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Role of long quantum orbits in high-order harmonic generation
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Single-atom high-order harmonic generation is considered in the strong-field approximation, as formulated
in the Lewenstein model, and analyzed in terms of quantum orbits. Orbits are classified according to the
solutions of the saddle-point equations. The results of a numerical integration are compared with the saddle-
point approximation and the uniform approximation. Approximate analytical solutions for long orbits are
presented. The formalism developed is used to analyze the enhancement of high-order harmonic generation
near channel closings. The enhancements exactly at the channel closings are extremely narrow and built up by
the constructive interference of a very large number of quantum orbits. Additional broader enhancements occur
slightly below channel closings. They are generated by the interplay of a medium number of orbits.
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I. INTRODUCTION

The study of intense-laser-atom physics is of current
portance both in science and technology@1–4#. High-order
harmonic generation~HHG! and above-threshold ionizatio
~ATI ! are the two processes most studied in intense-la
atom physics. In these processes, the atomic electron ab
and emits a large number of laser photons in many differ
time orders so that the number of pathways in quantu
mechanical-state space that connect the initial and the
quantum states is enormous. The number of relevant p
ways is drastically lower from the point of view of ‘‘quantum
orbits’’ @1,4–8#. These come about in a semiclassical a
proximation of the relevant transition amplitudes, which
very well justified for the intense laser fields of intere
Quantum orbits are closely related to the space-time tra
tories of classical particles. To a given harmonic in HHG
final electron momentum in ATI, many quantum orbits co
tribute, which differ in the times when they enter the co
tinuum by ionization and the later times when they reco
bine or rescatter. The time in between ionization a
recombination can amount to very many cycles of the la
field. Quantum mechanics is hidden in this picture in tw
ways: the contributions of the various orbits are superpo
in the fashion of Feynman’s path integral, and they are co
plex to account for the tunneling nature of the initial step
the HHG and ATI processes.

Usually, and this has rendered quantum orbits an
tremely useful tool for the analysis of various aspects
HHG @1#, only very few orbits need be considered, as few
two or even one. This is so, in particular, for the upper par
the HHG plateau and its cutoff region. This paper will
concerned with situations where this is not so, which is
case for certain intensities and in the middle and the lo
energy part of the plateau. The analysis of experimental d
as well as numerical simulations in terms of quantum pa
@9# have been instrumental for the understanding of HH
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@10,11#. Recently, these techniques have been employe
generate HHG pulses with specific objectives via taylor
the driving laser pulse@12#.

One of the most interesting features of the low-ene
part of the plateau is a resonancelike enhancement: a s
variation of the laser-field intensity by just a few percent c
induce enhancements of particular harmonics of up to
order of magnitude. Such enhancements have been obse
experimentally for ATI@13–16# and also for HHG@17#, and
various theoretical arguments have been put forward for t
explanation@16–24#. Some of them@18,19# attribute these
features to the multiphoton resonance of the ground state
high-lying ponderomotively upshifted Rydberg states. An a
parently different view relates these enhancements to ch
nel closings and threshold anomalies@16,20–24#. In the pres-
ence of the laser field, the continuum states are upshifted
the ponderomotive energyUP, so that ionization can occu
only after the absorption ofn.(I P1UP)/\v photons of en-
ergy \v, where I P is the atomic ionization energy. With
increasing laser-field intensity,UP also increases, unti
n-photon ionization is no longer possible, andn11 photons
are required. We refer to this as thenth-channel closing. If
the laser intensity corresponds exactly to this channel c
ing, the electron is released in the continuum with zero d
momentum so that, during its ensuing oscillatory motion
the laser field, it can revisit its parent ion many times befo
it recombines or rescatters.

In the quantum-orbits formalism, this means there
many corresponding probability amplitudes that interfe
Constructive interference of these amplitudes will manif
itself as an enhancement in the HHG or high-order ATI sp
tra. Recently, for the case of high-order ATI in the context
the improved Keldysh model, Popruzhenkoet al. @24# have
shown analytically that the interference can be construc
at channel closings and have discussed, under which co
tions it has the most pronounced consequences. One o
aims of the present paper is to extend this analysis to HH
A complementary approach@22,23#, which is based on the
exact solutions for the HHG and ATI transition amplitudes
the case of the zero-range potential model, relates these
hancements to the well-known threshold anomalies@25,26#,
d
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which occur whenever, as a function of some parame
channels open or close.

These resonancelike features have been observed e
in nonperturbative numerical calculations of ATI spectra@27#
and for HHG using the zero-range potential model@28–31#.
It should be mentioned that strong intensity-dependent re
nant enhancements of high-order harmonics have also
predicted to occur due to one-photon or multiphoton fie
atom resonances@32–34#. They are outside the scope of th
strong-field approximation and the Lewenstein model, a
will not be considered here.

In the present paper, we will develop various approxim
tions for the calculation of high-order harmonic emissio
starting, in Sec. II, from an efficient numerical scheme ba
on the fast Fourier transform and numerical integration o
the electron travel time, up to simple analytical expressi
in Sec. V that can be used to explain the resonancelike
hancements at the channel closings. In Sec. III, we pre
the saddle-point approximation~SPA!. Special attention is
devoted to the classification of the quantum orbits, where
follow the scheme introduced for high-order ATI@24#, and to
some characteristics of the low-order harmonics that h
not been explored before. In Sec. IV, the so-called unifo
approximation is introduced. This approximation is an i
provement of the SPA, which works well also in the cuto
region of a given quantum orbit where the SPA fails@35#.
This is of crucial importance in the case, where many orb
interfere so that the spikes at the cutoffs in the harmo
spectrum that are produced by the SPA can accumulate, l
ing to erroneous results. In Sec. V, we present approxim
analytical solutions of the SPA equations, which, in a natu
way, lead to the above-mentioned classification of the qu
tum orbits. Similar analytical solutions of the saddle-po
equations were recently used to explain the enhanceme
the channel closings for ATI in Ref.@24#. These solutions are
particularly useful in the limit of long orbits, so that we mak
use of them in Sec. VI to consider the resonant enhancem
of HHG at the channel closings. Both the simple analyti
formulas and various numerical results that explain this
fect will be presented. In Sec. VII, further examples th
illustrate the power of the developed formalism will be d
cussed.

