness into the resulting two-
point boundary-value problem. To accurately compute the — (4k?I 7)(1—m)w— (4\2/ 5)(1—m,) b+ (4k/ 7)
numerical solutions, Gear’s method88] are employed
which are efficient in overcoming the numerical stiffness by
utilizing backward differencing formulas. The resulting where
shooting scheme is then easily implemented and both the
normalized symmetry-preserving and symmetry-breaking
states are computed along with their chemical potential. We
note that by adjusting the shooting angle, the normalizatioe would like to note that unlike linear quantum mechanics,
to unity can be satisfied. for attractive condensate the eigenvalue or chemical potential

Knowing the chemical potential and the value of the so-of the antisymmetric state for this well dimension has a
lution at barrier boundarg=b from the shooting routine |oyer value than the symmetric case. This behavior is only
numerics we can find the three approximate roots of EQSyye for strong nonlinearity. The total energy per particle for
(11). With the form of the solutions and the approximate s antisymmetric state is, however, always greater than the
roots at hand, secant method is used to solve the Efjsto symmetric case. Similar behavior of symmetric and antisym-

find the exact analytic solutions. In Fig. 2 we show the f.'rStrpetric state chemical potentials has also been found in the
four odd and even states. The states are ordered according t0

the chemical potentigk. A barrier height ofV,=100, bar- case of ring potentialt33].
rier width of 2b=1/5, well width 2a=1, and nonlinearity of
n=—100 were used. Table Il shows the solution parameters
for Fig. 2. The true mean-field ground state for an attractive Symmetric solutions take the form
condensate in this case is a symmetry-breaking state where

(4N ) [E(Nb+K(my)|my)—E(my)]

X[E(m)—E(—ko+K(m)|m)]=1,

A=+[Vo+(1—2m)k?]/(2m,— 1=k,.

2. Repulsive nonlinearity

the condensate localizes in one well or the other as is de- f1(x)=Asnk(x+a)|m), (12a
scribed in the following section. The first excited even state

for this well in Fig. 2c¢) where the condensate has one of the fo(x)=A, ds(kox+ K(my)|m,), (12b)
peaks on top of the barrier is a uniquely nonlinear stagd

which does not have any counterpart in linear Sdimger f3(x)=—Asnk(x—a)|m), (129

equation. Fo>V,, all even solutions are of this kind, how-
ever, even foru<<V, strong nonlinearity can give rise to and antisymmetric solutions take the form
such states. Symmetric solutions of this kind have the form

fo(x) = A, cn(kox|my). f1(x)=Asnk(x+a)|m), (133
The antisymmetric solutions were found using a similar
method. For reference the system of equations is fo(X) = A, eI kox+ K(my)|my), (13b
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1.5 @ 1. 5 ® breaking states as described in the following section. For a
1 1 repulsive condensate the lowest symmetry-preserving state is
0.5 0.5 always the ground state.
0 0
5 5
1 1

B. Symmetry-breaking states

-0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.20.4 Symmetry-breaking states are uniquely nonlinear states
] o © 015 @ where different size or number of “lumps” are present in the
1 1 two wells. Such stationary states with strong localization and
0.5 /\ /\ 0.5 /\ different number of nodes in the two symmetric wells are not
0 (5’ \/V - g possible for linear Sturm-Liouville systems. Finding such so-
1 21 \/ lutions confirms and extends the numerical widR] and the
I S R RPN EE two-state tunnelmg model§8-10,39 of t_he double-well
x . where macroscopic quantum self-trapping has been pre-

dicted. On theN-particle level the stationary-states should

FIG_. 3. Sh(_)wn are the first f_our symmetry-preserving states forpreserve the symmetry of the Hamiltonian and can only be

repulsive nonlinearity. The barrier walls arexat +0.05. symmetric and antisymmetric. So these asymmetric states
arise due to the nonlinearity associated with the mean-field
f3(x)=Asnk(x—a)|m). (130  approximation.

In the work of D’Agosta and Presilld.2] a nonlinear trial
function and relaxation method for partial differential equa-
tions was used to numerically find both the symmetry-
preserving and symmetry breaking states of the GP equation
in a symmetric harmonic or quartic double-well. The difficult
task of choosing the right trial functions and the possibility
of false minima leading to artifacts in such methods moti-
vated us to treat the model double-square-well potential and

. . . to find the roots of these algebraic equations, and thus find
Just like for the attractive case the three simultaneous equg;. oy act analytic solutions. The qualitative behavior of so-

tlogsﬂg)btamed fromdt.r;e bound?r:y ?Onnd't.'on_s’ norrnalIZatlonIutions in any symmetric double-well potential should be the
an € energy conditions are the following: same as ours, and, wherever the set of parameters used over-

_ _ laps with those of Ref.12] there is a one-to-one correspon-
Vmksr(ke|m) =X\ ds(~Ab-+K(mp)|my), (158 dence in the solutions.

