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Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates

Erich J. Mueller*
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 2 September 2002; published 16 December 2002!

We present a theory of hysteretic phenomena in Bose gases, using superfluidity in one-dimensional rings and
in optical lattices as primary examples. Through this study we are able to give a physical interpretation of
swallow-tail loops recently found by many authors in the mean-field energy structure of trapped atomic gases.
These loops are a generic sign of hysteresis, and in the present context are an indication of superfluidity. We
have also calculated the rate of decay of metastable current-carrying states due to quantum fluctuations.
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I. INTRODUCTION

Quantum degenerate bosonic atoms have proven im
tant for studying macroscopic quantum phenomena~for a
review see Ref.@1#!. The order parameter of the condens
phase is a macroscopic quantum wave function which, un
single-particle wave functions, can be directly probed in
experiment. The interplay between this macroscopic w
function and interactions leads to a variety of effects,
most well known of which is superfluidity. Here we explo
superfluid phenomena in a dilute atomic gas with short-ra
interactions. As we will show,superfluidity is naturally
viewed as a hysteretic response to rotation, motivating a
more general study of hysteresis.

In our study of superfluidity, we quantify the roles playe
by interactions, finite-size effects, and impurities in the b
havior of a weakly interacting gas of one-dimension
Bosons, showing that persistent currents can exist when
interactions are strong compared to any impurity potenti
but weak enough to not produce large phase fluctuations
present a detailed discussion of the energy landscape of
gases, revealing a nontrivial topography. In the limit of we
interactions we calculate the lifetimes of persistent curre

In addition to gaining insights into superfluidity within
one-dimensional geometry, our approach provides an in
tive understanding ofswallow-tail energy loopsfound in
mean-field studies of Bose gases within periodic potent
@2–5#. We show that such loops are a generic feature
hysteresis and, in the case of atoms in a periodic poten
the loops are a manifestation of superfluidity. We discuss
underlying quantum scaffolding that supports this mean-fi
structure, and identify other settings where it can be
served.

In Sec. I A we introduce the basic phenomenon of hys
esis. The remainder of this section discusses superflu
and provides examples of scenarios in which a Bose-Eins
condensate will behave hysteretically. Section II discus
microscopic models for superfluidity in both a ring-shap
geometry and in an optical lattice. The remainder of t
paper analyzes these models.

*Electronic address: emueller@mps.ohio-state.edu
1050-2947/2002/66~6!/063603~12!/$20.00 66 0636
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A. Generic properties of hysteresis

Hysteresis is the phenomenon where the state of a ph
cal system depends upon its history. The canonical exam
is a ferromagnet, which in zero applied magnetic field ha
spontaneous magnetization, conventionally taken to be in
ẑ direction. This magnetization is robust in that it is n
significantly changed applying a small field in the2 ẑ direc-
tion. However, if a strong enough field is applied, the ma
netization can ‘‘flip,’’ and point in the2 ẑ direction. When
the applied field is reduced to zero, the magnetization d
not revert to its original orientation, but remains pointing
the 2 ẑ direction. In this example, and the ones that follo
we see that the response of the system lags behind the
plied stimulus.

In a classical system, hysteresis is conveniently thou
about in analogy to the Landau theory of phase transiti
@6#. One considers the property of interest~in this case the
magnetizationM ) to be an order parameter. An energy lan
scape is produced by calculating the energy of the system
a function of this order parameter. The applied field~here the
magnetic fieldH) changes this landscape.

Hysteresis occurs when the energy landscape has m
than one minimum, as depicted in Fig. 1~a! ~for similar fig-
ures calculated within a microscopic model, see Figs. 12
13!. For example, both magnetization in theẑ and2 ẑ direc-
tions might be local minima. Applying a field tilts the land
scape, and reduces the barrier. At some critical field,
barrier disappears and the system jumps into the global m
mum @Figs. 1~b! and 1~c!#. The phenomenon where the ba
rier disappears goes under several names; in the theorie

FIG. 1. Typical energy landscapes: energyE vs order parameter
M. In ~a! two minima ~labeled 1 and 2! are separated by a barrie
~3!. In ~b! one minimum and the barrier coalesce. In~c! only one
minima exists. A control parameter~H! tunes from one landscape t
another. A plot of the energy of the extrema versus the con
parameter is shown in Fig. 2.
©2002 The American Physical Society03-1
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phase transitions@6# and of gradient dynamics@7# it is, re-
spectively, known as a spinodal or a catastrophe. In m
mathematical treatments it is referred to as a ‘‘saddle-n
bifurcation.’’

Figure 2 gives a generic depiction of the energy of
extrema of the energy landscape~again, similar figures cal-
culated from microscopic models are shown in Fig. 11!. A
distinctive loop is seen. This loop, referred to as a ‘‘swallo
tail’’ by Diakonov et al. @3#, is a general feature of the spe
trum of a hysteretic system. It exists because for some ra
of fields there are three extrema~two local minima and a
maximum!. At the point labeled by~c!, one of the local
minima meets up with the maximum, and they annihilate o
another.

To better match the dynamical systems literature, it wo
be preferable to not refer to Fig. 2 as a swallow tail, a
instead reserve the term for the similar structure in Fig. 3 t

FIG. 2. Energy extrema as a function of control parameterH.
Solid lines denote minima, dotted line denotes maxima/saddles.
points labeled a, b, and c coincide with the energy landscape
Fig. 1, which, respectively, have 3, 2, and 1 extrema. The po
labeled 1, 2, and 3, coincide with the same points in Fig. 1~a!. The
existence of multiple minima at the same value of the control
rameter is a ubiquitous sign of hysteresis. The presence of
minima requires a maximum/saddle~see Fig. 1!.

