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Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates
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We present a theory of hysteretic phenomena in Bose gases, using superfluidity in one-dimensional rings and
in optical lattices as primary examples. Through this study we are able to give a physical interpretation of
swallow-tail loops recently found by many authors in the mean-field energy structure of trapped atomic gases.
These loops are a generic sign of hysteresis, and in the present context are an indication of superfluidity. We
have also calculated the rate of decay of metastable current-carrying states due to quantum fluctuations.
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I. INTRODUCTION A. Generic properties of hysteresis

Hysteresis is the phenomenon where the state of a physi-

Quantum degenerate bosonic atoms have proven impo€al system depends upon its history. The canonical example
tant for studying macroscopic quantum phenoméioa a IS & ferromagnet, whi.ch i_n zero appligd magnetic field has a
review see Ref[1]). The order parameter of the COndensedf,pontaneous magnetization, conventionally taken to be in the
phase is a macroscopic quantum wave function which, unlik@ direction. This magnetization is robust in that it is not
single-particle wave functions, can be directly probed in arsignificantly changed applying a small field in thez direc-
experiment. The interplay between this macroscopic wavéion. However, if a strong enough field is applied, the mag-
function and interactions leads to a variety of effects, thenetization can “flip,” and point in the—2z direction. When
most well known of which is superfluidity. Here we explore the applied field is reduced to zero, the magnetization does
superfluid phenomena in a dilute atomic gas with short-rangeot revert to its original orientation, but remains pointing in
interactions. As we will showsuperfluidity is naturally  the —7 direction. In this example, and the ones that follow,
viewed as a hysteretic response to rotafionotivating a e see that the response of the system lags behind the ap-
more general study of hysteresis. plied stimulus.

In our study of superfluidity, we quantify the roles played  In a classical system, hysteresis is conveniently thought
by interactions, finite-size effects, and impurities in the be-about in analogy to the Landau theory of phase transitions
havior of a weakly interacting gas of one-dimensional[6]. One considers the property of interést this case the
Bosons, showing that persistent currents can exist when thmagnetizatiorM) to be an order parameter. An energy land-
interactions are strong compared to any impurity potentialsscape is produced by calculating the energy of the system as
but weak enough to not produce large phase fluctuations. W function of this order parameter. The applied figldre the
present a detailed discussion of the energy landscape of sushagnetic fieldH) changes this landscape.
gases, revealing a nontrivial topography. In the limit of weak Hysteresis occurs when the energy landscape has more
interactions we calculate the lifetimes of persistent currentsthan one minimum, as depicted in Figal (for similar fig-

In addition to gaining insights into superfluidity within a Ures calculated within a microscopic model, see Figs. 12 and
one-dimensional geometry, our approach provides an intuid3). For example, both magnetization in th@nd —z direc-
tive understanding obwallow-tail energy loopsfound in  tions might be local minima. Applying a field tilts the land-
mean-field studies of Bose gases within periodic potential§cape, and reduces the barrier. At some critical field, the
[2-5]. We show that such loops are a generic feature obarrier disappears and the system jumps into the global mini-
hysteresis and, in the case of atoms in a periodic potentialum [Figs. Xb) and Xc)]. The phenomenon where the bar-
the loops are a manifestation of superfluidity. We discuss thé€" disappears goes under several names; in the theories of
underlying quantum scaffolding that supports this mean-field
structure, and identify other settings where it can be ob-(a%5 ;(bE (c.%3
served. i

In Sec. | A we introduce the basic phenomenon of hyster- |
esis. The remainder of this section discusses superfluidity 2 1 :
and provides examples of scenarios in which a Bose-Einsteir | > > !
condensate will behave hysteretically. Section Il discusses Mi M M,

microscopic models for superfluidity in both a ring-shaped g5 1. Typical energy landscapes: eneBys order parameter
geometry and in an optical lattice. The remainder of thisy. |n (a) two minima (labeled 1 and Pare separated by a barrier
paper analyzes these models. (3). In (b) one minimum and the barrier coalesce.(th only one
minima exists. A control parametéd) tunes from one landscape to
another. A plot of the energy of the extrema versus the control
*Electronic address: emueller@mps.ohio-state.edu parameter is shown in Fig. 2.
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FIG. 4. Catastrophe set: values of control parameters for which
the number of extrema of the energy structure in Fig. 3 change.
P b ¢ )H Inside the cusp there are three extre(tveo minima and a maxi-

mum) while outside there is only one.

FIG. 2. Energy extrema as a function of control paraméter h h | Th d
Solid lines denote minima, dotted line denotes maxima/saddles. THRCCUrS when one has two control parameters. € secon

points labeled a, b, and c coincide with the energy landscapes iﬁontml parameter changes the size of _the IOC_)p, and can be
Fig. 1, which, respectively, have 3, 2, and 1 extrema. The pointduned so that the loop, and all hysteresis, vanishes. A model
labeled 1, 2, and 3, coincide with the same points in Fig). The that gives rise to this latter structure will be discussed later.
existence of multiple minima at the same value of the control pa- A possible point of confusion here is that the term “swal-
rameter is a ubiquitous sign of hysteresis. The presence of twpW tail” is traditionally used to discuss not the energy struc-
minima requires a maximum/saddieee Fig. 1 ture, but rather the catastrophe set, which is the pdinthe
control parameter spacehere the number of extrema in the
energy landscape change. The catastrophe set corresponding
éo Figs. 2 and 3, respectively, consists of two points and the
gusplike structure in Fig. 4. Thus the swallow-tail energy

phase transitiong6] and of gradient dynamick/] it is, re-
spectively, known as a spinodal or a catastrophe. In mor

mathematical treatments it is referred to as a “saddle-nod . . .
Spectrum is associated with @usp catastrophend not a

bifurcation.” swallow-tail catastrophe
Figure 2 gives a generic depiction of the energy of the The local minima in the energy landscape are of great

extrema of the energy landscafegain, similar figures cal- physical importance, as the system typically resides in their

culated from microscopic models are shown in Fig). 1 vicinity. Saddle points, and local maxima, are also important
distinctive loop is seen. This loop, referred to as a “swallowin tha%/.the rate gf tran’sitions from one mihima to anotEer are
tail” by Diakonov et al.[3], is a general feature of the spec-

trum of a hysteretic system. It exists because for some ran Z\gggfj sb)s/tetrrfs Iot\r/]vgss; ?rzrr:giosnespzrrzt'?g ige” méghn;";a IB
of fields there are three extrentiwo local minima and a Y ’ ypically y

maximun). At the point labeled by(c), one of the local ;hfegf/ﬁ# fl\ljvﬁg?engnsi,s ?r?: t?;riiuerr ?]teiahisteisp:ﬁgogggiﬂ 0
minima meets up with the maximum, and they annihilate one L b =, 9ntKy
another. Mmann’s constant, andis the temperature. It should be noted