Substitution of these solutions into E@.) with the double-
well potential Eq.(2) gives the following equations for the
amplitude and the chemical potential:

A2=2mkl 7y, A3=2k37, (149

w=(1+mk? u=—(2m,—1)k3+V,. (14b

Jmi en(kew|m)dn(kw|m)

1. Attractive nonlinearity
=—\2cg(—\b+K(my)|m,) Solutions with no nodes inside the barrier region take the

X ns(— \b-+K(my)|my), (1sp o™

5 f1(x)=A; cn(ky(x+a) —K(my)|my), (16a

4k 2\
2 _ 2 _ _
AN2b/ p—AN?mybl p+ ) w+ ) [cs(—Ab+K(my)|m,) fo(x)=A, dn(ko(x+d) +K(m,)|my), (16b)

X dn(—Xb+K(my)[mz)—csinb+K(my)[my) f2(X)= Az cn(ks(x—a) +K(ms)|my), (160)
X dn(\b+K(my)|my)]— 27)‘[_ E(\b+K(m,)|m,) and solutions with nodes inside the barrier are
ak f1(x)=Az cn(ky(x+a)—K(my)|my), (179
FECADTK(my)my)] - —rE(kelm=1, (159 (%)= Agenlky(x+d) +K(mp)|my), (17
where A= [ (1+m)k*—V,]/(1—2m,)=k,. A similar set f3(x) = —Azcn(ks(x—a) + K(mg)|my), (170

of equations is obtained for the antisymmetric case.

The ground state and the first three symmetry-preserving in Egs.(16) and(17) is a measure of how far the solution
excited states are shown in Fig. 3. The well dimensions usednder the barrier is displaced from being symmetric. The
here are different than the attractive case which was choseamplitudes and the chemical potentials are
to show the peculiarities of attractive condensate. A barrier

height of V,= 1000, barrier width of B=1/10, well width Af=2mKi/n, A5=2K3ln, Af=2mgk3/y,
2a=1, and nonlinearity ofj=100 were used here. Table II (1839
shows the solution parameters for Fig. 3. In addition to the ) )

even and odd excited states there can also be symmetry- w=(1=2myks, p=(my=2)ks+V,,
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®)

p=(1—2mg)kj. (18D gy 4 & ® 5
The set of five equations in five unknowns are Zg z A
2
vy cnrg(my)my)=gdn0y(dmp)lmy). - 19 b \/
Jmay cn(A 4(M3)|ms)= B dn(\,(d,m,)|m,),  (20) . -0.4-0.2 ?C) 0.2 0.4 . -0.4-0.2 (;)) 0.2 0.4
ymya? sn(xg(my)[my)dn(hg(my)|my) f(’% /\ i /\
=m3B° sn(\1(d,mp)|mpen(na(d,my)l),  (21) 0 \/ : \/
1 -
Vmgy? s\ o(mg) | mg)dn(h o(ms) | ms) -2 N

-0.4-0.2 0 0.2 0.4x -0.4-0.2 0 0.2 0.4

=m32 s\ o(d,my)[mp)en(ho(d,my) ), (22) .
FIG. 4. Shown are the first four zero-node, one-node, and two-

2)/2 2y node symmetry-breaking states for attractive nonlinearity. The bar-
- 7(1— ms)w+ 7[E(m3) —EM4(m3)|m53)] rier walls are atx==0.05.
242 > metric ground state, increasing the barrier height localizes
- i(l_ ml)w+—a[E(ml)+ E(\s(my)|my)] the condensate more into the well, on the other hand increas-
n n ing the barrier width pushes the peak of the condensate den-