FIG. 3. Three-dimensional depiction of a swallow-tail ener
structure. Thex and y axes represent control parameters, here
ferred to asH1 andH2, while the vertical axis is the energyE. The
self-intersecting surface shows the stationary points of the energ
two-dimensional slice is seen in Fig. 2 whereH1 can be identified
with H.
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occurs when one has two control parameters. The sec
control parameter changes the size of the loop, and can
tuned so that the loop, and all hysteresis, vanishes. A mo
that gives rise to this latter structure will be discussed la

A possible point of confusion here is that the term ‘‘swa
low tail’’ is traditionally used to discuss not the energy stru
ture, but rather the catastrophe set, which is the points~in the
control parameter space! where the number of extrema in th
energy landscape change. The catastrophe set correspo
to Figs. 2 and 3, respectively, consists of two points and
cusplike structure in Fig. 4. Thus the swallow-tail ener
spectrum is associated with acusp catastropheand not a
swallow-tail catastrophe.

The local minima in the energy landscape are of gr
physical importance, as the system typically resides in th
vicinity. Saddle points, and local maxima, are also import
in that the rate of transitions from one minima to another
governed by the lowest barrier separating the minima.
classical systems, these transitions are typically caused
thermal fluctuations, and occur at a rate proportional
e2Eb /kbT, where Eb is the barrier height,kb is the Boltz-
mann’s constant, andT is the temperature. It should be note
that only in very rare physical situations does the syst
spend much time at one of these extrema.

In a quantum-mechanical system the scenario for hys
esis that we have discussed becomes more complicated
basic difficulty is that the order parameter is generally no
constant of motion. In this case one does not know how
answer questions like ‘‘what is the energy of the syst
when the magnetization points in the1 ẑ direction?’’ There
may simply not exist any energy eigenstates for which
magnetization points in that direction. Consequently, it is
no means obvious how to construct an energy landscape,
what significance it will have.

There are three, roughly equivalent, methods of circu
venting this difficulty. The first approach is to write th
Hamiltonian as a sum of two terms,H5Hdiag1H8, where
the order parameter commutes withHdiag. This diagonal
term is the projection of the Hamiltonian into the spa
where the order parameter has a definite value. For exam
if we have a spin system where thez component of the mag
netization is our order parameter, thenHdiag would be diag-
onal in a basis$uS,Sz&%, whereS is the total spin, andSz is
the projection of the spin along thez axis. If H8 is small, one
can neglect it for the sake of drawing the energy landsca
The second approach is to use a variational scheme, w
one writes ‘‘reasonable’’ wave functions that are para
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FIG. 4. Catastrophe set: values of control parameters for wh
the number of extrema of the energy structure in Fig. 3 chan
Inside the cusp there are three extrema~two minima and a maxi-
mum! while outside there is only one.
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etrized by the order parameter. The expectation value of
energy in these states is an approximation to the energy l
scape. The final approach is to use a mean-field theor
which the order parameter is a constant of motion. This d
cussion will be more concrete once microscopic models
introduced in Sec. II and used to produce energy landsca

All three of these schemes share the feature that if
system starts in a local minimum of the energy landsca
there can be matrix elements in the original Hamilton
which allow the system to tunnel to another minimum. Th
procedure can be thought of in analogy to classical therm
activated transport, where due to thermal fluctuations
system can jump from one minimum to another. Here it
quantum fluctuations that allow the system to move betw
minima.

B. Superfluidity

We now turn to a discussion of superfluidity, a pheno
enon that manifests itself in many related ways, includi
dissipationless flow, quantized vortices, reductions in
moment of inertia, and the existence of persistent curre
We focus on the latter phenomenon, which was first obser
in 4He @8#. In an idealized version of these experiments,
annular container of helium is rotated while cooling to belo
the lambda temperature, where it becomes a superfl
When the container is then stopped, one observes tha
fluid continues to rotate—maintaining its velocity for e
tremely long times. Arguments based solely on Galilean
variance show that this current-carrying state cannot be
ground state of the system, and is therefore an extrem
long-lived metastable excited state@9#. It is observed that the
lifetime of these currents decrease with increasing veloc
and there is a critical velocityvc , above which no persisten
currents exist.

For our purposes it is convenient to think of such curre
in terms of a hysteretic response to rotation. Imagine star
with an annular container of superfluid which is at rest. If t
container is slowly rotated in a clockwise direction the flu
remains at rest~in the rotating frame this is a persistent cu
rent!. If one rotates faster and faster, the relative veloc
between the container and the fluid eventually exceeds
critical velocity, excitations are formed, and the fluid acc
erates. At this point, a persistent current has develope
that even if one stops rotating the container then the fl
will continue to flow. The flow can be stopped if one rotat
the container sufficiently fast in a counterclockwise dire
tion. The principle is simply that when the relative veloci
between the fluid and the container exceedsvc , the fluid
accelerates. Thus the fluid flow lags behind the applied r
tion, resulting in the hysteresis loop sketched in Fig. 5.
the arguments of Sec. I A, one must therefore see en
structures analogous to those in Figs. 1 and 2.

Here we wish to understand the origin of this drama
effect from a microscopic model. Standard descriptions
superfluidity@6,10# attribute the long life of these currents
the scarcity of low-energy excitations. In the present sett
it is more natural to think of superfluidity in terms of th
ability of the fluid to screen out impurities. The basic arg
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ment, which will be given in more detail later, is that a
ordinary~nonsuper! fluid does not support persistent curren
because the fluid particles scatter off of small imperfectio
in the walls of the container, exchanging angular moment
and eventually equilibrating with those walls. Through a c
lective deformation of the macroscopic wave function, qua
tum degenerate bosons are able to screen out the impe
tions. Since the fluid effectively sees smooth walls, it do
not slow down. In the body of this paper, these imperfectio
will be modeled as an ‘‘impurity’’ potential.

From this physical picture, one can anticipate many of o
results. In particular, there are two natural control para
eters, the rate of rotation and the strength of interacti
relative to the impurity potential. We will find an energ
structure similar to Fig. 3, where these two control para
eters correspond toH2 andH1.

