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Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a
degenerate three-level quantum system in two dimensions: Finite-difference time-domain study
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We extend to more than one spatial dimension the semiclassical full-wave vector Maxwell-Bloch equations
for the purpose of achieving an adequate and rigorous description of ultrashort pulse propagation in optical
waveguides containing resonant nonlinearities. Our considerations are based on the generalized pseudospin
formalism introduced by Hioe and Eber[{Phys. Rev. Lett47, 838 (1981)] for treatment of the resonant
coherent interactions of ultrashort light pulses with discrete-multilevel systems. A self-consistent set of coupled
curl Maxwell-pseudospin equations in two spatial dimensions and time for the special case of a degenerate
three-level system of quantum absorbers is originally derived. Maxwell's curl equations are considered to be
coupled via macroscopic medium polarization to the three-level atom model for the resonant medium. Two
distinct sets of pseudospin equations are obtained corresponding to the TE- and TM-polarized optical waves.
For the case of TM polarization, the electromagnetic wave is polarized in a general direction in the plane of
incidence inducing two dipole transitions in a degenerate three-level system b -¢iabtth component along
the propagation axis and in transverse direction. We introduce a dipole-coupling interaction Hamiltonian
allowing Rabi flopping of the population difference along and perpendicular to the propagation axis with
frequencies depending on the corresponding field components. The relationship between the induced polariza-
tion and the state vector components that describe the evolution of the discrete-level system is derived in order
to couple the quantum system equations to the Maxwell's curl equations. The pseudospin equations are
phenomenologically extended to include relaxation effects by introducing nonuniform decay times correspond-
ing to the various dipole transitions occurring in a three-level system. The system has been discretized using
finite differences on a Yee grid and solved numerically by an iterative predictor-corrector finite-difference
time-domain method. Self-induced transparency soliton propagation through a degenerate three-level quantum
system of absorbers in two spatial dimensions and time is demonstrated in planar parallel-mirror waveguide

geometries.
DOI: 10.1103/PhysRevA.66.063418 PACS nuntber42.50.Md, 42.65.Tg, 42.81.Dp, 42.50.Ct
[. INTRODUCTION focus on the planar optical waveguides with resonant nonlin-

earities since they are basic components of the contemporary
State-of-the-art high-speed optical communications aréntegrated optoelectronics, and represent interest in view of
constantly pushing further the demands for the generation duture potential device applications such as ultrashort pulse
ultrashort light pulses. Recently, substantial progress hageneration, modulation, and switching.
been achieved in the methods of generating extremely short On the other hand, experimental studies of the ultrafast
optical pulses whose duration consists of only several opticdhser dynamics in vertical-cavity surface-emitting lasers us-
cycles[1,2]. Such pulses are considerably shorter than théng femtosecond optical pulse excitatioj#s5] undoubtedly
characteristic relaxation times in matter and are usually chashow that new physical effects become important in this re-
acterized by high-field amplitudes; and, consequently, theygime[6]. Therefore, it is increasingly important that methods
lead to nonlinear optical effects such as the onset of thef theoretical analysis of the generation and propagation of
self-induced transparend$sIT) soliton propagation regime. ultrashort optical pulses are rendered adequate to meet the
Both from experimental and theoretical points of view, theneeds of this rapid progression of ultrafast experimental tech-
possibility of optical pulse reshaping and soliton formationniques. When the laser-pulse temporal width becomes com-
during the passage of light waves through opticalparable to the optical period, a transition to a qualitatively
waveguides containing quantum resonant saturable absorbatsw regime of strong laser-field—matter interactions is in-
is under intensive study. In fact, it has been demonstrateduced in which the electric field itself rather than intensity
that soliton phenomena can be used to generate stable sudnvelope drives the interaction. A number of theoretical
10-fs pulses with proper choices of the peak power and miniworks have demonstrated the limitations of the standard
mum dispersion. It should also be noted that soliton formaslowly varying envelope approximatio(6VEA) and new
tion due to SIT effects in a laser cavity is a strong attractolphenomena have been predicted on the basis of the exact
for ultrashort pulse output from mode-locked lasi8kand,  nonperturbative approadisee, e.g., Ref.7], and references
therefore, the investigation and modeling of this phenom+herein. Therefore, many theoretical results, obtained by us-
enon is of great practical importance. In this paper we shaling SVEA and the rate equation approximation, need to be
tested carefully without invoking any of the standard ap-
proximations. In order to do that, a new fully nonperturbative
*Present address: Department of Electrical and Computer Engimodel based on the Maxwell’s curl-Bloch equations needs
neering, University of Arizona, Tucson, Arizona 85721. to be developed. In this respect, full-wave vector numerical
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techniques such as the finite-difference time-donBDTD)  to-conduction band transition actually consists of two degen-
method have proven to be particularly useful and powerfulkrate transitions: one for each spin state.
tools for directly solving the Maxwell-Bloch system in time  In order to achieve this goal, we employ the formalism
domain [7-9]. The main reasons for choosing the FDTD developed by Hioe and Eber[\t4—-1§ for resonant, coher-
computational method in our simulations of ultrashort opticalent interactions of the electromagnetic wave with a multi-
pulse propagation are: level quantum system within the real-vector representation.
(i) Since we shall be interested in the time evolution ofin what follows, we shall be interested in two main aspects
the optical fields and the population dynamics of the quanef the physical effects, which can be described and explained
tum system, it is natural to carry out the modeling directly insatisfactorily by resonant, coherent interactions: the coherent
the time domain. dynamical evolution of a quantum system and the lossless
(i) FDTD is an accurate numerical technique that equallypropagation of electromagnetic fields through a multi level
well accounts both for the guided and radiati@cattering ~ quantum system.
modes. This turns out to be of great significance for an ac- In particular, the description of resonant, coherent inter-
curate modeling of the demonstrated self-induced transpapgctions of an electromagnetic wave with Bevel atomic
ency effects, pulse reshaping, and for the validations persystem within the framework of the real-vector representa-
formed against the pulse area theorem. tion has attracted significant attention since the appearance
(iii) FDTD is a flexible method that generates a full-wave-of the pioneering paper by Feynman and co-work&. It
vector solution of Maxwell's equations coupled to the first- has been shown that when coherent processes are involved in
principles quantum-mechanics model of the resonant nonlina two-level system, it is sufficient to consider a real three-
ear systenmand has been done in one-dimens{@d) for a  vector rather than the complex probability amplitudes in the
two-level systenj9]). Schralinger equation. The equation of motion of the latter is
The motivation of the present work is to develop @m in the form of a precession of a classical gyromagnet in a
initio accurate and rigorous theoretical model of the spaconstant magnetic field. This in turn provides an elegant geo-
tiotemporal dynamics for ultrashort pulse propagation inmetrical framework for discussing the system dynamics in
two-dimensional planar optical waveguides containing resoterms of rotations of a real state vector in Hilbert space.
nant nonlinearities. In the most general case, this modéVioreover, since this representation is based on the underly-
should account for the medium polarization in two mutuallying complex density-matrix formalism, it allows treatment
orthogonal directions, and at the same time should not imwith ease of both pure and mixed quantum states, in contrast
pose any restrictions or approximations on the electromagio the wave-function treatment. This formal analogy has
netic wave propagation that would result in a limited rangebeen extended further for a spinsystem in constant mag-
of validity. Within the semiclassical approach, the latter re-netic field for the description of a laser excitation of n
quires the solution of the full-vector Maxwell’s equations in =2J+1 level systen{18]. However, the simple form of the
2D. In what follows, we shall be interested in one-photonbasic equation of motion for the real vectéorque or Bloch
absorption processes rather than two-photon absorption, i.espin equationremains valid only for equally spaced energy
single-pulse excitations. In order to model the interaction ofevels. Preserving this simple form of the vector equation has
an ultrashort laser pulse with the medium in two spatial di-a number of advantages. It accounts for the intrinsic symme-
mensions, we show that the minimum requirement for onetry of the underlying Hilbert space of the system and, there-
photon excitation is to consider a degenerate three-level erere, is an exact description, independent of the strength,
semble of atoms in which two of the allowed electric-dipole number, or time dependence of the external forces acting on
transitions are excited by each of the two components of théhe system. In addition, similar to the two-level system, the
E field in the waveguide plane. Attenuation caused by dampdynamical evolution can be characterized as a rotation in the
ing of the resonant dipoles or by background scatteringeal physical space of a real coherence vector. Solution of
losses is accounted for within the model by introducing phethis problem has been given by Eldih9] for a three-level
nomenological relaxation timg@xperimentally obtainable  system, as an extension of the two-level system, by invoking
In this study, we have considered the most general case ofthe invariance of the state vector under rotations of the35U
damped ensemble of dipole oscillators chosen as representsansformation group. A general solution of this problem for
tive of a homogeneously broadened degenerate three-leveh N-level quantum system with arbitrary level spacing has
guantum-mechanical system of polarized atoms, which is dteen found by Hioe and Eberlyl4]. They expanded the
or near resonance with the pulse of 2D-wave radiation. Ousystem Hamiltonian in the transition-projection operators
analysis is applied to this simplified physical model for thethat are the generators of the unitary groupNy(whereN is
resonant nonlinear medium. Justification for this is the wellthe number of eigenstates of the Hamiltonian. Defining fur-
known homogeneously broadened two-level atomic systerther another set of operators based on the projection opera-
coupled to the Maxwell's equations in 1D, which has beentors that generate the SNY algebra, they derived the pseu-
shown to describe successfully linear and nonlineadospin equation showing the time development of the
absorption/gain saturation effedt8,10. The model poten- coherence vector as a generalized rotatiolNfr- 1 space.
tially could be extended further to describe the heavy-holeSpecial attention has been paid to the case of a three-level
(hh) exciton transition in a quantum well at the center of thesystem[15,16,2Q that represents particular interest since it
Brillouin zone within the two-band formulation for the semi- provides a useful framework for studying, for example, such
conductor§11-13. Because of the spin degeneracy, the hhphenomena as two-photon resonance, three-level echoes,
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population trapping, and three-level super-radiance. As a di- Transmission B.C.

rect consequence of the genekblevel case, the dynamical : : \|
evolution of a three-level system can be expressed in term? =% m 'jﬂ' P m 'g
of an eight-dimensional real coherence vector, thus exploit- |

ing the group-theoretical and Gell-Mann’s &)Y dynamical- Perfectly

symmetry propertief21]. Reflecting . .

