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Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in
degenerate three-level quantum system in two dimensions: Finite-difference time-domain study

G. Slavcheva, J. M. Arnold, I. Wallace, and R. W. Ziolkowski*
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

~Received 7 March 2002; revised manuscript received 24 August 2002; published 31 December 2002!

We extend to more than one spatial dimension the semiclassical full-wave vector Maxwell-Bloch equations
for the purpose of achieving an adequate and rigorous description of ultrashort pulse propagation in optical
waveguides containing resonant nonlinearities. Our considerations are based on the generalized pseudospin
formalism introduced by Hioe and Eberly@Phys. Rev. Lett.47, 838 ~1981!# for treatment of the resonant
coherent interactions of ultrashort light pulses with discrete-multilevel systems. A self-consistent set of coupled
curl Maxwell-pseudospin equations in two spatial dimensions and time for the special case of a degenerate
three-level system of quantum absorbers is originally derived. Maxwell’s curl equations are considered to be
coupled via macroscopic medium polarization to the three-level atom model for the resonant medium. Two
distinct sets of pseudospin equations are obtained corresponding to the TE- and TM-polarized optical waves.
For the case of TM polarization, the electromagnetic wave is polarized in a general direction in the plane of
incidence inducing two dipole transitions in a degenerate three-level system by eachE-field component along
the propagation axis and in transverse direction. We introduce a dipole-coupling interaction Hamiltonian
allowing Rabi flopping of the population difference along and perpendicular to the propagation axis with
frequencies depending on the corresponding field components. The relationship between the induced polariza-
tion and the state vector components that describe the evolution of the discrete-level system is derived in order
to couple the quantum system equations to the Maxwell’s curl equations. The pseudospin equations are
phenomenologically extended to include relaxation effects by introducing nonuniform decay times correspond-
ing to the various dipole transitions occurring in a three-level system. The system has been discretized using
finite differences on a Yee grid and solved numerically by an iterative predictor-corrector finite-difference
time-domain method. Self-induced transparency soliton propagation through a degenerate three-level quantum
system of absorbers in two spatial dimensions and time is demonstrated in planar parallel-mirror waveguide
geometries.

DOI: 10.1103/PhysRevA.66.063418 PACS number~s!: 42.50.Md, 42.65.Tg, 42.81.Dp, 42.50.Ct
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I. INTRODUCTION

State-of-the-art high-speed optical communications
constantly pushing further the demands for the generatio
ultrashort light pulses. Recently, substantial progress
been achieved in the methods of generating extremely s
optical pulses whose duration consists of only several opt
cycles @1,2#. Such pulses are considerably shorter than
characteristic relaxation times in matter and are usually c
acterized by high-field amplitudes; and, consequently, t
lead to nonlinear optical effects such as the onset of
self-induced transparency~SIT! soliton propagation regime
Both from experimental and theoretical points of view, t
possibility of optical pulse reshaping and soliton formati
during the passage of light waves through opti
waveguides containing quantum resonant saturable abso
is under intensive study. In fact, it has been demonstra
that soliton phenomena can be used to generate stable
10-fs pulses with proper choices of the peak power and m
mum dispersion. It should also be noted that soliton form
tion due to SIT effects in a laser cavity is a strong attrac
for ultrashort pulse output from mode-locked lasers@3# and,
therefore, the investigation and modeling of this pheno
enon is of great practical importance. In this paper we s
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neering, University of Arizona, Tucson, Arizona 85721.
1050-2947/2002/66~6!/063418~21!/$20.00 66 0634
e
of
as
rt

al
e
r-
y
e

l
ers
d

ub-
i-
-
r

-
ll

focus on the planar optical waveguides with resonant non
earities since they are basic components of the contempo
integrated optoelectronics, and represent interest in view
future potential device applications such as ultrashort pu
generation, modulation, and switching.

On the other hand, experimental studies of the ultraf
laser dynamics in vertical-cavity surface-emitting lasers
ing femtosecond optical pulse excitations@4,5# undoubtedly
show that new physical effects become important in this
gime@6#. Therefore, it is increasingly important that metho
of theoretical analysis of the generation and propagation
ultrashort optical pulses are rendered adequate to mee
needs of this rapid progression of ultrafast experimental te
niques. When the laser-pulse temporal width becomes c
parable to the optical period, a transition to a qualitative
new regime of strong laser-field–matter interactions is
duced in which the electric field itself rather than intens
envelope drives the interaction. A number of theoreti
works have demonstrated the limitations of the stand
slowly varying envelope approximation~SVEA! and new
phenomena have been predicted on the basis of the e
nonperturbative approach~see, e.g., Ref.@7#, and references
therein!. Therefore, many theoretical results, obtained by
ing SVEA and the rate equation approximation, need to
tested carefully without invoking any of the standard a
proximations. In order to do that, a new fully nonperturbati
model based on the Maxwell’s curl–Bloch equations ne
to be developed. In this respect, full-wave vector numeri
i-
©2002 The American Physical Society18-1
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SLAVCHEVA et al. PHYSICAL REVIEW A 66, 063418 ~2002!
techniques such as the finite-difference time-domain~FDTD!
method have proven to be particularly useful and powe
tools for directly solving the Maxwell-Bloch system in tim
domain @7–9#. The main reasons for choosing the FDT
computational method in our simulations of ultrashort opti
pulse propagation are:

~i! Since we shall be interested in the time evolution
the optical fields and the population dynamics of the qu
tum system, it is natural to carry out the modeling directly
the time domain.

~ii ! FDTD is an accurate numerical technique that equa
well accounts both for the guided and radiation~scattering!
modes. This turns out to be of great significance for an
curate modeling of the demonstrated self-induced trans
ency effects, pulse reshaping, and for the validations p
formed against the pulse area theorem.

~iii ! FDTD is a flexible method that generates a full-wav
vector solution of Maxwell’s equations coupled to the fir
principles quantum-mechanics model of the resonant non
ear system~and has been done in one-dimension~1D! for a
two-level system@9#!.

The motivation of the present work is to develop anab
initio accurate and rigorous theoretical model of the s
tiotemporal dynamics for ultrashort pulse propagation
two-dimensional planar optical waveguides containing re
nant nonlinearities. In the most general case, this mo
should account for the medium polarization in two mutua
orthogonal directions, and at the same time should not
pose any restrictions or approximations on the electrom
netic wave propagation that would result in a limited ran
of validity. Within the semiclassical approach, the latter
quires the solution of the full-vector Maxwell’s equations
2D. In what follows, we shall be interested in one-phot
absorption processes rather than two-photon absorption,
single-pulse excitations. In order to model the interaction
an ultrashort laser pulse with the medium in two spatial
mensions, we show that the minimum requirement for o
photon excitation is to consider a degenerate three-level
semble of atoms in which two of the allowed electric-dipo
transitions are excited by each of the two components of
E field in the waveguide plane. Attenuation caused by dam
ing of the resonant dipoles or by background scatter
losses is accounted for within the model by introducing p
nomenological relaxation times~experimentally obtainable!.
In this study, we have considered the most general case
damped ensemble of dipole oscillators chosen as repres
tive of a homogeneously broadened degenerate three-
quantum-mechanical system of polarized atoms, which i
or near resonance with the pulse of 2D-wave radiation. O
analysis is applied to this simplified physical model for t
resonant nonlinear medium. Justification for this is the w
known homogeneously broadened two-level atomic sys
coupled to the Maxwell’s equations in 1D, which has be
shown to describe successfully linear and nonlin
absorption/gain saturation effects@9,10#. The model poten-
tially could be extended further to describe the heavy-h
~hh! exciton transition in a quantum well at the center of t
Brillouin zone within the two-band formulation for the sem
conductors@11–13#. Because of the spin degeneracy, the h
06341
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to-conduction band transition actually consists of two deg
erate transitions: one for each spin state.

In order to achieve this goal, we employ the formalis
developed by Hioe and Eberly@14–16# for resonant, coher-
ent interactions of the electromagnetic wave with a mu
level quantum system within the real-vector representat
In what follows, we shall be interested in two main aspe
of the physical effects, which can be described and explai
satisfactorily by resonant, coherent interactions: the cohe
dynamical evolution of a quantum system and the loss
propagation of electromagnetic fields through a multi le
quantum system.