28 sity more towards the center of the well on top of the barrier.
X —[EMy(d,my)|my)—E\q(d,my)|my)]=1, Figures 2 and 4 are the bright soliton solutions in a double
7 well. It shows the one-, two-, three- and four-soliton solu-
(23)  tions. Bright soliton and soliton trains have recently been
observed in attractive condensates’af [5,6]. Unlike sta-
where a=\u/(1-2my)=k;, B=(u—V,)/(m,—2) tionary soliton trains of equal density lumps in a single-
=k, y=+p/(1—2m3z)=KkKs, N1(d,m,) =k,(d—Db) potential well, double-well geometry has stationary soliton
+K(m,), Ny(d,my)=k,(d+b)+K(m,), A3(m;)=aw  train solutions with unequal density lumps as is shown in
—K(m,;), andX,(m3)=— yo+K(ms). This is a set of five Fig. 4. There exists a whole class of such many-soliton so-
nonlinear equations in five unknowms;, m,, ms, d, and lutions. As an example, Fig. 5 shows an analytic solution of
w. Asimilar set of equations is obtained for the solutions that Symmetry-breaking eight-soliton bright soliton train in a
has nodes inside the barrier. well of dimensions 2=1, 2b=0.1, V,= 1000, and for non-
As described in the preceding section we use a shootintinearity »= —500.
method to find the approximate numerical solutions. Know- _ o
ing the eigenvalue and the values of the functions at the 2. Repulsive nonlinearity
barrier boundaries at= *+b, we can reduce five equations  Solutions with no nodes inside the barrier are
with five unknowns to equations with two unknowns. With

just two unknowns we can use a graphical metfigg] to f1(x)=Ay snky(x+a)|my), (249
find the approximate solutions. Such approximate roots are
then used to find the exact analytic roots of these five equa- f2(x) = Az dstka(x+d) +K(mp)[my), (24D

tions using a multidimensional secant method, and thus we B
obtain the analytic solution of the symmetry-breaking states. fa(x) =Ag sniks(x—a)|ms). (249
Without a good bracketing on the roots obtained from firstgg| tions with nodes inside the barrier are

solving it numerically its extremely unlikely for a secant

method to converge for a set of five nonlinear equations. fL(x)=Apsnky(x+a)|my), (259
For Fig. 4 we use a well dimension ofaz1, 2b

=1/10, V,=1000, and nonlinearityy= — 100. We use a dif- f2(X) = Az cs(ka(x+d) +K(my)[my), (25b)

ferent well dimension here than the attractive symmetric case

just to show the varieties of asymmetric solutions. Table IlI f3(x)= = Ag sn(ks(x—a)[my). (259

shows th.e' solution parameters for F|g. 4. The solutions Calne amplitude and chemical potentials for the states that has
be classified as multiple node solutions—zero node, ONQ5 nodes inside the barrier are

node, two node and such. The lowest symmetry-breaking
state for attractive condensate is the ground state of the sys-  AZ=2m,k2/7, A3=2k3/7, A2=2myk3/7,

tem as the clustering of particles in one of the wells mini- (263
mizes the energy for strong enough self-interaction. There

can be ground- and excited-state solutions with assymetri- pa=(1+mpKE,  pp=(1-2my)K3+V,,

cally placed peaks on top of the barrier. The analytic form of 5

such solutions ig,(x) = A,cn(k,(x+d)|m,). For an asym- H3=(1+mz)k3. (26b)
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TABLE lll. Solutions parameters for symmetry-breaking states of attractive and repulsive nonlinearity for
Figs. 4 and 6. The numbers shown are of sufficient precision as initial estimate to be used in the numerical
solution of the nonlinear equations of Sec. Il. Howevenmas 1 use of high precision arithmetic is required.

m; m, ms d o
Fig. 4(a) 0.9999 1108 1-1016 —0.0680 —625.27
Fig. 4b) 1-10°8 0.9999 0.7640 0.0618 —174.10
Fig. 4(c) 0.8257 0.9994 0.6171 0.0219 —62.829
Fig. 4(d) 0.8401 0.9992 0.6177 0.0184 —62.820
Fig. 6(a) 0.9273 0.9958 0.2612 —0.0035 243.16
Fig. 6(b) 0.9273 0.9959 0.2529 —0.0043 248.95
Fig. 6(c) 0.9612 0.9992 0.0016 —0.0491 308.14
Fig. 6(d) 0.0787 0.9876 0.6012 0.0122 412.30
For reference the equations are where the same notations as in the attractive case has been
used. Here the five unknown variables ang, m,, ms, d,
Vmya s aw|my) = B ds(\;(d,m,)|m,), (27) andu; «, B andy are functions of the elliptic parameters

and the chemical potentigl. A similar set of equations is
\/Eysr(— yo|ms) = B dsiA,(d,m,)|m,), (28) obtalneq for the solutions that has_ nodes inside the'barn.er.
The first four states are plotted in Fig. 6 for a nonlinearity
of =100 and the same well dimension as the repulsive