In this paper we apply and develop further the real-vector E,
representation formalism to the problem of single electro- k
magnetic wave propagation and its resonant coherent inter  Hx
action with a degenerate three-level quantum system in twc
spatial dimensions in planar optical waveguide geometry.

The aim is to construct a coupled set of semiclassical
Maxwell-Bloch equations in 2D, which would represent a

|

realistic model for studying the time evolution of the optical _ , [ _ _aj __ ?/f; jr
fields during the interaction with a multilevel quantum sys- y=0 y=d 3 y=0 % y 5
tem and the related population dynamics. The main physica (@) (b)

result of the model is the demonstration of self-induced

transparency effects in multidimensional systems. As we FIG. 1. Simulation domain geometry and electromagnetic field

shall show below, the SIT-soliton behavior in 2D systems isconfiguration of the(a) TM and (b) TE guided modes in the

demonstrated not only for the TEM mode, but most impor-parallel-plate mirror optical waveguide. The boundary conditions

tantly for the TM, mode, when the optical field couples all are indicated by arrows at the respective interfdepsvard point-

the three levels of the quantum system. The latter cannot pag arrows and dashed lines indicate transmission boundaries; left

considered as a simple consequence of the reduction of tf?é‘q right ar.rov.vis.haded areas that haye to be considered as infini-

three-level system to a two-level one, since in this case théesimally thin indicate perfectly reflecting boundaries

three-level system is irreducible. Moreover, we show how to N _

modify properly the pulse area theorem to provide a criteriorEXploiting the symmetry of the rotations under the S)(

for reaching the SIT regime in the multidimensional case. 9roup, it has been shown4-16,19 that the density matrix
The outline of the paper is as follows. Section Il consists?(t) and the system HamiltoniaiA (t) can be expressed in

of three subsections. In Sec. Il Awe give a brief overview ofterms of theN?—1 generators\; of the SUN) Lie algebra

the basic equations used thereafter for the derivation of thaccording to

desired pseudospin equations in 2D. The coupled set of

Maxwell-Bloch equations in 2D are derived for both TM and

TE waves in Secs. 1B and 1l C, respectively. In Sec. Il we p(t)=

describe the discretization scheme that was applied to these

systems of continuum equations and provide details on th d

numerical methods used to solve their discrete forms. The

main results of the numerical simulations are given in Sec. N

IV. The advantages of the present approach are summarized ~ o1 [2

A= 5h|§ kZl Wi

NZ-1

21 S|(OA, )

J':

N| =

1+

Z| -

NZ—1
in Sec. V. |+ le 7j(t)7\j), (3

IIl. DERIVATION OF THE MAXWELL-BLOCH where? wy is the energy of the levéd and 1 is the identity
EQUATIONS IN 2D operator. Assuming that the Gell-Mann generatgxs, j
We are interested in the following guided modes of the= 1,2,...N} are chosen to satisfy the orthogonality relations
parallel-mirror waveguide under consideration, namely, thdor anyN,
plane-polarized TEM modé&=(0,E,,0) andH=(H,,0,0) o
(which is also referred to as the fMnode according to its Tr(NjA ) =265k, 4
classification in electromagnetic theprnthe TM modeH
=(H4,0,0) andE=(0FE,,E,) [Fig. 1(a)], specifically the the coefficientsS;(t) and y;(t) are given by
first-order TM, mode; and the TE mod&=(E,,0,0) and
H=(0H, ,H,) [Fig. (b)]. S =T p(HA], (58

A. Pseudospin equations for arlN-level system hiyi()=TIAMN] (5b)
i i

The dynamical evolution of ai-level atomic system is
governed by the equation of motion for the density maprix The time evolution of the density matrix can be expressed

(Liouville equation: in terms of the evolution of anN?—1)-dimensional real
R state vectoiS=(S;,S;,...,Sy2—1), called the pseudospin or
L 0P A coherence vector, in the Hilbert space that is described by the
ih—=[H,p]. (1) - .
at pseudospin equation
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TABLE |. Nonvanishing components of the antisymmetric ten- WhereI:|0 is the unperturbed Hamiltoniain the absence of

sor of the structure constantsy, . . o .
Ak an electromagnetic wayeand Q is the local displacement

ik 147 135 126 432 465 736 752 368 258 operator whose expectation value gives the local displace-
ment vectorg.

fiw 1 -2 -12 -12 -12 12 12 v3 V3
2 2 B. Maxwell-Bloch equations for transverse magnetic waves

Maxwell’s equations in an isotropic medium read

N1 H 1
S(= 2 ApOS(D), j=12,..N>~-1, (6 —=—-—VXE,
k=1 at M
where the dot stands for the time derivative and E _loxpu_t® (10
ot e g ot’
Aj=~— ﬁTT(H[f\j Akl (7)  wheree and u are given functions of space and the polariza-

tion currentJ=gP/gt. For a TM waveH = (H,,0,0) andE

Equation(6) represents a generalization of the torque equa= (O:Ey,Ez), we find in the 2D case,
tion (or real three-vector equatipbtained for a two-level

system[17]. IHx - 1 (9_EZ i ’9_Ey
Let us consider now a three-level atomic system. A pos- at mdy ooz
sible choice of the Gell-Mann SB) generators satisfying
Eqg. (4) is given by 0_Ey= 1M, 1Py (11
ot e dz e at’
01 0 0
a=|1 0 0] =0 0 1], B, LM 1P,
00 0 01 0 ot e dy e ot

In the case of a TM wave, in-plane polarization of the

0 01 0 i 0 medium is induced along the propagation axignd in a
Xa=| 0 0 0 .= —-i 0o o0 transverse directiofFig. 1(@)]. In order to derive the
3 10 0 b o 0 0 ' Maxwell-Bloch equations in 2D, we shall consider a degen-

erate three-level atomic system in which two electric dipole
transitions are allowed to be excited by a linearly polarized
monochromatic electromagnetic wave with frequency equal

o
o
]
o
(@)

Ne=[ 0 O i Ne=| O (or close to the atomic resonance frequen@yg. 2). Let us
0 —i o ’ _ ’ assume that the energy 0 is chosen at the ground-state energy
: : E,;=0, and the energy corresponding to the excited levels is
hwg. The unperturbed Hamiltonian of a degenerate three-
-1.00 1 -1 0 0 level system can then be written in the following simple
A= 0 1 0f, )\8=7 0O -1 0], form:
3
0O 0O 0 0o 2 0 0 0
After transformation to a rotating wave coordinate frame, the |:|o: 0 Ahwg 0O |. (12
equation of motior(6) takes the form 0 0 ‘fuwg
S= fikySc 1, i, k=1,..8, (8) If the polarization densit is along a general direction in

the plane(y, 2), the local displacement vectgrcan be rep-
where summation ovej; k is assumedy; are the compo- rgsented by its components along thandz axes,.and the
nents of the torque vector arfg, is a fully antisymmetric displacement operator in turn can be decoupled into two op-
tensor of the structure constants of the(Slroup that for ~ €rators, according to
N=2 is simply the fully antisymmetric, unit tenser;, . The