In particular, the description of resonant, coherent int
actions of an electromagnetic wave with anN-level atomic
system within the framework of the real-vector represen
tion has attracted significant attention since the appeara
of the pioneering paper by Feynman and co-workers@17#. It
has been shown that when coherent processes are involv
a two-level system, it is sufficient to consider a real thre
vector rather than the complex probability amplitudes in
Schrödinger equation. The equation of motion of the latter
in the form of a precession of a classical gyromagnet in
constant magnetic field. This in turn provides an elegant g
metrical framework for discussing the system dynamics
terms of rotations of a real state vector in Hilbert spa
Moreover, since this representation is based on the unde
ing complex density-matrix formalism, it allows treatme
with ease of both pure and mixed quantum states, in cont
to the wave-function treatment. This formal analogy h
been extended further for a spin-J system in constant mag
netic field for the description of a laser excitation of anN
52J1I level system@18#. However, the simple form of the
basic equation of motion for the real vector~torque or Bloch
spin equation! remains valid only for equally spaced energ
levels. Preserving this simple form of the vector equation
a number of advantages. It accounts for the intrinsic symm
try of the underlying Hilbert space of the system and, the
fore, is an exact description, independent of the stren
number, or time dependence of the external forces acting
the system. In addition, similar to the two-level system, t
dynamical evolution can be characterized as a rotation in
real physical space of a real coherence vector. Solution
this problem has been given by Elgin@19# for a three-level
system, as an extension of the two-level system, by invok
the invariance of the state vector under rotations of the SU~3!
transformation group. A general solution of this problem f
an N-level quantum system with arbitrary level spacing h
been found by Hioe and Eberly@14#. They expanded the
system Hamiltonian in the transition-projection operato
that are the generators of the unitary group U(N), whereN is
the number of eigenstates of the Hamiltonian. Defining f
ther another set of operators based on the projection op
tors that generate the SU(N) algebra, they derived the pseu
dospin equation showing the time development of
coherence vector as a generalized rotation inN221 space.
Special attention has been paid to the case of a three-l
system@15,16,20# that represents particular interest since
provides a useful framework for studying, for example, su
phenomena as two-photon resonance, three-level ech
8-2
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COUPLED MAXWELL-PSEUDOSPIN EQUATIONS FOR . . . PHYSICAL REVIEW A 66, 063418 ~2002!
population trapping, and three-level super-radiance. As a
rect consequence of the generalN-level case, the dynamica
evolution of a three-level system can be expressed in te
of an eight-dimensional real coherence vector, thus exp
ing the group-theoretical and Gell-Mann’s SU~3! dynamical-
symmetry properties@21#.

In this paper we apply and develop further the real-vec
representation formalism to the problem of single elect
magnetic wave propagation and its resonant coherent in
action with a degenerate three-level quantum system in
spatial dimensions in planar optical waveguide geome
The aim is to construct a coupled set of semiclass
Maxwell-Bloch equations in 2D, which would represent
realistic model for studying the time evolution of the optic
fields during the interaction with a multilevel quantum sy
tem and the related population dynamics. The main phys
result of the model is the demonstration of self-induc
transparency effects in multidimensional systems. As
shall show below, the SIT-soliton behavior in 2D systems
demonstrated not only for the TEM mode, but most imp
tantly for the TM1 mode, when the optical field couples a
the three levels of the quantum system. The latter canno
considered as a simple consequence of the reduction o
three-level system to a two-level one, since in this case
three-level system is irreducible. Moreover, we show how
modify properly the pulse area theorem to provide a criter
for reaching the SIT regime in the multidimensional case

The outline of the paper is as follows. Section II consi
of three subsections. In Sec. II A we give a brief overview
the basic equations used thereafter for the derivation of
desired pseudospin equations in 2D. The coupled se
Maxwell-Bloch equations in 2D are derived for both TM an
TE waves in Secs. II B and II C, respectively. In Sec. III w
describe the discretization scheme that was applied to t
systems of continuum equations and provide details on
numerical methods used to solve their discrete forms.
main results of the numerical simulations are given in S
IV. The advantages of the present approach are summa
in Sec. V.

II. DERIVATION OF THE MAXWELL-BLOCH
EQUATIONS IN 2D

We are interested in the following guided modes of t
parallel-mirror waveguide under consideration, namely,
plane-polarized TEM modeE5(0,Ey,0) and H5(Hx,0,0)
~which is also referred to as the TM0 mode according to its
classification in electromagnetic theory!, the TM modeH
5(Hx,0,0) andE5(0,Ey ,Ez) @Fig. 1~a!#, specifically the
first-order TM1 mode; and the TE modeE5(Ex,0,0) and
H5(0,Hy ,Hz) @Fig. 1~b!#.

A. Pseudospin equations for anN-level system

The dynamical evolution of anN-level atomic system is
governed by the equation of motion for the density matrixr&
~Liouville equation!:

i\
]r&
]t

5@H& ,r&#. ~1!
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Exploiting the symmetry of the rotations under the SU(N)
group, it has been shown@14–16,19# that the density matrix
r(t) and the system HamiltonianH(t) can be expressed in
terms of theN221 generatorsl j of the SU(N) Lie algebra
according to

r&~ t !5
1

N
I&1

1

2 (
j 51

N221

Sj~ t !l& j ~2!

and

H& ~ t !5
1

2
\S 2

N F (
k51

N

vkG I&1 (
j 51

N221

g j~ t !l& j D , ~3!

where\vk is the energy of the levelk and I& is the identity
operator. Assuming that the Gell-Mann generators$l j , j
51,2,...,N% are chosen to satisfy the orthogonality relatio
for any N,

Tr~l& jl& k!52d jk , ~4!

the coefficientsSj (t) andg j (t) are given by

Sj~ t !5Tr@r&~ t !l& j #, ~5a!

\g j~ t !5Tr@H& ~ t !l& j #. ~5b!

The time evolution of the density matrix can be express
in terms of the evolution of an (N221)-dimensional real
state vectorS5(S1 ,S2 ,...,SN221), called the pseudospin o
coherence vector, in the Hilbert space that is described by
pseudospin equation

FIG. 1. Simulation domain geometry and electromagnetic fi
configuration of the~a! TM and ~b! TE guided modes in the
parallel-plate mirror optical waveguide. The boundary conditio
are indicated by arrows at the respective interfaces@upward point-
ing arrows and dashed lines indicate transmission boundaries
and right arrows~shaded areas that have to be considered as in
tesimally thin! indicate perfectly reflecting boundaries#.
8-3
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SLAVCHEVA et al. PHYSICAL REVIEW A 66, 063418 ~2002!
Ṡj~ t !5 (
k51

N221

L jk~ t !Sk~ t !, j 51,2,...,N221, ~6!

where the dot stands for the time derivative and

L jk52
1

2i\
Tr~H& @l& j ,l& k# !. ~7!

Equation~6! represents a generalization of the torque eq
tion ~or real three-vector equation! obtained for a two-level
system@17#.

Let us consider now a three-level atomic system. A p
sible choice of the Gell-Mann SU~3! generators satisfying
Eq. ~4! is given by

l15S 0 1 0

1 0 0

0 0 0
D , l25S 0 0 0

0 0 1

0 1 0
D ,

l35S 0 0 1

0 0 0

1 0 0
D , l45S 0 i 0

2 i 0 0

0 0 0
D ,

l55S 0 0 0

0 0 i

0 2 i 0
D , l65S 0 0 i

0 0 0

2 i 0 0
D ,

l75S 21 0 0

0 1 0

0 0 0
D , l85

1

) S 21 0 0

0 21 0

0 0 2
D .

After transformation to a rotating wave coordinate frame,
equation of motion~6! takes the form

Ṡi5 f i jkg jSk ; i , j , k51,...,8, ~8!

where summation overj, k is assumed,g j are the compo-
nents of the torque vector andf i jk is a fully antisymmetric
tensor of the structure constants of the SU~3! group that for
N52 is simply the fully antisymmetric, unit tensor« i jk . The
only nonvanishing values off i jk are the permutations give
in Table I.

Finally, the system Hamiltonian in the presence of a
pole coupling perturbation can be written in the form

H& ~ t !5H& 01H& int~ t !5H& 01eE•Q& , ~9!

TABLE I. Nonvanishing components of the antisymmetric te
sor of the structure constantsf i jk .

ijk 147 135 126 432 465 736 752 368 25

f i jk 1 21/2 21/2 21/2 21/2 1/2 1/2 )
2

)
2

06341
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whereH& 0 is the unperturbed Hamiltonian~in the absence of
an electromagnetic wave! and Q& is the local displacemen
operator whose expectation value gives the local displa
ment vectorq.

B. Maxwell-Bloch equations for transverse magnetic waves

Maxwell’s equations in an isotropic medium read

]H

]t
52

1

m
“3E,

]E

]t
5

1

«
“3H2

1

«

]P

]t
, ~10!

where« andm are given functions of space and the polariz
tion currentJ5]P/]t. For a TM waveH5(Hx,0,0) andE
5(0,Ey ,Ez), we find in the 2D case,

]Hx

]t
52

1

m

]Ez

]y
1

1

m

]Ey

]z
,

]Ey

]t
5

1

«

]Hx

]z
2

1

«

]Py

]t
, ~11!

]Ez

]t
52

1

«

]Hx

]y
2

1

«

]Pz

]t
.

In the case of a TM wave, in-plane polarization of th
medium is induced along the propagation axisz and in a
transverse direction@Fig. 1~a!#. In order to derive the
Maxwell-Bloch equations in 2D, we shall consider a dege
erate three-level atomic system in which two electric dip
transitions are allowed to be excited by a linearly polariz
monochromatic electromagnetic wave with frequency eq
~or close! to the atomic resonance frequency~Fig. 2!. Let us
assume that the energy 0 is chosen at the ground-state en
E150, and the energy corresponding to the excited level
\v0 . The unperturbed Hamiltonian of a degenerate thr
level system can then be written in the following simp
form:

H& 05S 0 0 0

0 \v0 0

0 0 \v0

D . ~12!

