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Parametric excitations of trapped ions in a linear rf ion trap

X. Zhao, V. L. Ryjkov, and H. A. Schuessler
Department of Physics, Texas A & M University, College Station, Texas 77843

~Received 1 August 2002; published 26 December 2002!

The parametric resonant behavior of ions inside a linear rf ion trap is studied both theoretically and experi-
mentally. Theoretically, the resonant motion of ions inside an ideal ion trap is described by approximating the
trapping rf field as a harmonic pseudopotential with the ions being excited by an additional quadrupolar ac
voltage. The resulting damped Mathieu equation is studied and the regions of resonant instability are predicted
by investigating the solutions. Experimentally, the parametric excitation of Mg1 ions is observed by subjecting
the cloud of trapped ions to an additional quadrupolar ac field. The various ion motion resonances are detected
through the disappearance of the laser-induced fluorescence signal. Weak damping is introduced by the pres-
ence of a low-pressure buffer gas. The experimental results are compared with the theoretical predictions.
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I. INTRODUCTION

rf ion traps have been used for a wide range of appli
tions, such as mass spectrometry, laser spectrometry@1,2#,
frequency standards@3#, ion-molecule collisions@4#, laser
cooling and ion crystallization@5–9#, to name a few. The
detailed knowledge of the trapped ion motion is crucial
many and important to all of the applications. For ion m
nipulation and detection, dipole excitation@10# is the usual
choice. However, recently several research groups have
demonstrated excitation of the trapped ion resonant mo
under the influence of an auxiliary ac quadrupolar field
plied in addition to the rf trapping potential@11–17#. This
kind of resonance of the trapped ions is an example of p
metric resonance@18,19#.

So far, most of the research effort in this area has b
concentrated on the traditional three-dimensional~3D! Paul
trap configuration. Using perturbation theory, Sudakovet al.
@11# derived that the quadrupole excitation angular frequ
ciesv r

n can be described by

v r
n5

V

n
ur 1bu,r 50,61,62, . . . , ~1!

where V is the frequency of the rf trapping potential;n
51,2, . . . is theorder of the parametric excitation;b is a
dimensionless fractional number that is determined by
operating parameters of the trap;r andb determine the fre-
quencies of ion micromotion oscillations in the absence
the parametric excitation voltage. Experimentally, Vedel a
Vedel @12# observed the quadrupolar excitation of the io
for r 50, n51 and 2. Resonances of the ion cloud for up
n510 were observed by Razviet al. @13#. The same group o
researchers identified the nonlinear collective oscillations
an ion cloud in a Paul trap, and gave a detailed numer
analysis to support their conclusions@14#. Later on, Chu
et al. @15# reported their observations of higher-order res
nances for up tor 54 and the high-order-combined oscilla
tions. Although there are many things in common for the
motions in a 3D Paul trap and a linear rf ion trap, there
also distinctive differences. Konenkovet al. discussed and
verified the prediction of the modified stability diagram d
1050-2947/2002/66~6!/063414~7!/$20.00 66 0634
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to the quadrupolar rf excitation field in their work@16# for a
quadrupole mass filter. They also compared their experim
tal results with the theoretical mapping of the stability d
gram. Collings and Douglas@17# measured the resonances
the trapped ions forr 50, n51 to n56, through fragmen-
tation of protonated reserpine in a linear rf ion trap.

In this paper we present our work on the parametric re
nances of the trapped ions in a linear rf ion trap. We obt
an analytical description of the parametric resonance in
ion trap by approximating the rf trapping potential with th
pseudopotential model, in which the ions inside the trap
a harmonic potential well. When the auxiliary ac voltage
applied, the ions are subject to an additional force. We a
incorporate damping into the equations of motion and sh
that the parametric excitation is described by the canon
Mathieu equation. The Mathieu equation, commonly used
the ion trapping theory to describetrapping of the ions, is
applied here to describe theparametric excitationof the
trapped ions. As a result, the parameters of the ac quadru
excitation field determine the position of the operating po
on the stability diagram of the secular motion. We found th
for parametric resonance to occur the excitation freque
must belong to one of the frequency intervals. The bou
aries of these frequency intervals vary with the amplitude
the excitation. The boundaries of orders 1 and 2 were m
sured and compared with the ideal theoretical predicti
made in this paper.

