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Role of long quantum orbits in high-order harmonic generation
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Single-atom high-order harmonic generation is considered in the strong-field approximation, as formulated
in the Lewenstein model, and analyzed in terms of quantum orbits. Orbits are classified according to the
solutions of the saddle-point equations. The results of a numerical integration are compared with the saddle-
point approximation and the uniform approximation. Approximate analytical solutions for long orbits are
presented. The formalism developed is used to analyze the enhancement of high-order harmonic generation
near channel closings. The enhancements exactly at the channel closings are extremely narrow and built up by
the constructive interference of a very large number of quantum orbits. Additional broader enhancements occur
slightly below channel closings. They are generated by the interplay of a medium number of orbits.
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I. INTRODUCTION [10,11. Recently, these techniques have been employed to
generate HHG pulses with specific objectives via tayloring

The study of intense-laser-atom physics is of current imthe driving laser pulsgl2].
portance both in science and technolddy-4]. High-order One of the most interesting features of the low-energy
harmonic generatiotHHG) and above-threshold ionization part of the plateau is a resonancelike enhancement: a small
(ATI) are the two processes most studied in intense-laserariation of the laser-field intensity by just a few percent can
atom physics. In these processes, the atomic electron absorisiuce enhancements of particular harmonics of up to one
and emits a large number of laser photons in many differenorder of magnitude. Such enhancements have been observed
time orders so that the number of pathways in quantumexperimentally for ATI[13—1§ and also for HHJ17], and
mechanical-state space that connect the initial and the finaarious theoretical arguments have been put forward for their
quantum states is enormous. The number of relevant patlexplanation[16—24. Some of then{18,19 attribute these
ways is drastically lower from the point of view of “quantum features to the multiphoton resonance of the ground state and
orbits” [1,4—§. These come about in a semiclassical ap-high-lying ponderomotively upshifted Rydberg states. An ap-
proximation of the relevant transition amplitudes, which isparently different view relates these enhancements to chan-
very well justified for the intense laser fields of interest. nel closings and threshold anomaljé$,20—24. In the pres-
Quantum orbits are closely related to the space-time trajeence of the laser field, the continuum states are upshifted by
tories of classical particles. To a given harmonic in HHG orthe ponderomotive energyp, so that ionization can occur
final electron momentum in ATI, many quantum orbits con-only after the absorption af>(Ip+Up)/% w photons of en-
tribute, which differ in the times when they enter the con-ergy #w, wherelp is the atomic ionization energy. With
tinuum by ionization and the later times when they recom-ncreasing laser-field intensityl)p also increases, until
bine or rescatter. The time in between ionization andn-photon ionization is no longer possible, amét 1 photons
recombination can amount to very many cycles of the laseare required. We refer to this as théh-channel closing. If
field. Quantum mechanics is hidden in this picture in twothe laser intensity corresponds exactly to this channel clos-
ways: the contributions of the various orbits are superposethg, the electron is released in the continuum with zero drift
in the fashion of Feynman'’s path integral, and they are commomentum so that, during its ensuing oscillatory motion in
plex to account for the tunneling nature of the initial step ofthe laser field, it can revisit its parent ion many times before
the HHG and ATI processes. it recombines or rescatters.

Usually, and this has rendered quantum orbits an ex- In the quantum-orbits formalism, this means there are
tremely useful tool for the analysis of various aspects ofmany corresponding probability amplitudes that interfere.
HHG [1], only very few orbits need be considered, as few asConstructive interference of these amplitudes will manifest
two or even one. This is so, in particular, for the upper part ofitself as an enhancement in the HHG or high-order ATI spec-
the HHG plateau and its cutoff region. This paper will betra. Recently, for the case of high-order ATI in the context of
concerned with situations where this is not so, which is thehe improved Keldysh model, Popruzhenébal. [24] have
case for certain intensities and in the middle and the lowshown analytically that the interference can be constructive
energy part of the plateau. The analysis of experimental datat channel closings and have discussed, under which condi-
as well as numerical simulations in terms of quantum pathsions it has the most pronounced consequences. One of the
[9] have been instrumental for the understanding of HHGaims of the present paper is to extend this analysis to HHG.

A complementary approad22,23, which is based on the
exact solutions for the HHG and ATI transition amplitudes in
*Also at Center for Advanced Studies, Department of Physics anthe case of the zero-range potential model, relates these en-
Astronomy, University of New Mexico, Albuquerque, NM 87131. hancements to the well-known threshold anomdl&s 26,
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which occur whenever, as a function of some parametelVe use the strong-field approximatif8i7] and its realization
channels open or close. in the Lewenstein modéb] as well as a zero-range binding

These resonancelike features have been observed earligotential[29,38,39, and approximatel(t) [40] by
in nonperturbative numerical calculations of ATI spe¢2d]
and for HHG using the zero-range potential mo@&3-31. - (+)
It should be mentioned that strong intensity-dependent reso- d(t)NJ dto(o(DXGL™(t,t0) V] (o))
nant enhancements of high-order harmonics have also been
predicted to occur due to one-photon or multiphoton field- = _if d3q( gl X| g+ A(t))
atom resonancd82-34. They are outside the scope of the
strong-field approximation and the Lewenstein model, and t
will not be considered here. Xf dtge' St g+ A(te)| V| o), 3

In the present paper, we will develop various approxima- -
tions for the calculation of high-order harmonic emission, here G, is the Volkov propagator in the length gauge
starting, in Sec. Il, from an efficient numerical scheme base (r):(ZLw/K) 8(r)(dlr)r is the zero-range potential '
on the fast Fourier transform and numerical integration overrw (1)) = dro(r) expll o) =[x/ (27) ] 2ex (_K?Jr“ F;)/r is '
the electron travel time, up to simple analytical expressionjh Ot T dp tpt for th i P tP tial in th
in Sec. V that can be used to explain the resonancelike e ne atomic ground state for the zero-range potential in the
hancements at the channel closings. In Sec. Ill, we prese
the saddle-point approximatio(SPA). Special attention is
devoted to the classification of the quantum orbits, where we t
follow the scheme introduced for high-order AD4], and to S(qg;t,tg)=— f dt’{[q+A(t")]22+1p} (4)
some characteristics of the low-order harmonics that have to
not be‘?” exployeq before. In Se.c. IV, the.so—c.alle_d umfpm]s the quasiclassical action. The matrix elements in the dipole
approximation is introduced. This approximation is an Im- o trix element(3) are
provement of the SPA, which works well also in the cutoff