II. HARMONIC-EMISSION RATE FOR ZERO-RANGE
POTENTIAL

For a linearly polarized laser field with periodT
52p/v, thenth-harmonic-emission rate~in a.u.! @4,36# is

wn5
1

2p S nv

c D 3

uTnu2, Tn5E
0

Tdt

T
einvtd~ t !, ~1!

where Tn is the T-matrix element andd(t) is the time-
dependent dipole matrix element. We will consider a mo
chromatic field with the vector potential

A~ t !5A~ t !êx , A~ t !5A cosvt. ~2!
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We use the strong-field approximation@37# and its realization
in the Lewenstein model@5# as well as a zero-range bindin
potential@29,38,39#, and approximated(t) @40# by

d~ t !'E dt0^c0~ t !uxGL
(1)~ t,t0!Vuc0~ t0!&

52 i E d3q^c0uxuq1A~ t !&

3E
2`

t

dt0eiS(q;t,t0)^q1A~ t0!uVuc0&, ~3!

where GL is the Volkov propagator in the length gaug
V(r )5(2p/k)d(r )(]/]r )r is the zero-range potentia
^r uc0(t)&5c0(r )exp(iIPt)5@k/(2p)#1/2exp(2kr1iIPt)/r is
the atomic ground state for the zero-range potential in
absence of the laser field,I P5k2/2 is the ionization energy
and

S~q;t,t0!52E
t0

t

dt8$@q1A~ t8!#2/21I P% ~4!

is the quasiclassical action. The matrix elements in the dip
matrix element~3! are

^quVuc0&52
k1/2

2p
, ^c0uxuq&5

2iqxk
1/2

p~q21k2!2
. ~5!

The integral overd3q in Eq. ~3! can be solved using the
method of Ref.@41#. For the field~2!, the condition“qS
50 yields the momentumqsx5A(sinvt02sinvt)/@v(t2t0)#,
qsy5qsz50, for which the action is stationary. As the fin
result, we obtain

wn5
I P

8p2 S nv

cUP
D 3U E

0

Tdt

T
einvt

3E
0

` dt

t3/2

~k1cosvt !exp~ iSs!

@~k1cosvt !21g2#2U2

, ~6!

whereUP5A2/4 is the ponderomotive energy,g5A2I P/A2

is the Keldysh parameter,k5qsx /A, and the stationary ac
tion in the exponent isSs[S(qs ;t,t0). The integral over the
travel timet5t2t0 in Eq. ~6! is solved by numerical inte-
gration. The harmonic spectrum is then obtained by the
Fourier-transform method.

III. SADDLE-POINT APPROXIMATION

The harmonic-emission rate~6! has been obtained by ap
plying the saddle-point method to thethree-dimensionalin-
tegral over d3q. Application of the SPA to thefive-
dimensionalintegral overd3q, dt, and dt0 yields a much
simplified expression@4,7,8#: The stationarity conditions tha
the first derivatives]/]q, ]/]t, and ]/]t0 of the exponent
S(q;t,t0)1nvt in the integrand be equal to zero lead to t
following system of equations for the variablesk5qx /A, w
5vt, andw05vt0:
7-2
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k~w2w0!1sinw2sinw050, ~7a!

~k1cosw!25gn
2 , ~7b!

~k1cosw0!252g2, ~7c!

where gn
25(nv2I P)/(2UP). The five-dimensional integra

then reduces to a sum over solutions (ks ,ws ,w0s) of the
system~7!, and we get

wn5
1

nv S v

c D 3S g

2p D 2U(
s

Anse
iSnsU2

, ~8!

where

An~k,w,w0!5
k1cosw

~w2w0!Fn
1/2

, ~9!

Sn~k,w,w0!5~2UPk
22UP2I P!

w2w0

v

2
UP

2v
~sin 2w2sin 2w0!1nw, ~10!

andFn is determined by the determinant

S ]2Sn

]w]w0
D 2

2
]2Sn

]w0
2

]2Sn

]w2
5S 4UP

v D 2Fn~k,w,w0!

w2w0
,

so that

Fn~k,w,w0!5~k1cosw!~k1cosw0!@~k21sinw sinw0!

3~w2w0!2sin~w2w0!#. ~11!

In the rate~8!, we used the notationAns[An(ks ,ws ,w0s),
and similarly forSn andFn .

Introducing the solution fork5k(w,w0) from Eq. ~7a!
into Eqs.~7b! and~7c!, we obtain a system of two equation
which can be solved numerically for the complex variablesw
andw0. In Fig. 1, examples of these solutions are presen
The left-hand panels display Imw0 as functions of Rew0, the
right-hand panels Imw as functions of Rew. The harmonic
ordern changes as a continuous parameter along each cu
The corresponding values ofn, are indicated at the beginnin
and at the end of each particular solution. Also indicated
the values ofn for which different solutions approach eac
other most closely. These values correspond to the cuto
the harmonic spectrum that is generated by this partic
pair of solutions@see Fig. 4~a!#.

To characterize the various solutions of the saddle-p
equations~7!, we use a multiindex consisting of the thre
numbersabm, similarly as in Ref.@24#. This notation is
explained in detail in Sec. V, but we summarize it in Fig.
Briefly, for return timest within one cycle of the field, e.g.
0<t,T, there are infinitely many pairs of solutions, whic
can be ordered by their start timet0. For 2(m11/2)T<t0
,2(m21/2)T, wherem50,1,2, . . . , there are two pairs o
solutions. The pair having the longer~shorter! travel time
06341
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t2t0 carries the indexb521 (b511). Each pair again
consists of two orbits with slightly different travel times~this
is well known from the Lewenstein model@5# of HHG!, and
we discriminate the longer from the shorter orbit by the
dex a, as indicated. The indexm gives the approximate
length of the travel time in multiples of the laser period,m
5@(t2t0)/T# ~with @x# the largest integer<x). For m50,
there is only one pair of solutions, havingb521. In addi-
tion, there is one solution with a very short travel tim
which we denote by L~see the top panels of Fig. 1!. The
solution L is responsible for the low-order harmonic spe
trum, it does not contribute to the harmonics withn
.I P/v. For all other solutions, the imaginary part of th
variablew5vt is very small, while its real part lies in the
interval @0,2p#.