The detection method used in our experiments is opti
The ion cloud inside the trap is overlapped with a frequen
doubled laser beam, and the ion motions under the para
ric excitations are detected by observing the change of
laser-induced fluorescence~LIF!.

II. ION TRAP

Figure 1 shows the linear rf trap used for these meas
ments. The trap consists of four identical cylindrical rods
mm in diameter. Each rod is divided into three equal 5-c
long segments for dc manipulation. All segments of the sa
rod have the same rf voltage. The quadrupole rf trapp
potential is created by applying rf voltage to the rods sy
metrically as shown in the figure. The distance from the a
©2002 The American Physical Society14-1
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ZHAO, RYJKOV, AND SCHUESSLER PHYSICAL REVIEW A66, 063414 ~2002!
of the ion trap to the surface of each rod isr 052.61 mm,
chosen to minimize the anharmonicity of the trapping pot
tial @20#.

First let us consider the trapping in the direction perp
dicular to the trap electrodes. We choose the coordinate
shown in Fig. 1, placing thez axis along the longitudina
direction of the trap. The time dependent rf potential arou
the center of the trap is then

f~x,y;t !5@U2V(p-p)cos~Vt !#
x22y2

2r 0
2

, ~2!

where2V(p-p)cos(Vt) is the applied rf signal, the operatin
rf frequency isV/2p57.37 MHz, U is the quadrupole dc
offset, usually 0 in all our measurements. This rf poten
provides the radial confinement of the ions.

The equations of motion of a particle of massm and
chargee can be described by the canonical Mathieu diff
ential equation,

d2u

dh2
1@a22q cos~2h!#u50, ~3!

with u5x or y, and

a5ax52ay5
4eU

mr0
2V2

, ~4a!

q5qx52qy5
2eV(p-p)

mr0
2V2

, ~4b!

h5
Vt

2
. ~4c!

Therefore, the ion motion inx andy directions is described
by the solutions of the Mathieu equation, which is well stu
ied @21,22#. The solutions of the Mathieu equation exhib

FIG. 1. Schematic representation of the trap.~a! Cross-section
view of the ion trap. Each opposing pairs of the trap electrodes
wired together for the same rf voltage. The (x, y) plane is chosen
so that each axis goes from the center of the trap area to one
trode.~b! Longitudinal view of the trap. The two end electrodes~the
cylinder on the left and the dish on the right! are also shown.~c! A
typical dc voltage distribution along thez axis to provide longitu-
dinal ion confinement.
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both stable and unstable behaviors. The stability of the s
tion is determined by the values of the parametersa andq.
The stability of the ion motion is best illustrated by the we
known @23,24# stability (a,q) diagram. The stable regions i
the (a,q) plane are utilized for ion trapping. The (a,q) pa-
rameters used for trapping the ions in the measurements
sented in this paper fall into the lowest stable region.

Along thez direction, the ions are confined by the applie
dc voltages, as shown in Fig. 1~c!. In the central region of the
trap, the dc potential is constant, therefore, the ion mot
along thez axis is approximated by that of a free ion.

The pseudopotential model@25# is a useful simplification
designed to describe the secular motion of the trapped i
It can be described as the effective potential of the ti
averaged ponderomotive force of an rf field. The pseudo
tential, denoted byC(x,y), can be written in terms of the
spatial part of the time dependent rf potentialf(x,y) as

C~x,y!5
e

4mV2 F S ]f

]x D 2

1S ]f

]y D 2G . ~5!

When combining this formula and Eq.~2!, the pseudopoten
tial of the trapping quadrupole rf field takes the form

C~x,y!5
D̄

r 0
2 ~x21y2!, ~6!

whereD̄, the potential depth, is defined by

D̄5
eV0

2

mV2r 0
2

, ~7!

with V0 being the amplitude of the rf voltage. The potent
depth of the trap is the potential difference between the t
center and trap electrodes.