To better match the dynamical systems literature, it wouloIhat only in very rare physical situations does the system

be preferable to not refer to Fig. 2 as a swallow talil, andSpend much time at one of these extrema.

instead reserve the term for the similar structure in Fig. 3 that _In a quantum-mephamcal system the scenario for hyster-
esis that we have discussed becomes more complicated. The

basic difficulty is that the order parameter is generally not a
constant of motion. In this case one does not know how to
answer questions like “what is the energy of the system

A

./"/ ~
//7;/ when the magnetization points in thez direction?” There
E /,;//// may simply not exist any energy eigenstates for which the
!,‘:_f,’/x;"_‘.;q/ magnetization points in that direction. Consequently, it is by
//77///7"" - no means obvious how to construct an energy landscape, and
///_’)////4/ /// what significance it will have.

,/’///;//////// There are three, roughly equivalent, methods of circum-

7L venting this difficulty. The first approach is to write the

term is the projection of the Hamiltonian into the space

where the order parameter has a definite value. For example,

if we have a spin system where taeomponent of the mag-

FIG. 3. Three-dimensional depiction of a swallow-tail energy N€tization is our order parameter, thelg,g would be diag-

structure. Thex andy axes represent control parameters, here reOnal in a basig|S,S,)}, whereSis the total spin, ané, is
ferred to aH,; andH,, while the vertical axis is the energy The  the projection of the spin along theaxis. IfH' is small, one
self-intersecting surface shows the stationary points of the energy. 8an neglect it for the sake of drawing the energy landscape.
two-dimensional slice is seen in Fig. 2 wheteg can be identified The second approach is to use a variational scheme, where
with H. one writes “reasonable” wave functions that are param-

/«f’

,'if?;///'
”’////,y// //// H Hamiltonian as a sum of two termbl=Hg,q+H', where
//// / the order parameter commutes wikhy,g. This diagonal

H,
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etrized by the order parameter. The expectation value of the
energy in these states is an approximation to the energy land-

scape. The final approach is to use a mean-field theory in / > /
which the order parameter is a constant of motion. This dis- Q >
cussion will be more concrete once microscopic models are Applied
intr in .1lan r nergy lan . . . . .
tXI(Ij L:ﬁfge o??ﬁeseasgh:i’?gstc;k?a?sl{[ﬁi efe:tS?/e atlhgts?? ?he N FIG. 5. Hysteresis loop in a superfluid. The rotation rate of the
fiuid is shown as a function of the rotation of the container. The

system starts in a _Iocal mlnlmum of the _e_nergy Ian_dsc"?‘pearrows denote the direction of the hysteresis loop. As seen in ex-
there can be matrix elements in the original Hamiltonian,eriments on heliunig], the sloped lines are actually made up of
which allow the system to tunnel to another minimum. Thismany discrete jumps, which cannot be resolved on this scale.
procedure can be thought of in analogy to classical thermally

activated transport, where due to thermal fluctuations the

¢ . f g i ther. H it i ment, which will be given in more detail later, is that an
systém can jump from oné minimum 1o another. Here 1 Isordinary(nonsupe)rfluid does not support persistent currents

quantum fluctuations that allow the system to move betweejo .o ,se the fluid particles scatter off of small imperfections
minima. in the walls of the container, exchanging angular momentum
and eventually equilibrating with those walls. Through a col-

B. Superfluidity lective deformation of the macroscopic wave function, quan-

We now turn to a discussion of superfluidity, a phenom-tum degenerate bosons are able to screen out the imperfec-
enon that manifests itself in many related ways, includingt'ons- Since the fluid effectively sees smooth walls, it does

3

dissipationless flow, quantized vortices, reductions in thd°t Slow down. In the b?_dy Of_th'"S paper, these imperfections
moment of inertia, and the existence of persistent current<Vill P& modeled as an “impurity” potential.

We focus on the latter phenomenon, which was first observed From this physical picture, one can anticipate many of our
in “He [8]. In an idealized version of these experiments, arf€Sults. In particular, there are two natural control param-
annular container of helium is rotated while cooling to below€t€rs; the rate of rotation and the strength of interactions
the lambda temperature, where it becomes a superfluid€lative to the impurity potential. We will find an energy

When the container is then stopped, one observes that tferucture similar to Fig. 3, where these two control param-
fluid continues to rotate—maintaining its velocity for ex- et€rs correspond tH, andH,.

tremely long times. Arguments based solely on Galilean in- . .
variance show that this current-carrying state cannot be the C. Optical lattices

