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Parametric excitations of trapped ions in a linear rf ion trap
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The parametric resonant behavior of ions inside a linear rf ion trap is studied both theoretically and experi-
mentally. Theoretically, the resonant motion of ions inside an ideal ion trap is described by approximating the
trapping rf field as a harmonic pseudopotential with the ions being excited by an additional quadrupolar ac
voltage. The resulting damped Mathieu equation is studied and the regions of resonant instability are predicted
by investigating the solutions. Experimentally, the parametric excitation of Mgs is observed by subjecting
the cloud of trapped ions to an additional quadrupolar ac field. The various ion motion resonances are detected
through the disappearance of the laser-induced fluorescence signal. Weak damping is introduced by the pres-
ence of a low-pressure buffer gas. The experimental results are compared with the theoretical predictions.
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I. INTRODUCTION to the quadrupolar rf excitation field in their wofk6] for a
quadrupole mass filter. They also compared their experimen-

rf ion traps have been used for a wide range of applicatal results with the theoretical mapping of the stability dia-
tions, such as mass spectrometry, laser spectrom&gy, gram. Collings and Dougld47] measured the resonances of
frequency standardg3], ion-molecule collisiong4], laser the trapped ions for=0, n=1 to n=6, through fragmen-
cooling and ion crystallizatiof5—9], to name a few. The tation of protonated reserpine in a linear rf ion trap.
detailed knowledge of the trapped ion motion is crucial for In this paper we present our work on the parametric reso-
many and important to all of the applications. For ion ma-nances of the trapped ions in a linear rf ion trap. We obtain
nipulation and detection, dipole excitatiphO] is the usual an analytical description of the parametric resonance in the
choice. However, recently several research groups have alson trap by approximating the rf trapping potential with the
demonstrated excitation of the trapped ion resonant motiopseudopotential model, in which the ions inside the trap see
under the influence of an auxiliary ac quadrupolar field ap-a harmonic potential well. When the auxiliary ac voltage is
plied in addition to the rf trapping potentifl1-17. This  applied, the ions are subject to an additional force. We also
kind of resonance of the trapped ions is an example of parancorporate damping into the equations of motion and show
metric resonancgl8,19. that the parametric excitation is described by the canonical

So far, most of the research effort in this area has beeMathieu equation. The Mathieu equation, commonly used in
concentrated on the traditional three-dimensici@®) Paul  the ion trapping theory to descriieapping of the ions, is
trap configuration. Using perturbation theory, Sudakoal.  applied here to describe thegarametric excitationof the
[11] derived that the quadrupole excitation angular frequentrapped ions. As a result, the parameters of the ac quadrupole
ciesw] can be described by excitation field determine the position of the operating point
on the stability diagram of the secular motion. We found that
for parametric resonance to occur the excitation frequency
must belong to one of the frequency intervals. The bound-
aries of these frequency intervals vary with the amplitude of
where Q is the frequency of the rf trapping potential;  the excitation. The boundaries of orders 1 and 2 were mea-

Q
wp:F|r+ﬁ|,r=o,r1,i2,..., (1)

=1,2,... is theorder of the parametric excitatior is a  sured and compared with the ideal theoretical predictions
dimensionless fractional number that is determined by thénade in this paper. . _ . .
operating parameters of the trapand 3 determine the fre- The detection method used in our experiments is optical.

quencies of ion micromotion oscillations in the absence offhe ion cloud inside the trap is overlapped with a frequency
the parametric excitation voltage. Experimentally, Vedel andloubled laser beam, and the ion motions under the paramet-
Vedel [12] observed the quadrupolar excitation of the ionsric excitations are detected by observing the change of the
forr=0, n=1 and 2. Resonances of the ion cloud for up tolaser-induced fluorescencelF).