7 ! . 0 1 0 0 0 1

only nonvanishing values df;, are the permutations given )

in Table I. Q=qoy |1 O O)g+| 0 O Oje, (13
Finally, the system Hamiltonian in the presence of a di- 0 0 O 10 0

pole coupling perturbation can be written in the form

. o . ) whereq is the typical atomic length scale, agg, e, are the
H(t)=Hg+H;u(t)=Hg+eE-Q, (9)  unit vectors along thg andz axes. In any physical medium,
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2 T, P o 0
-~ - A= Qy oy O (16)
E, 1 2 T E, Y '
1 1 Q, 0 o
Yy 'Y -
L L Now we can easily calculate the components of the torque
vector from Egq.(5b); this leads to the following time-
®1, My3 independent torque vector:
20, 0, 20, 0, 0, 0 o (17)
= 1 1 L L L w L I .
1) E,=0 L i > v
O, =0, =0, Taking into account only the nonvanishing structure con-

stants(see Table )| using the antisymmetry relations be-
. tween the possible permutations of indices, and performing
FIG. 2. Energy-level diagram of a three-level quantum systemnhe summation over andk in Eq. (8), we obtain finally the

with a doubly degenerate excited stath, e.g., spin degeneracy, fo||owing set of equations for the components of the coher-
level |2) represents spin-down state and ley@l is the spin-up ence vector:

statg at resonance. Two electric dipole transitions can be excited by
the monochromatic electromagnetic wave. The level difference an- 39S,

gular frequencies arevq,=(E,—Eq)/%, wi3=(E3—E{)/%, and i 0SS~ Q,Ss,
w1,= w13= wg. The energy zero is chosen at the ground-state en-
ergy E;=0. y,_ accounts for the decay of the population from the S,
upper levels to the ground levey; represents the dephasing rate — =QZS4+Qy86,
(transverse relaxation rate at
go represents a measure of the separation of the charges in EZQ Ss— woSs
: S - . ;i ot y 0%
the dipole and is given by a specific computation of the size
of the electron orbit, e.g., the Bohr radius of hydrogen atom. JS
For simplicity, in the calculations we shall assuygto be _4:w051_9232_29757,
of the order of magnitude of1 A. As a result, the dipole at
coupling interaction Hamiltonian can be written as S5
— =0,5,-0,S;, (18)
0o 0, Q, ot e
H()=A| &y 0 0], (14) 9Ss
Q, 0 0 gt QySZ"'wOsii Q,S; ‘/§QZSBI
where we have defined Rabi frequencies of the oscillations 9S;
alongy andz according to gt 2084+ 0;Ss,
9 2 9Ss
0y=7E,, Q,=7E, (15 —r — V305
and g =eq, is the dipole coupling constant. Therefore, the These equations can be written in a more compact matrix
total Hamiltonian acquires the form form as
0 0 —wg —Q, O 0 0
St St
S, 0 0 0 Q, 0 Qy 0 0 s,
il s, wg —Q, 0 0 0 0 -20, 0 S, o
_ = 1
at| Ss Q, 0 -9, © 0 0 0 0 S|’ (19
Se 0 -0, w 0 0 0 -0, -v3,|| S
S S
S, 0 0 0 2), 0 Q, 0 0 S,
0 0 0 0 0 v3Q, 0 0

063418-5



SLAVCHEVA et al. PHYSICAL REVIEW A 66, 063418 (2002

and hence as dH,, 1 9E,
9S s ot n 0z
A gH, 1 JE, o8
where the matrix\ ™ is an 8x 8 antisymmetric matrix with ot ouoay’
only nine independent components.
In order to couple the semiclassical Maxwell's equations JEx 1[dH, dHy| 1Py
with the quantum-mechanical pseudospin equations, we need T ay ~ % s

to find a relationship between the polarization and the com-

ponents of the coherence vector. The macroscopic polarizaS—irlce for TE waves the polarization exists only along the

tion of the medium is given by the expectation value of the™". ; ) .
dipole moment operator: axis, the local displacement vecipis parallel to the electric
’ field, and the displacement operator is of the form

P=—N.e&(Q)= —N.eTr(pQ), (20

0 1 0
whereN, is the density of the polarizable atoms in the me- Q=qo| 1 0 OJe, (26)
dium. Using Eq.(2), we can calculate the polarization com- 00 O
ponents alony andz from Eq.(20), taking into account the
explicit form of the displacement operatdr3), to obtain the

. . ; where g, is a unit vector along the axis. Therefore the
following relationships:

interaction Hamiltonian takes the form

P,=—pN,S;, (21)

0 Q, 0
P,=—pN,S;. (22) A= Qx oo 0 [, (27)
0 O (J)O

We can easily extend the above formalism for a three-
Ievgl system in the presence of' relaxation effects by introg here we have defined a Rabi frequency alongxteis,
ducing phenomenological nonuniform decay tinigs...,Tg according to
that govern the relaxation of the pseudospin vector compo-
nents to their equilibrium values. The coherence vector will

; : 9
then satisfy the equation QX:zEx_ (28)

IS ™

E:M S—o(S—), (23 Analogous to the TM case, we calculate the components

of the time-independent torque vector vy
=[2Q,,0,0,0,0, 0w, (we/v3)] and substitute them in
the pseudospin equatioif®), taking into account the asym-
metric property of the structure constant tensor to determine
] the nonvanishing permutations of the indidese Table )L
o=diag /Ty, 1/T;,...,1/Tg) (24 This gives the following set of equations for the components

: . . , ) of the coherence vector:
is the diagonal matrix of the nonuniform relaxation rates.

Note that, as has been pointed out in R&D], the equilib- JS 3S,
rium (or zero-field coherence vectoB: is determined by _1:_w034, —2=0,S;,
incoherent sources as a thermal reservoir or external pump- ot at
ing that maintains the system at a definite level of excitation.
Dephasing causes the first six component§oto vanish, dSs 9S,
and only the population termsS{ and Sg) depend on the i - ST woSs, o = woSim 2045y,
initial occupation of the levels.
Equations(11) and (21)—(24) form a set of 13 coupled
equations for the 13 unknowngd,, E P,, 9Ss 7S

E,, P
yr =z Ty —=-0,S;, —=—-0,5+ , 29
Si,-..,Sg, and hence its solution is fully determined. ot xSs a xS+ woSs (29

whereS; is the equilibrium value to whicls tends to in the
absence of any driving field, and

C. Maxwell-Bloch equations for transverse electric waves 9S; dSg

In the case of a TE wave, we follow the same formalism. gt
Maxwell's equations in 2D for the TE wavE=(E,,0,0),
H=(0H,,H,) read or equivalently in the matrix form

063418-6
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s 0 0 —-wg O 0 S
1 1
0 0 0 0 0 O 0
S § S
J S, 0 0 0 0 Oy —wg S,
—| S4|=| wo O 0 0 0 0 —20, S, (30)
Jat
S o 0 -9 0 0 o0 0 Ss
g 0 —Qy o 0 0 0 0 3
0 0 0 2, 0 0 0
|
The resulting set of nonuniformly damped equations is S3=p1stpar, Su=—i(Pro—Por),
correspondingly
9S Ss=—i(pa3— P32, Se=—i(p13— P31,
i MES—0(S—-Sp), (31

1
Sr=—(p11— P20, Sg=-— 7(pll+ P22—2p33). (34)
whereo is given by Eq.(24). 3
. Again we need to dete'rmme v.vha'tevefr add|t|onf:ll equa—By inspecting the set34), one observes that the equations
tions relate the macroscopic polarization in Maxwell’s equay,. S,. S, S, S do containp elements with the subscript
ggnc?bg'we% ??%p%n?zt)s ?;(;[)heagg?zeé)engig/igr:?r.l Tfhﬁjse Cf%sncorresponding to the third level. Therefore for a two-level
that : 4s82), k ' imply 1i system these components do not have physical meaning, and
the whole systeng29) is reduced to Eq(33).
Py=—9pN,S;. (32
g at IIl. NUMERICAL IMPLEMENTATION

As should be expected from the two-level system regatie . ' L .

o S We shall consider first the numerical implementation of
Eq. (10), Ref. [9]), the polarization along the electric field the semiclassical Maxwell-Bloch model forlihe TM optical
depends on the corresponding component of the coheren(\;\?ave For a TM waveH = (H,.0.0) andE= (0, E,), the

. - X1V - =y t=z/

vector. resulting damped set of equations given in Sec. Il B explic-
Equations(25), (31), and(32) form a set of 12 equations 9 P . g ' P

for the 12 unknowng, , Hy, H,, Py, S;,...,Sg and, there- itly read
fore, its solution is fully determined. _ _ IH, 1 0E, 1 JE,
It can be easily proven that the TE case is equivalent to a v +— e
two-level system case. Let us s&{=p;, S4=—p,, S ooy
=p3, Wherep;, i=1, 2, 3 is the real three-vector represen- JE. 10H. 1 9P
tation of the density matrik17]. Then from the first, fourth, S A S (359
and the seventh equations of the §28), one obtains the gt e gz e dt
following system:
gsy JE, 1dH, 1P,
dpq t e dy & dt’
ot @oP2s
Py —pNaSy,
J
%: — wopr 20,03, (33) P,=—pN.Ss; (35b)
51 S,—0,5——S
d W04 - 1
ﬁ == ZQXPZ . at ’ T
at
S,
This system coincides with the undamped set of two-level i St Se S,
equations from Ref9]. The rest of the equations &, S;, 2
S5, Sg are decoupled from this system. This decoupling can FI
be understood in terms of the elements of the density matrix. r =0ySs— wSs— T_Sg,
In particular, the coherence vector components are related to 3
the elements of the density matrix by the following relations: S 1
A
~ ~ ~ A — =05, —Q,5,-20,5,— —5,,
S1=p12t P21, S=p2astpae, at ’ g Ta
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%S _ns-0s-Lis, El6; t=—Edli; "+ SuEl1] T+ Edls; D)+ SaElg; T EAl)
ot z TR T
° +S3[Ez|(l§,j+1_2Ez|l((),j+Ez|(l§,j—1+Ez|I](.,j+1
9Ss 1 —2E,|% +E,%. 1] (36)
Tt TSt 008 0.8 -V30,8 - S, AR
9S, 1 where the coefficient§” (i=1,2,3) are given by
Tt~ 2y St Q56— T—7(37—S7e),
s, L ., CAt¥Az
d 1= T T A
St~ V3286~ 7 (Se=Sge). (350 CAtzAZ
8
The coupling between the 2D Maxwell’'s equations and the 2Az

+

equations describing the time evolution of the quantum sys- S§=m, (37)
tem is performed by substituting, and P, from Eq. (35b) -
and subsequentlyS; /dt, 9S;/dt from Eg. (350 into Eq.