With the pseudopotential model, a trapped ion sees
effective simple harmonic potential. The Hamiltonian of t
trapped ion in the radial direction is, therefore, that of
simple harmonic oscillator. The secular frequency is

vs5
A2eV0

mVr 0
2

5
eV(p-p)

A2mVr 0
2

. ~8!

III. PARAMETRIC RESONANCE WITH DAMPING

In order to study the parametric resonance of the trap
ions, the trapping parameters, the rf and dc voltages and,
result the secular frequencyvs and the trapping characteris
tic values (a,q), are kept the same throughout the measu
ments. Then an additionalauxiliary ac excitation voltage is
applied to the trap electrodes. This excitation voltage p
duces a quadrupolar ac electric field in the trapping reg
because it is applied to the trap rods in the same way as
rf trapping voltages@see Fig. 1~a!#. This parametric excita-
tion potential is given by the following expression:

re

ec-
4-2
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PARAMETRIC EXCITATIONS OF TRAPPED IONS IN A . . . PHYSICAL REVIEW A66, 063414 ~2002!
VP5
2VP

(p-p)cos~vt !

2r 0
2 ~x22y2!, ~9!

where2VP
(p-p)cos(vt) is the applied driving voltage.

The equation of motion for a trapped ion in the harmo
pseudopotential~6! under the influence of the quadrupol
excitation~9! and in the presence of a dissipative force is

d2x

dt2
12kvs

dx

dt
1vs

2@122e cos~vt !#x50, ~10!

where the term 2kvs describes the damping which is pro
portional to the speed of the ion. Substitutions ofx(t)
5e2kvstu(t) and vt/25h transform this equation into th
canonical form of the Mathieu equation,

d2u

dh2
1@a822q8cos~2h!#u50, ~11!

with the following parameters:

a85S 2vs

v D 2

~12k2!, ~12a!

q85
e

12k2
a85eS 2vs

v D 2

, ~12b!

e5
eVP

(p-p)

2mr0
2vs

2
. ~12c!

One notices that the characteristic valuea8 is dependent on
the damping factork, while q8 is not; andq8 is proportional
to the strength of external excitation.

Clearly, the motion of a trapped ion is again described
the Mathieu equation, even though the trapped ions are
ject to the influence of an additional ac voltage, the param
ric excitation voltageVP . The secular motion of the trappe
ions exhibits stable or unstable behavior depending on
values of the characteristic parametersa8 and q8. For a
given trapping potential, i.e., a given secular frequency, th
characteristic values are only determined by the applied p
metric excitation voltage. When the characteristic values
into the unstable regions on the (a8,q8) plane, parametric
resonance occurs. Therefore, the unstable regions in
(a8,q8) plane are the parametric resonance regions. For
measurements it was found that the damping factork is very
small, and consequently parametric resonance of the trap
ions occurs in the vicinity of 2vs /v5n2, n51,2,3, . . . ,
same as in the case of no damping. In the following,
numbern is called the order of parametric resonance.

Combining the variable substitution ofx(t)5e2kvstu(t)
with the general form of the unstable solutions of Mathi
equation, for an operating point of (a8,q8) lying in the un-
stable area, the solution for the original equation of mot
can be written as
06341
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x~ t !5Ae[m2k(2vs /v)](vt/2) (
r 52`

`

cre
ir (vt/2)

1Be2[m1k(2vs /v)] ~vt/2! (
r 52`

`

cre
2 ir (vt/2), ~13!

whereA,B are constants determined by the initial condition
m is the characteristic exponent of the solution of the u
damped Mathieu equation with parametersq8 anda8, and is
real and positive;r can be even or odd depending on whe
the values of (a8,q8) lie on the (a8,q8) plane.

The second term in Eq.~13! is always stable for positive
real m,k. Instability arises from the first term whenm
.k(2vs /v). Figure 2 displays the (a8,q8) diagram for
various values ofm. The contours corresponding to a fixe
value ofm are at the same time the boundaries that enci
the unstable region when the damping constant isk
5m(v/2vs).