I,'ﬁbsence of the laser fielth= /2 is the ionization energy,
and

region of a given quantum orbit where the SPA fdi85]. 172 2iq kL2
This is of crucial importance in the case, where many orbits @QV|)=— =, (PolX|q)=———=. (5
interfere so that the spikes at the cutoffs in the harmonic 2 (9 + k?)?

spectrum that are produced by the SPA can accumulate, lead- ) . )
ing to erroneous results. In Sec. V, we present approximate 1he integral oved®q in Eq. (3) can be solved using the
analytical solutions of the SPA equations, which, in a naturamethod of Ref.[41]. For the field(2), the conditionV ¢S
way, lead to the above-mentioned classification of the quan=0 Yields the momentungs,= A(sin wty—sin wi)/[w(t—ty)],
tum orbits. Similar analytical solutions of the saddle-pointdsy=0dsz=0, for which the action is stationary. As the final
equations were recently used to explain the enhancement Egsult, we obtain
the channel closings for ATl in Ref24]. These solutions are

particularly useful in the limit of long orbits, so that we make W :i(”_w> ° nge‘”‘”‘
use of them in Sec. VI to consider the resonant enhancement " gn2lcUp oT
of HHG at the channel closings. Both the simple analytical
formulas and various numerical results that explain this ef- > dr (k+ cosm)ex;:(iss)‘2
fect will be presented. In Sec. VII, further examples that fo 2 (et 024 42 2‘ ; (6)
illustrate the power of the developed formalism will be dis- 7 [(k+cosot)™+ y7]
cussed. whereUp=A%/4 is the ponderomotive energy= 2|p/A?
is the Keldysh parametek=qs,/A, and the stationary ac-
Il. HARMONIC-EMISSION RATE FOR ZERO-RANGE tion in the exponent iS;=5(qs;t,to). The integral over the
POTENTIAL travel timer=t—t, in EqQ. (6) is solved by numerical inte-

) ) ] . . gration. The harmonic spectrum is then obtained by the fast
For a linearly polarized laser field with period  Fourier-transform method.

=2m/w, the nth-harmonic-emission rat@n a.u) [4,36] is

Ill. SADDLE-POINT APPROXIMATION

1 (nw\® Tdt . . . .
=—|— |T.? Tn=f ?e'”w‘d(t), (1) The harmonic-emission raté) has been obtained by ap-
c 0

W,=
" 2m plying the saddle-point method to thleree-dimensionain-
tegral over d3g. Application of the SPA to thefive-

where T, is the T-matrix element andi(t) is the time- dimensionalintegral overd“q, dt, anddt, yields a much

dependent dipole matrix element. We will consider a monoSimPlified expressiofd,7,8]: The stationarity conditions that
chromatic field with the vector potential the first derivativess/dq, d/dt, and d/dty of the exponent

S(g;t,tp) + nwt in the integrand be equal to zero lead to the
R following system of equations for the variables q, /A, ¢
A(t)=A(t)e,, A(t)=Acoswt. (2 = wt, and pg= wty;
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where yﬁ=(nw—lp)/(2Up). The five-dimensional integral -1.5
then reduces to a sum over solutions, (s, ¢qs) Of the 2 4
system(7), and we get 87 1
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X (@— o) —Ssin(@—¢o)]. (11) Re 0, Re o
In the rate(8), we used the notatioAns=As(ks, ¢s.¢0os), FIG. 1. Solutions of the saddle-point equations for HHG by a
and similarly forS, andF,. hydrogen atontionization energyl ,=13.6 eV) with a linearly po-

Introducing the solution fok=Kk(¢,¢o) from EQ. (7@  |arized laser field having the intensitpl0 W/cn? and the pho-
into Egs.(7b) and(7c), we obtain a system of two equations, ton energy 1.17 eV. The solutions are labeled by the numbgrs
which can be solved numerically for the complex varialkdes (cf. Fig. 2 and by the corresponding harmonic ordersas ex-
and¢q. In Fig. 1, examples of these solutions are presentechlained in the text. The solutions, whose contributions have to be
The left-hand panels display kpg as functions of Rey, the  discarded after their respective cutoffs are indicated by dashed
right-hand panels I as functions of Re. The harmonic lines.
ordern changes as a continuous parameter along each curve.

The corresponding values of are indicated at the beginning t—t, carries the indexd=—1 (8=+1). Each pair again
and at the end of each particular solution. Also indicated areonsists of two orbits with slightly different travel timétis
the values ofn for which different solutions approach each is well known from the Lewenstein modg] of HHG), and
other most closely. These values correspond to the cutoff aive discriminate the longer from the shorter orbit by the in-
the harmonic spectrum that is generated by this particuladex «, as indicated. The inder gives the approximate
pair of solutiongsee Fig. 4a)]. length of the travel time in multiples of the laser period,

To characterize the various solutions of the saddle-point=[(t—ty)/T] (with [x] the largest integexx). For m=0,
equations(7), we use a multiindex consisting of the three there is only one pair of solutions, havifg= —1. In addi-
numbersaBm, similarly as in Ref.[24]. This notation is tion, there is one solution with a very short travel time,
explained in detail in Sec. V, but we summarize it in Fig. 2.which we denote by L(see the top panels of Fig).1The
Briefly, for return timest within one cycle of the field, e.g., solution L is responsible for the low-order harmonic spec-
0=<t<T, there are infinitely many pairs of solutions, which trum, it does not contribute to the harmonics with
can be ordered by their start timg. For —(m+ 1/2)T<t, >|p/w. For all other solutions, the imaginary part of the
<—(m-—1/2)T, wherem=0,1,2 . . ., there are two pairs of variable o= wt is very small, while its real part lies in the
solutions. The pair having the longéshortej travel time interval[0,27].
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FIG. 2. Examples of the notatiom@m used to label the solu- __ L 42256 NI-10 2, ®)
tions of the saddle-point equatiofid. The solid, long-dashed, dot- :i -19 112Nc1-11 |,/ 1
dashed, and dotted curves in the right-hand part of the figure spemf)v 38 Aeme-
the return times for the four pairs of orbits with the shortest travel 8 | N\ .- ,:;3516"',7‘"
times. In the left-hand part of the figure, the counterpart of each§ T < \ i - - »
curve identifies the corresponding start times. The harmonic photon& -0 - 1 ﬁ_,é——;:—‘*""“
energy in multiples ofJ is plotted on the ordinate, and horizontal 5 38-5 56 W,
lines (at constant energyelate start times and return times for the % /,—_’1’1‘2 N /,"
respective orbits. There are infinitely many further solutions that £ 54 | .42 “/
have start times, beyond the left-hand margin of the figure. Their ;_“E' /
maximal return energies converge tp+2Up. The curves have & 7@/' ¥
been calculated for the same laser and atomic parameters as i< 1-10,
Fig. 1. 22 <
5 10 15