(359, thus obtaining . (cAt)2Az
+_ ; _
M, 10E, 10E, 2(Ay)“(£cAt+Az)
at mdy m dz’
The constant is the propagation speed at any spatial grid
8_Ey _ E dHy Nap s Nap wq s NagoQZS point, Ay andAz are the spatial steps along thandz axes,
e gz eT, * e 4 e 5 andAt is the time step.
(350) An analogous approximate analytical absorbing boundary
condition can be derived for the upper grid boundasyL
JE, 10H, Nup Nap Qy Nop wg (Fig. 1). The only difference between this one and #e0
iH e gy eTs 2 & T e : boundary conditions is the sign of the propagation velogity

thus implying different coefficient§, . The boundary con-
Equations(350 and (35d) form a system of first-order ditions imposed on the side walls of the waveguige=0
differential equations. Equation85¢ and (35d) are dis- andy=d) are those appropriate for a perfectly reflecting
cretized using finite differences on a two-dimensional Yeesurface, i.e.E=E,=0.
grid [22], where the quantum system material variables The absorbing boundary conditions applied at the input
(S;,....Sg) are assigned to the empty nodes in the gsee  (z=0) and output £=L) facets of the structure have proven
the Appendix. In order to associate an electric field at theto be sufficiently accurate for the purpose of the present
locations of the empty nodes, where the polarization compostudy. However, we are envisaging to implement more rigor-
nents are given, or to define values of the atomic variables aius Berenger perfectly matched layer absorbing boundary
half steps in accordance with the Yee algorithm, we perfornconditions in the futurg¢25]. The perfectly reflecting bound-
averaging over the nearest neighbors of the current node asy conditions correspond to the actual geometry of a
described in the Appendix. We have applied the predictorparallel-mirror waveguide; however, more realistic boundary
corrector iterative scheme introduced in REJ] to solve conditions would be again absorbingpr transmitting
numerically the semiclassical Maxwell-pseudospin systemboundaries that would account for the evanescent field out-
This approach allows the solution of all the equations in theside the real waveguide. In a more realistic case, the numeri-
system at each time step. It has been pointed out therein the&lly computed guided mode of a real waveguide should be
the predictor-corrector scheme has numerous advantagapplied as a source pulse excitation.
with respect to other schemes. The predictor-corrector The time evolution of a degenerate three-level quantum
method has proved to be applicable and quite efficient irsystem in the presence of an electric field has the character of
solving a great number of first-order differential equationsa Goursat initial-boundary problem. The latter is well posed
simultaneously, as we shall show in Sec. IV. if the initial time history of the electric field is given along
In what follows, we shall consider the geometry of thesome characteristi¢e.g., the lower boundarg=0). We

parallel-plate mirror optical waveguide shown in Fig. 1 thatchoose the source field to be initially a plane-polarized TEM
is composed of a slab waveguide with bottom and top aiguided mode of the parallel-mirror waveguide, i.e. the,TM
buffers. We have applied absorbing boundary conditions amode, with amplitudeE,, carrier frequency equal to the
the interfaceg=0 andL (see Fig. 1 based on the Engquist- resonant transition frequency, of the degenerate three-
Majda one-way wave equatiofi23] within a one-term level system, and an arbitrary envelope. Numerical simula-
Taylor-series approximation. The one-way wave equationg§ons have been performed with a sine pulse with a carrier
have been discretized using the Mur finite-difference schemé&equency set at the resonance vate w, and modulated
[24], resulting in the following time-stepping algorithm for by a hyperbolic-secant envelope, and a Gaussian envelope as
the electric-field components along the 0 grid boundary: the test pulse shape, namely,
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E, sechil0r)sin( wq,t) IV. SIMULATION RESULTS AND DISCUSSION
E, (z=0,y, t)= c %(t—to 2) (odt) A. TM, guided mode SIT soliton
ex si , — . .
0 deca @0 We have performed a number of validation studies to in-

vestigate numerically the formation of a SIT quasisoliton in

two spatial dimensions within the parallel-plate mirror opti-
E, (z=0,y, t)=0, cal waveguide filled with an active medium consisting of

degenerate three-level quantum absorbers. Both the TEM

where T, is the pulse duration and the constaht=|t (TMp) and the TM excitation mode cases were considered.
—(T,/2)}/(T,/2). The Gaussian pulse is centered at the timel he numerical results indicate the realization of SIT solitons

momentt,=kyAt, wherek, is the integer time step, and has N Poth of these multidimensional systems.
a le characteristic decay OKgecay time Steps {secay Let us conS|der_f|rst the simpler Td\/[TEM-Wave case.
= KgecaAt). If @ smooth transition from zero to the Gaussian The source pulse is a plane wave polarized along the trans-

pulse is requiredk, should be taken at least ak 3., (Ref. ~ Verse direction perpendicular to the plane of the waveguide
[25]). Y (Fig. 2). It is excited with a hyperbolic-secant modulated sine

For investigation of the more general TM case, we applyVave at the atomic resonance frequefisge the upper line
as a source the fundamental TMyuided mode of the of Eq. (38)]. ) ) ) _
parallel-mirror light waveguiddsee, e.g., Ref[26]) and a It can .be shown ea_sny that this case is equivalent to the
hyperbolic-secantHS) modulated sine wave whose carrier Propagation of a one-dimensional plane wave through a reso-
frequency is set to the atomic resonance value: nant two-level mediuni9] by considering a cross section
(slice) of the field distribution along the propagation axis
perpendicular to the plane. Therefore, we expected that the
E,(z=0, y, )=EoC; C05<7T_y> sech100)sinwot), pulse area theoreif27,28 should still be applicable along
d the propagation direction and performed several tests to
verify its predictions for the maximum field amplitude and

[y pulse duration. The pulse area at a given time is given by
E,(z=0, y, t)=—EyC,sin q sech10l")coq wqt),
H [t
(39 0(z,t)=%f A(z, t)dt’, (41)
2.2 271/2
woh _(z) where
Lo 4] o
Cl_ (1)080”2 ’ CZ_ w080n2d ’ t— E

\
whered is the separation between the mirrors ani the Az, )=Eosect) —— | =Egsecit10l)

refractive index of the medium between the mirrors.
In order to ensure numerical stability, the time step isiS the electric-field envelopd/ is the pulse(group velocity
chosen according to the two-dimensional Courant conditionin the medium, and= (T,/20), T, being the pulse duration.
The area of the entire pulse is
1

At< 1 1 T (40
c

(Ay)? " (Az)?

0pu|se(z)=%fj;A(z, t')dt'. (42)

Let us consider pulse propagation in an absorbing me-
In all of the simulations we assumed that the degeneratdium. In particular, pulses with areas less thashould be
three-level system was at resonance and the carrier frequencgmpletely absorbed within several absorption lengths in the
was taken to be equal to the transition frequency, ke., active medium according to the pulse area theorem in accor-
=wo=2mf,, wherefy=2.0x10"s™1, corresponding to dance with the usual Beer’s law of absorption. On the other
the wavelengthh=1.5um. In all of the simulations, the hand, for pulses with area equal to even multiplesrpthe
pulse duration was set td,=100 fs. With a value ofty,  solutions are stablg27] and the pulses should continue to
~1A, the coupling coefficient equals=1.0x10 2°Cm. propagate as solitons through the resonant medium.
The number of dipoles per unit volume was set equal torhroughout the simulations, initial population profile corre-
Naipoles= 10 m~3. The relaxation times corresponding to sponding to the case of an absorbing mediive, all reso-
the decay of the real state vector components were set to thant dipoles are initially in the ground state so tBat S;,
uniform valueT,;=...=Tg=1.0x10 °s in order to satisfy =—1) is assumed. The pulse initially propagates in a free-
the SIT criterion, namelyT,, T,,..., Tg>T,. Moreover, space region, then enters the degenerate three-level medium,
uniform relaxation times avoid any pulse distortions thatand finally exits the medium into another free-space region.
could arise eventually if asymmetries in the relaxation timesThe entire simulation region is taken to be a rectamlg
were imposed. long andM .5 wide. In this particular casd\ .= 5000,

063418-9



SLAVCHEVA et al. PHYSICAL REVIEW A 66, 063418 (2002

0.8 (a)
06
0.4}

20.2-

wo.2
-0.4}
-0.6}
-0.8}
-1

100 125 150

75
z [um]