FIG. 1. Solutions of the saddle-point equations for HHG by
hydrogen atom~ionization energyI P513.6 eV) with a linearly po-
larized laser field having the intensity 231014 W/cm2 and the pho-
ton energy 1.17 eV. The solutions are labeled by the numbersabm
~cf. Fig. 2! and by the corresponding harmonic ordersn, as ex-
plained in the text. The solutions, whose contributions have to
discarded after their respective cutoffs are indicated by das
lines.
7-3
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FIG. 2. Examples of the notationabm used to label the solu
tions of the saddle-point equations~7!. The solid, long-dashed, dot
dashed, and dotted curves in the right-hand part of the figure sp
the return times for the four pairs of orbits with the shortest tra
times. In the left-hand part of the figure, the counterpart of e
curve identifies the corresponding start times. The harmonic ph
energy in multiples ofUP is plotted on the ordinate, and horizont
lines ~at constant energy! relate start times and return times for th
respective orbits. There are infinitely many further solutions t
have start timest0 beyond the left-hand margin of the figure. The
maximal return energies converge toI P12UP. The curves have
been calculated for the same laser and atomic parameters
Fig. 1.

FIG. 3. Comparison of the harmonic spectrum obtained us
numerical integration with the spectrum obtained using the sad
point approximation. Harmonic-emission rates~in atomic units! are
presented as functions of harmonic order for the same laser
atomic parameters as in Fig. 1. According to Refs.@5,42#, the cutoff
is at nmaxv51.325I P13.173UP572.3v. The small filled circles
represent the ‘‘exact’’ results obtained using Eq.~6!, while the open
symbols~connected by dashed lines! give the results of the saddle
point approximation~8! including four ~triangles! or 20 ~squares!
pairs of orbits. The contribution of the single solution L from Fig.
is denoted by stars.
06341
In Fig. 3, we present the harmonic-emission rates as fu
tions of the harmonic order for the laser and atomic para
eters of Fig. 1. The results indicated by small filled circl
are obtained using Eq.~6! ~we refer to them as ‘‘exact’’!,
while the large open symbols identify results obtained by
SPA formula~8!. Open triangles~squares! exhibit the results
that include 4~20! pairs of the SPA solutions. For the low
order harmonics, both include the contribution of the so
tion L. The contribution of solely the solution L is denote
by the stars. Forn.I P/v, the contribution of the solution L
has been dropped. The agreement of the ‘‘exact’’ and the S
results is very good, except forn}I P/v.

In general, very few SPA solutions suffice to reprodu
the ‘‘exact’’ spectrum. The pair of solutions61 –10 is essen-
tially the only one to contribute to the part of the plate
preceding the cutoff and still dominates the remainder of
plateau, with the other solutions only making significant co
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FIG. 4. Harmonic-emission rates for individual orbits as fun
tions of the harmonic order for the same parameters as in Fig
Each curve corresponds to one particular term of the sum~8!, and is
obtained using the saddle-point solutions that are presented in
1. The curves are denoted by the corresponding numbersabm and
by the cutoff harmonic ordersn. The contributions presented by th
dashed lines in panel~a! must be discarded after the cutoff. In pan
~b!, the partial harmonic-emission rates near the critical pointnv
5I P are presented. In panel~a!, the solutionsabm are not shown
below this critical point, except for 1 –10.
7-4
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tributions near their respective cutoffs@43#. In Fig. 4, we
present the harmonic spectrum that results from partic
solutionsabm via the corresponding terms of the sum~8!.
The solutions are depicted in the various panels of Fig. 1.
the top panels, the cutoff is atn572. After the cutoff, the
contribution of the solutionabm51 –10 ~viz., the short or-
bit! must be discarded, so that forn.72, only the solution
from 21 –10 contributes to the spectrum. The situation
similar for the other pairs of solutions presented in Fig.
The solutions 111, from21 –11, and 112 correspond to th
solid lines and the cutoffs atn538, 56, and 42, respectively
The solutions2111, 1–11, and2112, denoted by dashe
lines, have to be discarded after these cutoffs. An analo
Fig. 4~a! for high-order ATI can be found in Ref.@45#.

The sharp spikes at these cutoffs suggest that the SPA
near these values ofn. This also shows, though less drama
cally, in the discrepancy between the ‘‘exact’’ and the S
results of Fig. 3 around the cutoffs. At and in the vicinity
these critical points, the uniform-asymptotic-expans
method to be explained below in Sec. IV gives adequ
results@35#.

More problematic is the critical point atnv5I P, for
which the partial contribution of each saddle-point soluti
approaches zero, cf. Fig. 4~b!. Indeed, the SPA results fo
values ofn'I P/v are not in good agreement with the9ex-
act9 results as can be seen in Fig. 3. From the right-hand
panel of Fig. 1, we see that the solution 1–10 exhibits,
actly at the pointI P/v511.6, an avoided crossing with th
solution L. The solution L cannot be classified by the nu
bersabm. For low harmonics, it gives the main contributio
to the harmonic spectrum, while fornv.I P, it has to be
discarded~the dashed L-line in Fig. 4!. The solutionsabm
can be continued into the regionnv,I P. This is shown in
Fig. 4~b!. The solutions represented by solid lines~except
solution L! must be discarded from the sum~8! for nv
,I P. The saddle-point solutions of Fig. 1 that correspond
the results of Fig. 4~b! can be identified by their onset at th
harmonic ordern51. The corresponding values of the retu
time Imw become large forn,I P/v, and are responsible fo
the swastikalike shape of the curve Imw5 f (Rew).

In order to get further insight into the physical meaning
the saddle-point solutions presented above, we will insp
the corresponding quantum orbits@4,7,8,42#. Solving the
Newton equation for the electron in the laser field, we
x(t)5x(t0)1@v(t0)2A(t0)#(t2t0), wherex(t0) andv(t0)
are the initial electron coordinate and velocity, respective
With v(t0)5qsx1A(t0) and x(t0)50, the orbitsx(t) are
determined by the~complex! solutions of the saddle-poin
equations~7!. We can relate their real parts to actual electr
orbits traveled in space and time. They are

xns~wR!5
A

v
Re@sinwR2sinw0s1ks~wR2w0s!#,

~Rew0s<wR<Rews! ~12!

as a function of the real timewR . That is, the electron is born
at the end of the tunnel at the positionxns(Rew0s) then it
moves in the laser field, and at the time Rews /v, it returns to
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the position of the ion, where it recombines emitting thenth
harmonic. Notice that whilexns(w0s)5xns(ws)50 for the
complex saddle-point solutionsw0s andws , bothxns(Rew0s)
and xns(Rews) are nonzero. However,xns(Rews) is very
close to zero, in contrast toxns(Rew0s), which typically is of
the order of a few atomic units and specifies the end of
tunnel.