C. Optical lattices

Superfluidity is not limited to a ring geometry. As w
explain, superfluid properties naturally appear for Bose p
ticles within a periodic potential. Due to their importance
solid-state physics, quantum phenomena in periodic po
tials are very well studied theoretically and there has bee
rapid progress on experimental studies of Bosons in perio
potentials, where the periodicity is produced using stand
waves of light~optical lattices! ~for a review see Ref.@11#!.
Many of the single-particle phenomena of solid-state phys
have been observed in these artificial lattices, including b
structure, Bloch oscillations, and Zener tunneling@11#. These
solid-state concepts are reviewed below, and play an im
tant role in our discussion of superfluidity. Further theoreti
discussions of these phenomena in cold gases and rele
discussion of how interactions screen the lattice can be fo
in Ref. @12#. Although not directly related to our study o
hysteresis, it is worth mentioning that correlated many-bo
states, such as Mott insulators@13#, have been observed i
atoms trapped in an optical lattice.

Here we use superfluidity to reexamine theoretical stud
of mean-field energy loops of atoms in optical lattices@2,3#.
We understand the key features of these studies by sta
with the energy structure of the noninteracting single-parti
states. As discussed in Ref.@14#, the states available to non
interacting particles in a periodic potential are labeled by t
quantum numbers, a band indexn, and acrystal momentum
k. The wave functions of these states are of the Bloch fo

cnk~r !5eikrvn~r !, ~1!

FIG. 5. Hysteresis loop in a superfluid. The rotation rate of
fluid is shown as a function of the rotation of the container. T
arrows denote the direction of the hysteresis loop. As seen in
periments on helium@8#, the sloped lines are actually made up
many discrete jumps, which cannot be resolved on this scale.
3-3
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werevn(r ) shares the periodicity of the lattice, andk is re-
stricted to the first Brillouin zone. Limiting our discussion
one dimension with lattice periodicityL, the first Brillouin
zone corresponds to momentauku,p/L. For simplicity, we
use dimensionless units whereL51. In Fig. 6, the lowest-
energy band is sketched in an extended zone scheme, w
the energy is extended periodically tok’s outside of the first
Brillouin zone. This periodicity is the source of the pheno
enon known as Bloch oscillations. Imagine starting with
single particle in thek50 state. If an external force is ap
plied to the particle, it will accelerate andk will increase. For
sufficiently weak acceleration, the state will adiabatica
follow the solid curve in Fig. 6. Whenk has increased to 2p,
the system has returned to its initial state. Thus a cons
force leads to periodic oscillations. If the force is too stron
the adiabaticity condition is violated, transitions are made
higher bands, and one no longer sees the Bloch oscillati
This breakdown is known as Zener tunneling.

A similar scenario can be considered for Bose conden
atoms. In the ground state all of the particles reside in
lowest-energy Bloch state. Like the single-particle ca
when a force is applied, the crystal momentumk increases.
However, as a superfluid, the condensate is able to scree
the periodic potential. Thus, for sufficiently strong intera
tions, instead of following the solid curve in Fig. 6, the sy
tem follows a path closer to the dashed curve, correspon
to the spectrum of states in the absence of the periodic
tential. The microscopic model which will be introduced
Sec. II B confirms this picture, and one can identify the se
states visited during this adiabatic acceleration as lo
minima in a mean-field energy landscape. When the flu
velocity exceeds the critical velocity, it loses the ability
screen the lattice. Thus the energy curves terminate at s
point, and energy extrema take on the structure in Fig
where one has a crossing of local minima. One minim
corresponds to the fluid moving to the right, the other to flu
moving to the left. These two states have different mom
tum, but share the same crystal momentum. For purely to
logical reasons, the presence of two local minima at a gi
value ofk guarantees that there is a saddle point separa
them. This barrier state is also shown in Fig. 7 as the do
line forming the ‘‘top of the swallow’s tail.’’ As will be dis-
cussed in Sec. III B, the barrier state corresponds to a ‘‘ph
slip.’’

FIG. 6. Band structure. The solid line shows the energy of Blo
waves of crystal momentumk for noninteracting particles in a pe
riodic potential within an extended zone scheme. The bandwi
E1, becomes smaller as the periodic potential becomes stron
The dashed lines show the energy states in the absence of the
odic potential. At the band edge, these states have energyE0

5\2p2/2mL2.
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The question of what happens to the system when
cloud is accelerated past the ‘‘end of the loop’’~marked by a
gray circle on the figure! is discussed by Wuet al. @2,15# and
Liu et al. @5#. Clearly adiabaticity must break down at th
point, and crossing this point from left to right, then ba
again will not return the system to its original state. Th
irreversibility shows that hysteresis has developed.

Note that as the interaction strength is reduced, the lo
in Fig. 7 become smaller and eventually disappear. Thu
one identifiesH1 with k andH2 with the interaction strength
the mean-field energy extrema neark5p must have the full
swallow-tail structure shown in Fig. 3.

D. Josephson junctions

We conclude the introduction by discussing a hystere
Bose system in which the hysteresis is not associated
persistent currents, namely, a gas of particles with attrac
interactions in a double-well trap as depicted in Fig. 8. T
control parameters here are the strength of interactions
the biasd that is applied between the two wells.

Figure 9 illustrates the transformations that give rise t
hysteresis loop in this system. One starts with the left wel
much lower energy than the right (d.0). The ground state
consists of all of the particles bunched up on the left. T
bias is then slowly decreased, and made slightly negative
that the right-hand well has lower energy. In the true grou
state all of the particles are sitting in the right-hand we
Nonetheless, the particles actually stay in the left-hand w
This behavior is understood by noting that in order to mo
the particles from the left-hand well to the right, one has
first move a single particle. Although such a move saves
potential energy of the bias, separating that one particle fr

h

h,
er.
eri-

FIG. 7. Schematic representation of energy extrema for a c
densate in an optical lattice. Solid and dotted lines denote min
and saddle points. One of the spinodal points, where the numbe
extrema change, is marked by a gray circle.

FIG. 8. Geometry of a double-well trap. The potential energyV
is shown as a function of a spatial coordinater. The two wells have
an energy differenced.
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the others makes the interaction energy less negative.
small enough bias, moving a single particle increases
total energy, and the state with all of the particles sitting
the left-hand well is a local minimum of the energy. If th
bias is made more negative, the potential energy saving
moving a particle to the right-hand side eventually becom
greater than the interaction energy cost. The particles the
jump to the right-hand well. The whole process can be
versed, and a hysteresis loop is formed.