n=10 were observed by Razst al.[13]. The same group of
researchers identified the nonlinear collective oscillations of
an ion cloud in a Paul trap, and gave a detailed numerical
analysis to support their conclusiofi4]. Later on, Chu Figure 1 shows the linear rf trap used for these measure-
et al. [15] reported their observations of higher-order reso-ments. The trap consists of four identical cylindrical rods, 6
nances for up to =4 and the high-order-combined oscilla- mm in diameter. Each rod is divided into three equal 5-cm-
tions. Although there are many things in common for the ionlong segments for dc manipulation. All segments of the same
motions in a 3D Paul trap and a linear rf ion trap, there araod have the same rf voltage. The quadrupole rf trapping
also distinctive differences. Konenkat al. discussed and potential is created by applying rf voltage to the rods sym-
verified the prediction of the modified stability diagram due metrically as shown in the figure. The distance from the axis

Il. ION TRAP
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both stable and unstable behaviors. The stability of the solu-
tion is determined by the values of the parameteend g.

The stability of the ion motion is best illustrated by the well-
known[23,24 stability (a,q) diagram. The stable regions in
the (@,q) plane are utilized for ion trapping. The,Qq) pa-

(b) rameters used for trapping the ions in the measurements pre-
sented in this paper fall into the lowest stable region.

2 Along thez direction, the ions are confined by the applied
Veewren Voisn dc voltages, as shown in Fig(d. In the central region of the
trap, the dc potential is constant, therefore, the ion motion

along thez axis is approximated by that of a free ion.

FIG. 1. Schematic representation of the trég. Cross-section The pseudopotential modg25] is a useful simplification
view of the ion trap. Each opposing pairs of the trap electrodes arélesigned to describe the secular motion of the trapped ions.
wired together for the same rf voltage. The §) plane is chosen It can be described as the effective potential of the time
so that each axis goes from the center of the trap area to one elegdveraged ponderomotive force of an rf field. The pseudopo-
trode. (b) Longitudinal view of the trap. The two end electrodéee  tential, denoted by¥(x,y), can be written in terms of the
cylinder on the left and the dish on the riglare also shown(c) A spatial part of the time dependent rf potentiglx,y) as
typical dc voltage distribution along theaxis to provide longitu-
dinal ion confinement.

- -

e ap\% (a2
Vxy)=—-— 5) +(&—> : ©)
of the ion trap to the surface of each rodrig=2.61 mm, 4mQ y
chosen to minimize the anharmonicity of the trapping poten-
tial [20]. When combining this formula and E€R), the pseudopoten-

First let us consider the trapping in the direction perpendial of the trapping quadrupole rf field takes the form
dicular to the trap electrodes. We choose the coordinates as

shown in Fig. 1, placing the axis along the longitudinal D
direction of the trap. The time dependent rf potential around W (x,y)=—(X*+y?), (6)
the center of the trap is then "o
x%—y? whereD, the potential depth, is defined by
B(x,y;t)=[U—VPPcog Ot)] o2 2
o
_ eV
where — V(PPcost) is the applied rf signal, the operating D= m )
0

rf frequency isQ)/27=7.37 MHz, U is the quadrupole dc

offset, usually 0 in all our measurements. This rf potential | ) ) )
provides the radial confinement of the ions. with V, being the amplitude of the rf voltage. The potential

The equations of motion of a particle of massand depth of the trap is the potential difference between the trap

chargee can be described by the canonical Mathieu differ-CeNter and trap electrodes. _
ential equation, With the pseudopotential model, a trapped ion sees an

effective simple harmonic potential. The Hamiltonian of the
d2u trapped ion in the radial direction is, therefore, that of a
F+[a—2q cog27)Ju=0, (3)  simple harmonic oscillator. The secular frequency is
n

with u=x ory, and _ V2e Vv, _ eve?)
Wg 2 2"
mQrg \/mero

®

4eU
— (49)