ground state of the system, and is therefore an extremely syperfluidity is not limited to a ring geometry. As we
long-lived metastable excited std@. It is observed that the explain, superfluid properties naturally appear for Bose par-
lifetime of these currents decrease with increasing velocitysicles within a periodic potential. Due to their importance in
and there |S a critical VeIOCityC, above which no perSiStent solid-state physicsy guantum phenomena in periodic poten-
currents exist. tials are very well studied theoretically and there has been a
For our purposes it is convenient to think of such currentsapid progress on experimental studies of Bosons in periodic
in terms of a hysteretic response to rotation. Imagine Startinﬁotentials, where the periodicity is produced using standing
with an annular container of superfluid which is at rest. If theyaves of light(optical lattice$ (for a review see Ref11]).
container is SlOWIy rotated in a clockwise direction the fluid Many of the Sing|e_partic|e phenomena of solid-state physics
remains at resin the rotating frame this is a persistent cur- haye been observed in these artificial lattices, including band
rend. If one rotates faster and faster, the relative velocitystrycture, Bloch oscillations, and Zener tunneliag]. These
betWeen the Container and the fluid eVentUa”y exceeds thﬁ)"d_state Concepts are reviewed beIOW, and p|ay an impor-
critical velocity, excitations are formed, and the fluid accel-tant role in our discussion of superfluidity. Further theoretical
erates. At this point, a persistent current has developed igjscussions of these phenomena in cold gases and relevant
that even if one stops rotating the container then the fluidjiscussion of how interactions screen the lattice can be found
will continue to flow. The flow can be Stopped if one rotatesjn Ref. [12] A|th0ugh not direcﬂy related to our Study of
the container SUfﬁCiently fast in a counterclockwise direC'hysteresiS, it is worth mentioning that correlated many-body
tion. The prinCiple is Slmply that when the relative VelOCity States’ such as Mott insu'atqﬂsg]' have been observed in
between the fluid and the container exceeds the fluid  atoms trapped in an optical lattice.
accelerates. Thus the fluid flow lags behind the applied rota- Here we use superfluidity to reexamine theoretical studies
tion, resulting in the hysteresis loop sketched in Fig. 5. Byof mean-field energy loops of atoms in optical lattif23].
the arguments of Sec. IA, one must therefore see energye understand the key features of these studies by starting
structures analogous to those in Figs. 1 and 2. with the energy structure of the noninteracting single-particle
Here we wish to understand the origin of this dramaticstates. As discussed in RéL4], the states available to non-
effect from a microscopic model. Standard descriptions Ofnteracting particles in a periodic potential are labeled by two
Superf|UIdIty[6,10] attribute the |Ong life of these currents to quantum nur‘nbers7 a band index and acrysta| momentum

the scarcity of low-energy excitations. In the present settingk. The wave functions of these states are of the Bloch form,
it is more natural to think of superfluidity in terms of the

ability of the fluid to screen out impurities. The basic argu- Pou(r)=e*"v (1), (1)

Q Fluid
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FIG. 7. Schematic representation of energy extrema for a con-

FIG. 6. Band structure. The solid line shows the energy of Blochdensate in an optical lattice. Solid and dotted lines denote minima
waves of crystal momenturk for noninteracting particles in a pe- and saddle points. One of the spinodal points, where the number of
riodic potential within an extended zone scheme. The bandwidthextrema change, is marked by a gray circle.
E,, becomes smaller as the periodic potential becomes stronger.
The dashed lines show the energy states in the absence of the peri- The question of what happens to the system when the
odic potential. At the band edge, these states have ey cloud is accelerated past the “end of the lodpriarked by a
=hZml2mL. gray circle on the figureis discussed by Wet al.[2,15] and

werewv (r) shares the periodicity of the lattice, akds re- LU €tal-[S]. Clearly adiabaticity must break down at this
stricted to the first Brillouin zone. Limiting our discussion to POINt, and crossing this point from left to right, then back
one dimension with lattice periodicity, the first Brillouin ~ @dain will not return the system to its original state. This
zone corresponds to momentd< /L. For simplicity, we irreversibility shows that hysteresis has developed.

use dimensionless units wheke=1. In Fig. 6, the lowest- Note that as the interaction strength is reduced, the loops
energy band is sketched in an extended zone scheme, whdfeFig. 7 become smaller and eventually disappear. Thus if
the energy is extended periodically k& outside of the first one identifiesH; with k andH, with the interaction strength,
Brillouin zone. This periodicity is the source of the phenom-the mean-field energy extrema néar = must have the full
enon known as Bloch oscillations. Imagine starting with aswallow-tail structure shown in Fig. 3.

single particle in th&k=0 state. If an external force is ap-

plied to the particle, it will accelerate akdwill increase. For D. Josephson junctions

sufficiently weak acceleration, the state will adiabatically _ . _ . _
follow the solid curve in Fig. 6. Whek has increased to, We conclude the introduction by discussing a hysteretic

the system has returned to its initial state. Thus a constafi0S€ System in which the hysteresis is not associated with
force leads to periodic oscillations. If the force is too strong,PErSiStent currents, namely, a gas of particles with attractive

the adiabaticity condition is violated, transitions are made tgntéractions in a double-well trap as depicted in Fig. 8. The
higher bands, and one no longer sees the Bloch oscillation§ONtrol parameters here are the strength of interactions and
This breakdown is known as Zener tunneling. the plasé thgt is applied between the.two wells._ _

A similar scenario can be considered for Bose condensed Figure 9 illustrates the transformations that give rise to a
atoms. In the ground state all of the particles reside in thdysteresis loop in this system. One starts with the left well of
lowest-energy Bloch state. Like the single-particle caseMuch lower energy than the righ6%-0). The ground state

when a force is applied, the crystal momentkrincreases. cpnsists of all of the particles bunched up on the Ieft: The
However, as a superfluid, the condensate is able to screen dif@S 1S then slowly decreased, and made slightly negative, so
the periodic potential. Thus, for sufficiently strong interac-that the right-hand well has lower energy. In the true ground
tions, instead of following the solid curve in Fig. 6, the sys- Staté all of the particles are sitting in the right-hand well.
tem follows a path closer to the dashed curve, correspondinjonetheless, the particles actually stay in the left-hand well.
to the spectrum of states in the absence of the periodic pa-"iS Pehavior is understood by noting that in order to move
tential. The microscopic model which will be introduced in the particles from the left-hand well to the right, one has to
Sec. Il B confirms this picture, and one can identify the set ofirSt move a single particle. Although such a move saves the
states visited during this adiabatic acceleration as locdPotential energy of the bias, separating that one particle from

minima in a mean-field energy landscape. When the fluid’s

velocity exceeds the critical velocity, it loses the ability to VA
screen the lattice. Thus the energy curves terminate at some
point, and energy extrema take on the structure in Fig. 7,
where one has a crossing of local minima. One minimum
corresponds to the fluid moving to the right, the other to fluid
moving to the left. These two states have different momen-
tum, but share the same crystal momentum. For purely topo- )

logical reasons, the presence of two local minima at a given I
value ofk guarantees that there is a saddle point separating i
them. This barrier state is also shown in Fig. 7 as the dotted
line forming the “top of the swallow’s tail.” As will be dis- FIG. 8. Geometry of a double-well trap. The potential enevrgy
cussed in Sec. 11 B, the barrier state corresponds to a “phasie shown as a function of a spatial coordinat@he two wells have
slip.” an energy differencé.