2
Vm;a® enfaw,my)dn(aw,my) symmetry-preserving case, az1, 2b=1/10, and V,

=—B2ns(\,(d,m,)|my)cs(h4(d,my)|my), (29  =1000. Table i shows the soluﬁon parameters for Fig. 6.
Again the solutions can be classified as one-node, two-node,
\/Fyz cn(— yo|mg)dn( — yo|m) three-node symmetry-breaking states. For repulsive conden-
3 3 3

sates the asymmetric ground state has a much higher energy
=— B2ng\,(d,m,)|my)csh,(d,m,)|m,), (30) and is in fact the second excited state of the double-well.
Note that for the two two-node solutions keeping one node

242 242 inside the barrier and another outise the barrier is energeti-
48%bl n—4B°mybl n+ —w+—w cally more favorable than having two nodes outside the bar-
7 Y rier. In Fig. 7 we show the symmetry-breaking ground state

28 as we change the nonlinearity. It evolves from being almost
+ —[cs(\1(d,my)|my)dn(\ (d,my)|my) localized for small nonlinearity to having three distinct den-
K sity lumps for high enough nonlinearity.
—cs(Ap(d,my)|my)dn(\(d, my)[my)] .
I1l. SCHRO DINGER CAT STATE OF BEC

2a 2 B
——E(aw|m1)——yE('yw|m3) IN A DOUBLE-WELL
K K As was shown in the preceding section, the mean-field
2B ground state of attractive condensate and some of the excited
- 7[ —E\1(d,mp)|my) + E(\5(d,my)|my)]=1,

) @ ®)

2 2
1.5 1.5
. 0.5
0 0
5 5
1 1

£(x)

\/ -0.

1 -0.4-0.2 0 0.20.4 -0.4-0.2 0 0.2 0.4
/\ /\ 0 2 © 0 2 @
0 1.5 1.5
1 1
NIV, s/ N
0 050 \/
-0.5 21
-2 -1 -1.5
-0.4-0.2 0 0.2 0.4 4 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4
FIG. 5. Shown is a symmetry-breaking eight-soliton bright soli-  FIG. 6. Shown are the first four one-node, two-node, and three-
ton train solution in a double well. The barrier walls arexat node symmetry-breaking states for repulsive nonlinearity. The bar-
+0.05. rier walls are at==0.05.
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%0 @ 92 ®) where ¢(r;)’s are the single-particle mean-field wave func-
tions normalized to unityfdr|4|?=1.
1 1 The expectation value gives us theparticle mean-field
0 0 energy,
-1 -1
N(N+1)
N Ny _ 4
~0.40.2 0 0.20.4 -0.40.2 0 0.20.4 (¢%IHN[¢%)=uN 2 gf dri %, (34
o) ©) X o) x
2 x)2

1 /‘\ 1 whereu is the chemical potential. We can generalize these to
/_\/\ the left and right localized GP solutions in a double-well,

0 0 \/ which in the above equation would correspond to replacing
¢ by ¢ and ¢r. The expectation value with respect to the

left and right localized states contains overlap integrals that

-0.40.2 0 0.20.4 ~0.40.2 0 0.20.4 no longer vanish because of their nonorthogonality,

X X

_1 -1

FIG. 7. Symmetry-breaking repulsive ground state as a function, v N(N—1) 2 2. A \N—2
of nonlinearity. The barrier walls are at= +0.05. (a) =15, (b) <¢L|HN| Pr) = 2 9 dr(¢t) Pr(A)
7=30, (c) =50, and(d) »=100.

2 * 2 N—1 N
states of both attractive and repulsive condensates are gN f dr @1 ¢l $a(A)™ - uN(AYT,
symmetry-breaking states. For the symmetry-breaking local- (35)
ized states such as the attractive ground state, coherent quan-
tum tunneling between the degenerate states removes the dghere A = [dr &F ¢r is the overlap integral. The even and
generacy and forms a superposition of the mean-field stategdd combinations of the left and right localized solutions
Such localized superposition states of the fomjey N+ b1 are a two-configuration model for Sclaiager
*+ ¢y are Schidinger Cat states. On the other hand, theCat superposition states. Takirgl and ¢ to be real, the
usual even and odd symmetry-preserving delocalized statespectation value of the energy at this simplest level of ap-
of the formWN= (e drigny)" are not traditional Schiro  proximation is
dinger Cat states. For the Cat states, tunneling splitting is

exponentially small in thél-body wave-function overlap. In (SNIHN A = (D) Hn| DR)
the following we find the zero-order two-configuration SA= " N (36)
mean-field Cat state tunneling splitting starting with the 1=(¢Ll¢r)