In Fig. 5, we display these orbits for various values of t
harmonic ordern and for various saddle-point solutionss
[abm. In the left-hand panel, the shortest orbitabm
51 –10 is depicted for the harmonicsn59, 31, and 53, as
well as the solution L forn59. Forn59, both the solution
L ~solid curve! and the orbitabm51 –10 ~dashed curve!
describe an electron that is born at the end of the tunnel
moves straight back to the ionic core, never leaving
atom, but still acquiring enough energy to emit the nin
harmonic. All of the other orbits depicted in Fig. 5 corr
spond to the tunneling-recombination or three-step mode
HHG. Along the longer orbits (m51), the electron revisits
the atomic core more than once before it recombines.

For highly charged ions, the low-order part of the spe
trum (n,I P/v) can comprise hundreds of harmonics, whi
have been dubbed nontunneling harmonics, since their g
eration takes place entirely inside the atom@46#. For this
case, a classical picture has been formulated that is ab
describe this process. The corresponding orbits look m
like the orbits for n59 in the left-hand panel of Fig. 5
However, their detailed shape as well as the ‘‘surfing mec

FIG. 5. Real parts of the quantum orbits, given by Eq.~12! and
obtained using the saddle-point solutions of Fig. 1 for the 9th, 3
and 53rd harmonics. The orbits are labeled by the correspon
numbersabm and by the harmonic ordern. The nontunneling low-
harmonic-order orbits in the left-hand panel are denoted by
symbol L and the harmonic ordern59. In the right-hand panel, the
harmonic orders presented are 9~dotted curve!, 31 ~dashed curve!,
and 53~solid curve! for abm51 –11, andn59 ~solid curve! and
n531 ~dot-dashed curve! for abm52111. In the right-hand
panel, notice that, for givenabm, the n59 orbits approach the
atomic core from the opposite side and with a smaller slope t
those that produce the higher harmonicsn531 andn553.
7-5
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A66, 063417 ~2002!
nism’’ described in Ref.@46# are contingent on the presenc
and shape of the atomic potential. In the present case,
remarkable that the ninth harmonic still yields to the SPA a
allows the identification of quantum orbits, even though
generation appears to be entirely in the quantum regime

IV. THE UNIFORM APPROXIMATION

As we have shown, the SPA fails for harmonic orders n
the cutoff when the two solutions of a given pair approa
each other~see Fig. 1!. After some critical point, which is
very close to the cutoff energy, one of the solutions of t
pair must be discarded because its contribution to
harmonic-emission rate starts to diverge. This solution is
physical: a continuous deformation of the original real m
tidimensionalt,t0 ,q integration contour into complex spac
will never reach it. In our notation, the solutionsabm for
which a52b have to be dropped after the cutoff. The p
sition nc of the mentioned critical point can be defined in
mathematically more rigorous way by the condition for t
so-called anti-Stokes transition@35#

ImSnc,1bm5ImSnc ,21bm , ~13!

where Sns is given by Eq. ~10! with s[abm, m
50,1,2, . . . for b521, andm51,2, . . . , forb51. In the
theory of asymptotic expansion of integrals@47,48#, there is
a method—the uniform approximation—that works in t
case of coalescing saddle points. In our case of two coal
ing points, this method leads to an expression that cont
Airy functions. Not going into details, we here reproduce t
final result obtained using this uniform approximatio
@35,47–49#

Mn,bm5 (
a561

An,abmexp~ iSn,abm!

5~6pS2!1/2 exp~ iS11 ip/4!

3FA2

Az
Ai ~2z!1 i

A1

z
Ai 8~2z!G , ~14!

wherez5(3S2/2)2/3, and the quantities

2S65Sn,1bm6Sn,21bm ,

2A65An,1bm6 iAn,21bm ~15!

are related to the actions~10! and the weights~9! of the
saddle points. Equation~14! is valid for n,nc . For n.nc ,
the argumentz must be replaced byz exp(i2bp/3). That way,
the proper branch of the Airy functions is selected, wh
drops the unphysical saddle point. Also, forn.nc , Mn,bm
should change its sign. With the help of the asymptotics
the Airy functions@50#, it is possible to verify thatMn,bm
indeed reduces to the sum of the two saddle-point contr
tions for n,nc , or to only one of them forn.nc . Hence,
06341
is
d
s

r
h

s
e
-

-

c-
ns

f

u-

the standard saddle-point representation~8! is retrieved when
the saddle points are sufficiently well separated.

Figure 6 demonstrates the quality of the uniform appro
mation. The artifacts of the saddle-point approximati
around the cutoffs have been eliminated@Fig. 6~a!#, and the
uniform-approximation results are closer to the exact res
@Fig. 6~b!#. In addition to the cutoff region, particular im
provements are noticeable aroundn5(I P12UP)/v'47
where, as we shall see below, the cutoffs for higher value
m accumulate, introducing significant error in the SPA r
sults. For low harmonics, the uniform approximation do
not give adequate results, due to the different nature of
critical point atnv5I P, where all partial contributions ac
cumulate and tend to zero.