If the polarization densityP is along a general direction in
the plane~y, z!, the local displacement vectorq can be rep-
resented by its components along they and z axes, and the
displacement operator in turn can be decoupled into two
erators, according to

Q& 5q0H S 0 1 0

1 0 0

0 0 0
D ey1S 0 0 1

0 0 0

1 0 0
D ezJ , ~13!

whereq0 is the typical atomic length scale, andey , ez are the
unit vectors along they andz axes. In any physical medium
8-4
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q0 represents a measure of the separation of the charg
the dipole and is given by a specific computation of the s
of the electron orbit, e.g., the Bohr radius of hydrogen ato
For simplicity, in the calculations we shall assumeq0 to be
of the order of magnitude of;1 Å. As a result, the dipole
coupling interaction Hamiltonian can be written as

H& int~ t !5\S 0 Vy Vz

Vy 0 0

Vz 0 0
D , ~14!

where we have defined Rabi frequencies of the oscillati
alongy andz according to

Vy5
`

\
Ey , Vz5

`

\
Ez , ~15!

and `5eq0 is the dipole coupling constant. Therefore, t
total Hamiltonian acquires the form

FIG. 2. Energy-level diagram of a three-level quantum syst
with a doubly degenerate excited state~with, e.g., spin degeneracy
level u2& represents spin-down state and levelu3& is the spin-up
state! at resonance. Two electric dipole transitions can be excited
the monochromatic electromagnetic wave. The level difference
gular frequencies arev125(E22E1)/\, v135(E32E1)/\, and
v125v135v0 . The energy zero is chosen at the ground-state
ergy E150. gL accounts for the decay of the population from t
upper levels to the ground level;gT represents the dephasing ra
~transverse relaxation rate!.
in
e
.

s

H& ~ t !5\S 0 Vy Vz

Vy v0 0

Vz 0 v0

D . ~16!

Now we can easily calculate the components of the tor
vector from Eq. ~5b!; this leads to the following time-
independent torque vector:

g5S 2Vy , 0, 2Vz 0, 0, 0, v0 ,
v0

)
D . ~17!

Taking into account only the nonvanishing structure co
stants ~see Table I!, using the antisymmetry relations be
tween the possible permutations of indices, and perform
the summation overj andk in Eq. ~8!, we obtain finally the
following set of equations for the components of the coh
ence vector:

]S1

]t
52v0S42VzS5 ,

]S2

]t
5VzS41VgS6 ,

]S3

]t
5VyS52v0S6 ,

]S4

]t
5v0S12VzS222VgS7 ,

]S5

]t
5VzS12VyS3 , ~18!

]S6

]t
52VyS21v0S32VzS72)VzS8 ,

]S7

]t
52VyS41VzS6 ,

]S8

]t
5)VzS6 .

These equations can be written in a more compact ma
form as

y
n-

-

]

]t S S1

S2

S3

S4

S5

S6

S7

S8

D 51
0 0 0 2v0 2Vz 0 0 0

0 0 0 Vz 0 Vy 0 0

0 0 0 0 Vy 2v0 0 0

v0 2Vz 0 0 0 0 22Vy 0

Vz 0 2Vy 0 0 0 0 0

0 2Vy v0 0 0 0 2Vz 2)Vz

0 0 0 2Vy 0 Vz 0 0

0 0 0 0 0 )Vz 0 0

2 S
S1

S2

S3

S4

S5

S6

S7

S8

D , ~19!

063418-5
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SLAVCHEVA et al. PHYSICAL REVIEW A 66, 063418 ~2002!
and hence as

]S

]t
5MTMS,

where the matrixMTM is an 838 antisymmetric matrix with
only nine independent components.

In order to couple the semiclassical Maxwell’s equatio
with the quantum-mechanical pseudospin equations, we n
to find a relationship between the polarization and the co
ponents of the coherence vector. The macroscopic pola
tion of the medium is given by the expectation value of t
dipole moment operator:

P52Nae^Q& &52NaeTr~r&Q& !, ~20!

whereNa is the density of the polarizable atoms in the m
dium. Using Eq.~2!, we can calculate the polarization com
ponents alongy andz from Eq. ~20!, taking into account the
explicit form of the displacement operator~13!, to obtain the
following relationships:

Py52`NaS1 , ~21!

Pz52`NaS3 . ~22!

We can easily extend the above formalism for a thr
level system in the presence of relaxation effects by in
ducing phenomenological nonuniform decay timesT1 ,...,T8
that govern the relaxation of the pseudospin vector com
nents to their equilibrium values. The coherence vector w
then satisfy the equation

]S

]t
5MTMS2s~S2SE!, ~23!

whereSE is the equilibrium value to whichS tends to in the
absence of any driving field, and

s5diag~1/T1 , 1/T2 ,...,1/T8! ~24!

is the diagonal matrix of the nonuniform relaxation rate
Note that, as has been pointed out in Ref.@20#, the equilib-
rium ~or zero-field! coherence vectorSE is determined by
incoherent sources as a thermal reservoir or external pu
ing that maintains the system at a definite level of excitati
Dephasing causes the first six components ofSE to vanish,
and only the population terms (S7 and S8) depend on the
initial occupation of the levels.

Equations~11! and ~21!–~24! form a set of 13 coupled
equations for the 13 unknowns:Hx , Ey , Ez , Py , Pz ,
S1 ,...,S8 , and hence its solution is fully determined.

C. Maxwell-Bloch equations for transverse electric waves

In the case of a TE wave, we follow the same formalis
Maxwell’s equations in 2D for the TE waveE5(Ex,0,0),
H5(0,Hy ,Hz) read
06341
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]Hy

]t
52

1

m

]Ex

]z
,

]Hz

]t
5

1

m

]Ex

]y
, ~25!

]Ex

]t
5

1

« S ]Hz

]y
2

]Hy

]z D2
1

«

]Px

]t
.

Since for TE waves the polarization exists only along thex
axis, the local displacement vectorq is parallel to the electric
field, and the displacement operator is of the form

Q̂5q0S 0 1 0

1 0 0

0 0 0
D ex , ~26!

where ex is a unit vector along thex axis. Therefore the
interaction Hamiltonian takes the form

Ĥ~ t !5S 0 Vx 0

Vx v0 0

0 0 v0

D , ~27!

where we have defined a Rabi frequency along thex axis,
according to

Vx5
`

\
Ex . ~28!

Analogous to the TM case, we calculate the compone
of the time-independent torque vector g
5@2Vx , 0, 0, 0, 0, 0,v0 , (v0 /))# and substitute them in
the pseudospin equations~8!, taking into account the asym
metric property of the structure constant tensor to determ
the nonvanishing permutations of the indices~see Table I!.
This gives the following set of equations for the compone
of the coherence vector:

]S1

]t
52v0S4 ,

]S2

]t
5VxS6 ,

]S3

]t
5VxS52v0S6 ,

]S4

]t
5v0S122VxS7 ,

]S5

]t
52VxS3 ,

]S6

]t
52VxS21v0S3, ~29!

]S7

]t
52VxS4 ,

]S8

]t
50,

or equivalently in the matrix form
8-6



]

]t S S1

S2

S3

S4

S5

S6

D 5S 0 0 0 2v0 0 0 0

0 0 0 0 0 Vx 0

0 0 0 0 Vx 2v0 0

v0 0 0 0 0 0 22Vx

0 0 2Vx 0 0 0 0 D S S1

S2

S3

S4

S5

S6

D . ~30!
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S7
0 2Vx v0 0 0 0 0

0 0 0 2Vx 0 0 0
S7
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The resulting set of nonuniformly damped equations
correspondingly

]S

]t
5MTES2s~S2SE!, ~31!

wheres is given by Eq.~24!.
Again we need to determine whatever additional eq

tions relate the macroscopic polarization in Maxwell’s equ
tions to the components of the coherence vector. These
be obtained from Eqs.~2!, ~20!, and~26!. One simply finds
that

Px52`NaS1 . ~32!

As should be expected from the two-level system results~see
Eq. ~10!, Ref. @9#!, the polarization along the electric fiel
depends on the corresponding component of the coher
vector.

Equations~25!, ~31!, and~32! form a set of 12 equation
for the 12 unknownsEx , Hy , Hz , Px , S1 ,...,S8 and, there-
fore, its solution is fully determined.

It can be easily proven that the TE case is equivalent
two-level system case. Let us setS15r1 , S452r2 , S7
5r3 , wherer i , i 51, 2, 3 is the real three-vector represe
tation of the density matrix@17#. Then from the first, fourth,
and the seventh equations of the set~29!, one obtains the
following system:

]r1

]t
5v0r2 ,

]r2

]t
52v0r112Vxr3 , ~33!