b
C
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@ (b) © Operatorsc;r create bosons with angular momentjiin The
W /\ model (2) could be experimentally realized by cooling an
. o atomic gas in an annular trap with harmonic confinement of
¥ frequencyw, to such an extent that only the lowest trans-

FIG. 9. lllustration of hysteresis in a double-well trap filled with verse mode is occupie(fior recent experimental progress on
attractive bosons. In each picture the trap from Fig. 8 is shown WitH'JanIar "aPS see Reffl8]). As long "_"S the trap Ien.gttii
a set value of5, and the particles shown by small gray circles in = Vi/Mw, is larger than the scattering lengdly the inter-
one of the two wells. In(a) the bias is positive, and all of the action parameter would then be given ¢y 4magl/d?.
particles are in the left well. The bias is slowly switched to a small Despite its apparent simplicity, this one-dimensional
negative value inb). The particles remain in the left-hand well, model is quite rich. It is a canonical example of a Luttinger
even though the ground state has all of them on the right. For larghquid [19] whose behavior can be studied via the Bethe an-
enough negative detuning), the particles all jump to the right.  satz[20]. Two properties worth noting are:) Jat g=0 it

describes a noninteracting Bose gas; andtg— e it can be

the others makes the interaction energy less negative. Fonapped onto a gas of noninteracting fermions. In neither of
small enough bias, moving a single particle increases théhese limits is the system superfluid, however, we show that
total energy, and the state with all of the particles sitting infor small positiveg the systemis superfluid. Here we will
the left-hand well is a local minimum of the energy. If the study how this superfluidity develops gss tuned from O,
bias is made more negative, the potential energy savings dinding the structure discussed in Sec. | B. The equally inter-
moving a particle to the right-hand side eventually becomegsting question of how this superfluidity breaks downgas
greater than the interaction energy cost. The particles then alk o will not be discussed.
jump to the right-hand well. The whole process can be re- The model Hamiltonian2) is invariant under rotation,
versed, and a hysteresis loop is formed. and therefore conserves angular momentum. A trivial conse-

For weaker interactions, the value &t which the meta- quence is that if a current is started in this system it will
stable state disappears becomes smaller. For sufficientlyever decay. Thus, as aptly pointed out by Kagaal.[21],
weak interactions, no hysteresis occurs. Thus identiffiag to study superfluidity one must add an impurity that breaks
with the interaction strength, aridl; with the detunings, the  the symmetry. In an experimental setting such terms are al-
energy landscape has extrema matching Fig. 3. ways present due to imperfections in the apparatus. It is quite

Experimentally, such a double-well trap can be formed byinstructive to imagine artificially introducing such an impu-
considering two cells in an optical lattice, or by carefully rity (for instance, by using a laser that interacts with the

arranging magnetic and optical fields as in R&6]. We will atoms via dipole forcgs and being able to control its
not explicitly discuss models for this system, as there exisstrength. Conventional discussions of superfluidity focus on
many excellent treatments in the literatife]. “He, which is strongly interacting, and whose behavior is
largely insensitive to the strength of the impurities. In a
II. MICROSCOPIC MODELS weakly interacting settingespecially in one dimensigrthis

) ) _is no longer the case, and the strength of the symmetry-
We now construct microscopic models of the superfluidyreaking term is extremely important. The system’s behavior

ing the qualitative structures already discussed, these mode{§,o natural models are a point scatteigp, =\ CEC
allow us to make quantitative predictions about the behaviof \§ 4 sinusoidal potentid = A S (clc, 1-:CICk+1q) “9]
sin - "

of a gas of boson_s. In particular, as mentioned in Sec_:. .IA’ Poth cases. measures the strength of the perturbation.
guantum-mechanical system can tunnel from one minimum
in the energy landscape to anoth@rhich would, for ex-
ample, lead to the decay of persistent currentge are able

; B. Optical lattices
to calculate the rate of such tunneling.

A model for particles in a periodic potential can be con-
structed which has the same structure as @g.with an
impurity. The rotation speed and the impurity potential

As a microscopic model of persistent currents, we study &@re, respectively, mapped onto the crystal momentum and the
one-dimensional ring of length, rotating at frequency), lattice potential.
containing a cloud of bosons of masswhich interact via Introducing the field operatog(x), which annihilates a
short-range interactions. Measuring energy in terms ofarticle at positionx, the Hamiltonian for particles in one
#212mL2? (4 is Planck’s constaht the Hamiltonian in the dimension interacting with a local interaction is
rotating frame is

A. Superfluidity

H= f dx—ﬁw'wwu)w*wgz/ﬁww, 3
H=2 (2mj+®)%c/c;+(g/2) k2| cleleicn, (2 2m 2
j j+k=I+m

where®=2mL20/# andg>0 are dimensionless measures whereV(x) is the lattice potentiaEparametrizes the inter-
of the rotation speed and the strength of the interactionsactions, and the argumertis assumed for each of the field
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operators. The periodic potential can be written \&)

