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Nondipole effects in photon emission by laser-driven ions
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The influence of the magnetic-field component of the incident pulse on the emission of photons by multiply
charged ions interacting with intense, near-infrared laser pulses is investigated theoretically using a strong-field
approximation that treats the coupling of the atom with the incident field beyond the dipole approximation. For
peak pulse intensities approaching 1017 W cm22, the electron drift in the laser propagation direction due to the
magnetic-field component of the incident pulse strongly influences the photon emission spectra. In particular,
emission is reduced and the plateau structure of the spectra modified, as compared to the predictions in the
dipole approximation. Nondipole effects become more pronounced as the ionization potential of the ion
increases. Photon emission spectra are interpreted by analysing classical electron trajectories within the semi-
classical recollision model. It is shown that a second pulse can be used to compensate the magnetic-field
induced drift for selected trajectories so that, in a well-defined spectral region, a single attosecond pulse is
emitted by the ion.

DOI: 10.1103/PhysRevA.66.063411 PACS number~s!: 42.50.Hz, 32.80.Rm, 42.65.Ky
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I. INTRODUCTION

Atoms and ions interacting with intense infrared las
pulses emit high-order harmonics of the driving field in t
form of coherent attosecond pulses@1–6#. This process is
readily understood in terms of the semiclassical recollisi
or ‘‘Simpleman’s model,’’ whereby electrons are detach
from their parent atom or ion by quasistatic tunneling ioniz
tion, oscillate in the field, and return to the core where th
radiatively recombine@7–11#. A fully quantum version of
this model has formed the basis of a vast number of theo
ical investigations of high-order-harmonic generation@10–
12#, and has been used successfully to analyze experim
~see, e.g., Ref.@13#!. This theory relies on the strong-fiel
approximation~SFA!, which assumes that the interaction
the detached electron with the field is much stronger than
interaction with the core so that the latter can be neglec
In addition to explaining high-order-harmonic generatio
the model also forms the basis of our present understan
of other processes occurring in low-frequency laser fie
such as high-order above threshold ionization~ATI ! and
recollision-induced multiple ionization.

Once detached, the electron is accelerated by both
electric-field and magnetic-field components of the incid
beam. The magnetic-field component tends to deflect the
jectory towards the direction of propagation of the bea
with the result that the electron never returns to the nucleu
detached with zero velocity. The drift in the propagation
rection imparted by the Lorentz force is largely offset by t
width of the returning wave packet, and is therefore ne
gible at the intensities and wavelengths normally used
experiments on high-order-harmonic generation~typically
1014–1015 W cm22 in the visible or near infrared!. In these
conditions, the Lorentz force does not need to be taken
account and the coupling of the electron with the incid
1050-2947/2002/66~6!/063411~13!/$20.00 66 0634
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field is accurately described within the dipole approximatio
However, at much higher intensities the drift is no long
negligible and the dipole approximation ceases to be va
Moreover, the electron’s dynamics becomes relativistic
very high intensities.~At the Ti:sapphire wavelength, 80
nm, the ratio of the nonrelativistic ponderomotive energy
the electron to its rest energy exceeds unity for an inten
of 8.531018 W cm22.!

Recent theoretical investigations of atomic stabilization
the high-frequency stabilization regime@14–18# and of pho-
ton emission by ions interacting with intense near-infrar
laser pulses@19–24# have established the existence of
‘‘nondipole nonrelativistic’’ dynamical regime, in which th
effect of the magnetic-field component of the laser is t
large for the dipole approximation to be appropriate but
so large that a relativistic description is necessary. At
Ti:sapphire wavelength, the dipole approximation is e
pected to remain valid up to intensities of about 531016–1
31017 W cm22 ~depending on the system, as will be se
below!. Due to the magnetic drift, the probability that th
electron recombines with the core is non-negligible only
the electron is initially detached with a nonzero velocity
the direction opposite to the propagation direction of the
cident beam. However, the detachment probability falls
rapidly if this initial velocity departs from zero@25,26#. The
consequence is that the harmonic generation is weaker
varies differently as a function of the frequency of the em
ted photon than would be the case in the absence of
Lorentz force.

The dipole approximation has been assumed in nearly
the theoretical work to date on high-order-harmonic gene
tion in low-frequency fields. Only a few fully quantum ca
culations, all based on the strong-field approximation, h
addressed the role of the magnetic drift in this context. E
pressions for the dipole moment of an atom or ion in t
©2002 The American Physical Society11-1
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nondipole nonrelativistic regime have been developed
Walseret al. @21# and, in another form, by us@22,27#, and
applied to emission driven by ultrashort pulses. A relativis
formulation of harmonic generation in stationary field
based on the Klein-Gordon equation, has also been give
Milošević, Hu, and Becker@20,24#.