The vertices of the unstable regions touch thea8 axis in
the case of undamped parametric excitation, indicating
an arbitrarily small excitation amplitude can produce exp
nentially increasing oscillations. In the case of damped pa
metric excitation the regions of instability move away fro
the a8 axis. Since the value ofq8 is proportional to the
applied excitation voltage, the excitation voltage necess
to parametrically excite the trapped ions increases as
damping is increased. The lowest possible excitation stren
e for a given order of parametric resonancen and fixed
dampingk is called thecritical strengthen

(crit) . The critical
strength increases as the order of the parametric reson
increases. For a given excitation strength, only the low
orders of the parametric resonance can occur; the highe
excitation strength, the more orders of resonance will be p
duced.

Figure 2 also illustrates that the frequency ranges
which the resonances occur are narrower for largern. The
width of the frequency range can be evaluated by the wi
of the boundary plots, which asymptotically approach t
boundaries with thea8 value beingan8 andbn8 .

FIG. 2. The unstable regions for various values ofm.
4-3



en

n

he

l

g

es

lt o

io

es

ions
nal

t of
of
ach
lec-

ents

sure
p-

the
UV

on
lts

m is

-

en-
the
gh
lti-
he
trap
on
is

rved
p-
m-
per
h
heir

.

ZHAO, RYJKOV, AND SCHUESSLER PHYSICAL REVIEW A66, 063414 ~2002!
In all our measurements, the applied excitation frequ
cies satisfy uv/22vsu!vs , therefore,m2k(2vs /v)'m
2nk is a very good approximation. With this approximatio
and the properties of iso-m plots of the Mathieu equation
@21#, the damping factor in the neighborhood of thenth order
of parametric resonance can be written as

m25~nk!25
~an82a8!~a82bn8!

4n2
. ~14!

m reaches a maximum whena8 is the midpointa85(an8
1bn8)/2. This point is the vertex of the unstable region in t
(a8,q8) plane. Thus, for a given value ofq8, the maximum
possible damping constantk for which the resonance wil
still occur is given by

k5
m

n
5

an82bn8

4n2
. ~15!

Equation ~15! will be used later to estimate the dampin
factors. The series expansions ofan8 andbn8 for small q8 are
known @26#, and can be used to obtain the simplified expr
sion for the critical excitation strength. Since, for smallk,
q8'e (crit )n2, and an82bn85Anq8n1o(q8n) we obtain the
expression for the critical strength of thenth order paramet-
ric excitation,

en
(crit)'S 4n2

An
D 1/n k1/n

n2
5Cnk1/n. ~16!

The resulting coefficientsCn are compiled in Table I. The
values listed in the second column of Table I are the resu
a computer simulation@13#.

The difference of the two roots of the quadratic equat
~14! gives the widthDa8 of the unstable region across thea8
axis for a fixed value of excitation strength,

Da85~an82bn8!A12
16n4k2

~an82bn8!2

5Da8uk50A12
16n4k2

~Da8uk50!2
. ~17!

Apparently, the width decreases as the damping increas

TABLE I. Coefficients of the approximationen
(crit)5Cnk1/n.

n From Eq.~16! From Ref.@13#

1 2 2.0
2 A2 2'1.414 2.03
3 4

9A3 18'1.165 1.83
4 1

2A4 18'1.030 1.73
5 8

25A5 225'0.945 1.73
6 2

9A6 4050'0.887
06341
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IV. EXPERIMENTAL METHODOLOGY

The parametric resonance features of the trapped
were investigated by detecting the change of the LIF sig
of the trapped Mg1 ions.

The Mg1 ions are generated by electron bombardmen
the neutral thermal Mg atoms. This is realized by a pair
atom oven and electron gun mounted perpendicularly to e
other and to the trap electrodes. The atom oven and the e
tron gun are located outside one group of the outer segm
of the trap electrodes. Upon generation, the Mg1 ions are
first cooled by the presence of helium buffer gas at a pres
of about 1026 Torr. Then due to the lower dc voltages a
plied on the central trap segments along thez axis, these
trapped ions move to the central region of the ion trap. In
central region, the trapped ions are overlapped by a
beam at a wavelength of 280 nm. As shown in Fig. 3~a!,
there are two ways to overlap the UV beam with the i
cloud, one is on axis, the other is off axis. For the resu
presented, the on-axis configuration is used. The UV bea
obtained by frequency doubling a cw ring dye laser~Coher-
ent 699! in an external buildup cavity@27#.