=E]-eipixv]-, where p;=jk_=2mj/L are reciprocal lattice E
vectors.
In analogy to Eq(1), it is convenient to write our field )

operators in a Bloch form,

. = dk .
X) = e|pjxf _e|kx/L (K ' 4 24
vx)=2, By =aa 1O @ — _
where;(k) is the Bose operator which annihilates a particle 0 <
with momentum#(k+2j)/L. These obey the standard (@) kL
commutation relationshipsl//j(k),w;r,(k’)]= djjr 6(k—k"). /
In this decompositionk is the (dimensionlesscrystal mo- E Je
mentum that runs from- 7 to = andp; are reciprocal lattice
vectors. The index plays the role of a band index in the .
limit that the lattice potential vanishes. am
In terms of these operators, the Hamiltonian takes the )
form
72 \
h? 04
H= W(H kint H pot+ H(i\rl1?rt)+ H i/nt)' (5)
(b) 0 kL T
_ ; 2,1
Hkin_f dk; (2mj+k) ‘r/’J by (6) FIG. 10. lllustration of the terms in Hamiltonig®). In (a), the

black line shows the kinetic enerdy,;, of single-particle states as
a function of crystal momentunk. The periodic potentiaH
Hpot:J dkz quj.’f+q(/,j’ , (7 couples states with the sanke splitting the degeneracies, giving
Ia rise to the band structure shown as a dotted gray linéb)irscat-
tering processes are illustrated. On the left-hand side a generic scat-
(vert) _ ot tering event is shown where two particles with arbitrary momenta,
Hint dk(g/2). 2 ; ¢11¢12¢13¢J4' (8) scatter to two other states. On the right a “vertical” scattering event
I1ti2=l3tls ) . .
is shown, where two particles with the same crystal momentum
scatter to two other states, preserviagrhese vertical scatterings
Hi’m=j d{k}(g/Z)Z YL s, (9)  are included inH{“*", while all others are irH/,. Energies are
{i} measured in units ok?/2mL2,

where the respective terms in E&) represent kinetic, po- other scattering processes, such as the one on the left side of
tential, and interaction energy. The interaction is split intoFig. 1Qb) are included inH;,.

two terms, oneH (™ only involves particles with the same  In our subsequent analysis we will ignag. . This is a
crystal momentum, whiléi;, involves particles with differ- quite drastic approximation which clearly restricts the phe-
ent crystal momentum. In EqéB) through(8) the argument nomena which can be studied. For example, the superfluid-
k in ;(k) is omitted. In Eq.(9) the sum and integral are insulator transition seen in R€fL3] cannot be studied in this

which rely upon mean-field theorythe Gross-Pitaevskii

kKi+ky—kg—k,+27(j1+jo—js—js)=0, (100  equationimplicitly make this truncation whenever they limit
themselves to a Bloch ansd®2]. This approximation there-
and where not all of thig; are equal. In Eq(9) the shorthand fore has a range of validity which is a superset of the mean-
notation ¢; = ¢//,-i(ki) is used. The interaction is given liy  field theory’s. In particular, this approximation is good when
=E/27TL. the interaction strength is the smallest energy in the problem.

The meaning of each of these terms is illustrated in Fig. ©OnceHiy is eliminated, the sectors of differektare in-
10. Solid lines show the kinetic energy of free particles as &ependent. If one identifidswith the ® in Eq. (2), then the
function of the crystal momenturk The periodic potential WO Ham|lt0n|an_s are |dent|ca_l. For thg remaln_der of the pa-
conserves the crystal momentum and therefore only induceel, we work with Eq.(2), while keeping in mind that all
vertical transitions. The main effect ¢f, is therefore to results can also be applied to a gas of particles in a periodic
split the degeneracies at the level crossings, giving rise to thigttice.
band structure shown in gray. The two interaction terms scat-
ter particles between these states. The “vertical” interaction
H{*e" only involves particles that all share the same crystal Here, and in the following section, we calculate the prop-
momentum, as illustrated on the right side of Fig(H0All erties of the microscopic mod€?), finding the general struc-

Ill. ENERGY LANDSCAPE IN ABSENCE OF IMPURITY
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Ep=f

E.=

1 1
0 N/2+2nd/g N
ny

FIG. 12. Energy barrier separating persistent current carrying
states within the two-mode approximation. The ordinate shayys
the number of particles in the=0 state, the remaining\—ng,
particles are in thd=1 state. The maximum occurs ap=n,
=N/2+ 2w ¢lg, where¢ is a measure of the rotation speed, and
the interaction strength. A barrier only exists wher1®,>N. The
labeled energieky, andE.. are given in the text.

where¢p=® — 7, andn]lzcj’rcj are constants of motion. The
eigenstate$ny,n;) = (cf)"(cl)"|0Y/ Vno!n!, have a fixed
number of particles in each momentum state. Just like in the
noninteracting system, fap<0 (¢>0) the ground state is

) ) , , IN,0) (JO,N)). Interactions play a role here only through the
FIG. 11. Spectra. Thick gray lines, single-particle energy Ievelsfact that wheny= 27T|¢|/g<N/2 a barrier, as illustrated in

of noninteracting particles in a 1D ring of length Black lines, g 15 separates these two states. This barrier exists be-
mean-field energy extrema of interacting system, with global meanz o ,se gensity modulations are required to transfer particles
field shift removed. Solid lines are local minima, dott@hshed between angular momentum states. In the presence of inter-
lines are saddle points/cusps with oft@o) direction of negative actions these modulations cost eﬁergy The barrier state

curvature/slope(a) and (b) are, respectively, with and without an - 5
added impurity. In(b) the area aroun@® = 7 is enlarged and dis- |N/2+ 7,N/2= ), has energyE,=(¢+m)"(N/2+ y) + (¢

2 2 2 _
played in an inset. Energies are measured in unit&%2mL?2. —77)2(N/2— 3’)"‘39'\1 /4—gvy°, compared tq E.=(¢ .
Notice the similarities between the single-particle states for par-~ ) “N+gN/2 for the other extrema. The maximum barrier

ticles in the ring shown here, and the band structure for particles ifeight(occurring at¢=0) is SE=gN?/4. _
a periodic potential in Fig. 10. This same scenario is repeated at all other level crossings

) ) _ ) o in Fig. 11. Thus, in this weakly interacting limit, one can take
tures discussed in the introductory sections. We divide thgne eigenstates of EqR) to be the “Fock” states

discussion into several sections, based upon the limits of
various parameters and the mathematical techniques used. (ch)”'

No,Ny,N_q,...)=
| 0111 1 > H W
It is instructive to first analyze E@2) in the absence of an . .