Harmonic order n

FIG. 4. Harmonic-emission rates for individual orbits as func-
' ' ' tions of the harmonic order for the same parameters as in Fig. 1.
Each curve corresponds to one particular term of the @pand is
obtained using the saddle-point solutions that are presented in Fig.
7 1. The curves are denoted by the corresponding nunmbgns and
by the cutoff harmonic ordens The contributions presented by the
dashed lines in panéhd) must be discarded after the cutoff. In panel
(b), the partial harmonic-emission rates near the critical point
=1, are presented. In pan@), the solutionsa8m are not shown
below this critical point, except for 1-10.

L
=

-
o

In Fig. 3, we present the harmonic-emission rates as func-
tions of the harmonic order for the laser and atomic param-
eters of Fig. 1. The results indicated by small filled circles
, ‘ . , are obtained using Ed6) (we refer to them as “exac),

0 20 40 60 80 while the large open symbols identify results obtained by the
Harmonic order n SPA formula(8). Open trianglegsquaresexhibit the results
that include 4(20) pairs of the SPA solutions. For the low-
%rder harmonics, both include the contribution of the solu-
ion L. The contribution of solely the solution L is denoted

presented as functions of harmonic order for the same laser a the stars. Fon>Ip/w, the contribution ?f the “solut|on L
atomic parameters as in Fig. 1. According to Rg8s42], the cutoff as bee_n dropped. The agreement of the “exact” and the SPA
is at n,u@=1.329p+3.173)p=72.30. The small filed circles esults is very good, except for<|p/w. _

represent the “exact” results obtained using E8), while the open In general, very few SPA solutions suffice to reproduce
symbols(connected by dashed linegive the results of the saddle- the “exact” spectrum. The pair of solutions1-10 is essen-
point approximation(8) including four (triangles or 20 (squares  tially the only one to contribute to the part of the plateau
pairs of orbits. The contribution of the single solution L from Fig. 1 preceding the cutoff and still dominates the remainder of the
is denoted by stars. plateau, with the other solutions only making significant con-

Harmonic emission rate (a.u.)
P
1
2

|
i

_
o

FIG. 3. Comparison of the harmonic spectrum obtained usin
numerical integration with the spectrum obtained using the saddle-
point approximation. Harmonic-emission rat@s atomic unit$ are
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tributions near their respective cutoffd3]. In Fig. 4, we 6l 2
present the harmonic spectrum that results from particular / \
solutionsaBm via the corresponding terms of the suy8). 53;" “
The solutions are depicted in the various panels of Fig. 1. Fot ,’ \
the top panels, the cutoff is at=72. After the cutoff, the /
contribution of the solutiorySm=1-10(viz., the short or- 04 f /
bit) must be discarded, so that for>72, only the solution /
from —1-10 contributes to the spectrum. The situation is ¢ / 31 3
similar for the other pairs of solutions presented in Fig. 1. x I AU or
The solutions 111, from-1-11, and 112 correspond to the ',/ 7o |
solid lines and the cutoffs at=38, 56, and 42, respectively. 02 '/-",/ 1-10 }
The solutions—111, 1-11, and-112, denoted by dashed | ' .
lines, have to be discarded after these cutoffs. An analog o \ Vo
Fig. 4(a) for high-order ATI can be found in Ref45]. NS

The sharp spikes at these cutoffs suggest that the SPA fail L~ oo
near these values of This also shows, though less dramati- S
cally, in the discrepancy between the “exact” and the SPA o 1 2 3
results of Fig. 3 around the cutoffs. At and in the vicinity of Pq
these critical points, the uniform-asymptotic-expansion o
method to be explained below in Sec. IV gives adequate F!G- 5 Real parts of the quantum orbits, given by B) and
results[35]. obtained using thg saddle-pomt solutions of Fig. 1 for the 9th, 31§t,

More problematic is the critical point aw=1p, for and 53rd harmonics. The orblts_are labeled by the co_rrespondmg
which the partial contribution of each saddle-point solutionﬂumber.saﬁrn and by th.e harmonic ordex The nontunneling low-

- armonic-order orbits in the left-hand panel are denoted by the
sgﬁjrgsa%?ﬁi Ize/r:)’ acrfe. rﬁ:)q[.(ikr?.glonc()jc?z(;,retz(ranesn?—\wiris?flitjxfor symbol L and the harmonic order=9. In the right-hand panel, the
~Ip -

, L9 . harmonic orders presented aréddtted curvg 31 (dashed curve
act' results as can be seen in Fig. 3. From the right-hand tog,,q 53(solid curve for afm=1-11, andn=29 (solid curve and

panel of Fig. 1, we see that the solution 1-10 exhibits, €x,—31 (dot-dashed curyefor @fm=—111. In the right-hand
actly at the pointp/w=11.6, an avoided crossing with the pane|, notice that, for givemsm, the n=9 orbits approach the
solution L. The solution L cannot be classified by the num-atomic core from the opposite side and with a smaller slope than

bersaSm. For low harmonics, it gives the main contribution those that produce the higher harmonics31 andn=53.
to the harmonic spectrum, while forw>1p, it has to be

discardedthe dashed L-line in Fig.)4 The solutionseBm
can be continued into the regiotw<lp. This is shown in