FIG. 6. ~a! Comparison of the partial harmonic-emission rat
obtained using the uniform approximation~filled circles!, Eq. ~14!,
with the saddle-point results summed overa, for three different
values of the numbersbm, as indicated in the figure. The spect
with m51 have been shifted down for better visibility.~b! Com-
parison of the harmonic spectrum obtained using numerical inte
tion ~‘‘exact’’ results! with the spectrum obtained using the unifor
approximation with 4 and 20 pairs of solutions taken into accou
presented similarly as in Fig. 3. The atomic and laser parameter
the same as in Figs. 1–5.
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V. APPROXIMATE ANALYTICAL SOLUTIONS

An approximate solution of the system~7! can be ob-
tained by supposing that the momentumk5(sinw0
2sinw)/(w2w0) is small. This is true for long travel time
t5Re(w2w0)/v. We will consider the casenv.I P, for
which Eq. ~7b! reduces tok1cosw56gn , gn.0. For the
‘‘ 2’’ sign and for wP@0,2p#, we have two solutions

w5~12a!p1a arccos~2gn2k!, a561, ~16!

where, for realk and uku,gn , we havewa511P(p/2,p#
andwa521P@p,3p/2).

If we shift these solutions byap, we have cosw5
2k(w,w0)2gn→ cos(w1ap)52k(w1ap,w01ap)2gn ,
which reduces exactly to the initial equationk1cosw5
6gn , with the ‘‘1’’ sign. Therefore, the second set of th
solutions is obtained by shifting the solution~16! by ap,
with a simultaneous shift ofw0 by ap. This is because the
linearly polarized field ~2! satisfies A(t1T/2)52A(t),
which impliesd(t1T/2)52d(t) for the dipole moment. In-
cluding these solutions in the calculation of the emiss
rates~8! yields a factor of 12exp(inap). It makes sure tha
no even harmonics are produced. Since, however, only o
integer harmonics are physically relevant, we can just d
card this second set of solutions and multiply the rate~8! by
a factor of 4.

Equation~7c!, after expansion in powers ofk, reduces to
cos(Rew0)52k/A11g2, Imw05arcsinhg. The general so-
lution is Rew056arccos(2k/A11g2)22rp, r 50,61,
62, . . . . Theprincipal value of the arccos function in th
expression for Rew0 is between 0 andp/2 for k<0 and
betweenp/2 andp for k.0. Expanding the arccos functio
in powers ofk, we get the final result@for Re(w2w0).0]

w05bS p

2
1

k

A11g2D 22mp1 iarcsinhg, b561,

~17!

wherem51,2, . . . forb511, andm50,1,2, . . . for b5
21. Letting k(0)50 in Eqs. ~16! and ~17!, we obtain the
zeroth-order approximationsw (0) and w0

(0) . Introducing
these solutions into the expression fork, we obtain the first-
order approximation

k(1)5
bA11g22aA12gn

2

2mp
, ~18!

which holds for 2mp@1. Replacingk by k(1) in Eqs. ~16!
and ~17! gives the required approximate analytical soluti
for w and w0. In Eq. ~18!, the factorA12gn

2 is real if nv
<I P12UP. Therefore, the above approximate result can
applied for I P,nv<I P12UP, i.e., at the beginning and in
the middle part of the HHG plateau. A better first-order a
proximation can be obtained by calculatingk(1) from Eq.
~7a! with w05w0

(0) andw5w (0), and substituting thek(1) so
obtained into the relationsw0

(1)5w0
(0)1bk(1)/A11g2 and

w (1)5w (0)1ak(1)/A12gn
2.
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A comparison of these approximate solutions with tho
presented in Fig. 1 is shown in Fig. 7. One can see that,
increasingm, the analytical solutions become a good a
proximation, as expected. A comparison of the correspond
harmonic-emission rates with each other is shown in Fig
Already for m52, the harmonic-emission rates obtain
from the approximate analytical solutions are a good
proximation. Form.2, one can safely use this approxim
tion. A characteristic feature of these approximate spectr
that the sharp peaks, where the SPA fails@35#, are shifted to
higher values ofn ~see the right-hand panels in Fig. 8!. With
the increase ofm, this shift becomes smaller. The exact p
sitions of these peaks can be calculated. In Refs.@42,44# it
was found that, for our present parametersbm5210, 11,
211 one has, respectively,ncv53.173UP11.325I P,
1.542UP10.884I P, 2.404UP11.102I P, which for the pa-
rameters of Figs. 1–8 corresponds tonc572.28, 37.91,

FIG. 7. Comparison of the approximate~solid lines! and the
exact ~dashed and dot-dashed lines! solutions of the saddle-poin
equations for the parameters of Fig. 1. The approximate solut
are presented with the harmonic ordern as a continuous paramete
in the interval 11.65I P/v,n<(I P12UP)/v547.4. For the solu-
tions abm52111 and2112, the harmonic order is less than 3
and 42, respectively.
7-7
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A66, 063417 ~2002!
55.90. For higher values ofm, the position of the peaks i
lower ~higher! for b511 (21). The values ofnc(b,m) are
arranged according tonc(21,m).nc(21,m11), nc(1,m)
,nc(1,m11), m50,1,2, . . . . Therefore, we expect that fo
I P/v,n,nc(1,1), i.e., 13<n<37 in our present case, w
can safely use the SPA. Form>2, the analytical solutions
presented in this section can be used. If we calculate
harmonic-emission rates using the uniform approximat
@35# for, say,m<4, and the approximate analytical solutio
for m.4, then we can obtain a harmonic spectrum up ton
545 that should be in excellent agreement with the ‘‘exa
results. This method will be used in the following sections
consider the enhancement of HHG at channel closings,
which the contribution of high values ofm has to be taken
into account.

VI. ENHANCEMENT OF HIGH-ORDER HARMONIC
GENERATION AT CHANNEL CLOSINGS

In the Introduction, we mentioned that the resonance
enhancement of HHG is observed at intensities that sa
the resonance condition

R5
I P1UP

v
5 l , ~19!

with l integer. Using our analytical solution, we can expla
this resonance condition and, furthermore, we can predic
which laser and atomic parameters this enhancement is m
significant. In order to do this, we calculate analytically t
real part of the action~10!. The procedure is very similar to
the corresponding analysis for ATI@24#. The phase of each
term An exp(iSn) in the sum in Eq.~8!, up to a constant, is
given by

FIG. 8. Comparison of the partial harmonic-emission rates
tained using the approximate analytical solutions of the saddle-p
equations~solid lines! with those presented in Fig. 4~a! that are
obtained using the exact solutions~dashed and dot-dashed lines!.
The numbersabm are indicated next to the corresponding curv
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ReSn1FAn
522mRp1bR

p

2
1

UP

v
agnA12gn

2

1~n2R!@~12a!p1a arccos~2gn!#1a
p

4
.