For weaker interactions, the value ofd at which the meta-
stable state disappears becomes smaller. For sufficie
weak interactions, no hysteresis occurs. Thus identifyingH2
with the interaction strength, andH1 with the detuningd, the
energy landscape has extrema matching Fig. 3.

Experimentally, such a double-well trap can be formed
considering two cells in an optical lattice, or by carefu
arranging magnetic and optical fields as in Ref.@16#. We will
not explicitly discuss models for this system, as there e
many excellent treatments in the literature@17#.

II. MICROSCOPIC MODELS

We now construct microscopic models of the superfl
systems described in the Introduction. In addition to veri
ing the qualitative structures already discussed, these mo
allow us to make quantitative predictions about the beha
of a gas of bosons. In particular, as mentioned in Sec. I A
quantum-mechanical system can tunnel from one minim
in the energy landscape to another~which would, for ex-
ample, lead to the decay of persistent currents!. We are able
to calculate the rate of such tunneling.

A. Superfluidity

As a microscopic model of persistent currents, we stud
one-dimensional ring of lengthL, rotating at frequencyV,
containing a cloud of bosons of massm which interact via
short-range interactions. Measuring energy in terms
\2/2mL2 (\ is Planck’s constant!, the Hamiltonian in the
rotating frame is

H5(
j

~2p j 1F!2cj
†cj1~g/2! (

j 1k5 l 1m
cj

†ck
†clcm , ~2!

whereF52mL2V/\ andg.0 are dimensionless measur
of the rotation speed and the strength of the interactio

FIG. 9. Illustration of hysteresis in a double-well trap filled wi
attractive bosons. In each picture the trap from Fig. 8 is shown w
a set value ofd, and the particles shown by small gray circles
one of the two wells. In~a! the bias is positive, and all of the
particles are in the left well. The bias is slowly switched to a sm
negative value in~b!. The particles remain in the left-hand we
even though the ground state has all of them on the right. For l
enough negative detuning~c!, the particles all jump to the right.
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Operatorscj
† create bosons with angular momentumj \. The

model ~2! could be experimentally realized by cooling a
atomic gas in an annular trap with harmonic confinemen
frequencyv' to such an extent that only the lowest tran
verse mode is occupied~for recent experimental progress o
annular traps see Ref.@18#!. As long as the trap lengthd'

5A\/mv' is larger than the scattering lengthas the inter-
action parameter would then be given byg54pasL/d'

2 .
Despite its apparent simplicity, this one-dimension

model is quite rich. It is a canonical example of a Lutting
liquid @19# whose behavior can be studied via the Bethe
satz @20#. Two properties worth noting are: 1! at g50 it
describes a noninteracting Bose gas; and 2! atg→` it can be
mapped onto a gas of noninteracting fermions. In neithe
these limits is the system superfluid, however, we show
for small positiveg the systemis superfluid. Here we will
study how this superfluidity develops asg is tuned from 0,
finding the structure discussed in Sec. I B. The equally in
esting question of how this superfluidity breaks down asg
→` will not be discussed.

The model Hamiltonian~2! is invariant under rotation,
and therefore conserves angular momentum. A trivial con
quence is that if a current is started in this system it w
never decay. Thus, as aptly pointed out by Kaganet al. @21#,
to study superfluidity one must add an impurity that brea
the symmetry. In an experimental setting such terms are
ways present due to imperfections in the apparatus. It is q
instructive to imagine artificially introducing such an imp
rity ~for instance, by using a laser that interacts with t
atoms via dipole forces!, and being able to control its
strength. Conventional discussions of superfluidity focus
4He, which is strongly interacting, and whose behavior
largely insensitive to the strength of the impurities. In
weakly interacting setting~especially in one dimension! this
is no longer the case, and the strength of the symme
breaking term is extremely important. The system’s behav
is relatively insensitive to the exact form of the impurit
Two natural models are a point scattererHpnt5l(kqck

†cq

and a sinusoidal potentialHsin5l(k(ck
†ck211ck

†ck11). In
both casesl measures the strength of the perturbation.

B. Optical lattices

A model for particles in a periodic potential can be co
structed which has the same structure as Eq.~2! with an
impurity. The rotation speedF and the impurity potential
are, respectively, mapped onto the crystal momentum and
lattice potential.

Introducing the field operatorc(x), which annihilates a
particle at positionx, the Hamiltonian for particles in one
dimension interacting with a local interaction is

H5E dx
\2¹c†

•¹c

2m
1V~x!c†c1

ḡ

2
c†c†cc, ~3!

whereV(x) is the lattice potential,ḡ parametrizes the inter
actions, and the argumentx is assumed for each of the fiel

h

ll

e
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operators. The periodic potential can be written asV(x)
5( je

ip j xVj , where pj5 jkL52p j /L are reciprocal lattice
vectors.

In analogy to Eq.~1!, it is convenient to write our field
operators in a Bloch form,

c~x!5(
j

eip j xE
2p

p dk

A2pL
eikx/Lc j~k!, ~4!

wherec j (k) is the Bose operator which annihilates a parti
with momentum\(k12p j )/L. These obey the standar
commutation relationships@c j (k),c j 8

† (k8)#5d j j 8d(k2k8).
In this decomposition,k is the ~dimensionless! crystal mo-
mentum that runs from2p to p andpj are reciprocal lattice
vectors. The indexj plays the role of a band index in th
limit that the lattice potential vanishes.

In terms of these operators, the Hamiltonian takes
form

H5
\2

2mL2
~Hkin1Hpot1H int

(vert)1H int8 !, ~5!

Hkin5E dk(
j

~2p j 1k!2c j
†c j , ~6!

Hpot5E dk(
jq

Vqc j 1q
† c j8 , ~7!

H int
(vert)5E dk~g/2! (

j 11 j 25 j 31 j 4

c j 1

† c j 2

† c j 3
c j 4

, ~8!