Fig. 4(b). The solutions represented by solid linexcept complex saddle-point solutionsy and ¢, bothx,(Repgs)
solution L) must be discarded from the sufB) for nw and x,s(Reps) are nonzero. However,{Reps) is very
<lIp. The saddle-point solutions of Fig. 1 that correspond toclose to zero, in contrast tq,{(Repgs), which typically is of
the results of Fig. é) can be identified by their onset at the the order of a few atomic units and specifies the end of the
harmonic orden=1. The corresponding values of the return tunnel.
time Ime become large fon<lp/w, and are responsible for In Fig. 5, we display these orbits for various values of the
the swastikalike shape of the curve ¢m f(Rep). harmonic ordem and for various saddle-point solutiorss
In order to get further insight into the physical meaning of=aBm. In the left-hand panel, the shortest orhi{Bm
the saddle-point solutions presented above, we will inspect1-10 is depicted for the harmonics=9, 31, and 53, as
the corresponding quantum orbif4,7,8,43. Solving the well as the solution L fon=9. Forn=9, both the solution
Newton equation for the electron in the laser field, we getL (solid curve and the orbitaBm=1-10 (dashed curve
X(t) =x(tg) +[v(tg) —A(tg) 1(t—tp), wherex(ty) anduv(tp) describe an electron that is born at the end of the tunnel and
are the initial electron coordinate and velocity, respectivelymoves straight back to the ionic core, never leaving the
With v (tg) =gsxt+A(tg) and x(tp)=0, the orbitsx(t) are  atom, but still acquiring enough energy to emit the ninth
determined by thdcompleX solutions of the saddle-point harmonic. All of the other orbits depicted in Fig. 5 corre-
equationg7). We can relate their real parts to actual electronspond to the tunneling-recombination or three-step model of
orbits traveled in space and time. They are HHG. Along the longer orbitsri=1), the electron revisits
A the atomic core more than once before it recombines.
_ . . For highly charged ions, the low-order part of the spec-
Xns(¢r) = RESIN@R—SIN@os T Ks( PR~ Pos)], trum (n<Ip/w) can comprise hundreds of harmonics, which
have been dubbed nontunneling harmonics, since their gen-
(Repgs=< pr=Rep,) (120  eration takes place entirely inside the at§d®]. For this
case, a classical picture has been formulated that is able to
describe this process. The corresponding orbits look much
like the orbits forn=9 in the left-hand panel of Fig. 5.
However, their detailed shape as well as the “surfing mecha-

the position of the ion, where it recombines emitting ttik
harmonic. Notice that while,s(¢gs) =Xns(¢s) =0 for the

as a function of the real timeg . That is, the electron is born
at the end of the tunnel at the positians(Repqs) then it
moves in the laser field, and at the timedRéw, it returns to
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nism” described in Ref[46] are contingent on the presence
and shape of the atomic potential. In the present case, it it
remarkable that the ninth harmonic still yields to the SPA and =
allows the identification of quantum orbits, even though its
generation appears to be entirely in the quantum regime.

IV. THE UNIFORM APPROXIMATION

As we have shown, the SPA fails for harmonic orders near
the cutoff when the two solutions of a given pair approach
each other(see Fig. 1 After some critical point, which is
very close to the cutoff energy, one of the solutions of this
pair must be discarded because its contribution to the
harmonic-emission rate starts to diverge. This solution is un-
physical: a continuous deformation of the original real mul- . . ‘
tidimensionalt,ty,q integration contour into complex space 20 40 60 80
will never reach it. In our notation, the solutiomstm for Harmonic order n
which «=— 8 have to be dropped after the cutoff. The po-
sition n. of the mentioned critical point can be defined in a )

mathematically more rigorous way by the condition for the *
&éé%%j

so-called anti-Stokes transitidB5] -
OO UA20

log, [Harmonic emission rate (a.u.)

—_
o

IMSy_15m=1MSy_ ~1m. (13

-t
i
3

where S5 is given by Eg. (10) with s=aBm, m
=0,1,2... for=—1, andm=1,2,..., forB=1. In the
theory of asymptotic expansion of integr@fs?,48, there is

a method—the uniform approximation—that works in the
case of coalescing saddle points. In our case of two coalesct
ing points, this method leads to an expression that contain:
Airy functions. Not going into details, we here reproduce the
final result obtained using this uniform approximation ' ‘ ‘
35,4749 0 20 40 60

\ * exact
*e

¢
o | F*-—-% L &? |
5

armonic emission rate (a.u.)

10 =--8 UA4

Harmonic order n

FIG. 6. (8) Comparison of the partial harmonic-emission rates
M gm= E Ao pm@XB(iSh, o pm) optalned using the .unlform approximati@filled circles, Eq. (14,
with the saddle-point results summed over for three different
values of the numbergm, as indicated in the figure. The spectra

— 12 ; ;

=(6mS_ )" expliS, +im/4) with m=1 have been shifted down for better visibilit) Com-
A A parison of the harmonic spectrum obtained using numerical integra-
;Ai( —2)+i —+Ai "(—2) (14) tion (“exact” results) with the spectrum obtained using the uniform
Jz z ' approximation with 4 and 20 pairs of solutions taken into account,

presented similarly as in Fig. 3. The atomic and laser parameters are
wherez=(3S_/2)?", and the quantities the same as in Figs. 1-5.
2S. =Sy 15m* Sn—15m: the standard saddle-point representat®ris retrieved when

the saddle points are sufficiently well separated.
Figure 6 demonstrates the quality of the uniform approxi-
mation. The artifacts of the saddle-point approximation

. . around the cutoffs have been eliminafédg. 6(a)], and the
are related to the actiond.0) and the weight49) of the uniform-approximation results are closer to the exact results

saddle points. Equatiofl4) is valid forn<n.. Forn>n,, [Fig. 6b)]. In addition to the cutoff region, particular im-
the argument must be replaced tyexp(287/3). That way, provements are noticeable arount=(lp+2Up)/0~47

the proper branch of the Airy functions is selected, whichwhere, as we shall see below, the cutoffs for higher values of
drops the unphysical saddle point. Also, for-n;, M, s  m accumulate, introducing significant error in the SPA re-
should change its sign. With the help of the asymptotics okults. For low harmonics, the uniform approximation does
the Airy functions[50], it is possible to verify thaM, s, not give adequate results, due to the different nature of the
indeed reduces to the sum of the two saddle-point contribueritical point atnw=1p, where all partial contributions ac-
tions forn<n., or to only one of them fon>n.. Hence, cumulate and tend to zero.