]r3

]t
522Vxr2 .

This system coincides with the undamped set of two-le
equations from Ref.@9#. The rest of the equations forS2 , S3 ,
S5 , S6 are decoupled from this system. This decoupling c
be understood in terms of the elements of the density ma
In particular, the coherence vector components are relate
the elements of the density matrix by the following relation

S15 r̂121 r̂21, S25 r̂231 r̂32,
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S35 r̂131 r̂31, S452 i ~ r̂122 r̂21!,

S552 i ~ r̂232 r̂32!, S652 i ~ r̂132 r̂31!,

S752~ r̂112 r̂22!, S852
1

)
~ r̂111 r̂2222r̂33!. ~34!

By inspecting the set~34!, one observes that the equatio
for S2 , S3 , S5 , S6 do containr elements with the subscrip
3 corresponding to the third level. Therefore for a two-lev
system these components do not have physical meaning
the whole system~29! is reduced to Eq.~33!.

III. NUMERICAL IMPLEMENTATION

We shall consider first the numerical implementation
the semiclassical Maxwell-Bloch model for the TM optic
wave. For a TM waveH5(Hx,0,0) andE5(0,Ey ,Ez), the
resulting damped set of equations given in Sec. II B exp
itly read

]Hx

]t
52

1

m

]Ez

]y
1

1

m

]Ey

]z
,

]Ey

]t
5

1

«

]Hx

]z
2

1

«

]Py

]t
, ~35a!

]Ez

]t
52

1

«

]Hx

]y
2

1

«

]Pz

]t
;

Py52`NaS1 ,

Pz52`NaS3 ; ~35b!

]S1

]t
52v0S42VzS52

1

T1
S1 ,

]S2

]t
5VzS41VyS62

1

T2
S2 ,

]S3

]t
5VyS52v0S62

1

T3
S3 ,

]S4

]t
5v0S12VzS222VyS72

1

T4
S4 ,
8-7
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]S5

]t
5VzS12VyS32

1

T5
S5 ,

]S6

]t
52VyS21v0S32VzS72)VzS82

1

T6
S6 ,

]S7

]t
52VyS41VzS62

1

T7
~S72S7e!,

]S8

]t
5)VzS62

1

T8
~S82S8e!. ~35c!

The coupling between the 2D Maxwell’s equations and
equations describing the time evolution of the quantum s
tem is performed by substitutingPy and Pz from Eq. ~35b!
and subsequently]S1 /]t, ]S3 /]t from Eq. ~35c! into Eq.
~35a!, thus obtaining

]Hx

]t
52

1

m

]Ez

]y
1

1

m

]Ey

]z
,

]Ey

]t
5

1

«

]Hx

]z
2

Na`

«T1
S12

Na`v0

«
S42

Na`Vz

«
S5 ,

~35d!

]Ez

]t
52

1

«

]Hx

]y
2

Na`

«T3
S32

Na`Vy

«
S52

Na`v0

«
S6 .

Equations~35c! and ~35d! form a system of first-orde
differential equations. Equations~35c! and ~35d! are dis-
cretized using finite differences on a two-dimensional Y
grid @22#, where the quantum system material variab
(S1 ,...,S8) are assigned to the empty nodes in the grid~see
the Appendix!. In order to associate an electric field at t
locations of the empty nodes, where the polarization com
nents are given, or to define values of the atomic variable
half steps in accordance with the Yee algorithm, we perfo
averaging over the nearest neighbors of the current nod
described in the Appendix. We have applied the predic
corrector iterative scheme introduced in Ref.@9# to solve
numerically the semiclassical Maxwell-pseudospin syste
This approach allows the solution of all the equations in
system at each time step. It has been pointed out therein
the predictor-corrector scheme has numerous advant
with respect to other schemes. The predictor-correc
method has proved to be applicable and quite efficien
solving a great number of first-order differential equatio
simultaneously, as we shall show in Sec. IV.

In what follows, we shall consider the geometry of t
parallel-plate mirror optical waveguide shown in Fig. 1 th
is composed of a slab waveguide with bottom and top
buffers. We have applied absorbing boundary conditions
the interfacesz50 andL ~see Fig. 1! based on the Engquist
Majda one-way wave equation@23# within a one-term
Taylor-series approximation. The one-way wave equati
have been discretized using the Mur finite-difference sche
@24#, resulting in the following time-stepping algorithm fo
the electric-field components along thez50 grid boundary:
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Ezu0,j
k1152Ezu1,j

k211S1~Ezu1,j
k111Ezu0,j

k21!1S2~Ezu0,j
k 1Ezu1,j

k !

1S3@Ezu0,j 11
k 22Ezu0,j

k 1Ezu0,j 21
k 1Ezu1,j 11

k

22Ezu1,j
k 1Ezu1,j 21

k #, ~36!

where the coefficientsSi
1 ( i 51,2,3) are given by

S1
65

cDt7Dz

cDt6Dz
,

S2
65

2Dz

6cDt1Dz
, ~37!

S3
65

~cDt !2Dz

2~Dy!2~6cDt1Dz!
.

The constantc is the propagation speed at any spatial g
point,Dy andDz are the spatial steps along they andz axes,
andDt is the time step.

An analogous approximate analytical absorbing bound
condition can be derived for the upper grid boundaryz5L
~Fig. 1!. The only difference between this one and thez50
boundary conditions is the sign of the propagation velocityc,
thus implying different coefficientsSi

2 . The boundary con-
ditions imposed on the side walls of the waveguide (y50
and y5d) are those appropriate for a perfectly reflecti
surface, i.e.,Etan5Ez50.

The absorbing boundary conditions applied at the in
(z50) and output (z5L) facets of the structure have prove
to be sufficiently accurate for the purpose of the pres
study. However, we are envisaging to implement more rig
ous Berenger perfectly matched layer absorbing bound
conditions in the future@25#. The perfectly reflecting bound
ary conditions correspond to the actual geometry of
parallel-mirror waveguide; however, more realistic bounda
conditions would be again absorbing~or transmitting!
boundaries that would account for the evanescent field
side the real waveguide. In a more realistic case, the num
cally computed guided mode of a real waveguide should
applied as a source pulse excitation.

The time evolution of a degenerate three-level quant
system in the presence of an electric field has the charact
a Goursat initial-boundary problem. The latter is well pos
if the initial time history of the electric field is given alon
some characteristic~e.g., the lower boundaryz50). We
choose the source field to be initially a plane-polarized TE
guided mode of the parallel-mirror waveguide, i.e. the TM0
mode, with amplitudeE0 , carrier frequency equal to th
resonant transition frequencyv0 of the degenerate three
level system, and an arbitrary envelope. Numerical simu
tions have been performed with a sine pulse with a car
frequency set at the resonance valuev5v0 and modulated
by a hyperbolic-secant envelope, and a Gaussian envelop
the test pulse shape, namely,
8-8
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Ey ~z50, y, t !5H E0 sech~10G!sin~v0 ,t !

E0 expXS t2t0

tdecay
D 2Csin~v0t !,

~38!

Ez ~z50, y, t !50,

where Tp is the pulse duration and the constantG5 bt
2(Tp/2)c/(Tp/2). The Gaussian pulse is centered at the ti
momentt05k0Dt, wherek0 is the integer time step, and ha
a 1/e characteristic decay ofkdecay time steps (tdecay
5kdecayDt). If a smooth transition from zero to the Gaussi
pulse is required,k0 should be taken at least as 3kdecay~Ref.
@25#!.

For investigation of the more general TM case, we ap
as a source the fundamental TM1 guided mode of the
parallel-mirror light waveguide~see, e.g., Ref.@26#! and a
hyperbolic-secant~HS! modulated sine wave whose carri
frequency is set to the atomic resonance value:

Ey~z50, y, t !5E0c1 cosS py

d D sech~10G!sin~v0t !,

Ez~z50, y, t !52E0c2 sinS py

d D sech~10G!cos~v0t !,

~39!

c15

Fv0
2n2

c0
2 2S p

d D 2G1/2

v0«0n2 ; c25
p

v0«0n2d
,

whered is the separation between the mirrors andn is the
refractive index of the medium between the mirrors.

In order to ensure numerical stability, the time step
chosen according to the two-dimensional Courant condit

Dt<
1

cF 1

~Dy!2 1
1

~Dz!2G1/2. ~40!

In all of the simulations we assumed that the degene
three-level system was at resonance and the carrier frequ
was taken to be equal to the transition frequency, i.e.v
5v052p f 0 , where f 052.031014 s21, corresponding to
the wavelengthl51.5mm. In all of the simulations, the
pulse duration was set toTp5100 fs. With a value ofq0
;1 Å, the coupling coefficient equals̀51.0310229 C m.
The number of dipoles per unit volume was set equal
Ndipoles51024 m23. The relaxation times corresponding
the decay of the real state vector components were set to
uniform valueT15...5T851.0310210 s in order to satisfy
the SIT criterion, namelyT1 , T2 ,..., T8@Tp . Moreover,
uniform relaxation times avoid any pulse distortions th
could arise eventually if asymmetries in the relaxation tim
were imposed.
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IV. SIMULATION RESULTS AND DISCUSSION

A. TM 0 guided mode SIT soliton

We have performed a number of validation studies to
vestigate numerically the formation of a SIT quasisoliton
two spatial dimensions within the parallel-plate mirror op
cal waveguide filled with an active medium consisting
degenerate three-level quantum absorbers. Both the T
(TM0) and the TM1 excitation mode cases were considere
The numerical results indicate the realization of SIT solito
in both of these multidimensional systems.