H int8 5E d$k%~g/2!(
$ j %

c1
†c2

†c3c4 , ~9!

where the respective terms in Eq.~5! represent kinetic, po-
tential, and interaction energy. The interaction is split in
two terms, oneH int

(vert) only involves particles with the sam
crystal momentum, whileH int8 involves particles with differ-
ent crystal momentum. In Eqs.~6! through~8! the argument
k in c j (k) is omitted. In Eq.~9! the sum and integral ar
taken over allki , j i such that momentum is conserved

k11k22k32k412p~ j 11 j 22 j 32 j 4!50, ~10!

and where not all of theki are equal. In Eq.~9! the shorthand
notationc i5c j i

(ki) is used. The interaction is given byg

5ḡ/2pL.
The meaning of each of these terms is illustrated in F

10. Solid lines show the kinetic energy of free particles a
function of the crystal momentumk. The periodic potential
conserves the crystal momentum and therefore only indu
vertical transitions. The main effect ofHpot is therefore to
split the degeneracies at the level crossings, giving rise to
band structure shown in gray. The two interaction terms s
ter particles between these states. The ‘‘vertical’’ interact
H int

(vert) only involves particles that all share the same crys
momentum, as illustrated on the right side of Fig. 10~b!. All
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other scattering processes, such as the one on the left si
Fig. 10~b! are included inH int8 .

In our subsequent analysis we will ignoreH int8 . This is a
quite drastic approximation which clearly restricts the ph
nomena which can be studied. For example, the superfl
insulator transition seen in Ref.@13# cannot be studied in this
model. However, all studies of atoms in optical lattic
which rely upon mean-field theory~the Gross-Pitaevski
equation! implicitly make this truncation whenever they lim
themselves to a Bloch ansatz@22#. This approximation there-
fore has a range of validity which is a superset of the me
field theory’s. In particular, this approximation is good wh
the interaction strength is the smallest energy in the probl

OnceH int8 is eliminated, the sectors of differentk are in-
dependent. If one identifiesk with theF in Eq. ~2!, then the
two Hamiltonians are identical. For the remainder of the p
per, we work with Eq.~2!, while keeping in mind that all
results can also be applied to a gas of particles in a perio
lattice.

III. ENERGY LANDSCAPE IN ABSENCE OF IMPURITY

Here, and in the following section, we calculate the pro
erties of the microscopic model~2!, finding the general struc

FIG. 10. Illustration of the terms in Hamiltonian~5!. In ~a!, the
black line shows the kinetic energyHkin of single-particle states a
a function of crystal momentumk. The periodic potentialHpot

couples states with the samek, splitting the degeneracies, givin
rise to the band structure shown as a dotted gray line. In~b! scat-
tering processes are illustrated. On the left-hand side a generic
tering event is shown where two particles with arbitrary momen
scatter to two other states. On the right a ‘‘vertical’’ scattering ev
is shown, where two particles with the same crystal moment
scatter to two other states, preservingk. These vertical scattering
are included inH int

(vert) , while all others are inH int8 . Energies are
measured in units of\2/2mL2.
3-6
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SUPERFLUIDITY AND MEAN-FIELD ENERGY LOOPS: . . . PHYSICAL REVIEW A 66, 063603 ~2002!
tures discussed in the introductory sections. We divide
discussion into several sections, based upon the limits
various parameters and the mathematical techniques us

A. Two-mode approximation

It is instructive to first analyze Eq.~2! in the absence of an
impurity, and in the limit where the interactions are suf
ciently weak, i.e., wherel50 andgN!1, with N being the
number of particles. The noninteracting single-particle
ergy states are shown as thick gray lines in Fig. 11 a
function ofF. This spectrum and the physical properties th
we are interested in are periodic inF, and it suffices to
consider2p<F<p. The ground state, in the absence
interactions, consists of all particles condensed in the low
energy state. Aside from providing a global shift in th
chemical potential, weak interactions only introduce a s
nificant perturbation when the energy difference between
levels is less thangN/2, so that the interactions mix the tw
states. Focusing on the level crossing atF5p, the system is
reduced to two levels with an effective Hamiltonian,

Hp5~f1p!2n01~f2p!2n11
g

2
~n0

21n1
214n0n1!,

~11!

FIG. 11. Spectra. Thick gray lines, single-particle energy lev
of noninteracting particles in a 1D ring of lengthL. Black lines,
mean-field energy extrema of interacting system, with global me
field shift removed. Solid lines are local minima, dotted~dashed!
lines are saddle points/cusps with one~two! direction of negative
curvature/slope.~a! and ~b! are, respectively, with and without a
added impurity. In~b! the area aroundF5p is enlarged and dis-
played in an inset. Energies are measured in units of\2/2mL2.
Notice the similarities between the single-particle states for p
ticles in the ring shown here, and the band structure for particle
a periodic potential in Fig. 10.
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wheref5F2p, andnj5cj
†cj are constants of motion. Th

eigenstatesun0 ,n1&5(c0
†)n0(c1

†)n1u0&/An0!n1!, have a fixed
number of particles in each momentum state. Just like in
noninteracting system, forf,0 (f.0) the ground state is
uN,0& (u0,N&). Interactions play a role here only through th
fact that wheng52pufu/g,N/2 a barrier, as illustrated in
Fig. 12, separates these two states. This barrier exists
cause density modulations are required to transfer parti
between angular momentum states. In the presence of i
actions these modulations cost energy. The barrier s
uN/21g,N/22g&, has energyEb5(f1p)2(N/21g)1(f
2p)2(N/22g)13gN2/42gg2, compared to E65(f
6p)2N1gN2/2 for the other extrema. The maximum barri
height ~occurring atf50) is dE5gN2/4.

This same scenario is repeated at all other level cross
in Fig. 11. Thus, in this weakly interacting limit, one can ta
the eigenstates of Eq.~2! to be the ‘‘Fock’’ states

un0 ,n1 ,n21 , . . . &5)
j

~cj
†!nj

Anj !
u0&, ~12!

where the occupation numbersnj obey the constraintsnj
.0 and( jnj5N. For large numbers of particles there is n
approximation involved in thinking of thenj as continuous
variables.