ZAt:An,lﬁmiiAn,flﬁm (15)
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V. APPROXIMATE ANALYTICAL SOLUTIONS ‘ TN ‘ a7 1
09 ¢ 0ot i b1 04
An approximate solution of the systefid) can be ob- 87 i -1-105
tained by supposing that the momentulk=(sing, s e 72 o
—sing)/(¢—¢y) is small. This is true for long travel times £ o.6 l'«——~/7§‘/ 1-10 ST | 101 E
7=Re(¢— ¢o)/w. We will consider the caseaw>1p, for “1-10" 2410
which Eq. (7b) reduces tok+cose==*1v,, y,>0. For the ‘a7 { ':
“ —” sign and for ¢ €[0,27], we have two solutions 03 1 . 1 5 187 ; -06
—(1- Y 4 ' 1g7 [ 87 1
¢=(1l—a)m+aarcco$—y,—k), a==x1, (16 111 i I
0.6t | {1 05
|
where, for realk and |k|<y,, we haveog,_ e (7/2,m7] & 1____,:=JI_ _____ ) B O S o o
and¢,—_, e[ m,3m7/2). E 05 | 38, 38:" i =
If we shift these solutions bywm, we have cogp= ' [ i 114 05
—k(¢,p0)— = cosle+ am)=—k(¢+ameotam) =y, 87, I 87l »
which reduces exactly to the initial equatidat-cose= P P 45 s 3 7
+v,, with the “+” sign. Therefore, the second set of the ' Re ;Po ' Re ¢
solutions is obtained by shifting the solutigh6) by a, — ‘ ‘ ‘ ‘ 1
with a simultaneous shift opy by awr. This is because the o451 &% ] 7
linearly polarized field (2) satisfies A(t+T/2)=—A(t), yo 11 I L . 05
2 e 7 : ) - ". 1 ,
wh|gh |mpI|esd(t+T/2) . d(t) for the d!pole moment. .In. é& 1 | 56 H o g
cluding these solutions in the calculation of the emission £ ' 56 sl
rates(8) yields a factor of texp(nam). It makes sure that 05 L —1-11 L 1-1 ~05
no even harmonics are produced. Since, however, only odd 187 1 'g7
integer harmonics are physically relevant, we can just dis- — : : : : -1
. : : -7.8 -7.7 i 2 3 4 5
card this second set of solutions and multiply the (8jeby a7 r 87 9
a factor of 4. 06 ¢ 2| i
Equation(7c), after expansion in powers &f reduces to ! i ne 0.5
cos(Repg) = — k/\1+ 72, Imgy=arcsinhy. The general so- é@ 1 —boae R : = 0 E
lution is Repy=*arccosCk/\1+y?)—2rm, r=0+1, = 42, 42 :.
*2,.... Theprincipal value of the arccos function in the 5. L2 po-112 4 05
expression for Re, is between 0 andr/2 for k<0 and 87, I 87| N
betweensm/2 and# for k>0. Expanding the arccos function 11 1095 -10.9 2 3 4
in powers ofk, we get the final resultfor Re(¢— ¢g)>0] Re ¢, Re ¢
- K FIG. 7. Comparison of the approximateolid lineg and the
eo=p8| =+ —2mm+iarcsinby, B==*1, exact (dashed and dot-dashed linesolutions of the saddle-point
2 vi+ 72 equations for the parameters of Fig. 1. The approximate solutions

(17) are presented with the harmonic oraeas a continuous parameter

in the interval 11.6 1 p/o<n<(lp+2Up)/ w=47.4. For the solu-

wherem=1,2,... forg=+1, andm=0,1,2 ... for 8= tions @Bm=—111 and— 112, the harmonic order is less than 38
—1. Letting k®©=0 in Egs.(16) and (17), we obtain the and 42, respectively.

zeroth-order approximationg® and ¢{”). Introducing

these solutions into the expression fowe obtain the first- A comparison of these approximate solutions with those

order approximation

BVL+ Y2 —a\1-7v]

1) =
K 2mar

which holds for Inm>1. Replacingk by k™ in Egs.(16)
and (17) gives the required approximate analytical solution

presented in Fig. 1 is shown in Fig. 7. One can see that, for
increasingm, the analytical solutions become a good ap-
proximation, as expected. A comparison of the corresponding

(18 harmonic-emission rates with each other is shown in Fig. 8.

Already for m=2, the harmonic-emission rates obtained
from the approximate analytical solutions are a good ap-
proximation. Form>2, one can safely use this approxima-
tion. A characteristic feature of these approximate spectra is

for ¢ and o. In Eq. (18), the factory1l—1y;is real ifnw iyt the sharp peaks, where the SPA fg@#S], are shifted to
<lp+2Up. Therefore, the above approximate result can begher values of (see the right-hand panels in Fig. 8Vith
applied forlp<nw=Ip+2Up, i.e., at the beginning and in {he jncrease ofn, this shift becomes smaller. The exact po-
the middle part of the HHG plateau. A better first-order ap-gsjtions of these peaks can be calculated. In Ref,44 it
proximation can be obtained by calculati§? from Eq. was found that, for our present parametgra=— 10, 11,
(78) with ¢o=¢f) ande=¢(®, and substituting th&'” so  _ 11 one has, respectivelyn,w=3.173p+1.328p,
obtained into the relations§"= (" +akM/1+9% and  1.542),+0.884p, 2.404)p+1.102p, which for the pa-

W= O+ ok T2,

rameters of Figs. 1-8 corresponds ig=72.28, 37.91,

063417-7



D. B. MILOSEVIC AND W. BECKER

log, [Harmonic emission rate (a.u.)]

112

15 25 35 45 15
Harmonic order n

25 35 45
Harmonic order n

PHYSICAL REVIEW A66, 063417 (2002

T U
ReS,+®, = —2MmRr+ BR + ;Payn\/l— 52

+(N—R)[(1—a)m+aarccos$—y,) |+«

4
(20)
We have neglected contributions of the ordem(@) . The
term ar/4 comes from the phase Bf; Y2in Eq. (8) because
the dominant term i is

Foc(k+cose)(k+coseg)sing singg( ¢ — ¢g)

(= y)(—iBy)ayl—y2B\1+ y?2mm,

FIG. 8. Comparison of the partial harmonic-emission rates ob- = . ) .
tained using the approximate analytical solutions of the saddle-point/hich is proportional tox. We can now investigate, under

equations(solid lineg with those presented in Fig.(@ that are
obtained using the exact solutiodashed and dot-dashed lines
The numbersyBm are indicated next to the corresponding curves.