AT AT 20
0 Iil. PARAMETRIC RESONANCE WITH DAMPING

2e\/(P-P) In order to study the parametric resonance of the trapped
=— (4b) ions, the trapping parameters, the rf and dc voltages and, as a
mr() result the secular frequeneys and the trapping characteris-
tic values @,q), are kept the same throughout the measure-
Ot ments. Then an additionaluxiliary ac excitation voltage is
=5 (40 applied to the trap electrodes. This excitation voltage pro-
duces a quadrupolar ac electric field in the trapping region
Therefore, the ion motion im andy directions is described because it is applied to the trap rods in the same way as the
by the solutions of the Mathieu equation, which is well stud-rf trapping voltagegsee Fig. 18)]. This parametric excita-
ied [21,22. The solutions of the Mathieu equation exhibit tion potential is given by the following expression:
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— V(p_p)COi wt) 6 T T T
szp—z(xz_yz)! (9)
2rg

where — V¥ P cost) is the applied driving voltage. 0.2 _

The equation of motion for a trapped ion in the harmonic
pseudopotentia(6) under the influence of the quadrupolar
excitation(9) and in the presence of a dissipative force is o

d2X+2 X w12 =0 10
a2 KOs wg[1—2ecog wt)]x=0, (10

where the term 2wy describes the damping which is pro-
portional to the speed of the ion. Substitutions )
=g~ *osty(t) and wt/2= 7 transform this equation into the
canonical form of the Mathieu equation,

FIG. 2. The unstable regions for various valuesuof

d?u
—+[a’'—2q'cog27)Ju=0, 11 *
an [ q'cos27)] (11) X(t):Ae[M—K(ZwS/w)](wt/Z) E Creir(wt/2)
r=—o
with the following parameters: o
) ) +Be—[,u,+K(2ws/w)](wt/2) 2 Cre—ir(wt/Z)’ (13)
w =—00
a'= ) (1-x?), (129 '
5 whereA,B are constants determined by the initial conditions;
€ a—e 205 (12D w is the characteristic exponent of the solution of the un-
q 1— k2 ' damped Mathieu equation with parametgfsanda’, and is

real and positiver can be even or odd depending on where
V) the values of &',9") I_ie on the_ @',q') plane. N
e=—1 (120 The second term in Eq13) is always stable for positive
2mriw? real u,x. Instability arises from the first term whep
>k(2ws/w). Figure 2 displays thea,q’) diagram for
One notices that the characteristic vahleis dependent on Vvarious values ofu. The contours corresponding to a fixed
the damping factok, while g’ is not; andq’ is proportional ~ value of u are at the same time the boundaries that encircle
to the strength of external excitation. the unstable region when the damping constant«is
Clearly, the motion of a trapped ion is again described by= u(w/2ws).
the Mathieu equation, even though the trapped ions are sub- The vertices of the unstable regions touch #ieaxis in
ject to the influence of an additional ac voltage, the parametthe case of undamped parametric excitation, indicating that
ric excitation voltageV . The secular motion of the trapped an arbitrarily small excitation amplitude can produce expo-
ions exhibits stable or unstable behavior depending on theentially increasing oscillations. In the case of damped para-
values of the characteristic parameter's and q’. For a  metric excitation the regions of instability move away from
given trapping potential, i.e., a given secular frequency, thesthe a’ axis. Since the value ofl’ is proportional to the
characteristic values are only determined by the applied par&@pplied excitation voltage, the excitation voltage necessary
metric excitation voltage. When the characteristic values falto parametrically excite the trapped ions increases as the
into the unstable regions on tha’(q’) plane, parametric damping is increased. The lowest possible excitation strength
resonance occurs. Therefore, the unstable regions in the for a given order of parametric resonanceand fixed
(a’,q’) plane are the parametric resonance regions. For outamping is called thecritical strength eff“t). The critical
measurements it was found that the damping faetm very  strength increases as the order of the parametric resonance
small, and consequently parametric resonance of the trappeacreases. For a given excitation strength, only the lower

ions occurs in the vicinity of @,/w=n% n=123..., orders of the parametric resonance can occur; the higher the
same as in the case of no damping. In the following, theexcitation strength, the more orders of resonance will be pro-
numbern is called the order of parametric resonance. duced.