We have already detailed the energy landscape when
truncate this space to twonj ’s, and the space of allowed
states consists of a line~the x axis of the plot in Fig. 12!.
When threenj ’s are included, the space is a triangle, a
with four nj ’s it is a tetrahedron. Thed-dimensional gener-
alization of a triangle/tetrahedron is often called a simplex
a hypertriangle, and within our approximations, the eige
states of the Hamiltonian form an infinite-dimensional si
plex. The corners of this simplex are cusps in the ene
topography. Cusps play a role similar to saddle points,
they are each classified by the number of independent di
tions in which the energy decreases.

As explicitly shown in Fig. 12 for the case of two level
there exists a range ofF for which one can find extrema in

s

n-

r-
in

FIG. 12. Energy barrier separating persistent current carry
states within the two-mode approximation. The ordinate showsn0,
the number of particles in thel 50 state, the remainingN2n0

particles are in thel 51 state. The maximum occurs atn05n̄0

5N/212pf/g, wheref is a measure of the rotation speed, andg

the interaction strength. A barrier only exists when 0,n̄0.N. The
labeled energiesEb andE6 are given in the text.
3-7
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ERICH J. MUELLER PHYSICAL REVIEW A66, 063603 ~2002!
addition to these cusps. In Fig. 11, the extrema are mar
by the number of ‘‘downward’’ directions. Loops are clear
visible around points where the noninteracting states cr
These loops get smaller when the interaction strength
creases. Takingg and F as the control parameters, one r
produces the structure in Fig. 3.

As in our generic discussion, these loops lead to hys
esis. Suppose our model one-dimensional~1D! gas starts in
the stateuN,0& at F50, and is then accelerated so thatF is
slightly larger thanp. The barrier will then keep the system
from jumping into the new ground stateu0,N&. Thus the
presence of this barrier implies the existence of persis
currents. Of course, since we have considered only v
small interactions, these currents only exist nearF56p.

B. Mean-field theory

A useful tool to further illucidate our model~2! is mean-
field theory. Here we use a mean-field theory to show that
general structure of metastability and superfluidity fou
within the two-mode approximation continues to be valid
larger interaction strengths.

This discussion reveals several important points.
~1! Even though a one-dimensional Bose gas is a L

tinger liquid and is usually not studied using mean-fie
theory, we show below thatmean-field theory correctly de
scribes the behavior of a one-dimensional Bose gas fo
significant parameter range. The exact details of this param
eter range is discussed below.

~2! The extrema of the mean-field Hamiltonian are in on
to-one correspondence with the energy extrema in the m
body Hilbert space discussed in Sec. III A.

~3! In the regime where both the two-mode approximat
and mean-field theory are applicable, the Bogoliubov exc
tion spectrum of the mean field coincides with the ex
low-energy excitations of the many-body problem. This c
respondence is well known from the Bethe ansatz analys
the one-dimensional Bose gas@20#.

1. The two-mode regime

We begin by considering mean-field theory in the regi
where the two-mode approximation is valid. For weakly
teracting Bosons, mean-field theory can be formulated a
variational method in which one assumes that all of the p
ticles are in the same single-particle state. In the effec
two-level Hilbert space described by the Hamiltonian in E
~11!, we consider wave functions of the formua,b&5(aa0

†

1ba1
†)Nu0&, where the variational parametersa andb sat-

isfy uau21ubu251, andu0& is the vacuum state containin
no particles. Forf,0 (f.0), the energy is minimized by
uau251, ubu250 (uau250,ubu251), which ~within the
two-mode approximation! is the exact ground state as show
in Sec. III A. When ufu,g(N21)/4p, one also finds a
mean-field state which is a maximum of the energy, cor
sponding to the barrier state found previously. The topog
phy of the mean-field energy landscape mirrors that of
exact eigenstates, and the barriers found within the me
field theory do not differ significantly from the exact barrier
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It is quite striking that the mean-field theory compares
favorably with the exact two-mode calculation, consideri
that the exact barrier state contains two, rather than o
condensates and is therefore referred to as ‘‘fragment
@23#. The connection between these states is understoo
noting that that the mean-field barrier corresponds to
‘‘phase slip,’’ where the fluid density vanishes at some po
By its nature, such an event breaks rotational symmetry.
eraging over the possible location of the slip restores
broken symmetry, and leads to the exact~fragmented! barrier
state@24#.

In this weakly interacting limit the excitations of th
mean-field theory correspond to the exact low-lying exci
states of the two-mode system. This result is trivially o
tained by substituting our variational wave function into E
~11! and calculating the frequencies of small oscillations. F
those familiar with dilute gases of bosons, this result is p
haps even simpler to derive by going beyond the two-mo
approximation, and directly writing down the excitations o
condensate moving at velocityvc . As with a three-
dimensional system, an excitation of wave vectork is given
by the Bogoliubov form,

Ek5
\2

2m
Ak2~k212gN/L2!2vck. ~13!

Here the finite size of the ring restricts the wave vector
k52pn/L, with integer n. Similarly vc52p\n8/(mL) is
quantized with integern8. In the frame rotating with velocity
V the excitations have energiesEk2\VL/2p. Within the
two-mode approximation we are limited ton51, and it is
straightforward to verify that excitation spectrum match
the low-energy spectrum calculated directly from Eq.~11!.
Exploring the excitation spectrum around the saddle-po
state, one finds a zero-mode corresponding to translation
the phase slip, and negative-energy modes correspondin
falling towards one of the local minima. In the exact tw
mode theory, the zero mode corresponds to changing
relative phase between the modes.

2. Beyond two modes

In addition to the insights provided above, the mean-fi
approach also provides a systematic way to explore Eq.~2!
for interaction strengths that are beyond the scope of
two-mode approximation. The mean-field theory involves
placing the field operatorsck with c numbers. It is conve-
nient to work in real space, defining a ‘‘condensate wa
function’’ c(x) by

ck5E
0

1

dxeikxc~x!, ~14!

where*dxuc(x)u25N, is the number of particles. An energ
landscape can be found in the space of all possible sq
integrable complex-valued functionsc(x). This landscape
contains all of the structures seen in the two-mode versio
mean-field theory. In particular, thek5n states given by
cn(x)5ANei2nx, are always stationary points. Their stabili
is given by the Landau criterion that if the excitation spe
3-8
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SUPERFLUIDITY AND MEAN-FIELD ENERGY LOOPS: . . . PHYSICAL REVIEW A 66, 063603 ~2002!
trum in Eq.~13! is positive then they are local minima. Oth
erwise there exists a direction of negative curvature. T
existence of multiple minima in the energy landscape le
to hysteresis and superfluidity.