~20!

We have neglected contributions of the order (2mp)21. The
termap/4 comes from the phase ofFs

21/2 in Eq. ~8! because
the dominant term inF is

F}~k1cosw!~k1cosw0!sinw sinw0~w2w0!

}~2gn!~2 ibg!aA12gn
2bA11g22mp,

which is proportional toa. We can now investigate, unde
which conditions the contributions of different quantum o
bits abm add constructively, generating the enhancemen

Two orbits abm and a8b8m8 interfere constructively
when Dn(abmua8b8m8)[ReSn,abm2ReSn,a8b8m81(a
2a8)p/452rp, with r integer. From Eq.~20!, it is clear
that Dn(abm11uabm)52Rp so that orbits with the same
a andb and differentm add constructively if the resonanc
condition ~19! is satisfied. Suppose now thatR5 l . Then,
from Eq. ~20!, we haveDn(a1mua21m)5 lp, so that, for
fixed a and withR5 l , the contributions of differentb ~that
is, the two pairs of orbits with start times within the sam
cycle of the field! add constructively forl even and destruc
tively for l odd. The situation is more complicated for orbi
with oppositea. Suppose again that the resonance condit
~19! is fulfilled. In this case, we haveDn(1bmu21bm)
52(n2 l )@arccos(2gn)2p#12UPgnA12gn

2/v1p/2.
Therefore, for fixedb and for R5 l , the contributions of
oppositea ~that is, the long and the short orbits of a give
pair! add constructively only for those particular harmonicsn
that render the quantity

Cn5
n2 l

p
arccos~2gn!1

UP

v

gn

p
A12gn

21
1

4
~21!

integer. The quantitygn is defined below Eqs.~7!. This con-
dition is very similar to the corresponding condition for th
enhancements of high-order ATI@24# that predicts enhance
ments of groups of ATI peaks@13–15#.

Next, using some examples, we will investigate the m
nitude of the enhancement and for which harmonics it
pears. In Fig. 9, we show harmonic spectra obtained us
numerical integration~‘‘exact’’ results! for two laser intensi-
ties that differ by only about 1%. The lower intensityI R
corresponds to the resonance condition~19! with R5 l 522.
The corresponding emission rates of the harmonics betw
n511 andn531 exceed by almost one order of magnitu
those harmonics which are generated by the slightly hig
intensityI. The energies of the enhanced harmonics lie in
interval

I P,nv,I P12UP ~22!

-
nt

.
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ROLE OF LONG QUANTUM ORBITS IN HIGH-ORDER . . . PHYSICAL REVIEW A 66, 063417 ~2002!
as expected from the analytical theory presented in the
ceding section.

It is interesting to observe that in the integral~6!, the
numerical integration overt for the case of the resonan
intensity had to be extended to very large values in orde
obtain good convergence. Namely, for the nonresonant
of the intensity I, it is usually sufficient to terminate th
integration overt at 5T, while for the resonant case, one h
to go at least one order of magnitude higher~for the calcu-
lation presented, the upper limit of this integration was 80T).
The reason is, of course, related to the significance of
orbits with long travel times at channel closings. In the in
gral ~6!, this enters through the absence at channel clos
of oscillating factors that otherwise allow one to termina
the integration at comparatively short timest @28#. At chan-
nel closings, it is only the factor oft23/2 in the integrand that
brings about convergence. This peculiarity makes the ‘‘
act’’ calculations much more time consuming and, therefo
inconvenient for practical applications. Fortunately, t
methods developed in this paper allow us to calculate
harmonic-emission rates within a few seconds even for
resonant intensities. In Fig. 9, such results for the reson
intensityI R , obtained using the uniform approximation com
bined with the analytical solutions~denoted by ‘‘UA1A’’
and identified by the open triangles! agree very well with the
‘‘exact’’ results.

The methods developed so far allow us to analyze
resonance enhancement or the channel-closing effect in m
detail. In Fig. 10, we present the dependence of harmo
emission rates on the parameterR5(I P1UP)/v for the har-
monic ordersn517, 23, 29, and 35. For the top panel (n
535), the results obtained using the uniform approximat

FIG. 9. Harmonic-emission rates in dependence on the harm
order for two closely adjacent intensities:I 51.1731014 W/cm2 and
I R51.15831014 W/cm2. The results are obtained by numerical i
tegration~‘‘exact’’ !. The lower intensityI R corresponds to the reso
nance condition~19! with R5 l 522. For comparison, results fo
I R , obtained using the uniform approximation combined with t
analytical solutions~‘‘UA 1A’’ !, are also presented. The photo
and the atomic ionization energy arev51.17 eV and I P

513.6 eV, respectively.
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with m52 ~dot-dashed line! are approximately equal to th
more precise results obtained using the uniform approxim
tion with m55 combined with the analytical results includ
ing orbits up to m540 ~solid line!. No channel-closing-
related effects are visible, in agreement with the fact that
35th harmonic lies outside the interval~22!. Maxima do ap-
pear slightly belowR522 andR523. They are generated b
shorter quantum orbits and will be discussed below. In
other panels of Fig. 10, the characteristic resonant max
are clearly visible. As expected, they are particularly shar
defined for even values ofR, broader for odd values. Th
dot-dashed curves, which correspond to the contribution
low m, deviate from the exact results particularly at the cha
nel closings.

In Figs. 11 and 12, we show illustrations of the chann
closing effect for higher laser intensities. One can see t
for R530 ~the curve with filled circles in Fig. 11!, the en-
hancement in the region given by Eq.~22!, which, for the
present case, corresponds to 11,n,49, is more than one
order of magnitude. In Fig. 12, we present data similar
those of Fig. 10, but for higher laser-field intensities. ForR
528, the 25th harmonic exhibits a sharp spike, while for

ic

FIG. 10. Harmonic-emission rates as functions of the laser-fi
intensity, expressed by the parameterR5(I P1UP)/v, for the har-
monic ordersn517, 23, 29, and 35, from bottom to top, respe
tively. The dot-dashed lines specify the results obtained using
uniform approximation withm<2, while the solid lines correspond
to the results of the uniform approximation withm<5 combined
with the analytical results withm up to 40. The laser frequency i
v51.17 eV, and the ionization energy isI P513.6 eV.
7-9
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A66, 063417 ~2002!
33rd harmonic this is smaller, and forn543, it is completely
absent. For the odd-channel closingR529, the 25th har-
monic exhibits a peak, the harmonicsn533, a pronounced
maximum just belowR529, and the harmonic 43, a sma
peak as well as a broad maximum at somewhat lower in
sity. Finally, for R530, all three harmonics exhibit shar
peaks. Forn533, one again observes a well develop
maximum just below the channel closing. The comparativ
broad maxima just below channel closings will be mo
closely considered in the following section.