55.90. For higher values af, the position of the peaks is
lower (highep for 8=+ 1 (—1). The values oh,(8,m) are
arranged according ta,(—1,m)>n.(—1m+1), n.(1,m)
<n(1m+1), m=0,1,2....Therefore, we expect that for
Ip/w<n<ng(l,1), i.e., 13=n=<37 in our present case, we
can safely use the SPA. For=2, the analytical solutions
presented in this section can be used. If we calculate th

which conditions the contributions of different quantum or-
bits asm add constructively, generating the enhancement.
Two orbits afm and o’ B’'m’ interfere constructively
when  Ap(apm|a’B'm')=ReS, ,sm— RES, 4 prm +(a
—a')wl4=2r, with r integer. From Eq(20), it is clear
that A, (aBm+ 1|aBm)=2R= so that orbits with the same
a and B8 and differentm add constructively if the resonance
condition (19) is satisfied. Suppose now th&=I. Then,
from Eq. (20), we haveA (alm|a—1m)=I, so that, for
fixed @ and withR=1, the contributions of differeng (that
is, the two pairs of orbits with start times within the same
8yc|e of the field add constructively fof even and destruc-

harmonic-emission rates using the uniform approximationyey for | odd. The situation is more complicated for orbits

[35] for, say,m=<4, and the approximate analytical solutions
for m>4, then we can obtain a harmonic spectrum um to
=45 that should be in excellent agreement with the “exact
results. This method will be used in the following sections to

consider the enhancement of HHG at channel closings, for

which the contribution of high values a@h has to be taken
into account.

with oppositex. Suppose again that the resonance condition
(19 is fulfilled. In this case, we haveé\,(18m|—18m)
=2(n—N[arccostv,) — 7]+ 2Upy,\1— yzn/w-I— 2.
Therefore, for fixedB and for R=1I, the contributions of
oppositea (that is, the long and the short orbits of a given
pair) add constructively only for those particular harmormics

that render the quantity

n—I

U
—arcco$— y,) + P n

w T

1
\/1—7ﬁ+

VI. ENHANCEMENT OF HIGH-ORDER HARMONIC 1

GENERATION AT CHANNEL CLOSINGS

Cn

(21)

In the Introduction, we mentioned that the resonancelikgnteger. The quantity,, is defined below Eqg7). This con-
enhancement of HHG is observed at intensities that satisfiition is very similar to the corresponding condition for the
the resonance condition enhancements of high-order AT24] that predicts enhance-
ments of groups of ATI peaksd3-15.

Next, using some examples, we will investigate the mag-
nitude of the enhancement and for which harmonics it ap-
pears. In Fig. 9, we show harmonic spectra obtained using
numerical integratiort“exact” results) for two laser intensi-
ties that differ by only about 1%. The lower intensity
with | integer. Using our analytical solution, we can explain corresponds to the resonance conditi®) with R=1=22.
this resonance condition and, furthermore, we can predict fof he corresponding emission rates of the harmonics between
which laser and atomic parameters this enhancement is mofe= 11 andn=231 exceed by almost one order of magnitude
significant. In order to do this, we calculate analytically thethose harmonics which are generated by the slightly higher
real part of the actiorf10). The procedure is very similar to !ntensityl. The energies of the enhanced harmonics lie in the
the corresponding analysis for A[24]. The phase of each interval
term A, exp(S,) in the sum in Eq(8), up to a constant, is
given by

lp+Up_

(O]

(19

lp<nw<Ilp+2Up (22)
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Harmonic order n

N

FIG. 9. Harmonic-emission rates in dependence on the harmonic
order for two closely adjacent intensitids: 1.17x 10** W/cn? and
Ig=1.158x 10" W/c?. The results are obtained by numerical in-
tegration(“exact”). The lower intensityl g corresponds to the reso-
nance condition19) with R=1=22. For comparison, results for
Ir, obtained using the uniform approximation combined with the
analytical solutions(“UA +A"), are also presented. The photon
and the atomic ionization energy are=1.17 eV and |Ip 0 A Y
=13.6 eV, respectively. 18 19 20 21

(h+U)/o

. .. -18
Harmonic emission rate (10"~ a.u.)

N o

[ AR
22 23
as expected from the analytical theory presented in the pre-
ceding section. FIG. 10. Harmonic-emission rates as functions of the laser-field

It is interesting to observe that in the integi@), the  intensity, expressed by the parame®er (Ip+Up)/w, for the har-
numerical integration over for the case of the resonant monic ordersn=17, 23, 29, and 35, from bottom to top, respec-
intensity had to be extended to very large values in order t&Vely. The dot-dashed lines specify the results obtained using the
obtain good convergence. Namely, for the nonresonant cas#iform approximation witm=2, while the solid lines correspond
of the intensityl, it is usually sufficient to terminate the t© the results of the uniform approximation with<5 combined
integration overr at 5T, while for the resonant case, one has With the analytical results witn up to 40. The laser frequency is
to go at least one order of magnitude higlffer the calcu- ©=1.17 eV, and the ionization energy lig=13.6 eV.
lation presented, the upper limit of this integration wa$ 80
The reason is, of course, related to the significance of thevith m=2 (dot-dashed lineare approximately equal to the
orbits with long travel times at channel closings. In the inte-more precise results obtained using the uniform approxima-
gral (6), this enters through the absence at channel closingson with m=5 combined with the analytical results includ-
of oscillating factors that otherwise allow one to terminateing orbits up tom=40 (solid line). No channel-closing-
the integration at comparatively short time$28]. At chan-  related effects are visible, in agreement with the fact that the
nel closings, it is only the factor af *?Zin the integrand that  35th harmonic lies outside the interv@2). Maxima do ap-
brings about convergence. This peculiarity makes the “expear slightly belonR=22 andR=23. They are generated by
act” calculations much more time consuming and, thereforeshorter quantum orbits and will be discussed below. In the
inconvenient for practical applications. Fortunately, theother panels of Fig. 10, the characteristic resonant maxima
methods developed in this paper allow us to calculate thare clearly visible. As expected, they are particularly sharply
harmonic-emission rates within a few seconds even for thelefined for even values dR, broader for odd values. The
resonant intensities. In Fig. 9, such results for the resonardot-dashed curves, which correspond to the contributions of
intensityl g, obtained using the uniform approximation com- low m, deviate from the exact results particularly at the chan-

bined with the analytical solution&denoted by “UA+A” nel closings.
and identified by the open triang)esgree very well with the In Figs. 11 and 12, we show illustrations of the channel-
“exact” results. closing effect for higher laser intensities. One can see that,