Let us consider first the simpler TM0 ~TEM-wave! case.
The source pulse is a plane wave polarized along the tr
verse direction perpendicular to the plane of the wavegu
~Fig. 1!. It is excited with a hyperbolic-secant modulated si
wave at the atomic resonance frequency@see the upper line
of Eq. ~38!#.

It can be shown easily that this case is equivalent to
propagation of a one-dimensional plane wave through a re
nant two-level medium@9# by considering a cross sectio
~slice! of the field distribution along the propagation ax
perpendicular to the plane. Therefore, we expected that
pulse area theorem@27,28# should still be applicable along
the propagation direction and performed several tests
verify its predictions for the maximum field amplitude an
pulse duration. The pulse area at a given time is given b

u~z,t !5
`

\ E
2`

t

A~z, t8!dt8, ~41!

where

A~z, t !5E0 sechF t2
z

V

t
G5E0 sech~10G!

is the electric-field envelope,V is the pulse~group! velocity
in the medium, andt5(Tp/20), Tp being the pulse duration
The area of the entire pulse is

upulse~z!5
`

\ E
2`

`

A~z, t8!dt8. ~42!

Let us consider pulse propagation in an absorbing m
dium. In particular, pulses with areas less thanp should be
completely absorbed within several absorption lengths in
active medium according to the pulse area theorem in ac
dance with the usual Beer’s law of absorption. On the ot
hand, for pulses with area equal to even multiples ofp, the
solutions are stable@27# and the pulses should continue
propagate as solitons through the resonant medi
Throughout the simulations, initial population profile corr
sponding to the case of an absorbing medium~i.e., all reso-
nant dipoles are initially in the ground state so thatS75S7e
521) is assumed. The pulse initially propagates in a fr
space region, then enters the degenerate three-level med
and finally exits the medium into another free-space regi
The entire simulation region is taken to be a rectangleNcells
long andM cells wide. In this particular case,Ncells55000,
8-9
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M cells5100. An initial pulse with carrier frequencyv0 equal
to the atomic resonance frequency and with a hyperbo
secant envelope starts to propagate from the lower boun
~at z50). The pulse duration isTp5100 fs and the maxi-
mum field amplitudeE0 is calculated according to the puls
area theorem:

E05
2p\ f 0

` arctan~sinh~u!!u210
110

upulse~z50!

2p
. ~43!

In the above equation, all parameters are assigned the va
discussed in Sec. III. The step sizes along thez andy direc-
tions have been chosen asDz530 andDy5500 nm, respec-
tively. Applying the Courant stability criterion, one finds th
time stepDt59.98931022 fs. The simulation region is 150
mm long and 50mm wide.

FIG. 3. ~a! Spatial profile~along the propagation axisz! of the
normalized field componentEy for a HS pulse with initial pulse
area equal to 2p ~maximum amplitudeE054.21863109 V/m) at
the simulation timest5150, 250, 350, and 500 fs.~b! Population
term S7 profile along the propagation direction at the simulati
times of~a!. The simulation region is 150mm long and 50mm wide
and the active~absorbing! medium extends from 7.5 to 142.5mm.
06341
-
ry

es

The stable solution case is depicted in Figs. 3~a! and 3~b!,
where the pulse area is calculated from Eq.~43! and is taken
to be 2p, leading to a pulse amplitudeE054.2186
3109 V/m. In Fig. 3~a!, the normalized field componentEy
is plotted against the distance along the structure at the ti
t5150, 250, 350, and 500 fs. It can be clearly seen that
initial 2p pulse propagates in the resonant medium mainta
ing its hyperbolic-secant shape without any distortions. T
corresponding population difference experiences a comp
transition from its ground level to the excited state and ba
to its initial state within one Rabi period@Fig. 3~b!#.

In the case of an initial pulse area less thanp, the initially
symmetrical pulse shape is distorted during its propaga

FIG. 4. ~a! Modulus of the electric field for the TM0 parallel-
plate mirror guided mode~TEM plane wave! as a function of the
point ~y, z! in the waveguide plane at the simulation timest5150,
250, 350, and 500 fs. The initial population profileS7e is included
as an indication of the 2D boundaries of the active medium.~b!
Cross section of the 3D plots of the normalized electric-field mo
lus, the in-phase~or dispersive! polarization componentsS1 , in-
quadrature~or absorptive! polarization componentS4 , the popula-
tion inversion termS7 in plane perpendicular to the waveguide, a
passing through the middle of the transverse dimension of
waveguide as a function of the longitudinal coordinatez.
8-10
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in the active medium. The initial equilibrium between th
energy absorbed during the leading fraction of the pulse
the energy emitted back to the pulse by stimulated emis
within the trailing fraction of the pulse is broken, and th
pulse becomes more and more asymmetric. Initially,
leading fraction of the pulse is gradually damped while
trailing irradiated edge grows continuously and is transmit
eventually through the lower (z50) perfectly transmitting
boundary. This process persists until the pulse amplit
completely vanishes as the pulse is absorbed by the med
At the same time, the active medium is only partially i
verted, and the pulse energy is not sufficient to induce a
Rabi flop from the ground state to the excited state, and b
to the ground state. Therefore, the pulse never reaches
namical equilibrium. This solution becomes unstable; a
eventually within many absorption lengths in the medium
decays to zero.

It is straightforward to show that the TEM guided mo
case is in turn equivalent to the TE case. At the end of S
II C we showed that the TE guided mode is equivalent t
1D two-level system and that the real state vector com
nents in this case having a clear physical meaning areS1 ,
S4 , and S7 . These components represent, respectively,
in-phase~dispersive! component of the polarization, the in
quadrature ~absorptive! polarization component, and th
population difference in the populations of the two leve
~the upper being doubly degenerate!. Numerically, this prop-
erty of the Maxwell-Bloch system manifests itself by a na
ral splitting of the system of equations for the real-vec
components into two sets. As shown in Sec. II C, the first
involves the components corresponding to the two-level s
tem, which are coupled by the TEM mode; while the rest
the equations include transitions involving the third lev
which are not coupled by the TEM mode.

The time evolution of the spatial distribution of the mod
lus of the electric field at four time moments (t5150, 250,
350, and 500 fs! after the plane wave has started its prop
gation from the boundaryz50 and a cross section of th
polarization vector components and the population differe
in the 2D TEM mode along the propagation axis are sho
in Figs. 4~a! and 4~b!. The modulus of the electric-field dis
tribution is plotted together with the initial population profi
in Fig. 4~a!. The latter has been initially set toS7e521
within the active region and zero outside it, and correspo
to an absorbing medium. The leading edge of the elect
field SIT 2p pulse completely excites the degenerate thr
level quantum system locally, and the trailing edge deexc
it back to the ground state, thereby returning back to
pulse by stimulated emission~during the last half of the
pulse!, the excitation energy acquired by the system dur
the first half of the pulse. Therefore, the simulation resu
for a 2D TEM guided wave propagation across a degene
three-level system of resonant absorbers correctly reprod
the results from Ref.@9# for SIT-soliton propagation in 1D
for a two-level system.

In order to complete our study, we validated our 2
model against the predictions of the pulse area theorem
the time evolution of an arbitrary shaped pulse~e.g., Gauss-
ian! with initial pulse areap,upulse(z50),2p. According
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to the theorem, a pulse with initial pulse area in the inter
~p, 2p! should evolve into a SIT 2p soliton with hyperbolic-
secant envelope@27#. In order to prove this statement, w
have performed the following numerical experiment. Usi
the same geometry for the simulation region as in the pre
ous simulations (Ncells530 000, M cells5100, Dz530 nm,
Dy5500 nm, andDt59.98931022 fs), we have injected
into the active region a Gaussian pulse with initial pulse a
of 1.6p. This area and a pulse temporal widthTp5100 fs
yields the source electric-field amplitudeE052.114 79
3109 V/m. The time evolution of the pulse shape has be
monitored at evenly spaced time intervals. Figure 5 rep
sents a cross section of the 3D distribution of the normali
y component of the electric field along the propagation
rection through the middle of the transverse dimension p
ted together with the corresponding population profile. T
actual pulse reshaping during the propagation in the abs
ing medium due to the absorption of the leading edge of
pulse and stimulated emission induced by the trailing edg
clearly seen. This absorption results in a broadened, incr
ingly symmetric 2p pulse with HS envelope at the end of th
active region, propagating in the absorbing medium with
any distortions as a solitary wave.