' ; ' ' ' | Y |E/EO|
0.8} (b) ] sk — 57
0.6f i 1
0.4
0.2}

o
(&)
‘

»

7
)
|
|E/E0|,S1,34,S7

o
&
i
%

-0.2f
-0.4f
-0.6f

- L

0 25 50 75 100 125 150 50
z[pm]

FIG. 3. (a) Spatial profile(along the propagation axis of the FIG. 4. (a) Modulus of the electric field for the T)parallel-
normalized field componeri, for a HS pulse with initial pulse plate mirror guided mod€éTEM plane wave as a function of the
area equal to 2 (maximum amplitudeE,=4.2186< 10° V/m) at point (y, 2 in the waveguide plane at the simulation times150,
the simulation timeg= 150, 250, 350, and 500 f¢b) Population 250, 350, and 500 fs. The initial population profig, is included
term S; profile along the propagation direction at the simulation as an indication of the 2D boundaries of the active medi(i.
times of(a). The simulation region is 150m long and 5Qum wide Cross section of the 3D plots of the normalized electric-field modu-
and the activgabsorbing medium extends from 7.5 to 142/m. lus, the in-phasdor dispersivg polarization component§,, in-

guadraturglor absorptive polarization componer,, the popula-
M 1= 100. An initial pulse with carrier frequenay, equal tion i_nversion ternts; in p_lane perpendicular to the vyavegl_Jide, and
to the atomic resonance frequency and with a hyperbolicpass'ng_ through the _mlddle of the_ transverse (_:ilmensmn of the
secant envelope starts to propagate from the lower boundalyAveduide as a function of the longitudinal coordinate
(at z=0). The pulse duration i§,=100 fs and the maxi-
mum field amplitudeE, is calculated according to the pulse ~ The stable solution case is depicted in Figg) &nd 3b),

1
o
[4)]

70

area theorem: where the pulse area is calculated from EtR) and is taken
to be 2m leading to a pulse amplitude&,=4.2186
27k, Opuisd 2=0) x 10° V/m. In Fig. 3a), the normalized field componeht,
Eg (43 is plotted against the distance along the structure at the times

= - +10
g arctargsini(u))[ 239 27 t=150, 250, 350, and 500 fs. It can be clearly seen that the

initial 27 pulse propagates in the resonant medium maintain-
In the above equation, all parameters are assigned the valuiggy its hyperbolic-secant shape without any distortions. The
discussed in Sec. Ill. The step sizes alongzf@dy direc-  corresponding population difference experiences a complete
tions have been chosen Ag=30 andAy=500 nm, respec- transition from its ground level to the excited state and back
tively. Applying the Courant stability criterion, one finds the to its initial state within one Rabi periddFig. 3(b)].
time stepAt=9.989x 102 fs. The simulation region is 150 In the case of an initial pulse area less tharihe initially
pm long and 50um wide. symmetrical pulse shape is distorted during its propagation
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1

in the active medium. The initial equilibrium between the

1

energy absorbed during the leading fraction of the pulse and ® 05 EI00fs @ 05 w2
the energy emitted back to the pulse by stimulated emission w0 W O
within the trailing fraction of the pulse is broken, and the Mald w5
pulse becomes more and more asymmetric. Initially, the 1 50 W e 550 600
leading fraction of the pulse is gradually damped while the . 1 0 . 1 w255
trailing irradiated edge grows continuously and is transmitted @ 05 @ 05
eventually through the lowerz&0) perfectly transmitting w0 w0
boundary. This process persists until the pulse amplitude w05 w05
completely vanishes as the pulse is absorbed by the medium. '150 100 150 '1650 700 750
At the same time, the active medium is only partially in- . 1 » . 1 y
verted, and the pulse energy is not sufficient to induce a full 0 05 iy 0 05 =
Rabi flop from the ground state to the excited state, and back wo W o
to the ground state. Therefore, the pulse never reaches dy- w5 w05
namical equilibrium. This solution becomes unstable; and, '1200 ) '1780 2 o
eventually within many absorption lengths in the medium, it 1 1
decays to zero. o 05 s @ 05 t=3ps

It is straightforward to show that the TEM guided mode w0 w0
case is in turn equivalent to the TE case. At the end of Sec. LI.I\’O? w05

3

Il C we showed that the TE guided mode is equivalent to a '1800 850 0
1D two-level system and that the real state vector compo- 2[um] 2 [um]
nents in this case having a clear physical meaningSare
S,, andS;. These components represent, respectively, the FIG. 5. Cross section of the spatial distribution of the normal-
in-phase(dispersivé component of the polarization, the in- izedE, component and of the population difference tegmdistri-
quadrature (absorptive polarization component, and the bution along the propagation axishrough the middle of the trans-
population difference in the populations of the two levelsverse waveguide dimension at the simulation tine$.1,0.5, 1,
(the upper being doubly degenenatdumerically, this prop- 15, 2, 2._5, 29 and 3 ps showing the pulse reshaping during the
erty of the Maxwell-Bloch system manifests itself by a natu-Propagation in the absorbing medium.
ral splitting of the system of equations for the real-vector
components into two sets. As shown in Sec. Il C, the first seto the theorem, a pulse with initial pulse area in the interval
involves the components corresponding to the two-level systr, 277) should evolve into a SIT 2 soliton with hyperbolic-
tem, which are coupled by the TEM mode; while the rest ofsecant envelopg27]. In order to prove this statement, we
the equations include transitions involving the third level,have performed the following numerical experiment. Using
which are not coupled by the TEM mode. the same geometry for the simulation region as in the previ-
The time evolution of the spatial distribution of the modu- ous simulations Nl.es=30 000, M ;<= 100, Az=30 nm,
lus of the electric field at four time moments<(150, 250, Ay=500 nm, andAt=9.989x 10 2 fs), we have injected
350, and 500 fsafter the plane wave has started its propa-into the active region a Gaussian pulse with initial pulse area
gation from the boundarg=0 and a cross section of the of 1.67. This area and a pulse temporal widfij=100 fs
polarization vector components and the population differencgields the source electric-field amplitudgy,=2.11479
in the 2D TEM mode along the propagation axis are showrx 10° V/m. The time evolution of the pulse shape has been
in Figs. 4a) and 4b). The modulus of the electric-field dis- monitored at evenly spaced time intervals. Figure 5 repre-
tribution is plotted together with the initial population profile sents a cross section of the 3D distribution of the normalized
in Fig. 4a. The latter has been initially set #8;,=—1 y component of the electric field along the propagation di-
within the active region and zero outside it, and correspondsection through the middle of the transverse dimension plot-
to an absorbing medium. The leading edge of the electricted together with the corresponding population profile. The
field SIT 2 pulse completely excites the degenerate threeactual pulse reshaping during the propagation in the absorb-
level quantum system locally, and the trailing edge deexcitegng medium due to the absorption of the leading edge of the
it back to the ground state, thereby returning back to thepulse and stimulated emission induced by the trailing edge is
pulse by stimulated emissiofduring the last half of the clearly seen. This absorption results in a broadened, increas-
pulse, the excitation energy acquired by the system duringngly symmetric 2r pulse with HS envelope at the end of the
the first half of the pulse. Therefore, the simulation resultsactive region, propagating in the absorbing medium without
for a 2D TEM guided wave propagation across a degeneratany distortions as a solitary wave.
three-level system of resonant absorbers correctly reproduces Finally, as additional evidence in support of the hypoth-
the results from Ref{9] for SIT-soliton propagation in 1D esis that ultrashort pulse propagation in 2D through a degen-
for a two-level system. erate three-level system of quantum absorbers results in a
In order to complete our study, we validated our 2D solitonlike behavior, we have performed a numerical experi-
model against the predictions of the pulse area theorem fanent that demonstrates the soliton interaction. It is well
the time evolution of an arbitrary shaped pu(sey., Gauss- known that when solitons interact with each other, they re-
ian) with initial pulse aream < 6,,s{z=0)<2w. According  emerge after the interaction with unchanged shape and only

P13
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P
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FIG. 6. (a) NormalizedE,-componentz distribution (obtained
as a cross section of the 3D plot through the middle point of the
transverse waveguide dimensjoaf two counterpropagating 72
pulses with Gaussian envelope 7200 fs, Eq=2.1093
x 10° V/m) at the simulation times= 100, 300, 350, and 500 fs. At
a timet= 350 fs, the two pulses interact; the interaction manifests
itself as a summation of the pulse amplitudes. After the interaction,
the pulses restore their original shape and continue to propagate ¢
solitary waves(b) Cross section of the 3D plot of the population - ; ! ; ; i ‘ . .
term S; at the same simulation times, reflecting the population dis- 0 5 10 15 20 25 30 35 40 45
turbance caused by the pulse interactioemory effect at the point z [um]
of encounter of the two pulsgs

o
[3)