FIG. 11. Harmonic-emission rates as functions of the harmo
order for two closely adjacent intensities,I 5231014 W/cm2 and
I R52.0531014 W/cm2, where the second intensity corresponds
R5 l 530. The other parameters are as in Fig. 9.

FIG. 12. Harmonic-emission rates as functions of the param
R5(I P1UP)/v, for the harmonic ordersn525, 33, and 43, from
bottom to top, respectively. The corresponding laser-field inten
is given at the top of the figure. The other parameters are a
Fig. 10.
06341
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VII. ANALYSIS OF HHG IN TERMS OF LONG QUANTUM
ORBITS: AN EXAMPLE

The formalism described in the preceding sections
ables us to analyze HHG in terms of the contributions
particular quantum orbits denoted by the numbersabm.
This can be done in many different ways. In this section,
will present an example of this analysis. Figure 13 shows
25th-harmonic-emission rate as a function of the laser int
sity, expressed through the parameterR5(I P1UP)/v. The
results presented are obtained using the expression~8! for the
harmonic-emission rate with

(
s

Ansexp~ iSns!5 (
m50

m1

(
b561

Mn,bm

1 (
m5m111

m2

(
a,b561

Anabm
(1) exp~ iSnabm

(1) !.

~23!

In the first sum, the matrix elementMn,bm is calculated by
the uniform approximation, Eq.~14!. The second sum con
tains the contributions of the orbits with higherm, obtained
by using the analytical results in the first-order approxim
tion, as explained below Eq.~18!. The solid line in Fig. 13
corresponds tom155 andm2540, which encompasses 16
orbits. The dot-dashed and the dashed line has been c
lated form152 ~ten orbits! andm150 ~two orbits!, respec-
tively, and the second sum was disregarded in either c
The casem150 comprises only the two shortest orbi
abm51 –10, from21 –10, which are often, in the litera
ture, referred to asthe short orbitand the long orbit. It is

ic

er

ty
in

FIG. 13. Harmonic-emission rate as a function ofR5(I P

1UP)/v, for the harmonic ordern525. The data presented are fo
different values of the numbersm1 and m2 in Eq. ~23!: m155,
m2540 ~solid curve, 162 orbits!, m152, m250 ~dot-dashed curve,
ten orbits!, andm15m250 ~dashed curve, two orbits!. The data for
4, 20, and 30 orbits are also presented as denoted in the legend
other parameters are as in Fig. 10. The inset displays an enla
ment of the features at and below the channel closing atR522,
with the scales at the right and upper margin.
7-10
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FIG. 14. Partial amplitudes@~a! and~b!# and relative phases@~c! and~d!# of the quantum-orbit contributions to the harmonic-emission r
for the 25th harmonic~see the text for the precise definition! for various values ofm, as indicated in the panels, as functions of the param
R5(I P1UP)/v. The parameters are as in Fig. 10.~a! Partial amplitudes forb521; ~b! partial amplitudes forb511; ~c! relative phases
for 1<m<7; ~d! relative phases for 6<m<24. The partial amplitudes form50,1 and 2 in~a! and~b! have been multiplied with a constan
factor as specified.
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obvious that these two cannot reproduce the exact re
which is practically very well approximated by the solid lin
Better approximations are obtained if more orbits are
cluded ~for example,m152 implies bm5210,11,211,12,
212 anda561, which gives ten orbits!.

Two features of Fig. 13 are very conspicuous: the sh
spikes at the even channel closingsR520 andR522, and
the strong maxima slightly belowR521 andR522. These
maxima are much broader than the spikes, and as we ca
for R522, they are clearly distinguished from the form
They are of the same type as those that we observed alr
in Figs. 10 and 12. Figure 13 shows that these peaks ca
be explained in terms of just two orbits~dashed curve! but
can be qualitatively understood in terms of ten orbits~dot-
dashed curve!. We conclude that the main contribution
these peaks comes from relatively low values ofm. In con-
06341
lt,
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trast, the even-channel-closing spikes require at least 30
bits to become just only noticeable and many more to p
duce the sharp spike~cf. the inset of Fig. 13!. On the other
hand, the features of the harmonics in the upper end of
plateau and in the cutoff region~see, e.g., Fig. 10 forn
535) require for a qualitative understanding just the tw
shortest orbits.

In order to gain further insight into these results, w
present in Figs. 14~a! and 14~b! partial amplitudes
u(a561Anabmexp(iSnabm)u from the quantum-orbit decompo
sition ~23! for various values ofm and ~a! b521, and~b!
b511, and in Figs. 14~c! and 14~d!, the relative phase
fb5212fb511, where fb is the phase of
(a561Anabmexp(iSnabm). From Figs. 14~a! and 14~b!, we
see that the amplitudes form52 for b511 andm53 for
b521 have maxima slightly belowR522. Apparently, the
7-11
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D. B. MILOŠEVIĆ AND W. BECKER PHYSICAL REVIEW A66, 063417 ~2002!
superposition of these amplitudes with those fromm50 and
m51 generates the above-mentioned pronounced max
below R521 andR522. Other features of Figs. 14~a! and
14~b! that ought to be mentioned include:~i! For increasing
m, the partial amplitudes decrease very slowly. This decre
is largely due to wave-function spreading, as expressed in
t23/2 decrease of the integrand of the integral~6!. If all of
these amplitudes interfere constructively, a very strong
sharp enhancement results. This is what happens at
spikes to be discussed below.~ii ! The rather sudden dips o
the partial amplitudes@e.g., those belowR521 in Fig. 14~a!
as well as atR522.7 form53] are due to destructive inter
ference of the long and the short orbits (a561) for fixedb
andm. This is the same mechanism that generates the in
ference dips in Fig. 6.~iii ! Comparison of Figs. 14~a! and~b!
with ~c! and 14~d! shows that for those values ofR, where
the partial amplitudes for eitherb51 or b521 assumes an
interference dip, their relative phase jumps by6p. This
generates the patterns that dominate Figs. 14~c! and 14~d!,
with interesting consequences for the channel-closing spi
to be discussed next.