impurity, and in the limit where the interactions are suffi- Where the occupation numberg obey the constraints,
ciently weak, i.e., whera =0 andgN<1, with N being the ~ 0 and=;n;=N. For large numbers of particles there is no
number of particles. The noninteracting single-particle en&pproximation involved in thinking of the; as continuous
ergy states are shown as thick gray lines in Fig. 11 as ¥ariables.
function ofd. This spectrum and the physical properties that We have already detailed the energy landscape when we
we are interested in are periodic h, and it suffices to truncate this space to two;’s, and the space of allowed
consider— r<®<1. The ground state, in the absence of states consists of a linghe x axis of the plot in Fig. 1P
interactions, consists of all particles condensed in the lowesWhen threen;’s are included, the space is a triangle, and
energy state. Aside from providing a global shift in the with four n;’s it is a tetrahedron. The-dimensional gener-
chemical potential, weak interactions only introduce a sig-alization of a triangle/tetrahedron is often called a simplex or
nificant perturbation when the energy difference between twa hypertriangle, and within our approximations, the eigen-
levels is less thagN/2, so that the interactions mix the two states of the Hamiltonian form an infinite-dimensional sim-
states. Focusing on the level crossingbat 7, the systemis plex. The corners of this simplex are cusps in the energy
reduced to two levels with an effective Hamiltonian, topography. Cusps play a role similar to saddle points, as

they are each classified by the number of independent direc-

tions in which the energy decreases.

As explicitly shown in Fig. 12 for the case of two levels,

(11)  there exists a range @ for which one can find extrema in

_— |0), (12
A. Two-mode approximation

H_=(p+m)2ng+(dp— 7r)2n1+g(n§+ n2+4ngn,),
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addition to these cusps. In Fig. 11, the extrema are marked It is quite striking that the mean-field theory compares so
by the number of “downward” directions. Loops are clearly favorably with the exact two-mode calculation, considering
visible around points where the noninteracting states crosghat the exact barrier state contains two, rather than one,
These loops get smaller when the interaction strength decondensates and is therefore referred to as “fragmented”
creases. Takmg and ® as the control parameters, one re- [23] The connection between these states is understood by
produces the structure in Fig. 3. noting th_at that the megn-field_barrie_r corresponds to a
As in our generic discussion, these loops lead to hyster-Phase slip,” where the fluid density vanishes at some point.
esis. Suppose our model one-dimensidii®) gas starts in By its nature, such an event bregks rotatlonal_ symmetry. Av-
the statgN,0) at ®=0, and is then accelerated so tHaiis eraging over the possible location of the slip restor'es the
slightly larger thanm. The barrier will then keep the system broken symmetry, and leads to the exédragmentedi barrier

from jumping into the new ground stat®N). Thus the state[24].

presence of this barrier implies the existence of persistent In th|s weakly interacting limit the excitations of the
currents. Of course, since we have considered only ver ean-field theory correspond to the exact low-lying excited

small interactions, these currents only exist n@ar + 7. tgtes of the tvyo—_mode SVSt.e”?- This result is 'tr|V|.aIIy ob-
tained by substituting our variational wave function into Eq.

(11) and calculating the frequencies of small oscillations. For
those familiar with dilute gases of bosons, this result is per-
haps even simpler to derive by going beyond the two-mode

A useful tool to further illucidate our mod¢R) is mean-  approximation, and directly writing down the excitations of a
field theory. Here we use a mean-field theory to show that thegndensate moving at velocity,. As with a three-
general structure of metastability and superfluidity foundgimensional system, an excitation of wave vedtds given
within the two-mode approximation continues to be valid forpy the Bogoliubov form,
larger interaction strengths.

This discussion reveals several important points. h? s 5

(1) Even though a one-dimensional Bose gas is a Lut- Ek:ﬁVk (k"+2gN/L%) —v k. (13
tinger liquid and is usually not studied using mean-field
theory, we show below thahean-field theory correctly de- Here the finite size of the ring restricts the wave vector to
scribes the behavior of a one-dimensional Bose gas for &=2=n/L, with integern. Similarly v,=2#An’'/(mL) is
significant parameter rang& he exact details of this param- quantized with integen’. In the frame rotating with velocity
eter range is discussed below. Q) the excitations have energi&s—#QL/27. Within the

(2) The extrema of the mean-field Hamiltonian are in one-two-mode approximation we are limited to=1, and it is
to-one correspondence with the energy extrema in the mangtraightforward to verify that excitation spectrum matches
body Hilbert space discussed in Sec. Il A. the low-energy spectrum calculated directly from ).

(3) In the regime where both the two-mode approximationExploring the excitation spectrum around the saddle-point
and mean-field theory are applicable, the Bogoliubov excitastate, one finds a zero-mode corresponding to translations of
tion spectrum of the mean field coincides with the exacthe phase slip, and negative-energy modes corresponding to
low-energy excitations of the many-body problem. This cor-falling towards one of the local minima. In the exact two-
respondence is well known from the Bethe ansatz analysis ahode theory, the zero mode corresponds to changing the
the one-dimensional Bose gEX0]. relative phase between the modes.

B. Mean-field theory

1. The two-mode regime 2. Beyond two modes

We begin by considering mean-field theory in the regime In addition to the insights provided above, the mean-field
where the two-mode approximation is valid. For weakly in-approach also provides a systematic way to explore(Bq.
teracting Bosons, mean-field theory can be formulated as for interaction strengths that are beyond the scope of the
variational method in which one assumes that all of the partwo-mode approximation. The mean-field theory involves re-
ticles are in the same single-particle state. In the effectivglacing the field operators, with ¢ numbers. It is conve-
two-level Hilbert space described by the Hamiltonian in Eq.nient to work in real space, defining a “condensate wave
(1), we consider wave functions of the forin,/B):(aag function” ¥(x) by
+ ,BaI)N|O>, where the variational parametersand 8 sat-
isfy |a|?+|/3|2=1, and|0) is the vacuum state containing - fldxékx‘/’(x)' (14)
no particles. Foip<0 (¢>0), the energy is minimized by 0
la|?=1, |B|>=0 (|«|?>=0]B|>=1), which (within the
two-mode approximatioris the exact ground state as shown wherefdx|#(x)|?=N, is the number of particles. An energy
in Sec. llIA. When |¢|<g(N—1)/4m, one also finds a landscape can be found in the space of all possible square
mean-field state which is a maximum of the energy, correintegrable complex-valued functiong(x). This landscape
sponding to the barrier state found previously. The topogracontains all of the structures seen in the two-mode version of
phy of the mean-field energy landscape mirrors that of thenean-field theory. In particular, thk=n states given by
exact eigenstates, and the barriers found within the mean,(x)= JNE2™X are always stationary points. Their stability
field theory do not differ significantly from the exact barriers. is given by the Landau criterion that if the excitation spec-
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trum in Eq.(13) is positive then they are local minima. Oth-  IV. PERSISTENT CURRENTS IN THE PRESENCE OF
erwise there exists a direction of negative curvature. The IMPURITY
existence of multiple minima in the energy landscape leads