When both thek5n andk5n21 states are locally stable
there must exist a saddle point separating them. As in
two-mode case this saddle point involves a ‘‘phase sli
where the density vanishes and the number of units of ci
lation can change. The real space wave function of the ph
slip takes on the form of a hyperbolic trigonometric functio
whose exact form was determined by Langer and Am
gaokar in the context of superconductors@25#. The barrier
height is understood by recognizing that the length scale
the phase slip is the healing lengthj ('1/AgN in our di-
mensionless units!. The presence of the slip increases t
density fromN to N/(12j), at an energy cost per particle o
gNj→\2AasL/d'

2 /mL2 in physical units~assuming trans-
verse harmonic confinement with length scaled'

5A\/mv). A more careful calculation, detailed in Ref.@26#,
verifies this result with a coefficientA32/9.

3. Limits of validity

We have shown that within mean-field theory the on
dimensional Bose gas is superfluid in that it exhibits hys
esis under changing the rotation speed. It is therefore v
important to understand the limits of validity of mean-fie
theory. We estimate these limits by calculating the deplet
within a Bogoliubov approach~for example, see Ref.@27#!,
where one finds that

dN

N
5(

k

ek2Ek

2Ek
;Ag

N
ln~gN!, ~15!

where ek5\2/2m(k21gN/L2). Only when this ratio is
small compared to 1 is the mean-field theory valid. For
perimentally relevant parameters, the logarithm is of or
ten, and the prefactorAg/N determines the size of the depl
tion. A physical interpretation of this factor is that the heali
lengthj (1/AgN) which governs the scale of the phase s
must be larger than the interparticle spacing (1/N) for fluc-
tuations to be small and for mean-field theory to be ap
cable ~i.e., phase slips cost very little energy if they fit b
tween particles!. To study stronger interactions one needs
include short-range fluctuations—either through ‘‘boson
ing’’ the system@19#, or by using the Bethe ansatz@20#.

Substituting plausible experimental values into Eq.~15!
shows that it is much easier to be in the regime where me
field theory is applicable than it is to be in the strongly co
related regime. For example, with 106 atoms of 87Rb ~with
scattering lengthas'5 nm) in a ring of circumferenceL
5100 mm, and transverse confinementv'5500 s21 ~corre-
sponding tod';1 mm) one findsdN/N;0.2%. Decreasing
N or increasingL leads to proportionally more depletion an
can bring one into the strongly correlated regime.
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IV. PERSISTENT CURRENTS IN THE PRESENCE OF
IMPURITY

Having established the superfluid behavior of a wea
interacting gas through analysis of the energy landscape
now analyze the behavior of such a system when a sm
impurity is added. We shall see that as long as the impu
strength is small compared to the interactions, such an im
rity leads to extremely slow~typically exponentially slow!
decay of persistent currents. In the opposite limit, where
impurity is strong, no persistent currents nor hysteresis
ists.

Even when the impurity is weak, it does have a drama
effect on the~mean-field! energy landscape in Fig. 11, in tha
it opens up gaps as seen in Fig. 11~b!. In the case of atoms in
a periodic potential these gaps are the familiar band g
from solid-state physics discussed in the Introduction. N
that the gaps do not change the fact that one has hyste
behavior signaled by the swallow-tail loops. In this secti
we present the quantitative theory of these loops in the li
of weak interactions and calculate the quantum tunne
from one local minimum to another~i.e., the decay of per-
sistent currents induced by quantum fluctuations!.

A. Two-mode model

Interactions are most easily understood within a tw
mode model. For its validity we will need both weak inte
actionsgN!1, and a weak impurityl!1. The ratiol/gN
which compares the impurity strength to the interacti
strength is arbitrary. As before, it suffices to consider
system nearf5F2p50, where the Hamiltonian may b
truncated to Eq.~11!, with an additional impurity term
H imp5l(a1

†a01a0
†a1). This system ofN bosons in two

states can be mapped onto the precession of a spinN/2 object
obeying a Hamiltonian

Hspin54pfSz12lSx22gSz
21CN , ~16!

where Sz5(a0
†a02a1

†a1)/2, Sx5(S11S2)/2, Sy5(S1

2S2)/2i , S15a0
†a1, andS25a1

†a0 obey the standard spin
algebra, andCN is an uninterestingc number. This mapping
is the inverse of the method of ‘‘Schwinger bosons’’@28#.
The quantum dynamics of such large spins are well und
stood@29#, so we only briefly outline the analysis necessa
to understand the mean-field structure, and the decay of
sistent currents.

The classical~mean-field! energy landscape of the spin
shown in Fig. 13, where the anglesu and f describe the
direction in which the ‘‘spin’’ is pointing. In the absence o
interactions, there are two stationary points, a maximum
a minimum. These represent the first and second band in
single-particle energy spectrum. For sufficiently strong int
actions

~gN!2/3.~2pf!2/31l2/3, ~17!

a second minimum and a saddle spontaneously appea~a
saddle-node bifurcation!, giving rise to the swallow-tail en-
ergy spectrum shown in Fig. 11. The new minimum is ana
3-9
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ERICH J. MUELLER PHYSICAL REVIEW A66, 063603 ~2002!
gous to the metastable states found in the absence o
impurity. The difference here is that this metastable stat
distinct from the upper band, which is still represented by
maximum. In the symmetric case (f50), the minima occur
at Sz5N/2A12(l/gN)2, and the barrier has a heightEb
5gN2/2(12l/gN)2 as is clear from Eq.~17!, the meta-
stable state can only exist if the interaction strengthgN ex-
ceeds the impurity strengthl.