The overall linear slope2p of the relative phases plotte
in Figs. 14~c! and 14~d! is the consequence of the ter
bRp/2 on the right-hand side of the phase~20!. Let us con-
sider the channel closingsR520, 21, and 22, separatel
According to Fig. 13, atR520, the 25th harmonic displays
moderately sharp spike on little background. Indeed, F
14~c! and 14~d! show that atR520, the contributions ofm
51 andm52 are each approximately out of phase, while
contributions with higherm are pairwise exactly in phase
Next, exactly at the odd-channel closingR521, the har-
monic amplitude of Fig. 13 does not exhibit any noticea
spike. Consulting Figs. 14~c! and 14~d!, we observe that the
contributions withm<7 are approximately in phase, for
,m&13 there are various phases, while form*14 the con-
tributions are pairwise exactly out of phase. Consequen
no channel-closing spike develops as expected for an o
channel closing. Finally, forR522, the situation is opposite
the contributions with lowm ~except m51) are pairwise
more or less out of phase, while those with highm, starting
with m'7, are precisely in phase. This generates the v
sharp spike that is visible in Fig. 13.

VIII. DISCUSSION AND CONCLUSIONS

Many features of the Lewenstein model of high-order h
monic generation can be understood in terms of the pro
ties and the interplay of just two quantum orbits, those t
that have the shortest travel time. These features include
the single-atom level, the existence and value of the cutof
well as the smooth behavior of the spectrum above this
off and its ragged structure below. In the collective respon
depending on the focal conditions, these two orbits can
and are separated, which produces a multitude of eff
@1,10#. In this paper, we have employed various approxim
tions, notably the uniform approximation and an analytic a
proximation applicable for the orbits with very long trav
times, in order to investigate in detail, on the single-at
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level, the properties of the long orbits and their significan
for the spectrum.

The classical cutoffs of the long orbits converge in t
limit of long travel times towardsI P12UP . Well above this
energy, the harmonic spectrum can be adequately descr
by the two shortest orbits, with their cutoff—the highest
all orbits—at the energyI P13.17UP . Since orbits make
their strongest contribution right before their classical c
offs, we expect and we do find the most pronounced lo
orbit effects in the region aroundI P12UP . It is here, where
the extremely sharp spikes at intensities that correspon
even-channel closings are best developed. We found tha
extremely large number of orbits~about 100, corresponding
to travel times up to 25 cycles! is required to generate thes
sharp spikes. This would seem to put the experimental
evance of the channel-closing spikes into question, in ad
tion to the unanswered question of whether these spikes
still observable after propagation.

We identified another manifestation of medium-long o
bits ~about the ten shortest orbits, traveling approximately
to three cycles! in the harmonic-energy region aroundI P
12UP : well developed enhancements at intensities just
low the channel closings. These are quite pronounced,
much less sharply defined than the actual channel-clo
spikes. In a calculation with a not too dense intensity me
they might easily be mistaken for the former. For their ex
tence, it does not matter whether the associated channel
ing is even or odd. Whether or not these enhancements h
practical relevance, depends on their phase-matching be
ior, which has not yet been investigated.

In comparison with the analogous channel-closing
hancements in high-order ATI, the enhancements in HHG
much sharper. This can be traced to the quantityCn @Eq.
~21!; this is thea-dependent part of the real part~20! of the
action#, which varies more rapidly as a function of the ha
monic ordern and the laser intensity than the correspond
term in the action for high-order ATI as a function of th
electron energy@24#.

The idea that orbits with travel times between ionizati
and recombination of many cycles of the driving laser fie
make, under appropriate circumstances, significant contr
tions to the observed harmonic-generation spectrum is v
intriguing. The question is near at hand whether this mi
be an artifact of the strong-field approximation, which n
glects the Coulomb potential of the ion while the electron
traveling. While a precise answer to this question is n
known, it is interesting to refer to Muller’s purely numeric
simulations of high-order ATI on the basis of the thre
dimensional time-dependent Schro¨dinger equation@18,19#.
These, of course, take into account a realistic binding po
tial. ATI spectra that come out of these calculations lo
much like spectra computed in the context of quantum or
and the strong-field approximation and display virtually t
same intensity-dependent enhancements@16,20,24#. In par-
ticular, inspection of the time evolution of Muller’s simula
tions has established the connection between long elec
orbits extending over many cycles of the laser field and
intensity-dependent enhancements of groups of ATI pe
@18,19#. In the exact numerical simulations, the enhan
7-12
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ments are not related to the channel closings, but rathe
multiphoton resonances with ponderomotively upshifted R
dberg states. This has, however, little effect on the shap
the enhancement.

Recently, the harmonic spectrum generated by a la
irradiated atom modeled by a zero-range potential has b
calculated exactly on the basis of an intricate exact anal
solution@23#. The results agree qualitatively and, in so far
this has been tested, quantitatively with our present and w
earlier results@28,30#. This is fortunate because it remove
any doubts that may have remained, questioning the le
macy of the strong-field approximation in the Lewenste
model and other less severe approximations made in
zero-range potential model@28,30#. The analytic solution of
Ref. @23# is set in the context of the quasienergy formalis
and does not yield immediate insight into the temporal e
lution of harmonic emission. It interprets the intensit
dependent spikes in intense-laser-atom processes as a s
,

n,

ks

t.

.

,’’
th
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fe
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manifestation of the general phenomenon of thresh
anomalies that were discovered in time-independent sca
ing theory@25,26#. The intensity-dependent enhancements
ATI have been analyzed in this context, too@22,27#.

Finally, we should like to reemphasize the pecul
mechanism by which channel closings, which are genu
quantum features, materialize in a semiclassical approxi
tion scheme: no particular quantum orbit will show any e
dence of a channel closing. It is only their coherent super
sition that does, owing to their intensity-dependent relat
phases.
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