N-particle Hamiltonian with pseudopotential interaction. It lthouah this equation is identical in appearance with E
has not gone unnoticed that the ground state of the attracti\/éo) ofgCirac ot gl [11], our use and incI?JF;ion of the exac'?.
condensate is Cat-liket0,41]. Ciracet al.[11] have studied : '

the ground state of the Josephson-coupled two-species Cow_ear)-ﬂeld effect on the fully localized left and right well
densates, which has similarities with condensate in a doubl olutions differ from their treatment of spinor condensates.

well. In the following section we deliberate on the experi- "he tunn.eling splitting is the difference in antisymmetric and
mental realization of cat states of BEC in a double well. symmetric energy,

A. Schrodinger Cat state tunneling splitting ]
For the case when the overlap is extremely small and for a

large number of particles the normalization factor in the de-
nominator can be ignored and the splitting can be written as

The N-body Hamiltonian for a system & weakly inter-
acting identical bosons each of mamsn an external poten-
tial Veyy is

N .
p2 AE~—2MN(A)N+29NZJ dr | drl? (AN
Hu=3, | = 5 Vo Veudr) | + 123 VI ). o

(32 N(N-1)g [ dr 67RO (38)

Here V(ri,r;)=gé(ri—r;) is the Fermi “contact”
pseudopotential, ang=4mag?/m wherea, is the swave
scattering length characterizing the binary atomic collisions
For a fully condensed Bose condensate Nheody wave
function can be written as a symmetric product of single

particle wave functions,

This shows explicitly how the Cat state tunneling splitting
depends on the overlap of the localized single-particle mean-
field wave functions. However, in our calculations we find
the exact splitting by use of E¢37) since physically realiz-
“able splitting can only be generated for a significant overlap
such that we cannot completely ignore thé term in the
denominator. Sinceé\ is always less than 1 the splitting is
W, o, . TN =0(r) (1) - - - d(ry) =N, (33 exponentially small in the wave-function overlap.
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f(x) 4 @ g, (4B)
3 -5
2 -10
1 -15
0 N
440 460 480 500 520 540

-0.4-0.2 0 0.2 0.4,

) FIG. 9. Cat state tunneling splitting as described in the two-

configuration model: it shows the exponential dependence of the
splitting on the number of particles for a fixed coupling constant.

Energy is in frequency units of Hertz.

f(x)

been assumed. In Fig. 10 we show the log of tunneling split-
ting in the same well as a function {d. for a fixed num-
ber of particles, in this case for 500 particles. For a Cat state,
with the addition of more and more particles the single-
-0.4-0.2 0 0.2 0.4 4 particle overlap becomes smaller, and the tunneling splitting
becomes vanishingly small due to its exponential depen-
FIG. 8. A pair of symmetry-breaking solutions, which produces gence on the overlap and the number of particles. Figure 11
the Cat statega) attractive ground statéb) repulsive excited state. ghows the GP single-particle tunneling splitting between the
attractive antisymmetric and symmetric state fggss
We use the solution of the one-dimensional GP equation= —(.911, which sharply contrasts with the Cat state tunnel-
(1) to find the tunneling splitting and its dependence on othefng splitting.
quantities. The conversion factor to get the energy from a For an example of a Cat state, fof=440 and gess
dimensionless quantity i%2/(2ml®) [35], wherel is the = _0.145 the peaks of the degenerate states are asymmetri-
Iength of the box. To find the Spllttlngs in one dimenSion, theca”y p|aced on top of the barrier and the Separa’[ion of the
coupling constant §” should be replaced by the dimension- peaks is 1.5.m, the tunneling splitting is 48 Hz, and the
less effective one-dimensional coupling constggf;. The  tunneling time is 21 ms, which are within the experimental
dimensionless nonlinearity of the NLS equatior(l) is re-  range of detection. For higher peak separations the overlap is
lated toge¢s by the relationshipp=geN, whereN is the  small and the splitting becomes negligble. An optimal Cat
total number of particles. For experimental purposes where gtate with Gaussian barriers as is often used in experiments
condensate is three dimensional or can be quasi-ongvhere the peaks are well separated and the splitting is within
dimensional the effective coupling constapnt depends on  the range of detection should be attainable with externally
the transverse dimensions of the trap, the species of atomgning the coupling constant through Feshbach resonance
(whether attractive or repulsivand the total number of par- [42]. The number of particles in our study is limited to the
ticles in a nonlinear and nontrivial way. Even without know- order of hundred atoms which is within the range of stability
ing the exacly.¢; for realistic three-dimensional condensate of attractive condensat¢43] such as’Li or 8Rb. Changing
we can explore the dependence of the tunneling splittings othe scattering length by Feshbach resonance will allow stable
the number of particlesl and on the effective coupling con- attractive condensates to be prepared with several thousand
stant. The relationship between the effective coupling conatoms[6]. For a repulsive condensate, Cat states may also be
stantgets and the transverse dimensions of realistic doubleprepared making use of the excited localized condensate
well traps that will give the correct experimental predictionswhich must be tuned to the right regime to get a well local-
is under investigation. ized condensate as shown in Figa)7