In the present paper, we give a detailed account of
nondipole SFA sketched in Ref.@22# and relate it to the
theory of Walseret al. @21#. We also assess the importance
the relativistic effects neglected in our approach by comp
ing with results obtained by Milosˇević, Hu, and Becker@20#.
We consider, in particular, the emission of photons by i
lated Li21, Be31, and Ne61 ions exposed to strong nea
infrared pulses. We do not study emission from neutrals
only multicharged ions can withstand the intensities at wh
the magnetic drift becomes significant without ionizing im
mediately. The importance of the nondipole effects is inv
tigated by comparing the nondipole nonrelativistic phot
emission spectra with dipole spectra for long pulses~repre-
sented by stationary fields! as well as for few-cycle pulses
The numerical results are interpreted with the help of
recollision model, generalized to the nondipole case. The
jectories we consider are real and obey the classical e
tions of motion. This approach complements the descrip
of the electron’s dynamics in terms of complex trajector
discussed in Ref.@20#; the two approaches lead to essentia
the same physical picture. Finally, we illustrate how a s
ond, weak laser pulse can be used to compensate for
magnetic drift of the electron. In particular, we show that t
recombination probability of selected electron trajector
can be enhanced by several orders of magnitude in this
thereby leading to photon emission in the form of a sin
attosecond x-ray pulse. Unless otherwise indicated, ato
units are used throughout the paper.

II. THEORETICAL APPROACH

A. Nondipole nonrelativistic approximation

We assume that the vector potential describing the la
field can be written as

A~h!5 ê~E/v! f ~h!sin~h!, ~1!

with h5v(t2 k̂•r /c). The field has a carrier wavelengthl
52pc/v, field strengthE, is linearly polarized with polar-
ization vectorê, and propagates in the directionk̂. The func-
tion f (h) describes the temporal profile of the pulse;f (h)
[1 for a stationary field.

The influence of the magnetic-field component of the
ser on the electron dynamics can be accounted for in
long-wavelength and nonrelativistic regime considered h
by expanding the vector potential to first order in 1/c. As-
suming the atom to be initially located at the origin leads

A~h!.A~vt !1
1

c
~ k̂•r !E~vt !, ~2!
06341
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whereE(vt)52(d/dt)A(vt)52 ê(d/dt)A(vt)5 êE(vt).
Our work is based on the time-dependent Schro¨dinger equa-
tion

i
]

]t
C~r ,t !5S 1

2
@2 i“1A~vt !#21

1

c
~ k̂•r !@2 i“

1A~vt !#•E~vt !1V~r ! DC~r ,t !, ~3!

which is exact up to order 1/c in the atom-field interaction.
We neglect the spin of the electron. The potentialV(r ) de-
scribes the interaction of the electron with the ionic co
There are two nondipole terms in the Hamiltonian: the fi
one, in“•E(vt), gives rise to electric quadrupole and ma
netic dipole transitions. The second one, inA(vt)•E(vt),
contributes to the drift in the propagation direction induc
by the magnetic-field component of the incident beam a
has a large influence on the emission of photons by ion
high laser intensities.

At low frequencies, it is appropriate to transform the tim
dependent Schro¨dinger equation to the length gauge, with th
result

i
]

]t
CL~r ,t !5S 2

1

2
¹21F r2

i

c
~ k̂•r !“G

•E~vt !1V~r ! DCL~r ,t !, ~4!

where CL(r ,t)5exp@iA(vt)•r #C(r ,t). By introducing the
retarded Green’s function associated with the Hamiltonian
Eq. ~4!, the wave functionCL(r ,t) can be obtained as th
solution of a time-dependent Lippmann-Schwinger equati
In the SFA approach of Lewenstein and co-workers@1,10#,
this Green’s function is replaced by the Volkov Green’s fun
tion associated with the Hamiltonian that describes a f
electron in the laser field,GV

(1)(r ,t;r 8,t8). To account for the
magnetic-field component of the laser pulse at high inten
ties, we employ the nondipole Volkov Green’s function d
cussed in the Appendix. Neglecting continuum-continuu
transitions@28#, the dipole moment of the atom then reduc
to

d~ t !.E
2`

t

dt8E drdr 8f0* ~r ,t !

3~2r !GV
(1)~r ,t;r 8,t8!H int~ t8!f0~r 8,t8!1c.c.

~5!

The atom or ion is initially in its ground state and is d
scribed by the wave functionf0(r ,t)5f0(r )exp(iI pt), I p be-
ing the ionization potential of the state.H int(t8) is the atom-
field interaction Hamiltonian

H int~ t8!5F r2
i

c
~ k̂•r !“G•E~vt8!. ~6!