Combining the variable substitution aft)=e~““stu(t) Figure 2 also illustrates that the frequency ranges in

with the general form of the unstable solutions of Mathieuwhich the resonances occur are narrower for largethe
equation, for an operating point o&{,q’) lying in the un-  width of the frequency range can be evaluated by the width
stable area, the solution for the original equation of motionof the boundary plots, which asymptotically approach the
can be written as boundaries with tha’ value beinga;, andb/,.
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TABLE . Coefficients of the approximatiosc™ = C,,«*".
150/

n From Eq.(16) From Ref.[13
q [13] ; >
1 2 2.0
2 32~1.414 2.03
3 33/18~1.165 1.83
4 $4/18~1.030 1.73
5 2 R/225~0.945 1.73 e
6 20/4050~0.887 ’H‘
i A
In all our measurements, the applied excitation frequen-
cies satisfy|w/2— w<ws, therefore, u—«k(2ws/w)~pu ‘ | ’ J ‘
—nNk is a very good approximation. With this approximation D TP— 375mm

and the properties of isp- plots of the Mathieu equation
[21], the damping factor in the neighborhood of titl order (o)
of parametric resonance can be written as

FIG. 3. Schematic diagram of the optical detection setap.
Different orientations of the UV beantb) Detection arrangement.

(ay—a’)(a’—by)

2 2
:(nK) =
K 4n?

(14
IV. EXPERIMENTAL METHODOLOGY

w reaches a maximum whea' is the midpointa’=(a; The parametric resonance features of the trapped ions
+b})/2. This point is the vertex of the unstable region in thewere investigated by detecting the change of the LIF signal
(a’,q') plane. Thus, for a given value of , the maximum  ©Of the trapped Mg ions.

possible damping constant for which the resonance will  The Mg" ions are generated by electron bombardment of
still occur is given by the neutral thermal Mg atoms. This is realized by a pair of

atom oven and electron gun mounted perpendicularly to each
u al—b other and to the trap electrodes. The atom oven and the elec-
o n (15  tron gun are located outside one group of the outer segments
n 4n? of the trap electrodes. Upon generation, the *Migns are

first cooled by the presence of helium buffer gas at a pressure
Equation (15) will be used later to estimate the damping of about 10°° Torr. Then due to the lower dc voltages ap-
factors. The series expansionsajf andb,, for smallq” are  plied on the central trap segments along thaxis, these
known[26], and can be used to obtain the simplified exprestrapped ions move to the central region of the ion trap. In the
sion for the critical excitation strength. Since, for smeJl ~ central region, the trapped ions are overlapped by a UV
q'~€n2, and a,—b/,=A,q'"+0(q’") we obtain the beam at a wavelength of 280 nm. As shown in Fi¢a)3
expression for the critical strength of théh order paramet- there are two ways to overlap the UV beam with the ion

K=

ric excitation, cloud, one is on axis, the other is off axis. For the results
presented, the on-axis configuration is used. The UV beam is
. 4n2\ 1n obtained by frequency doubling a cw ring dye lagéoher-
eﬁ”‘”%(—) ?=Cnf<1/“. (16)  ent 699 in an external buildup cavitj27].
n

Figure 3b) illustrates how the ions and their optical sig-
] o ) ] nals are detected. The secondary electron multigB&M) is
The resulting coefficient€, are compiled in Table I. The moynted inside the vacuum chamber close to and perpen-
values listed in the second column of Table I are the result ofjicylar to the trap electrodes on one side of the trap. On the
a computer simulatiofi13]. _ ~ opposite side, the flange with a quartz window, through
The difference of the two roots of the quadratic equationyhich the optical signals are collected on to the photomulti-
(14) gives the widthAa’ of the unstable region across thé plier tube (PMT), is mounted in the same manner as the

axis for a fixed value of excitation strength, SEM. They are centered to the central segments of the trap
electrodes. The SEM is used throughout this work for ion
16n%x? counting upon their ejection from the trap; and the PMT is
Aa’'=(a,—by) \/ 1~ (2 —b)? used to detect the LIF signal of the trapped ions.
nown Parametric resonance of the trapped ions can be observed
1602 by monitoring _the chan_ge of the LIF_signaI. Whe_n t_he ap-
=Aa|,_o\/1- ———. (17) plied parametric excitation frequency is swept, while its am-
(Aa'[,—o)? plitude is kept constant, at some point the ions of proper