Figure 3~b! illustrates how the ions and their optical sig
nals are detected. The secondary electron multiplier~SEM! is
mounted inside the vacuum chamber close to and perp
dicular to the trap electrodes on one side of the trap. On
opposite side, the flange with a quartz window, throu
which the optical signals are collected on to the photomu
plier tube ~PMT!, is mounted in the same manner as t
SEM. They are centered to the central segments of the
electrodes. The SEM is used throughout this work for i
counting upon their ejection from the trap; and the PMT
used to detect the LIF signal of the trapped ions.

Parametric resonance of the trapped ions can be obse
by monitoring the change of the LIF signal. When the a
plied parametric excitation frequency is swept, while its a
plitude is kept constant, at some point the ions of pro
massm and chargee will undergo parametric resonance wit
the applied signal. As a result, the ions are heated and t

FIG. 3. Schematic diagram of the optical detection setup.~a!
Different orientations of the UV beam.~b! Detection arrangement
4-4
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PARAMETRIC EXCITATIONS OF TRAPPED IONS IN A . . . PHYSICAL REVIEW A66, 063414 ~2002!
Doppler linewidth is increased. For a small enough exc
tion strength, the ions will not be lost from the trap. In th
case, when the parametric resonance condition is remo
the ions will quickly regain the temperature they had bef
the excitation through collisions with the buffer gas. T
condition for parametric resonance in this paper was that
ions were ejected from the trap. In this case the LIF sig
drops to the background level. The UV radiation power w
only a few mW and was detuned far from resonance. T
was done to avoid strong laser cooling@27# and to investi-
gate the buffer gas cooling effects unobstructed. To ch
this condition, the frequency of the UV light was scann
across the transition to verify that the LIF signal visua
appears symmetric across the transition since laser coo
introduces asymmetry. To further minimize the cooling
fects, the laser frequency was purposely detuned away f
resonance by more than 2 GHz during the measuremen

For each parametric excitation ordern, there is a range o
frequencies under which the trapped ions can be param
cally excited. Measurements are made to find this range
each n. The experimental procedure is as follows. For
given trapping potential, the secular frequencyvs is esti-
mated. Then the relationv52vs /n is used to find the fre-
quency around which parametric resonance will occur fo
particularn. Then the parametric excitation frequencies a
swept from lower to higher values. The frequency, at wh
the LIF signal decreases sharply, indicates the lower bou
ary of the parametric resonance. To obtain the frequenc
the upper boundary, the parametric excitation frequencies
scanned in the opposite direction, i.e., from higher to low
values. It should be noted that since for these measurem
the parametric drive was strong enough to eject the ions f
the trap, the ion trap had to be reloaded between subseq
scans. The number of ions in the trap throughout the m
surements was around 104.

Figure 4 is an example obtained from two of such opp
site scans. It shows that for any applied parametric excita
frequency within the range of 842<v/2p<911 kHz, the
trapped ions will be under resonance.

With this procedure repeated for various applied exc
tion amplitudes, the boundaries of the regions, where p

FIG. 4. LIF signal obtained from parametric excitation of t
Mg1 ions. The order of parametric excitation isn51. The peak-
to-peak value of the trapping potential isV(p-p)5287 V.
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metric resonance occurs, can be mapped out and the m
sured values are drawn on the (a8,q8) plane for each
resonance ordern.

V. RESULTS AND DISCUSSION

Using the method described in the preceding section,
lower and upper boundaries of the unstable regions w
obtained. Figure 5 shows the results of such measurem
together with the calculated results. The shaded areas ar
calculated unstable regions forn51 and n52. The mea-
sured boundaries are obtained for different buffer pressu
The no buffer gas condition refers to the situation when th
is no helium gas in the chamber, with the background pr
sure below 1029 mbar. The other boundaries are obtain
with a helium buffer gas pressure around 1.131026 mbar.

A number of conclusions can be drawn from the resu
From the two measured boundaries for different buffer g
pressures for the resonance ordern51, it is verified that the
stronger the damping, the narrower the unstable region,
the frequency range in which the parametric excitation c
occur.