The methods developed so far allow us to analyze théor R=30 (the curve with filled circles in Fig. 21 the en-
resonance enhancement or the channel-closing effect in motancement in the region given by E@2), which, for the
detail. In Fig. 10, we present the dependence of harmonigpresent case, corresponds to<Ii<49, is more than one
emission rates on the parameks+ (1o+Up)/w for the har-  order of magnitude. In Fig. 12, we present data similar to
monic ordersn=17, 23, 29, and 35. For the top panal ( those of Fig. 10, but for higher laser-field intensities. Ror
=35), the results obtained using the uniform approximation= 28, the 25th harmonic exhibits a sharp spike, while for the
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FIG. 11. Harmonic-emission rates as functions of the harmonic FIG. 13. Harmonic-emission rate as a function Bf(Ip
order for two closely adjacent intensitiels= 2 10 W/cn? and +Up)/w, for the harmonic orden=25. The data presented are for
I r=2.05x 10" W/cn?, where the second intensity corresponds todifferent values of the numbers; and m, in Eqg. (23): m;=5,
R=1=30. The other parameters are as in Fig. 9. m, =40 (solid curve, 162 orbijs m;=2, m,=0 (dot-dashed curve,
ten orbitg, andm; =m,=0 (dashed curve, two orbitsThe data for
33rd harmonic this is smaller, and for=43, it is completely 4, 20, and 30 orbits are also presented as denoted in the legend. The
absent. For the odd-channel closifg=29, the 25th har- other parameters are as in Fig. 10. The inset displays an enlarge-
monic exhibits a peak, the harmonins-33, a pronounced ment of the features at and below the channel closinag2,
maximum just belowR=29, and the harmonic 43, a small With the scales at the right and upper margin.
peak as well as a broad maximum at somewhat lower inten-
sity. Finally, for R=30, all three harmonics exhibit sharp VII. ANALYSIS OF HHG IN TERMS OF LONG QUANTUM
peaks. Forn=33, one again observes a well developed ORBITS: AN EXAMPLE
maximum just below the channel closing. The comparatively The formalism described in the preceding sections en-
broad maxima just below channel closings will be moreaples us to analyze HHG in terms of the contributions of
closely considered in the following section. particular quantum orbits denoted by the numbeigm.
This can be done in many different ways. In this section, we
1(10™ W em™) will present an example of this analysis. Figure 13 shows the
1.8 1.9 2 29 25th-harmonic-emission rate as a function of the laser inten-
; sity, expressed through the parameé®es (Ip+Up)/w. The

results presented are obtained using the expre¢8jdar the
43 harmonic-emission rate with
_/-\/\—\/\l\ S
‘ ‘ Z AnsEXp(iSpg) = 2 2 I\/ln,ﬁm
S m=0 g==*1
33

my
L + > > Agj&)ﬂmexrx i Sgla)ﬁm) :

m=m;+1 a,f==1

N

'y

o

o

(23

In the first sum, the matrix elemeM , 4, is calculated by
the uniform approximation, Eq14). The second sum con-
tains the contributions of the orbits with highey obtained
by using the analytical results in the first-order approxima-
0 2I8 2‘9 3‘0 tion, as explained below Eq18). The solid line in Fig. 13
(L+U)/o cor(esponds ton; =5 andm, =40, which encompasses 162
PP orbits. The dot-dashed and the dashed line has been calcu-
FIG. 12. Harmonic-emission rates as functions of the parametd@ted form; =2 (ten orbitg andm, =0 (two orbits, respec-
R=(lp+Up)/w, for the harmonic ordera=25, 33, and 43, from tively, and the second sum was disregarded in either case.
bottom to top, respectively. The corresponding laser-field intensityfhe casem;=0 comprises only the two shortest orbits
is given at the top of the figure. The other parameters are as ieBm=1-10, from—1-10, which are often, in the litera-
Fig. 10. ture, referred to ashe short orbitand the long orbit It is

. . —17
Harmonic emission rate (10" " a.u.)
—

—_
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FIG. 14. Partial amplitudgga) and(b)] and relative phasdsc) and(d)] of the quantum-orbit contributions to the harmonic-emission rate
for the 25th harmoni¢see the text for the precise definitidior various values ofn, as indicated in the panels, as functions of the parameter
R=(lp+Up)/w. The parameters are as in Fig. 18). Partial amplitudes fog=—1; (b) partial amplitudes fo=+1; (c) relative phases
for 1=m=<7; (d) relative phases for € m=24. The partial amplitudes fon=0,1 and 2 in(a) and(b) have been multiplied with a constant
factor as specified.

obvious that these two cannot reproduce the exact resulttast, the even-channel-closing spikes require at least 30 or-
which is practically very well approximated by the solid line. bits to become just only noticeable and many more to pro-
Better approximations are obtained if more orbits are in-duce the sharp spikef. the inset of Fig. 18 On the other
cluded (for example,m;=2 implies 8m=—-10,11,-11,12, hand, the features of the harmonics in the upper end of the
—12 anda= =1, which gives ten orbils plateau and in the cutoff regiofsee, e.g., Fig. 10 fon

Two features of Fig. 13 are very conspicuous: the sharp=35) require for a qualitative understanding just the two
spikes at the even channel closings- 20 andR=22, and  shortest orbits.
the strong maxima slightly beloR=21 andR=22. These In order to gain further insight into these results, we
maxima are much broader than the spikes, and as we can speesent in Figs. 14) and 14b) partial amplitudes
for R=22, they are clearly distinguished from the former. IEa:ﬂAnaﬁmexpGShaﬁm)l from the quantum-orbit decompo-
They are of the same type as those that we observed alreadition (23) for various values ofn and(a) B=—1, and(b)
in Figs. 10 and 12. Figure 13 shows that these peaks canngt=+1, and in Figs. 14&) and 14d), the relative phase
be explained in terms of just two orbitdashed curvebut  ¢z- _1—dg-,1, Where o5 is the phase of
can be qualitatively understood in terms of ten orltdet-  =,_ . 1A,,5m€XP(Shasm). From Figs. 14a) and 14b), we
dashed curve We conclude that the main contribution to see that the amplitudes fon=2 for 3=+1 andm=3 for
these peaks comes from relatively low valuesrfin con- 8= —1 have maxima slightly belolR=22. Apparently, the
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superposition of these amplitudes with those fnoms 0 and  level, the properties of the long orbits and their significance
m=1 generates the above-mentioned pronounced maxinfar the spectrum.

below R=21 andR=22. Other features of Figs. (@ and The classical cutoffs of the long orbits converge in the
14(b) that ought to be mentioned includ@) For increasing limit of long travel times toward$p+2Up . Well above this

m, the partial amplitudes decrease very slowly. This decreasenergy, the harmonic spectrum can be adequately described
is largely due to wave-function spreading, as expressed in thay the two shortest orbits, with their cutoff—the highest of