Finally, as additional evidence in support of the hypo
esis that ultrashort pulse propagation in 2D through a deg
erate three-level system of quantum absorbers results
solitonlike behavior, we have performed a numerical expe
ment that demonstrates the soliton interaction. It is w
known that when solitons interact with each other, they
emerge after the interaction with unchanged shape and

FIG. 5. Cross section of the spatial distribution of the norm
ized Ey component and of the population difference termS7 distri-
bution along the propagation axisz through the middle of the trans
verse waveguide dimension at the simulation timest50.1, 0.5, 1,
1.5, 2, 2.5, 2.9, and 3 ps showing the pulse reshaping during
propagation in the absorbing medium.
8-11
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with a shift in their phase~see, e.g., Ref.@29#!. In our nu-
merical simulations, we have applied two electric-fie
sources, each located at opposite ends of the simulation
gion, which have the HS shape and initial area equal top
~i.e., E052.10933109 V/m, t5200 fs). The results of the
simulations for the time evolution of the normalized electr
field componentEy are plotted in Fig. 6~a!, and the popula-
tion difference is plotted in Fig. 6~b! together with the initial
population profile. The latter serves as an indication of
boundaries of the active region. The two counterpropaga
pulses interact in the middle of the simulation region; t
effectively results in a summation of their amplitudes. Aft
the interaction the two pulses, they reappear without
changes in their shape and maintain their soliton chara
@Fig. 6~a!#. The population difference termS7 exhibits strong
oscillations during the interaction and also reappears a
the interaction, as it has been before.

B. TM 1 guided mode SIT soliton

Let us consider now the more complicated and interes
case of propagation of the TM1 guided mode in a parallel
plate mirror waveguide through a degenerate three-level

FIG. 6. ~a! NormalizedEy-componentz distribution ~obtained
as a cross section of the 3D plot through the middle point of
transverse waveguide dimension! of two counterpropagating 2p
pulses with Gaussian envelope (t5200 fs, E052.1093
3109 V/m) at the simulation timest5100, 300, 350, and 500 fs. A
a time t5350 fs, the two pulses interact; the interaction manife
itself as a summation of the pulse amplitudes. After the interact
the pulses restore their original shape and continue to propaga
solitary waves.~b! Cross section of the 3D plot of the populatio
term S7 at the same simulation times, reflecting the population d
turbance caused by the pulse interaction~memory effect at the poin
of encounter of the two pulses!.
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tem of resonant dipoles. In this case the electric field coup
all the three levels, and the polarization can be induced b
in the propagation direction and in the transverse directi
The purpose of this study is to provide numerical evidence
SIT-soliton existence in two spatial dimensions. This is
nontrivial task; the analytical solutions of the Maxwe
pseudospin system in 2D are not known. The problem
rendered even more difficult from a mathematical point
view because of the presence of the relaxation~damping!
terms.

The geometry of the simulation region is assumed to
the same as for the previous TEM (TM0) case. The pulse
initially propagates in a free-space region, and thereafter
ters the active medium; the pulse subsequently continue
propagate in the nonlinear medium and exits into a fr
space region again. The number of cells along the propa
tion direction isNcells530 000, and in the transverse dire

e

s
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FIG. 7. Normalized optical field distribution of the first-orde
(TM1) mode of the parallel-mirror waveguide:~a! Absolute value
of the normalized electric-field distribution at a timet5125 fs; ~b!
Cross section of the normalized modulus of the electric-field pro
and the initial population profileS7e along the waveguide axis a
yj5 j Dy ~where j 520, 30, 40, 50!.
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tion M cells5100. Since we do not have any knowledge ab
the stable solution pulse envelope, we make an initial
sumption for the pulse shape and start to propagate ap
pulse~HS! from the lower boundary (z50) with maximum
electric-field amplitudeE0 , normalized with respect to th
amplitudec1 of theEy TM1 mode of the parallel-plate mirro
optical waveguide@see, e.g., Ref.@26#, Eq. ~39!#. For the
parameter set used in the simulations, with refractive in
of the active medium beingn51 and the separation betwee
the side mirrors beingd59.9185mm, we obtained a value
of c15375.652, resulting in maximum field amplitudeE0
51.1233107 V/m. The step sizesDz51.5 nm along thez
direction andDy5119.5 nm along they direction were cho-
sen. The resulting time step, according to the Courant co
tion in 2D @Eq. ~40!#, was set toDt5531023 fs. A snapshot
of the 3D absolute value of the electric-field distribution a
time t5125 fs is plotted in Fig. 7~a!. The corresponding
cross section along the propagation axis at point of the tra
verse dimensionyj5 j Dy ( j 520, 30, 40, 50) is given in Fig
7~b! along with the initial population profileS7e . In this
simulation we assumed an absorbing medium and, there
set the equilibrium population terms to their equilibrium va
ues @i.e., S7e521 andS8e52(1/))]. Instead of plotting
all the eight real pseudospin vector components, we h
plotted only the significant polarization components, cor
sponding to actual transitions that occur in the degene
three-level system and the level-occupation probabilities~di-
agonal elements in the density matrix!, since the latter pro-
vide more immediate insight into the population redistrib
tion between the levels in the three-level system conside
The significant polarization components are plotted in Fi
8~a–h! as a 3D plot and are viewed in a plane perpendicu
to the plane of the simulation structure, that intersects
transverse dimension at particular distances from the lo
interface. In Figs. 8~a,b! and Figs. 8~e,f!, the polarization
componentsS1 and S4 are plotted; they show a behavio
similar to the respective components in the TEM case@com-
pare with Fig. 4~b!#. By inspecting Fig. 8, it can be seen th
the behavior of the coherence vector components is v
similar to the following pairs of components:S1 andS4 ~rep-
resenting the in-phase and in-quadrature components o
polarization, respectively!, andS3 andS6 . This is due to the
fact that these pairs of components are responsible@see Eq.
~34!# for the coupling between the levels 1 and 2, and 1 a
3, respectively. The level-occupation probabilities are plot
in Figs. 9~a–d!. From the cross-section plot given in Fig
9~b–d! @a similar behavior of the population difference as f
the TEM mode, i.e., compare with Fig. 4~b!#, the SIT behav-
ior is discerned clearly, namely, the population is totally
verted and returned back to the ground-state population
the pulse, thereby performing one Rabi flop. Figure 9~a!
shows two transitions, i.e., two Rabi flops, of the populat
difference from the ground state to the excited state,
back along the transverse direction. For each of these tr
verse Rabi flops, a corresponding Rabi flop occurs along
propagation axis; this behavior reflects the symmetry of
mode. However, level 3 is maintained partially populat
during the pulse propagation. The behavior of the lev
occupation probabilities is an indication of the presence
06341
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the self-induced transparency effects.
In Figs. 10~a–d!, we have plotted a snapshot of the spat

distribution of the normalizedEy andEz components of the
electric field at three time moments (t590, 125, 155 fs) dur-
ing the propagation of the pulse in the active medium. F
both components of the incident field, the maximum fie
amplitudes have been chosen to correspond to a 2p SIT-
soliton pulse. In particular, by virtue of the pulse area the
rem, E054.21863109 V/m at the lower boundary (z50),
and this value is subsequently normalized with respect to
amplitude coefficientc1 of the parallel-plate mirror wave
guide TM1 mode. Justification of this normalization proc
dure is given below. It is clear from this figure that th
electric-field components maintain their shape during
propagation in the nonlinear medium. This can be discer
clearly from Figs. 10~b,d! representing plots of the cross se
tion along the propagation axis. The corresponding time e
lution of the level-occupation probabilities is shown in Fi
11. These results thus indicate that a solitonlike regime
ultrashort pulse propagation has been achieved even fo
TM1 mode when the field couples to all three levels in t
system.

C. Pulse area theorem generalization to multidimensions

From the above numerical evidence of the existence
solitonlike behavior in a two-dimensional resonant degen
ate three-level medium, we can restate and extend the
eral result of the pulse area theorem in more than one sp
dimension. In what follows, we shall show that the choice
the maximum electric-field amplitudeE0 that results in a
solitonlike behavior of the TM1 mode simulation case is
consequence of this more general requirement.

For a generic TM1 wave, the pulse area along the prop
gation axis can be defined as

u~y5y0 , z!5
`

\ E
2`

`

Ẽy~y0 , z, t8!dt8, ~44!

where the envelopeẼy(y, z, t8)5E0c1 cos(py/d)sech(t8
2z/Vz/t), Vz is the component of the pulse group veloci
along the propagation axis, and the constantc1 is given by
Eq. ~39!. Similarly, we can define the pulse area along thz
direction for theEz component:

u~y5y0 , z!5
`

\ E
2`

`

Ẽz~y0 , z, t8!dt8, ~45!

where the envelopeẼz(y, z, t8)52E0c2 sin(py/d)sech$@t
2(z/Vz)#/t%. We then define a pulse area under the abso
value of the field envelope uẼ(y, z, t8)u
5AẼy

2(y, z, t)1Ẽz
2(y, z, t) as

u~y, z!5
`

\ E
2`

`

uẼ~y, z, t8!udt85
`

\ E
2`

`
AẼy

21Ẽz
2dt8.