There are large deviations between the measured and
culated boundaries, since the measured boundaries are w
than their theoretical predictions for each ordern. However,
this can be explained as follows. Since we have classified
stable solutions as those which have a finite amplitude
matter how large it is, this ideal case does not match
experimental situation exactly. In a real experiment, as s
as the amplitude of the ion motion is larger than the size
the trapping region, the ions will be lost. This regime is th
unstable in a finite-size trap while being classified as sta
from the Mathieu equation standpoint. Therefore, this g
metrical effect accounts for thecushionaround the theoreti-
cally calculated stability boundary.

It was not possible for us to map out the boundaries
parametric excitation on the (a8,q8) plane for orders higher
thann52. This was caused by the the frequency respons
our present trap circuit, which was designed to isolate
wanted sources of the parametric excitation voltage and

FIG. 5. The calculated and measured boundaries forn51 and
n52.
4-5
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ZHAO, RYJKOV, AND SCHUESSLER PHYSICAL REVIEW A66, 063414 ~2002!
rf trapping potential. For the same reason, the lower bra
of the boundary forn51 was not mapped out further.

In addition to the frequency scans as described in
preceding section, we have also obtained the values of
critical excitation voltageVc necessary to observe the par
metric resonance. Such measurements were done by kee
the excitation frequency constant in the middle of the n
rowest obtained interval of parametric resonance frequ
cies. Then the amplitude of the excitation was gradually
creased until the LIF signal dropped indicating the onse
the parametric resonance. These critical excitation volta
are listed for several ordersn in Table II. As expected, the
critical excitation voltage increases with the order of re
nance.

The effective damping factork can also be evaluate
from the data in Table II. This evaluation was carried out
different buffer gas pressures and parametric excitation
ders~n! using Eq.~15!. The results are summarized in Tab
III. The values of the damping parameterk are not very
different for the three orders of parametric resonance tha
observed. The damping factor increases by a factor of 30
when we introduce buffer gas.

Razvi et al. reported different behaviors of the odd an
even resonances in their measurements of parametric
nance in the symmetrical rf Paul trap@13#. They found that
the critical voltages for odd and even orders of the param
ric resonance behave in a way that suggests that the valu
the damping factor differ by three orders of magnitude, w
the even orders having the smaller value. We were not a
to observe this difference. While for our linear rf trap th
values ofk for ordersn51,3 are closer to each other than
k for n52, the difference is not nearly as drastic as obser
in Ref. @13#. Also, the even order has a larger value ofk.

It is also of interest to discuss the values of the oscillat

TABLE II. Critical parametric excitation voltages. These are t
minimum excitation voltage amplitudes needed to start any p
metric resonance for different excitation orders (n).

n Frequency~kHz! Vc ~mV!

1 860.75 16.5
2 436.5 625.8
3 291 1333
p

ro

.J

er

r,
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decay ratesG52kvs for the two trap geometries. In ou
linear trap we observe decay rateGvac'20 s21 under high
vacuum conditions. Comparing this number to the cor
sponding high vacuum values ofGeven50.25 s21 and Godd
5580 s21 reported in Ref.@13# for the symmetrical trap, we
notice that our value falls in between those values. When
buffer gas was present we observed an increased decay
of Gbuff'600 s21. These differences can be attributed to t
different trap geometries as well as differences in theoret
treatment of the experimental results.

VI. CONCLUSIONS

We have demonstrated that the damped parametric e
tation of the trapped ions inside a linear ion trap can
described by a set of Mathieu equations. Parametric re
nance of the trapped ions occurs over a range of frequen
for each resonance order. For each order this frequency ra
varies with the amplitude of the excitation. The regions
instabilty on the (a8,q8) plane correspond to the parametr
resonance. We experimentally mapped the actual bounda
for the regions where the parametric resonance occurs i
rf linear ion trap. We found that the Mathieu equation d
scription of the parametric resonance reproduces the
served behavior quite well. However, the theoretically p
dicted unstable regions are somewhat narrower than
experimental ones. We attribute this observation to the fin
size of the ion trap, since the theoretical treatment outline
this work does not contain information about the amplitu
of the induced oscillations.
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