7 %2 decrease of the integrand of the integf@l. If all of  all orbits—at the energyp+3.1Up. Since orbits make
these amplitudes interfere constructively, a very strong antheir strongest contribution right before their classical cut-
sharp enhancement results. This is what happens at thdfs, we expect and we do find the most pronounced long-
spikes to be discussed beloii) The rather sudden dips of orbit effects in the region arourlg+2Up. It is here, where

the partial amplitudeBe.g., those beloiR=21 in Fig. 14a)  the extremely sharp spikes at intensities that correspond to
as well as aR=22.7 form=3] are due to destructive inter- even-channel closings are best developed. We found that an
ference of the long and the short orbits< + 1) for fixed3  extremely large number of orbitgbout 100, corresponding
andm. This is the same mechanism that generates the inteto travel times up to 25 cyclgss required to generate these
ference dips in Fig. @i ) Comparison of Figs. 14) and(b)  sharp spikes. This would seem to put the experimental rel-
with (c) and 14d) shows that for those values & where evance of the channel-closing spikes into question, in addi-
the partial amplitudes for eithgg=1 or 3= —1 assumes an tion to the unanswered question of whether these spikes are
interference dip, their relative phase jumps tyr. This  still observable after propagation.

generates the patterns that dominate Figgc)ldnd 14d), _ We identified another manh_‘estation of medium-long or-
with interesting consequences for the channel-closing spike®jts (about the ten shortest orbits, traveling approximately up
to be discussed next. to three cyclesin the harmonic-energy region arourgd

The overall linear slope- 7 of the relative phases plotted +2Up: well developed enhancements at intensities just be-
in Figs. 14c) and 14d) is the consequence of the term low the channel closings. These are quite pronounced, but
BR/2 on the right-hand side of the pha@®). Let us con- much less sharply defined than the actual channel-closing
sider the channel closinge@=20, 21, and 22, separately. Spikes. In a calculation with a not too dense intensity mesh,
According to Fig. 13, aR= 20, the 25th harmonic displays a they might easily be mistaken for the former. For their exis-
moderately sharp spike on little background. Indeed, Figstence, it does not matter whether the associated channel clos-
14(c) and 14d) show that aR= 20, the contributions ofn ing is even or odd. Whether or not these enhancements have
=1 andm=2 are each approximately out of phase, while allPractical relevance, depends on their phase-matching behav-
contributions with highem are pairwise exactly in phase. ior, which has not yet been investigated.

Next, exactly at the odd-channel closifR=21, the har- In comparison with the analogous channel-closing en-
monic amplitude of Fig. 13 does not exhibit any noticeablehancements in high-order ATI, the enhancements in HHG are
spike. Consulting Figs. 1d) and 14d), we observe that the much sharper. This can be traced to the quardity[Eq.
contributions withm=7 are approximately in phase, for 7 (21); this is thea-dependent part of the real pa20) of the
<m=13 there are various phases, while fox 14 the con-  action], which varies more rapidly as a function of the har-
tributions are pairwise exactly out of phase. Consequentlynonic ordem and the laser intensity than the corresponding
no channel-closing spike develops as expected for an odderm in the action for high-order ATl as a function of the
channel closing. Finally, foR= 22, the situation is opposite: €lectron energy24j.

the contributions with lowm (exceptm=1) are pairwise The idea that orbits with travel times between ionization
more or less out of phase, while those with highstarting ~ @nd recombination of many cycles of the driving laser field

with m~7, are precisely in phase. This generates the veryhake, under appropriate circumstances, significant contribu-
sharp spike that is visible in Fig. 13. tions to the observed harmonic-generation spectrum is very

intriguing. The question is near at hand whether this might
be an artifact of the strong-field approximation, which ne-
glects the Coulomb potential of the ion while the electron is
traveling. While a precise answer to this question is not
Many features of the Lewenstein model of high-order harknown, it is interesting to refer to Muller’s purely numerical
monic generation can be understood in terms of the propesimulations of high-order ATI on the basis of the three-
ties and the interplay of just two quantum orbits, those twodimensional time-dependent ScHioger equation/18,19.
that have the shortest travel time. These features include, obhese, of course, take into account a realistic binding poten-
the single-atom level, the existence and value of the cutoff asal. ATl spectra that come out of these calculations look
well as the smooth behavior of the spectrum above this cutmuch like spectra computed in the context of quantum orbits
off and its ragged structure below. In the collective responseand the strong-field approximation and display virtually the
depending on the focal conditions, these two orbits can bsame intensity-dependent enhancem¢h20,24. In par-
and are separated, which produces a multitude of effecticular, inspection of the time evolution of Muller’s simula-
[1,10. In this paper, we have employed various approximations has established the connection between long electron
tions, notably the uniform approximation and an analytic ap-orbits extending over many cycles of the laser field and the
proximation applicable for the orbits with very long travel intensity-dependent enhancements of groups of ATl peaks
times, in order to investigate in detail, on the single-atom[18,19. In the exact numerical simulations, the enhance-

VIIl. DISCUSSION AND CONCLUSIONS
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ments are not related to the channel closings, but rather tmanifestation of the general phenomenon of threshold

multiphoton resonances with ponderomotively upshifted Ry-anomalies that were discovered in time-independent scatter-
dberg states. This has, however, little effect on the shape aiig theory[25,26]. The intensity-dependent enhancements of

the enhancement. ATl have been analyzed in this context, t®&2,27.

Recently, the harmonic spectrum generated by a laser- Finally, we should like to reemphasize the peculiar
irradiated atom modeled by a zero-range potential has beafiechanism by which channel closings, which are genuine
calculated eXaCtly on the basis of an intricate exact analytiauantum '["ea'tur'es7 materialize in a semiclassical approxima-
solution[23]. The results agree qualitatively and, in so far astion scheme: no particular quantum orbit will show any evi-
this has been tested, quantitatively with our present and witQence of a channel closing. It is only their coherent superpo-

earlier result§28,30. This is fortunate because it removes sition that does, owing to their intensity-dependent relative
any doubts that may have remained, questioning the |eg|t'phases.

macy of the strong-field approximation in the Lewenstein

model and other less severe approximations made in the

zero-range potential modg28,30. The analytic solution of ACKNOWLEDGMENTS

Ref.[23] is set in the context of the quasienergy formalism

and does not yield immediate insight into the temporal evo- We are indebted to C. Figueira de Morisson Faria for
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