~46!

Substituting the field envelopes from Eq.~39!, we find that
the initial pulse area injected into the active medium a
point y5y0 is obtained as follows:
8-13
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FIG. 8. Plot of the significant polarization componentsS1 , S3 , S4 , S6 for the TM1 mode:~a! Polarization componentS1 as a function
of the in-plane coordinates at a simulation timet5125 fs during the propagation in the active region.~b! Cross section ofS1 at yj5 j Dy
~where j 520, 30, 40, 50!. ~c! Polarization componentS3 as a function of the in-plane coordinates at a simulation timet5125 fs during the
propagation in the active region.~d! Cross section ofS3 at yj5 j Dy ~where j 520, 30, 40, 50!. ~e! Polarization componentS4 as a function
of the in-plane coordinates at a simulation timet5125 fs during the propagation in the active region.~f! Cross section ofS4 at yj5 j Dy
~where j 520, 30, 40, 50!. ~g! Polarization componentS6 as a function of the in-plane coordinates at a simulation timet5125 fs during the
propagation in the active region.~h! Cross section ofS6 at yj5 j Dy ~where j 520, 30, 40, 50!.
063418-14
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FIG. 9. Level-occupation probabilities (r11, r22, and r33) for the TM1 mode in a degenerate three-level system:~a! Occupation
probability for level 2 as a function of the in-plane coordinates at a simulation timet5125 fs during the propagation in the active region.~b!
Cross section of occupation probability for level 1 (r11) at y52, 4, 6 mm from the lower interface~note thatr11 exhibits the same
characteristics as the plot ofS7 component of the TEM mode@Fig. 4~b!#!. ~c! Cross section of occupation probability for level 2 (r22) at
y52, 4, 6mm from the left (y50) interface.~d! Cross section of occupation probability for level 3 (r33) at y52, 4, 6mm from the left
(y50) interface.
o

de

for
der

t of
level
u~y0 , z50!5
`

\
E0c1Fcos2S py0

d D
1S c2

c1
D 2

sin2S py0

d D G1/2E
2`

`

sechS t8

t Ddt8

5
`

\
E0c1Fcos2S py0

d D1S c2

c1
D 2

sin2S py0

d D G1/2

pt.

~47!

It is straightforward to see that fory050 and y05d, we
obtain an initial pulse area that corresponds to the one
tained in the 1D setting@see Eq.~43!#, with a factor ofc1 in
excess, namely,
06341
b-

u~y050, z!5u~y05d, z!5
`

\
E0c1pt54p2

`

\v0
E0c1

5c1u1D . ~48!

Therefore we can calculate the maximum field amplitu
again from Eq.~43! multiplied by an additional factorc1 .
This leads in turn to a valueE05(4.21863109)/c1 V/m. In
fact, this is the value used in the simulations of the TM1
mode case. This result establishes a novel criterion in 2D
obtaining solitonlike behavior that is based on the area un
the modulus of the electric-field envelope.

V. CONCLUSIONS

The present approach for the semiclassical treatmen
resonant coherent interactions in a degenerate three-
8-15
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FIG. 10. Evolution of the optical field distribution for the TM1 mode at the simulation timest590, 125, and 155 fs showing th
conservation of the 2D-pulse shape during the propagation in the absorbing medium:~a! NormalizedEy component of the optical field as
function of the in-plane coordinates.~b! Cross section of the 3D profile ofEy along the propagation direction at a pointy510Dy along with
the cross section of the initial population profileS7e , showing the boundaries of the active region alongz. ~c! NormalizedEz-component as
a function of the in-plane coordinates.~d! Cross section of the 3D profile ofEz along the propagation direction at a pointy510Dy along
with the cross section of the initial population profileS7e , showing the boundaries of the active region alongz.
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system in 2D represents a generalization of the Maxw
Bloch equations for a two-level system. The model prope
accounts through the polarization sources in Maxwell’s eq
tions for the polarizations of the three-level medium in 2
which generally occur along two perpendicular directio
The advantage of the newly derived set of linear differen
equations is a direct consequence of the real-vector repre
tation model ~rather than a complex density-matrix a
proach!. It represents a simple but rigorous geometrical p
ture of the resonance behavior of the quantum system
clear physical meaning of the quantities involved. This a
proach in turn allows a relatively easy numerical impleme
tation. The set of equations have been discretized on a
cially constructed modified 2D Yee grid and solved direc
in the time domain~by generalizing the predictor-correcto
method to a three-level system and two spatial dimensio!.

We have applied the approach based on the Maxw
pseudospin system to the study of the TE and TM mode
06341
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a parallel-plate mirror optical waveguide loaded with a d
generate three-level quantum system. The main physical
plications from our studies can be summarized as follo
We have confirmed from a different Maxwell-pseudosp
system that the SIT effects can be recovered in the quas
case, i.e., the 2D TM0 ~TEM! mode case. Most importantly
novel physical effects including 2D solitary wave and S
behavior were obtained with this multidimensional Maxwe
pseudospin system. The results for the SIT soliton associ
with the TM1 mode are of particular interest since the
demonstrate SIT effects and solitonlike behavior in 2D in
irreducible three-level quantum system. A generalization
the pulse area theorem was postulated and validated num
cally, which accounts for the multidimensionality of the ele
tromagnetic wave and the polarization dynamics of the qu
tum system.

The proposed model provides a useful and powerful t
for the investigation of the population dynamics during t
8-16
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COUPLED MAXWELL-PSEUDOSPIN EQUATIONS FOR . . . PHYSICAL REVIEW A 66, 063418 ~2002!
FIG. 11. Evolution of the level-occupation probabilities (r11,
r22, andr33) for the TM1 mode in a degenerate three-level syste
at the simulation timest590, 125, and 160 fs:~a! Cross section of
the 3D plot of the occupation probability for level 1 (r11) at y
52, 4, 6mm from the left (y50) interface.~b! Cross section ofr22

at y52, 4, 6mm from the left (y50) interface.~c! Cross section of
r33 at y52, 4, 6mm from the left (y50) interface.
06341
propagation of ultrashort 2D electromagnetic pulses thro
a multilevel quantum system, and we are anticipating usin
in the extreme nonlinear regime in the future.

It is to be noted that in the simulated parallel-plate mirr
optical waveguide configuration, the TE and TM modes ha
the same propagation coefficients. This in turn leads t
solitonlike behavior of the total wave for both types
modes. It is, however, worthwhile to investigate the critic
conditions for the occurrence of mixed TE1 /TM1 modes that
would in turn allow for the formation of polarized solitons
The latter would require considerations of a four-level s
tem and an extension of the above formalism to the SU~4!
group. This possibility is currently under investigation a
will be reported in a future publication.
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APPENDIX: DISCRETIZATION OF THE MAXWELL-
BLOCH EQUATIONS FOR THE TRANSVERSE

MAGNETIC WAVE

We apply the standard staggered-grid finite-differen
scheme of the spatial and temporal derivatives into the c
tinuum equations~35c! and~35d! for the transverse magneti
wave in 2D. The electric-field components and the magne
field components are spatially separated byDy/2 andDz/2 in
y-z plane and temporally byDt/2. The E components are
situated in the middle of the edges, and theH components
are in the center of the cell@25#. We associate the quantum
system variables with the empty nodes in the 2D Yee g
providing electric-field values at these mesh points by av
aging over the electric fields located at the nearest neigh
in the plane of a given node. The averaging procedure
explicitly given below.

As has been pointed out in Ref.@9#, the exponential de-
caying terms make the Bloch equation numerically st
therefore additional analytical factoring out of the expone
tial dependence is necessary before discretizing them. S
lar to Ref. @9#, we introduce the new variablesui ( i
51,2,...,8) according to

Si~y, z, t !5exp~2t/T1!ui~y, z, t !, i 51, 2,...,6,

S7~y, z, t !5S7e1exp~2t/T7!u7~y, z, t !, ~A1!

S8~y, z, t !5S8e1exp~2t/T8!u8~y, z, t !.