massm and charges will undergo parametric resonance with
Apparently, the width decreases as the damping increasesthe applied signal. As a result, the ions are heated and their
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FIG. 4. LIF signal obtained from parametric excitation of the 1
Mg* ions. The order of parametric excitationns=1. The peak- EIG. 5. The calculated and measured boundariesifol. and

to-peak value of the trapping potential\éPP) =287 V. n=2.

Doppler linewidth is increased. For a small enough excita- )

tion strength, the ions will not be lost from the trap. In that Metric resonance occurs, can be mapped out and the mea-
case, when the parametric resonance condition is removegured values are drawn on the’(q’) plane for each

the ions will quickly regain the temperature they had beforg’€sonance order.

the excitation through collisions with the buffer gas. The

pondition fOI‘. parametric resonance in Fhis paper was that the V. RESULTS AND DISCUSSION

ions were ejected from the trap. In this case the LIF signal

drops to the background level. The UV radiation power was Using the method described in the preceding section, the
only a few uW and was detuned far from resonance. Thislower and upper boundaries of the unstable regions were
was done to avoid strong laser coolif2j7] and to investi- obtained. Figure 5 shows the results of such measurements
gate the buffer gas cooling effects unobstructed. To checkogether with the calculated results. The shaded areas are the
this condition, the frequency of the UV light was scannedcalculated unstable regions for=1 andn=2. The mea-
across the transition to verify that the LIF signal visually sured boundaries are obtained for different buffer pressures.
appears symmetric across the transition since laser coolinghe no buffer gas condition refers to the situation when there
introduces asymmetry. To further minimize the cooling ef-is no helium gas in the chamber, with the background pres-
fects, the laser frequency was purposely detuned away frorsure below 10° mbar. The other boundaries are obtained
resonance by more than 2 GHz during the measurements. with a helium buffer gas pressure around110"°® mbar.

For each parametric excitation orderthere is a range of A number of conclusions can be drawn from the results.
frequencies under which the trapped ions can be parametri-rom the two measured boundaries for different buffer gas
cally excited. Measurements are made to find this range fopressures for the resonance orderl, it is verified that the
eachn. The experimental procedure is as follows. For astronger the damping, the narrower the unstable region, i.e.,
given trapping potential, the secular frequensy is esti- the frequency range in which the parametric excitation can
mated. Then the relatiod=2w¢/n is used to find the fre- occur.
guency around which parametric resonance will occur for a There are large deviations between the measured and cal-
particularn. Then the parametric excitation frequencies areculated boundaries, since the measured boundaries are wider
swept from lower to higher values. The frequency, at whichthan their theoretical predictions for each ordeHowever,
the LIF signal decreases sharply, indicates the lower boundhis can be explained as follows. Since we have classified the
ary of the parametric resonance. To obtain the frequency dftable solutions as those which have a finite amplitude no
the upper boundary, the parametric excitation frequencies amgatter how large it is, this ideal case does not match the
scanned in the opposite direction, i.e., from higher to lowerexperimental situation exactly. In a real experiment, as soon
values. It should be noted that since for these measuremeras the amplitude of the ion motion is larger than the size of
the parametric drive was strong enough to eject the ions frorthe trapping region, the ions will be lost. This regime is then
the trap, the ion trap had to be reloaded between subsequemstable in a finite-size trap while being classified as stable
scans. The number of ions in the trap throughout the megrom the Mathieu equation standpoint. Therefore, this geo-
surements was around 4.0 metrical effect accounts for theushionaround the theoreti-

Figure 4 is an example obtained from two of such oppo-cally calculated stability boundary.
site scans. It shows that for any applied parametric excitation It was not possible for us to map out the boundaries of
frequency within the range of 842w/27<911 kHz, the parametric excitation on thea(,q’) plane for orders higher
trapped ions will be under resonance. thann=2. This was caused by the the frequency response of