IE e, E)I. S,
o

-0.5],

) o . FIG. 7. Normalized optical field distribution of the first-order
with a shift in their phasésee, e.g., Ref.29]). In our nu- (T\m,) mode of the parallel-mirror waveguidéa) Absolute value
merical simulations, we have applied two electric-field of the normalized electric-field distribution at a tirhe 125 fs: (b)
sources, each located at opposite ends of the simulation rexoss section of the normalized modulus of the electric-field profile
gion, which have the HS shape and initial area equalto 2 and the initial population profilé,, along the waveguide axis at
(i.e., Eg=2.1093x 10° V/m, 7=200fs). The results of the y,=jAy (wherej=20, 30, 40, 50
simulations for the time evolution of the normalized electric- ] . o
field componen€, are plotted in Fig. @), and the popula- tem of resonant dipoles. In this case j[he electrlc_fleld couples
tion difference is plotted in Fig.(6) together with the initial &l the three levels, and the polarization can be induced both
population profile. The latter serves as an indication of thdn the propagation direction and in the transverse direction.
boundaries of the active region. The two counterpropagatind € Purpose of this study is to provide numerical evidence of
pulses interact in the middle of the simulation region; this>!T-soliton existence in two spatial dimensions. This is a
effectively results in a summation of their amplitudes. Afternontrivial task; the analytical solutions of the Maxwell-
the interaction the two pulses, they reappear without anpSeudospin system in 2D are not known. The problem is
changes in their shape and maintain their soliton charactéfndered even more difficult from a mathematical point of
[Fig. 6(a)]. The population difference ter, exhibits strong ~View because of the presence of the relaxatidamping

oscillations during the interaction and also reappears afté€ms. _ _ o
the interaction, as it has been before. The geometry of the simulation region is assumed to be

the same as for the previous TEM (FMcase. The pulse
initially propagates in a free-space region, and thereafter en-
ters the active medium; the pulse subsequently continues to
Let us consider now the more complicated and interestinggropagate in the nonlinear medium and exits into a free-
case of propagation of the TMyuided mode in a parallel- space region again. The number of cells along the propaga-
plate mirror waveguide through a degenerate three-level sysion direction isN.es=30 000, and in the transverse direc-

B. TM; guided mode SIT soliton
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tion M = 100. Since we do not have any knowledge abouthe self-induced transparency effects.

the stable solution pulse envelope, we make an initial as- In Figs. 1da—d, we have plotted a snapshot of the spatial
sumption for the pulse shape and start to propagatera 2distribution of the normalizeé, andE, components of the
pulse(HS) from the lower boundaryz=0) with maximum  €lectric field at three time moments<(90, 125, 155 fs) dur-
electric-field amplitudeE,, normalized with respect to the INg the propagation of the pulse in the active medium. For
amplitudec, of the E, TM; mode of the parallel-plate mirror both components of the incident field, the maximum field
optical waveguidgsee, e.g., Ref[26], Eq. (39)]. For the amplitudes have been chosen to correspond toraSET-

parameter set used in the simulations, with refractive indeggrl:]tolg p_uzllsg.lg&pil(r)gc\lljllsqr, at;yﬂ\]/gttloe ?afr tgg %sz ar_eg theo-
of the active medium being=1 and the separation between oo W u yz=0),

the side mirrors beingl=9.9185.m, we obtained a value and this value is subsequently normalized with respect to the
of ¢,=375.652, resulting .in ma%(in%um field amplituds, amplitude coefficient, of the parallel-plate mirror wave-
) 123>< 1(')7 V/,m The step sizedz=1.5 nm along thez guide TM; mode. Justification of this normalization proce-

I - I dure is given below. It is clear from this figure that the
direction andAy=119.5 nm along thg direction were cho- electric-field components maintain their shape during the
sen. The resulting time step, according to the Courant condi- P P 9

L - T propagation in the nonlinear medium. This can be discerned
tion in 2D[Eq. (40)], was set tmt—5><.10' fs. A spapshot clearly from Figs. 1(b,d) representing plots of the cross sec-
of the 3D absolute value of the electric-field distribution at ion alona the bropagation axis. The corresponding time evo-
time t=125fs is plotted in Fig. &. The corresponding 9 propag : P 9

; . . . lution of the level-occupation probabilities is shown in Fig.
cross section along the propagation axis at point of the transl-l These results thus indicate that a solitonlike regime of
verse dimensioly; =jAy (j =20, 30, 40, 50) is given in Fig. :

7(b) along with the initial population profilsS,,. In this ultrashort pulse propagation has been achieved even for the

) . : . TM; mode when the field couples to all three levels in the
simulation we assumed an absorbing medium and, '[herefongystem
set the equilibrium population terms to their equilibrium val- '
uesli.e., S;o=—1 and Sg.= — (1#3)]. Instead of plotting
all the eight real pseudospin vector components, we have
plotted only the significant polarization components, corre- From the above numerical evidence of the existence of
sponding to actual transitions that occur in the degeneratsolitonlike behavior in a two-dimensional resonant degener-
three-level system and the level-occupation probabiliiiés  ate three-level medium, we can restate and extend the gen-
agonal elements in the density majrisince the latter pro- eral result of the pulse area theorem in more than one spatial
vide more immediate insight into the population redistribu-dimension. In what follows, we shall show that the choice of
tion between the levels in the three-level system consideredhe maximum electric-field amplitudg, that results in a
The significant polarization components are plotted in Figssolitonlike behavior of the TM mode simulation case is a
8(a—h as a 3D plot and are viewed in a plane perpendiculaconsequence of this more general requirement.
to the plane of the simulation structure, that intersects the For a generic TM wave, the pulse area along the propa-
transverse dimension at particular distances from the lowegation axis can be defined as
interface. In Figs. @&,b and Figs. &,f), the polarization
componentsS; and S, are plotted; they show a behavior _ R e
similar to the respective components in the TEM dasen- 0y=Yo, 2= # f,xEy(yo’ 2, 1)t (44
pare with Fig. 4b)]. By inspecting Fig. 8, it can be seen that
the behavior of the coherence vector components is verwhere the envelopeEy(y, z, t")=Eqc, cos@ry/d)secht’
similar to the following pairs of componentS; andS, (rep-  —2z/V,/7), V, is the component of the pulse group velocity
resenting the in-phase and in-quadrature components of thiong the propagation axis, and the consiants given by
polarization, respectivelyandS; andSg. This is due to the Eq. (39). Similarly, we can define the pulse area along zhe
fact that these pairs of components are responggde Eq. direction for theE, component:
(34)] for the coupling between the levels 1 and 2, and 1 and o
3, respectively. The level-occupation probabilities are plotted _ _P "= Nt
in Figs. 9a—d. From the cross-section plot given in Figs. 0y=Yo, 2)=7 f EdYor 2 1hdt, 49
9(b—d) [a similar behavior of the population difference as for _
the TEM mode, i.e., compare with Fig(®], the SIT behav- Wwhere the envelopeE,(y, z, t") = — EqC, sin(my/d)sech[t
ior is discerned clearly, namely, the population is totally in- —(z/V,)]/7}. We then define a pulse area under the absolute
verted and returned back to the ground-state population byg|ue of the field envelope |E(y, z, t")]
the pulse, thereby performing one Rabi flop. Figur@) 9 _\/Ei(y* z t)+E§(y, 7, 1) as

shows two transitions, i.e., two Rabi flops, of the population

difference from the ground state to the excited state, and o ([~ ~ o ([* ==

back along the transverse direction. For each of these transf(y, 2)= gLJE(y, z, t)[dt'= > wa VEJ+EZdt
verse Rabi flops, a corresponding Rabi flop occurs along the (46)
propagation axis; this behavior reflects the symmetry of the

mode. However, level 3 is maintained partially populatedSubstituting the field envelopes from E®@9), we find that

during the pulse propagation. The behavior of the levelthe initial pulse area injected into the active medium at a
occupation probabilities is an indication of the presence opointy=y, is obtained as follows:

C. Pulse area theorem generalization to multidimensions
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FIG. 8. Plot of the significant polarization componeBis S;, S,, Ss for the TM; mode:(a) Polarization componer$; as a function
of the in-plane coordinates at a simulation titre125 fs during the propagation in the active regidn. Cross section 08, aty;=jAy
(wherej =20, 30, 40, 50 (c) Polarization componerg&; as a function of the in-plane coordinates at a simulation tim&25 fs during the
propagation in the active regio(d) Cross section 08; aty;=jAy (wherej =20, 30, 40, 50 (e) Polarization componer§, as a function
of the in-plane coordinates at a simulation tire125 fs during the propagation in the active regitin.Cross section 08, aty;=jAy
(wherej =20, 30, 40, 50 (g) Polarization componers as a function of the in-plane coordinates at a simulation tim&25 fs during the

propagation in the active regioth) Cross section 08; aty;=jAy (wherej=20, 30, 40, 50
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FIG. 9. Level-occupation probabilitiesp(;, ps», and ps3) for the TM; mode in a degenerate three-level systém): Occupation
probability for level 2 as a function of the in-plane coordinates at a simulationttni®5 fs during the propagation in the active regit).
Cross section of occupation probability for level g,{) at y=2, 4, 6 um from the lower interfacgnote thatp,; exhibits the same
characteristics as the plot & component of the TEM modgFig. 4(b)]). (c) Cross section of occupation probability for level 2,4 at
y=2, 4, 6 um from the left y=0) interface.(d) Cross section of occupation probability for level 3§ aty=2, 4, 6 um from the left
(y=0) interface.