The resulting set of equations acquires the form

]Hx

]t
52

1

m

]Ez

]y
1

1

m

]Ey

]z
,

]Ey

]t
5

1

«

]Hx

]z
2Ayu12By4u42By5u5 , ~A2!
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]Ez

]t
52

1

«

]Hx

]y
2Azu32Bz5u52Bz6u6 ;

]u1

]t
52v0C141u42C151Ezu5 ,

]u2

]t
5C241Ezu41C261Eyu6 ,

]u3

]t
5C351Eyu52v0C361u6 ,

]u4

]t
5v0C142u12C242Ezu22D74Ey2C471Eyu7 ,

]u5

]t
5C152Ezu12C352Eyu3 ,

]u6

]t
52C262Eyu21v0C362u32D76Ez2C671Ezu7

2D86Ez2C681Ezu8 ,

]u7

]t
5C472Eyu41C672Ezu6 ,

]u8

]t
5C682Ezu6 , ~A3!

where the following time-varying coefficients have been d
fined:

Ay~ t !5
Na`

«T1
exp~2t/T1!,

C146~ t !5exp@6t„~1/T1!2~1/T4!…#,

Az~ t !5
Na`

«T3
exp~2t/T3!,

C156~ t !5
`

\
exp@6t„~1/T1!2~1/T5!…#,

By4~ t !5
Na`v0

«
exp~2t/T4!,

C246~ t !5
`

\
exp@6t„~1/T2!2~1/T4!…#,
06341
-

By5~ t !5
Na`2

\«
exp~2t/T5!,

C266~ t !5
`

\
exp@6t„~1/T2!2~1/T6!…#,

Bz5~ t !5
Na`2

\«
exp~2t/T5!,

C356~ t !5
`

\
exp@6t„~1/T3!2~1/T5!…#,

Bz6~ t !5
Na`v0

«
exp~2t/T6!,

C366~ t !5exp@6t„~1/T3!2~1/T6!…#,

C476~ t !5
2`

\
exp@6t„~1/T4!2~1/T7!…#,

C676~ t !5
`

\
exp@6t„~1/T6!2~1/T7!…#,

C686~ t !5
)`

\
exp@6t„~1/T6!2~1/T8!…#,

D74~ t !5
2`

\
S7e exp~ t/T4!,

D76~ t !5
`

\
S7e exp~ t/T6!,

D86~ t !5
)`

\
S8e exp~ t/T6!. ~A4!

With the locations of the discrete variables assumed abo
the magnetic-field equation is solved at the space stepi
1 1

2 )Dz and (j 1 1
2 )Dy for time steps (k1 1

2 )Dt. The field
componentsEy and Ez are solved correspondingly at th
space stepsiDz and (j 1 1

2 )Dy, and (i 1 1
2 )Dz and j Dy at a

time stepkDt. As a result, a discretized version of the 2
Maxwell-pseudospin system is developed of the followi
form:
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HxS i 1
1

2
, j 1

1

2
, k1

1

2D5HxS i 1
1

2
, j 1

1

2
, k2

1

2D2
Dt

mDy FEzS i 1
1

2
, j 11, kD2EzS i 1

1

2
, j , kD G

1
Dt

mDz FEyS i 11, j 1
1

2
, kD2EgS i , j 1

1

2
, kD G , ~A5a!

EyS i , j 1
1

2
, k11D5EyS i , j 1

1

2
, kD1

Dt

«Dz FHxS i 1
1

2
, j 1

1

2
, k1

1

2D2HxS i 2
1

2
, j 1

1

2
, k1

1

2D G
2A1S k1

1

2D 1

2 Fu1S i , j 1
1

2
, k11D1u1S i , j 1

1

2
, kD G

2B14S k1
1

2D 1

2 Fu4S i , j 1
1

2
, k11D1u4S i , j 1

1

2
, kD G

2B15S k1
1

2D 1

2 Fu5S i , j 1
1

2
, k11D1u5S i , j 1

1

2
, kD G

3
1

2 FEzS i , j 1
1

2
, k11D1EzS i , j 1

1

2
, kD G , ~A5b!

EzS i 1
1

2
, j , k11D5EzS i 1

1

2
, j , kD2

Dt

«Dy FHxS i 1
1

2
, j 1

1

2
, k1

1

2D2HxS i 1
1

2
, j 2

1

2
, k1

1

2D G
2A2S k1

1

2D 1

2 Fu3S i 1
1

2
, j , k11D1u3S i 1

1

2
, j , kD G1B25S k1

1

2D
3

1

2 Fu5S i 1
1

2
, j , k11D1u5S i 1

1

2
, j , kD G 1

2 FEyS i 1
1

2
, j , k11D

1EyS i 1
1

2
, j , kD G2B26S k1

1

2D 1

2 Fu6S i 1
1

2
, j , k11D1u6S i 1

1

2
, j , kD G . ~A5c!

Pseudospin equations are

u1~ i , j , k11!5u1~ i , j , k!2Dtv0c141S k1
1

2D 1

2
@u4~ i , j , k11!1u4~ i , j , k!#2DtC151

3S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u5~ i , j , k11!1u5~ i , j , k!#,

u2~ i , j , k11!5u2~ i , j , k!1DtC241S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u4~ i , j , k11!

1u4~ i , j , k!#1DtC261S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u6~ i , j , k11!

1u6~ i , j , k!#,

u3~ i , j , k11!5u3~ i , j , k!1DtC351S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u5~ i , j , k11!1u5~ i , j , k!#

2v0DtC361S k1
1

2D 1

2
@u6~ i , j , k11!1u6~ i , j , k!#,
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u4~ i , j , k11!5u4~ i , j , k!1Dtv0C142S k1
1

2D 1

2
@u1~ i , j , k11!1u1~ i , j , k!#2DtC242S k1

1

2D 1

4
@Ez~ i , j , k11!

1Ez~ i , j , k!#@u2~ i , j , k11!1u2~ i , j , k!#2DtD74S k1
1

2D 1

2
@Ez~ i , j , k11!1Ez~ i , j , k!#

2DtC471S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u7~ i , j , k11!1u7~ i , j , k!#,

u5~ i , j , k11!5u5~ i , j , k!1DtC152S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u1~ i , j , k11!1u1~ i , j , k!#

2DtC352S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u3~ i , j , k11!1u3~ i , j , k!#,

u6~ i , j , k11!5u6~ i , j , k!2DtC262S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u2~ i , j , k11!1u2~ i , j , k!#

1Dtv0C362S k1
1

2D 1

2
@u3~ i , j , k11!1u3~ i , j , k!#2DtD76S k1

1

2D 1

2
@Ez~ i , j , k11!1Ez~ i , j , k!#

2DtC671S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u7~ i , j , k11!1u7~ i , j , k!#

2DtD86S k1
1

2D 1

2
@Ez~ i , j , k11!1Ez~ i , j , k!#2DtC681S k1

1

2D 1

4
@Ez~ i , j , k11!

1Ez~ i , j , k!#@u8~ i , j , k11!1u8~ i , j , k!#,

u7~ i , j , k11!5u7~ i , j , k!1DtC472S k1
1

2D 1

4
@Ey~ i , j , k11!1Ey~ i , j , k!#@u4~ i , j , k11!1u4~ i , j , k!#

1DtC672S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u6~ i , j , k11!1u6~ i , j , k!#,

u8~ i , j , k11!5u8~ i , j , k!1DtC682S k1
1

2D 1

4
@Ez~ i , j , k11!1Ez~ i , j , k!#@u6~ i , j , k11!1u6~ i , j , k!#.

~A6!
nt
n

er
tan-
In order to obtain values for the electric-field compone
and material variables at mesh points where they are
defined, the following averaging procedure is performed:

EyS i 1
1

2
, j D5

1

4 FEyS i 1
1

2
, j 2

1

2D1EyS i 11, j 1
1

2D
1EyS i , j 2

1

2D1EyS i , j 1
1

2D G ,

EzS i , j 1
1

2D5
1

4 FEzS i 1
1

2
, j D1EzS i 1

1

2
, j 11D

1EzS i 2
1

2
, j D1EzS i 2

1

2
, j 11D G ,
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s
ot ul S i , j 1

1

2D5
1

2
@ul~ i , j !1ul~ i , j 11!#,

ul S i 1
1

2
, j D5

1

2
@ul~ i , j !1ul~ i 11, j !# ~ l 51,2,...,8!,

Ey~ i , j !5
1

2 FEyS i , j 2
1

2D1EyS i , j 1
1

2D G ,
Ez~ i , j !5

1

2 FEzS i 1
1

2
, j D1EzS i 2

1

2
, j D G . ~A7!

From inspection of Eq.~A5a!, it can be seen that the
magnetic field is updated at a time different from the oth
terms in the system, and therefore it is advanced in the s
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dard leapfrog way. For the rest of the equations we app
predictor-corrector method, casting the system in the for

Wi
new5Wi

old1DtFi~W̃old, W̃new! for i 51,2,...,10,
~A8!

where W15Ey , W25Ez , W35U1 , W45U2 ,..., W10
5U8 , and the functionalsFi represent the terms at the righ
hand sides of Eqs.~A5b!, ~A5c!, and~A6! combined with the
common multiplier, the time stepDt. The coefficients inFi

are updated, and initially the new valuesW̃new are set equa
to their values in the previous time stepW̃old, thus giving the
z

a

B

.

et

.

v.

on

06341
aupdated valuesW̃i
new from Eq. ~A8!. These values are com

pared with the values ofW̃new before updating using Eq
~A8!, and the iterative procedure continues until the diff
ence becomes smaller than a specified value. Typically,
process converges quickly enough to give a difference

1025 between the previous and new values ofW̃new. The
updated values for the pseudospin vector components
obtained from Eq.~A1!.

The predictor-corrector iterative scheme described ab
has proved to be stable and computationally efficient
large spatial arrays~e.g., 60 0003100 grid points!.
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