to hysteresis and superfluidity. interacting gas through analysis of the energy landscape, we
When both th&=n andk=n—1 states are locally stable, o analyze the behavior of such a system when a small
there must exist a saddle pomf[ se_paratmg them. As in thﬁnpurity is added. We shall see that as long as the impurity
two-mode case this saddle point involves a “phase slip,"strength is small compared to the interactions, such an impu-
where the denSity vanishes and the number of units of CirCUrity leads to extreme|y S|0Wtyp|ca||y exponentia”y slow
lation can change. The real space wave function of the phasecay of persistent currents. In the opposite limit, where the
slip takes on the form of a hyperbolic trigonometric function, impurity is strong, no persistent currents nor hysteresis ex-
whose exact form was determined by Langer and Ambeists.
gaokar in the context of superconduct¢es]. The barrier Even when the impurity is weak, it does have a dramatic
height is understood by recognizing that the length scale foeffect on thelmean-field energy landscape in Fig. 11, in that
the phase slip is the healing lengfh(~1/\J/gN in our di- it opens up gaps as seen in Fig(1In the case of atoms in
mensionless unijs The presence of the slip increases thed periodic potential these gaps are the familiar band gaps
density fromN to N/(1— &), at an energy cost per particle of from solid-state physics discussed in the Introduction. Note

Né—7A2al/dZ/mL2 in phvsical units(assuming trans- that th.e gaps do not change the fac.t that one ha_s hystgretic
\g/eri: harr;onié confintfm)ént with (Iength gcah& behavior signaled by the swallow-tail loops. In this section
di

e . o we present the quantitative theory of these loops in the limit
B _?/ mf{‘g; Amolrte c_z:rrleful callc;:_u_latloe?z,/getalled in RE26], of weak interactions and calculate the quantum tunneling
verifies this result with a coefficie .

from one local minimum to anothdr.e., the decay of per-
sistent currents induced by quantum fluctuatjons

Having established the superfluid behavior of a weakly

3. Limits of validity

We have shown that within mean-field theory the one- A. Two-mode model

dimensional Bose gas is superfluid in that it exhibits hyster- Interactions are most easily understood within a two-

esis under changing the rotation speed. It is therefore vergnode model. For its validity we will need both weak inter-

important to understand the limits of validity of mean-field actionsgN<1, and a weak impurith<1. The ratioA/gN

theory. We estimate these limits by calculating the depletiorwhich compares the impurity strength to the interaction

within a Bogoliubov approackfor example, see Ref27]),  strength is arbitrary. As before, it suffices to consider the

where one finds that system nearp=d — 7=0, where the Hamiltonian may be
truncated to Eq.(11), with an additional impurity term
Himp=)\(aJ{aO+aga1). This system ofN bosons in two

SN e—Ex g states can be mapped onto the precession of a\§ginbject

~\ /NN,

N 4 2E, (150 obeying a Hamiltonian

Hgpin=47$S,+2\S,—29S+Cy, (16)

where e,=#%/2m(k*+gN/L?). Only when this ratio is where S,=(afa,—ala;)/2, S,=(S,+S.)/2, S,=(S,
small compared to 1 is the mean-field theory valid. For ex-—s_)/2i, S+=aga1, andS_=aIa0 obey the standard spin
perimentally relevant parameters, the logarithm is of ordera|gebra' andCy, is an uninteresting number. This mapping
ten, and the prefactofg/N determines the size of the deple- s the inverse of the method of “Schwinger bosor€8].
tion. A physical interpretation of this factor is that the healingThe quantum dynamics of such large spins are well under-
length & (1/J/gN) which governs the scale of the phase slipstood[29], so we only briefly outline the analysis necessary
must be larger than the interparticle spacing\()1for fluc-  to understand the mean-field structure, and the decay of per-
tuations to be small and for mean-field theory to be appli-sistent currents.
cable(i.e., phase slips cost very little energy if they fit be-  The classicalmean-field energy landscape of the spin is
tween particles To study stronger interactions one needs toshown in Fig. 13, where the anglésand ¢ describe the
include short-range fluctuations—either through “bosoniz-direction in which the “spin” is pointing. In the absence of
ing” the system[19], or by using the Bethe ans&i20]. interactions, there are two stationary points, a maximum and
Substituting plausible experimental values into ELf) a minimum. These represent the first and second band in the
shows that it is much easier to be in the regime where mearsingle-particle energy spectrum. For sufficiently strong inter-
field theory is applicable than it is to be in the strongly cor-actions
related regime. For example, with ®.@toms of 8’Rb (with
scattering lengthag~5 nm) in a ring of circumferencé (gN)?P> (27 ) 2P+ N3, (17)
=100 um, and transverse confinement =500 s * (corre-
sponding tad, ~1 um) one findsSN/N~0.2%. Decreasing a second minimum and a saddle spontaneously apf@ear
N or increasing- leads to proportionally more depletion and saddle-node bifurcationgiving rise to the swallow-tail en-
can bring one into the strongly correlated regime. ergy spectrum shown in Fig. 11. The new minimum is analo-
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FIG. 13. Energy landscape of spin which represents the state (g‘
the one-dimensional Bose gas within a two-mode approximation irb
the presence of an impurity. The number of particles with angula

momentum|=0 (I=%) is N cog([Nsir?(6)], while ¢ is the
phase angle describing the coherence between these states. For
contour plots,(a) and (b), darker colors represent lower energy;
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(a)