With this procedure repeated for various applied excita-our present trap circuit, which was designed to isolate un-
tion amplitudes, the boundaries of the regions, where parawvanted sources of the parametric excitation voltage and the
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TABLE II. Critical parametric excitation voltages. These are the  TABLE Ill. Damping parametersc for the measured bound-
minimum excitation voltage amplitudes needed to start any paraaries.
metric resonance for different excitation orderg.(

n Pressurémbau) K
n FrequencykHz V. (mV
quencykHz) c (MV) 1 <10°° 2.33x10°°
1 860.75 16.5 1 1.1x10°° 6.45<10 4
2 436.5 625.8 2 1.3x10°° 1.20x10°3
3 291 1333 3 1.3x10°° 7.09x10°4

rf trapping potential. For the same reason, the lower brancHecay rated’=2«ws for the two trap geometries. In our
of the boundary fon=1 was not mapped out further. linear trap we observe decay rdfg,~20 s * under high

In addition to the frequency scans as described in th&acuum conditions. Comparing this number to the corre-
preceding section, we have also obtained the values of theponding high vacuum values ®f.e=0.25 s and I gqq
critical excitation voltage/, necessary to observe the para- =580 s * reported in Ref[13] for the symmetrical trap, we
metric resonance. Such measurements were done by keepiﬁgtice that our value falls in between those values. When the
the excitation frequency constant in the middle of the narbuffer gas was present we observed an increased decay rate
rowest obtained interval of parametric resonance frequer@f I'p#~600 s *. These differences can be attributed to the
cies. Then the amplitude of the excitation was gradually indifferent trap geometries as well as differences in theoretical
creased until the LIF signal dropped indicating the onset ofreatment of the experimental results.
the parametric resonance. These critical excitation voltages
are listed for several ordersin Table Il. As expected, the VI. CONCLUSIONS
critical excitation voltage increases with the order of reso-

nance We have demonstrated that the damped parametric exci-

The effective damping factok can also be evaluated tation of the trapped ions inside a linear ion trap can be
ping described by a set of Mathieu equations. Parametric reso-

gi?fr:réﬁ gﬁ;faelrn -ZisbIergéguﬁsse;ﬁg‘at::rgg;?igaégcei?agg;f%rrqance of the trapped ions occurs over a range of frequencies
. gas p P . } for each resonance order. For each order this frequency range
ders(n) using Eq.(15). The results are summarized in Table

Il The values of the damping barameterare not ver varies with the amplitude of the excitation. The regions of
: ping p y instabilty on the &’,q") plane correspond to the parametric

different for the three orders of parametric resonance that WE conance. We experimentally mapped the actual boundaries

observed. The damping factor increases by a factor of 30_4§r the regions where the parametric resonance occurs in an

Whggzv\v/?eltnglocrjgCgr?eudﬁzriffgee::nt behaviors of the odd and rf linear ion trap. We found that the Mathieu equation de-
- TeP scription of the parametric resonance reproduces the ob-

even resonances in their measurements of parametric resge o pehavior quite well. However, the theoretically pre-
nance in the symmetrical rf Paul tr@3]. They found that dicted unstable regions are somewhat narrower than the

the critical voltages for odd and even orders of the parameté perimental ones. We attribute this observation to the finite

ric resonance behave in a way that suggests that the valuesa e of the ion trap, since the theoretical treatment outlined in

:Eg 23?np?%;?§tﬁ;3i':ertﬁg ;%ZﬁeorrSZ[SeOfV?easvrg:gdﬁétW;g}this work does not contain information about the amplitude
9 ' &t the induced oscillations.

to observe this difference. While for our linear rf trap the

values ofk for ordersn=1,3 are closer to each other than to

« for n=2, the difference is not nearly as drastic as observed

in Ref.[13]. Also, the even order has a larger valuexof This work was supported by the Welch foundation, Grant
It is also of interest to discuss the values of the oscillationNo. A-1546.
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