B. Quantum tunneling in the two-mode limit

Quantum mechanically, there are matrix elements for t
neling from the upper minima to the lower, and the upp
state acquires a finite lifetime. For those more familiar w
particle tunneling than with spin tunneling it may be help
to instead map the problem onto the motion of a particle
a one-dimensional lattice. Introducing statesum&5
(21)mun05N/21m,n15N/22m& and operatorscm

† , which
create these states, the many-body problem in the two-m
approximation is equivalent to a single particle with a Ham
tonian

H5(
m

F ~4pfm2gm2!cm
† cm2lAS N

2
1m11D S N

2
2mD

3~cm11
† cm1cm

† cm11!G1CN8 , ~18!

FIG. 13. Energy landscape of spin which represents the sta
the one-dimensional Bose gas within a two-mode approximatio
the presence of an impurity. The number of particles with angu
momentum l 50 (l 5\) is N cos2(u)@N sin2(u)#, while f is the
phase angle describing the coherence between these states. F
contour plots,~a! and ~b!, darker colors represent lower energ
stars, triangles, diamonds, and squares represent the global
mum, global maximum, local minimum, and saddles. In~a! the
inequality in Eq.~17! is not satisfied (f50.16,l52,g53.16), and
only two extrema exist, while in~b! the inequality is satisfied (f
50.16,l52,g55.16). A nonlinear scale is used for the contours
~b! to emphasize the extrema. All of the extrema occur on a g
circle parametrized by settingf50 and lettingu run from 0 to 2p.
This corresponds to a path from the ‘‘south pole’’ to the ‘‘nor
pole’’ along the ‘‘meridian’’ wheref50, and returning along the
f5p. ~c! and~d! show the energies of~a! and~b! as a function of
u along these paths. The structures from Fig. 1 are clearly s
Energies are measured in units of\2/2mL2.
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where CN8 is an uninterestingc number. This Hamiltonian
represents a particle on a lattice with an inverted parab
potential and an unusual spatially dependent hopping~which
can be viewed as a spatially dependent mass!. A particle
surmounting a barrier by hopping on such a discrete lat
behaves somewhat differently than a similar particle with
continuous coordinate. In particular, for sufficiently larg
barriers, the tunneling rate is a power law inl rather than the
familiar exponential. Such power-law behavior was p
dicted by Kaganet al. in discussing the finite-temperatur
lifetime of persistent currents@21#.

An important conceptual point to consider here is to wh
extent the scenario discussed so far can lead to the deca
a current. We have reduced the many-body problem to
one-dimensional quantum-mechanical motion of a sin
particle. There is no source of dissipation within this mod
and one would naively expect to see coherent oscillati
between the two wells rather than a decay. This intuition
in fact, correct when the two wells are degenerate~i.e., f
50), or when the tunneling is extremely weak. This coh
ent tunneling limit is illustrated in Fig. 14~a!, in which only
the lowest state in each well is coupled. When there i
significant mismatch in the energies of the two wells, say
left-hand well has more energy than the other, the situatio
different. As pictured in Fig. 14~b!, the ground state on the
left can be coupled to several excited states on the righ
situation analogous to an excited atom coupled to a la
number of vacuum modes. In the limit of largeN, the spac-
ing between the modes in the right-hand well vanish, and
state on the left-hand side of the barrier acquires a fin
lifetime. A detailed study of this crossover from cohere
oscillations to decay is found in Ref.@30#. One expects decay
whenever the tunneling rate is significantly larger thanD/\,
whereD is the characteristic energy spacing~here given by
the inverse of the density of states of Bogoliubov phonon!.

A semiclassical analysis of Eq.~18! is detailed in Ref.
@29#. The eigenvalues of Eq.~18! are found by solving a
difference equation. This difference equation can be appr
mated by a differential equation which is amenable to
WKB analysis. The resulting expression for the lifetimet of
the persistent current is

t5t0 expS E
b1

b2
arccosh

22gs214pfs2E

2lA~N/2!22s2
dsD .

~19!

of
in
r

r the

ini-

at

n.

FIG. 14. Schematic representation of tunneling within a doub
well system:~a! coherent tunneling between resonant states;~b!
incoherent decay from a single state on the left to a large numbe
states on the right.~Here this decay corresponds to a transition fro
a current-carrying state to a stationary one with a large numbe
phonon excitations.!
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The attempt frequencyt0
21 is roughly the frequency of sma

oscillations about the local minimum of Eq.~16!. This fre-
quency also coincides with the quantum-mechanical ene
of excitations in the metastable state~which, as already
pointed out, is the energy of Bogoliubov excitations!. For the
symmetric case,f50, one findst0

21;2A(gN)22l2. The
integration variables corresponds to the projection of sp
Sz , the limits of integrationb1 andb2 are the classical turn

FIG. 15. Lifetime of a metastable current-carrying state~19! in a
toroidally trapped Bose gas in the presence of an impurity
strengthl. For this figure, we consider the case where the trap
rotating at exactly one half quantum of circulationf50. In the
curves shown, the trap is described by a circumferenceL, a trans-
verse confinement frequencyv, a number of particlesN. These are,
respectively: solid line, L51022 m, N5106, v5500 s21;
dashed line,L51024 m, N5107, v5500 s21; dotted line, L
51022 m, N5108, v550 000 s21. One expects that imperfec
tions in the apparatus would lead tol!\v. In all cases the par-
ticles are taken to have scattering lengthas55 nm and massm
585 a.u. The metastability turns on so quickly that the curves
pear nearly vertical, even on this logarithmic scale.
th,

lu-
sk

.

i,

m

s

da
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ing points, andE is the energy, given by Eq.~16! with the
constantCN removed. Whens5b1,2 the argument of the
arccosh is 1.

For sufficiently small barriers,Eb!lN, the arccosh can
be expanded as arccosh(11x)5A2x1O(x3/2), yielding a
decay rate which is exponentially small in the impuri
strength,t21;exp(2aANEb /l), wherea is of order unity.
For larger barriers, one can expand arccosh(z)5 ln(2z)
1O(z22), which leads to a power-law behavior,t21

;(Nl/Eb)2bEb /N, whereb'1. Unless the barrier is tune
extremely close to zero, both of these expressions yield
tronomically large lifetimes whenever a barrier exists. Th
the condition for superfluidity reduces to the condition for
barrier~17!. In Fig. 15, Eq.~19! is numerically integrated for
some representative parameters, verifying these asympto
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