1Y Yo 1 1
0(y0, ZZO): % Eocl COSZ(T) 0(y0=0, Z) = H(YO:d, Z): gEOCIﬂ-T: 4-772;1_(1)O EOC1
c\% . (WYO”UZI“’ %t'> =C101p. (48)
+| =] sirf| — sech —|dt’
1 d - T Therefore we can calculate the maximum field amplitude
v my c o) Y2 again from Eq.(43) multiplied by an additional factoc; .
= 2 EoCy cos’-(—o +122 inZ(_OH T This leads in turn to a valuEy=(4.2186x 10°)/c; V/m. In
d 1 d fact, this is the value used in the simulations of the ;TM

(47 mode case. This result establishes a novel criterion in 2D for
obtaining solitonlike behavior that is based on the area under
the modulus of the electric-field envelope.

It is straightforward to see that for,=0 andyy,=d, we

obtain an initial pulse area that corresponds to the one ob-
tained in the 1D settinfsee Eq(43)], with a factor ofc; in The present approach for the semiclassical treatment of
excess, hamely, resonant coherent interactions in a degenerate three-level

V. CONCLUSIONS
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FIG. 10. Evolution of the optical field distribution for the TMmode at the simulation times=90, 125, and 155 fs showing the
conservation of the 2D-pulse shape during the propagation in the absorbing mégjilvormalizedE, component of the optical field as a
function of the in-plane coordinateth) Cross section of the 3D profile &, along the propagation direction at a poyt 10Ay along with
the cross section of the initial population prof8e,, showing the boundaries of the active region alan@) NormalizedE ,-component as
a function of the in-plane coordinategsl) Cross section of the 3D profile &, along the propagation direction at a poynt 10Ay along
with the cross section of the initial population profe,, showing the boundaries of the active region alang

system in 2D represents a generalization of the Maxwella parallel-plate mirror optical waveguide loaded with a de-
Bloch equations for a two-level system. The model properlygenerate three-level quantum system. The main physical im-
accounts through the polarization sources in Maxwell's equaplications from our studies can be summarized as follows.
tions for the polarizations of the three-level medium in 2D,We have confirmed from a different Maxwell-pseudospin
which generally occur along two perpendicular directions.system that the SIT effects can be recovered in the quasi-1D
The advantage of the newly derived set of linear differentialcase, i.e., the 2D TH(TEM) mode case. Most importantly,
equations is a direct consequence of the real-vector represemevel physical effects including 2D solitary wave and SIT
tation model (rather than a complex density-matrix ap- behavior were obtained with this multidimensional Maxwell-
proach. It represents a simple but rigorous geometrical pic-pseudospin system. The results for the SIT soliton associated
ture of the resonance behavior of the quantum system witlvith the TM; mode are of particular interest since these
clear physical meaning of the quantities involved. This ap-demonstrate SIT effects and solitonlike behavior in 2D in an
proach in turn allows a relatively easy numerical implemen-rreducible three-level quantum system. A generalization of
tation. The set of equations have been discretized on a sp#ie pulse area theorem was postulated and validated numeri-
cially constructed modified 2D Yee grid and solved directly cally, which accounts for the multidimensionality of the elec-
in the time domain(by generalizing the predictor-corrector tromagnetic wave and the polarization dynamics of the quan-
method to a three-level system and two spatial dimengionstum system.

We have applied the approach based on the Maxwell- The proposed model provides a useful and powerful tool
pseudospin system to the study of the TE and TM modes iffior the investigation of the population dynamics during the

063418-16



COUPLED MAXWELL-PSEUDOSPIN EQUATIONS

FR...

08

06

Pq4

04

.-
T
S—

02

(b)

— 2pm

| == 4pm

asee § um

0.8

0.6

i

P2

i —————— <

04

0.2

04} (e)

0.35}
0.3
0.25¢
0.2

P33

0.15f
0.1f
0.05[,

4
¥
v
?X g

-0.05+

0.1

0 5 10 15 20 25 30 35 40 45

Z [um]

FIG. 11. Evolution of the level-occupation probabilities;{,
P22, @andpsy) for the TM; mode in a degenerate three-level system
at the simulation times=90, 125, and 160 f9:a) Cross section of
the 3D plot of the occupation probability for level bq() aty
=2, 4, 6um from the left f=0) interface(b) Cross section gp,,
aty=2, 4, 6um from the left f=0) interface(c) Cross section of

pazaty=2, 4, 6 um from the left f=0) interface.
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propagation of ultrashort 2D electromagnetic pulses through
a multilevel quantum system, and we are anticipating using it
in the extreme nonlinear regime in the future.

It is to be noted that in the simulated parallel-plate mirror
optical waveguide configuration, the TE and TM modes have
the same propagation coefficients. This in turn leads to a
solitonlike behavior of the total wave for both types of
modes. It is, however, worthwhile to investigate the critical
conditions for the occurrence of mixed THM; modes that
would in turn allow for the formation of polarized solitons.
The latter would require considerations of a four-level sys-
tem and an extension of the above formalism to th&43U
group. This possibility is currently under investigation and
will be reported in a future publication.
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APPENDIX: DISCRETIZATION OF THE MAXWELL-
BLOCH EQUATIONS FOR THE TRANSVERSE
MAGNETIC WAVE

We apply the standard staggered-grid finite-difference
scheme of the spatial and temporal derivatives into the con-
tinuum equation$35¢) and(35d) for the transverse magnetic
wave in 2D. The electric-field components and the magnetic-
field components are spatially separated\yy2 andAz/2 in
y-z plane and temporally byt/2. The E components are
situated in the middle of the edges, and thecomponents
are in the center of the cdlR5]. We associate the quantum
system variables with the empty nodes in the 2D Yee grid,
providing electric-field values at these mesh points by aver-
aging over the electric fields located at the nearest neighbors
in the plane of a given node. The averaging procedure is
explicitly given below.

As has been pointed out in RéB], the exponential de-
caying terms make the Bloch equation numerically stiff,
therefore additional analytical factoring out of the exponen-
tial dependence is necessary before discretizing them. Simi-
lar to Ref. [9], we introduce the new variables; (i
=1,2,...,8) according to

Sy, z, H)y=exp—t/Tu(y, z, t), i=1, 2,.,6,
S7(yv Z, t):S7e+eXF(_t/T7)U7(y, Z, t),
Ss(y, z, t)=Sgetexp(—t/Tg)ug(y, z, 1).

The resulting set of equations acquires the form

(A1)

oHy 10E, 1 JE,
a mdy wdz’
JE, 1 dH,
s a7 AU Byas—BysUs, (A2)
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B, 1M,
7 = 8 ay _Azu3 BzsUs—BggUs;
auy
i = @0Cu4+Us— Cy5: Eols,
U,
1~ Caar Eolla+ Copr Eyls,
AU
ot Css+ EyUs— woCgs. Ug,
g
e woCy4-U;—Copq Eup—D74Ey—Cyr Eyuy,
IUs
—r ~ C1s-EU1—Cas-EyUs,
dUg
e Co6 EyUs+ woCg6_Uz—D76E,— Cg7, E U7

—DgeE,—Ces+ EzUg,

Ju;

7 = C47, EyU4+ C67* EZUG y
dug
ot Ces-EzUs,

PHYSICAL REVIEW A 66, 063418 (2002

N pz

Case ()= 5 X =H(LIT,) ~ (UT)),

2
p exp( —1/Tg),

Bs(t) =

Cas: ()= —exp[+t( 1T3) = (1Ts))],

Na@ wo

BZ6(t): eXF( t/TG)

Cae: (1) =exd +t((1/T3) = (1/Te))],

20
Care ()= XLt (UT,) ~ (1T )],
Core ()= 7 exi{ +1((1Tg) — (1T,

V3p
Co= (1) = ——exg £t(1/Te) — (LTg))],

where the following time-varying coefficients have been de-

fined:

Nap
A= eT

_t/Tl),

Crg () =exd £t((1/T1) — (1/T4))],

z(t)_

Cis:(1)= —exq+t((1fr1) (1)1,

NaJO wo

By4(t): ex F(_t/T4

Case ()= 5 X £1(LIT,) ~ (UT,)],

20

D4(t)= W Sre €XP(t/Ty),
1%

Drg(t)= %379 exp(t/Te),

V3p
Dgg(t)= T Sge EXP(/Tp). (A4)

With the locations of the discrete variables assumed above,
the magnetic-field equation is solved at the space steps (

+3)Az and (j+3)Ay for time steps k+3)At. The field
componentsE, and E, are solved correspondlngly at the
space stepsAz and G+ DAy, and (+3)Az andjAy at a
time stepkAt. As a result, a discretized version of the 2D
Maxwell-pseudospin system is developed of the following
form:
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0 S S | N N SN S | N 2 O S N O S
XI+E,]+§, +§— X|+§,]+§, —E —m z|+§,]+ , — Z|+§,],
—At E,i+1, ] ! kKI—E, i, ] ! k A5
+,uAZ i+ ,j+§, —-E, |1, j+§, , (A5a)
E j k+1|=E,|i k At H,li Lol k H,li Lol k L
yl,]+ , + yl,_]+ +E X|+§!J+§1 +§— XI—E,J'FE, +§
Al k 11 i k+1 e k
—Aq +§EU1I, J+§, +1/+uq|t, j+§,
1\ 1] [ 1 1
—By4 k+§§ Ug| T, j+ 5, K+1|+ugli j+— k
1\ 1] [ 1 1
— By k+§§ Us| I, j+ 3, k+1|+us|i, j+ k
1 . 1
XE EZ<I, i+=, k+1 +EZ(|, j+§, k” (A5b)