FIG. 14. Schematic representation of tunneling within a double-
well system:(a) coherent tunneling between resonant statbg;
incoherent decay from a single state on the left to a large number of
states on the rightHere this decay corresponds to a transition from
a current-carrying state to a stationary one with a large number of
phonon excitation$.

where C| is an uninterestingg number. This Hamiltonian
represents a particle on a lattice with an inverted parabolic
potential and an unusual spatially dependent hoppiviach
can be viewed as a spatially dependent ma&sparticle
urmounting a barrier by hopping on such a discrete lattice
ehaves somewhat differently than a similar particle with a
continuous coordinate. In particular, for sufficiently large
Eﬂarriers, the tunneling rate is a power lawhimather than the

€. : ;
amiliar exponential. Such power-law behavior was pre-

stars, triangles, diamonds, and squares represent the global mirqjcmd by Kagaret al. in discussing the finite-temperature

mum, global maximum, local minimum, and saddles. (& the
inequality in Eq.(17) is not satisfied $§=0.16\A=2,g=3.16), and
only two extrema exist, while irib) the inequality is satisfiedd

lifetime of persistent curren{®1].
An important conceptual point to consider here is to what
extent the scenario discussed so far can lead to the decay of

=0.16\=2,g=>5.16). A nonlinear scale is used for the contours in @ current. We have reduced the many-body problem to the
(b) to emphasize the extrema. All of the extrema occur on a grea@ne-dimensional quantum-mechanical motion of a single
circle parametrized by setting=0 and letting® run from O to 2. particle. There is no source of dissipation within this model,
This corresponds to a path from the “south pole” to the “north and one would naively expect to see coherent oscillations
pole” along the “meridian” where=0, and returning along the between the two wells rather than a decay. This intuition is,
¢=r. (c) and(d) show the energies @f) and(b) as a function of in fact, correct when the two wells are degener@te., ¢

0 along these paths. The structures from Fig. 1 are clearly seer=0), or when the tunneling is extremely weak. This coher-
Energies are measured in unitsfof2mL?. ent tunneling limit is illustrated in Fig. 14), in which only

ge lowest state in each well is coupled. When there is a
ignificant mismatch in the energies of the two wells, say the
eft-hand well has more energy than the other, the situation is
different. As pictured in Fig. 1), the ground state on the
left can be coupled to several excited states on the right, a
situation analogous to an excited atom coupled to a large
number of vacuum modes. In the limit of larfe the spac-

ing between the modes in the right-hand well vanish, and the
state on the left-hand side of the barrier acquires a finite
lifetime. A detailed study of this crossover from coherent

Quantum mechanically, there are matrix elements for tunpscillations to decay .is found .in RGEBO] One expects decay
’ whenever the tunneling rate is significantly larger tidr

neling from the upper minima to the lower, and the upper . - ; .
state acquires a finite lifetime. For those more familiar withWN€re4 is the characteristic energy spacitigere given by

particle tunneling than with spin tunneling it may be helpful the inverse of the density of states of Bogoliubov phonons
to instead map the problem onto the motion of a particle on A Semiclassical analysis of Eq18) is detailed in Ref.

a one-dimensional lattice. Introducing statelsn)= ~ [29]. The eigenvalues of Eq18) are found by solving a
(—1)™ny=N/2+m,n,;=N/2—m) and operators,Tn, which  difference equatlon. T_hls dlffert_ance equatl_on can be approxi-
create these states, the many-body problem in the two-mod8ated by a differential equation which is amenable to a
approximation is equivalent to a single particle with a Hamil- WKB analysis. The resulting expression for the lifetimef

gous to the metastable states found in the absence of tﬁ
impurity. The difference here is that this metastable state i
distinct from the upper band, which is still represented by th
maximum. In the symmetric case €& 0), the minima occur
at S,= N/2\1—(N/gN)?, and the barrier has a heigh;,
=gN?/2(1—\/gN)? as is clear from Eq(17), the meta-
stable state can only exist if the interaction strengh ex-
ceeds the impurity strength.

B. Quantum tunneling in the two-mode limit

tonian the persistent current is
H=> | (4mpm—gnmP)clc —)\\/ N[N
= m™m 2 2 p(jbz ;2952+47-rd>s—Ed
T="To €X arccosh s|.
° by 2AV(N2)2—&2
X(Chy 1CmT Chemy1) |+ CRs (18) (19
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Nfiw B ing points, anck is the energy, given by Eq16) with the
Y 1(’)0 | 10‘()0 ; In7T" sec constantCy removed. Whens=b , the argument of the
—10000 I i arccosh is 1. .
: For sufficiently small barriersz,<\N, the arccosh can
—~20000 l be expanded as arccoshf)=2x+0(x*?), yielding a

o _ _ decay rate which is exponentially small in the impurity
FIG. 15. Lifetime of a metastable current-carrying s{d® in a strength,flfvexp(—a N E,/\), wherea is of order unity.

toroidally trapped Bose gas in the presence of an impurity ofgq, larger barriers, one can expand arccaBh(n(22)
strengthA. For this figure, we consider the case where the trap is+ 0(272) which leads to a power-law behavior !

rotating at exactly one half quantum of circulatign=0. In the N(N)\/Eb)—ﬁEb/N whereB~1. Unless the barrier is tuned

curves shown, the trap is described by a circumferdnce trans- - - )
verse confinement frequenay, a number of particlebl. These are, extremgly close to Zero, both of these eXpressions yield as
respectively:  solid line, L=102m, N=1CF, w=500 s tronomically large lifetimes whenever a barrier exists. Thus,
dashed lineL=10"%m ,'\,:107 w:éoo sl ’dotted line L the condition for superfluidity reduces to the condition for a

f ' ' y ’ barrier(17). In Fig. 15, Eq.(19) is numerically integrated for

=102m, N=10°, »=50000 s'. One expects that imperfec- _ -1 _
tions in the apparatus would lead %o<% . In all cases the par- some representatlve parameters, verlfylng these asymptOtICS.

ticles are taken to have scattering lengtf=5 nm and massn
=85 a.u. The metastability turns on so quickly that the curves ap-
pear nearly vertical, even on this logarithmic scale. ACKNOWLEDGMENTS
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