Y
o Uk N

log (AE)

B. Discussions 0o

Pairs of symmetry-breaking mean-field states in a double- -5
well are shown in Fig. 8, coherent tunneling between these
will produce a Cat state. Experimentally such macroscopic
Cat states could be observed by starting with a localized
attractive condensate in the lower well of an asymmetric
double-well potential, and then varying the symmetry of the
two wells. In Fig. 9 we show the log of tunneling splitting
for a condensate ofLi as a function of particle number for i, 10. Cat state tunneling splitting as described in the two-
a double-well of dimensions 12/5m separated by 7am  configuration model: it shows the exponential dependence of the
in a box width of 100um and barrier height o¥,=133. A splitting on the effective coupling constaf. Energy is in fre-
constant effective coupling constant gfs= —0.145 has quency units of Hertz.

-10

-15

0.13 0.135 0.14 0.145 0.15 0.155 0.16 | |
Lot
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AE G tion, result from the nonlinearity introduced by the mean-

60 field approximation.

50 The superposition of mean-field localized states of the
form g drigne are Schidinger Cat states that arise due

40 to coherent tunneling between the two degenerate states

30 strongly localized in two different wells. Attractive conden-

20 sate in the ground state or repulsive condensate in its

10 symmetry-breaking excited state can be used to produce such
Cat states. In a zero-order two-configuration model the split-

20 40 60 80 100 ting is exponentially small in theN-body wave-function
N overlap. Tailoring the width and barrier height of a double

FIG. 11. GP single-particle energy splitting between the lowestvell and with adequate number of particles in the trap to give
antisymmetric and symmetric states of an attractive condensate. THBe optimal splitting, macroscopic superposition states
splitting of mean-field delocalized states slowly increases with parshould be attainable with current BEC technology.
ticle number, and this runs in a direction opposite to that of the Cat The use of mean-field picture in describing BEC fully
state tunneling splitting. Energy is in frequency units of Hertz.  delocalized in a double well is valid only when the conden-
sates in the two wells are fully coherent. For sufficiently low
tunneling, condensate in a double well cannot maintain its

We have presented the stationary states of nonlineggoherence and therefore mean-field analysis of a fully coher-
Schralinger equation in one dimension for a symmetric€nt condensate as was presumed here is not adequate. Such
double-square-well potential for both attractive and repulsivdragmented condensate with number squeezed configurations
nonlinearity. In addition to the symmetry-preserving evencan only be treated using theories which go beyond the
and odd states, we find analytic expressions for symmetrymean-field theory. However, the availability of the mean-
breaking states that have different numbers and sizes of defield analytic solutions as presented in this paper provides the
sity lumps in the two wells. For attractive condensates theséeroth-order nonlinear wave functions needed to include im-
provide the analytic solutions of the stationary bright solitonportant and large mean-field effects in models which treat
trains in a double well. Symmetry-breaking states do noffagmentated condensates.
preserve the even and odd parity of tNeparticle many-
t_Jody Hamiltonian.. Finding such analytical solution of con- ACKNOWLEDGMENTS
tinuous GP equation puts the self-trapping states as found
numerically [12], in the “two-state” tunneling models We wish to thank Lincoln Carr and Bernard Deconinck
[8—11], and in the discrete nonlinear ScHioger equation for discussions and Joachim Brand for computational sup-
[13] on an exact footing. Such unique symmetry-breakingport. Initial phases of this work were supported by NSF
states, which are not possible for a linear ‘Sénger equa- Chemistry and Physics.
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