E,|i j, kK+1|=E,i L k At H L k H 1.1 k L
AT LKL R LK TRy T T2 T +§ T 1T K
Al k L i k+1 k B,g k !
— A +§EU3I+E, ], + —, J, + 25 +§
><1 i+l ] k+1 ! k ! E,li L k+1
§U5 I+§, ], K+1|+us|l +2, i E y|+§' ], K+
1 1 1 1
+E, |+§, j» k||—Boyg k+§§ Ug |+§, j, k+1]+ug |+§, i K. (A5c)

Pseudospin equations are

1\ 1
U(i, j, k+1)=uy(i, j, K)—AtwoCiay k+§)5[u4(i, Jo kKt +uy(i, j, k) ]-AtCys,

1
+§ Z[EZ(II ji k+1)+EZ(iv ji k)][u5(|1 j7 k+1)+u5(i1 jv k)],

Zl[Ez(i. I kKEDHES(i, J, K)][ua(i, j, k+1)

kl
"2

uz(il jv k+1):u2(|1 j! k)+AtC24+

1
Z[Ey(i’ j, K+D+E(, j, K]luei, j, k+1)

1
Tuy(i, j, k)]+AtC26+(k+§
+ug(i, J, K],

1
Z[Ey(i’ I, k+D+E(, J, K][us(i, j, k+1)+us(i, j, k)]

1
us(i, j, k+1)=usi, j, k)+AtC35+(k+§

—®oAtCze,

k+§)5[ue(l, o kFD+ue(i, J, K,
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1
Ua(i, j, kK+1)=uy(i, j, K)+AtwoCia ZIEL, , k+1)

k-l—l
2

1
Slualis §, kFDFusli, j, K]-AtCqy

k+1
2

El[Ez(i. I kKEDHEAL ) K]

k+1
2

TEA, J, KWua(is j, k+1)+ua(i, j, k)]—AtD74

1
—AtCyry 2B 0 kD FE(I, s K]lur(i, . k+D)+ur(i, j, K],

kl
"2

us(i, j, k+1)=us(i, j, k)+AtCys_ Zl[Ez(i, iy KtL)+E,(i, j, K][u(i, j, k+1)+uq(i, j, k)]

k+1
2

—AtCzs- k+% Zl[Ey(i, J, K+ +E (i, j, K][us(i, j, k+1)+usi, j, k)],

1\1
> Z[Ey(i’ I, k+D+E(, J, KI[ux(i, j, k+1)+uy(i, j, K]

Ug(i, j, k+1)=ug(i, j, k)—AtCpe_| k+

1\ 1 1
+AtwoCae- k+§ E[u3(i, i, kt1)+us(i, j, k)]—AtDg E[EZ(i’ i, k+1)+EL i, j, kK]

k+1
2

—AtCq74 k+% Zl[EZ(i, i, kK+1)+E,(i, j, K]lu(i, j, k+1)+u,(i, j, k)]

1 o
Z[EZ(II I k+1)

k+1
2

1\ 1
k+§)_[EZ(I! jl k+l)+EZ(I! jl k)]_AtCG8+

TEA, J, Klug(i, j, k+1)+ug(i, j, K,

1
Z[Ey(i’ I, K+ D +E(I, J, K[uai, j, k+1)+ugi, j, K]

1
uy(i, j, kK+1)=uq(, j, k)+AtC47(k+§

1\ 1
+AtCq7_ k+§ Z[EZ(i’ iy kK+t1)+EL(i, j, K]lueli, j, k+1)+ugli, j, k),

ug(i, j, kK+1)=ug(i, j, k)+AtCqqs_

k+%)zl[Ez(i, i, kD) +EL, j, KI[ugli, j, k+1)+ugi, j, k1.
(A6)

In order to obtain values for the electric-field components o 1 o o
and material variables at mesh points where they are not U|(|, I+ =slu, Drud, j+1)],
defined, the following averaging procedure is performed:
'+1 =1 i, D+u(i+1, ] =1,2
I S T D SR LD SN wii+z, j|=zlwl pD+ul+l pl (1=12..8,
y|+§,j —Z y|+§,J—§+ y|+ ,J+§
1 1 E i, j) 1{E<' ' 1+E' '+1
. . . . |1 ] =35 |1 J__ I’ ] 5 1
B[ IS B Tt y 2| 2 y 2
E"—lE'l'E'l' A7
_ o1l [ 1 1 Al D=5Bi+ 5, []+E[i=5, ]| (AD)
E, |1, ]+§ 1 E, |+§, J|+E; |+§, j+1
From inspection of Eq(A5a), it can be seen that the
VE i—E aE I_E 1 magnetic field is updated at a time different from the other
z 2} z 2} ' terms in the system, and therefore it is advanced in the stan-
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dard leapfrog way. For the rest of the equations we apply %pdated Va|uegvinew from Eq. (A8). These values are com-

redictor-corrector method, casting the system in the form . ~ . .
P g y pared with the values oW"" before updating using Eq.

W= WO AtF (WO e for i=1,2,...,10, (A8), and the iterative procedure continues until the differ-
' ' (A8)  ence becomes smaller than a specified value. Typically, the
process converges quickly enough to give a difference of
where Wi=E,, Wo=E,, Ws=U;, W;=Ujz,..., Wi 155 petween the previous and new valuesWfe”. The

=Ug, and the functionalf; represent the terms at the right- |\, qateq values for the pseudospin vector components are
hand sides of EqgA5b), (A5c), and(A6) combined with the ogtained from Eq(AL). P P P

common multiplier, the time steft. The coefficients irF; The predictor-corrector iterative scheme described above
are updated, and initially the new valu@s” are set equal has proved to be stable and computationally efficient for
to their values in the previous time stéy'“, thus giving the  large spatial arrayge.g., 60 00 100 grid point.

[1] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, [13] C. M. Bowden and G. P. Agrawal, Phys. Rev.54, 4132

Ch. Spielmann, S. Sartania, and F. Krausz, Opt. 231522 (1995.
(1997. [14] F. T. Hioe and J. H. Eberly, Phys. Rev. Let7, 838 (1981).
[2] A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, [15] F. T. Hioe and J. H. Eberly, Phys. Rev.25, 2168(1982.
Opt. Lett.22, 102(1997). [16] F. T. Hioe, Phys. Rev. &8, 879(1983.
[3] V. P. Kalosha, M. Miller, and J. Herrmann, J. Opt. Soc. Am. B [17] R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, J. Appl.
16, 323(1999. Phys.28, 49 (1957.
[4] P. Michler, A. Lohner, W. W. Rile, and G. Reiner, Appl. Phys. [18] R. J. Cook and B. W. Shore, Phys. Rev28, 539 (1979.
Lett. 66, 1599(1995. [19] J. N. Elgin, Phys. Lett80A, 140(1980.

[20] P. K. Aravind, J. Opt. Soc. Am. B, 1025(1986.

[21] M. Gell-Mann and Y. Neemanthe Eightfold WayBenjamin,
New York, 1964.

[22] K. S. Yee, IEEE Trans. Antennas Propdd, 302 (1966.

[5] G. Pompe, T. Rappen, and M. Wegener, Phys. Red/1, 7005
(1995.
[6] F. Jahnke, H. C. Schneider, and S. W. Koch, Appl. Phys. Lett

[7] ggjj;?e(igg?]ys Rev. Le81 3363(1998. [23] B. Engquist and A. Majda, Math. Comp\&1, 629 (1977.
[8] A. V. Taras:ishin S. A Magn’itskii V. A. Shuvaev, and A. M [24] G. Mur, |EEE Trans. Electromagn. Compag, 377 (1981.
C P s ' - * [25] A. Taflove, Computational Electrodynamics: The Finite-
Zheltikov, Opt. Expres$8, 452 (2001). Difference Time-Domain Metho@Artech House, Norwood,

[9] R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys. Rev. MA, 1995).
A 52, 3082(1995. [26] M. J. Adams,An Introduction to Optical WaveguideSviley,
[10] G. Slavcheva, J. M. Arnold, and I. Wallace, Rioceedings of New York, 19813, p. 7.
The 15th Quantum Electronics and Photonics Confergfine [27] S. L. McCall and E. L. Hahn, Phys. Rel83 457 (1969.
stitute of Physics, Glasgow, 2001 [28] S. L. McCall and E. L. Hahn, Phys. Rev. Leti8, 908(1967).

[11] F. de Rougemont and R. Frey, Phys. Re\3B 1237(1988. [29] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,
[12] B. Thadrez, A. Jones, and R. Frey, IEEE J. Quantum Electron. Solitons and Nonlinear Wave Equatiofscademic, London,
24, 1499(1988. 1994,

063418-21