Equation~5! can also be written in the form
1-2
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d~ t !.2ImE
0

t

dt8E dpdrec* @p~p,t !#

3exp@2 iS~p,t,t8!#dion@p~p,t8!,t8#, ~7!

where

p~p,t !5p1A~vt !1
1

c Fp•A~vt !1
1

2
A2~vt !G k̂, ~8!

S~p,t,t8!5
1

2Et8

t

dt9@p~p,t9!#21I p~ t2t8!, ~9!

drec~q!5~2p!23/2E dre2 iq•r~2r !f0~r !, ~10!

and

dion~q,t !5~2p!23/2E dre2 iq•rH int~ t !f0~r !. ~11!

The spectrum of the emitted photons is then obtained
calculatinguê•a(V)u2, for emission polarized parallel to th
polarization direction of the incident pulse, anduk̂•a(V)u2,
for emission polarized along the direction of propagation
the incident pulse. In these expressions,V denotes the angu
lar frequency of the emitted photon anda(V) the Fourier
transform ofd̈(t). The ratioV/v is an effective ‘‘harmonic
order.’’ Results in the dipole approximation are obtained
setting 1/c50. The SFA is readily modified to include th
depletion of the ground state@1,10#; however we can neglec
depletion for the laser parameters and atomic systems
sidered here.

B. Saddle-point integration

The quasiclassical actionS(p,t,t8) is a rapidly varying
function of p, t, and t8, and therefore the required integr
tions in Eq. ~7! can be carried out using the saddle-po
method. We proceed by first using the relation

dion@p~p,t8!,t8#52 i
d

dt8
E dr

~2p!3/2
e2 i p(p,t8)•rf0~r !

52 i
d

dt8
f̃@p~p,t8!#, ~12!

where

f̃@p~p,t8!#5
~8I p!

5/4

8p

1

@p2~p,t8!/21I p#
2

5
~8I p!

5/4

8p F2
]

]t8
S~p,t,t8!G22

~13!

is the Fourier transform of the ground-state wave function
the ion. We have assumed thatV(r ) is a Coulomb potentia
with effective nuclear charge (2I p)

1/2. Equation~7! is then
06341
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integrated by parts. SinceH int(t850)50, the boundary term
at t850 is zero while the boundary term att85t can be
ignored; it corresponds to the process whereby the elec
both ionizes and recombines at timet. Next, the integral over
p is approximated using the saddle-point method, with
result

d~ t !.2Im
~8I p!

5/4

8p E
0

t

dt8C~t!drec* @p~ps,t !#

3exp@2 iS~ps,t,t8!#F ]

]t8
S~ps,t,t8!G21

. ~14!

The saddle momentumps depends ont andt8 and is obtained
by solving

“pS~p,t,t8!up5ps
50. ~15!

The factor

C~t!5~2p!3/2S ~«1 i t!3F12
1

c2
~ ê•ps!

2G D 21/2

, ~16!

with t5t2t8 and « a small positive parameter, can be u
derstood physically as arising from wave-packet spreadin

The integral overt8 in Eq. ~14! is straightforward to
evaluate numerically. However, the integration must be
peated for each value oft, due to the dependence of th
integrand ont. The total computational effort required fo
calculating the temporal variation of the dipole moment th
increases as the square of the laser-pulse duration. For
reason, and because of the rapid oscillations of the expo
tial term, it is advantageous to calculate the integral using
saddle-point method. The saddle timests are complex and
are determined by the equation

2
]

]t8
S~ps,t,t8!u t85ts

5@p2~ps,t8!/21I p#u t85ts
50.

~17!

Expanding the denominator in Eq.~14! in a Taylor series,
retaining only the linear term, and noting that the integra
has a first-order pole at the saddle times@29#, the dipole
moment is found to be

d~ t !.22Re
~8I p!

5/4

8 (
ts

C~ t2ts!drec* @p~ps,t !#

3exp@2 iS~ps,t,ts!#Fp~ps,t8!•
]

]t8
p~ps,t8!G

t85ts

21

.

~18!

In all the cases considered, we have found that the spe
calculated using Eq.~18! are in very good agreement wit
those obtained by carrying out the integration overt8 in Eq.
1-3
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~14! numerically. Typically, they differ by less than a fact
of 2, and the agreement improves as the laser intensity
creases.

The saddle time can also be obtained using a semiana
cal approach, similar to that described by Ivanov, Brab
and Burnett@30# for calculations in the dipole approxima
tion. In this approach, the saddle time is expressed asts5td
1D, with td determined by solving

pe~ps,td!5 ê•p~ps,td!50. ~19!

Equation~17! is then expanded in powers ofD,

2
]

]t8
S~ps,t,t8!u t85ts

5s01s1D1 1
2 s2D21O~D3!.

~20!

In terms of the component ofp(ps,td) in the propagation
direction,

pk~ps,td!5 k̂•p~ps,td!

52
1

2c~ t2td!
E

td

t

dt9uA~vt9!2A~vtd!u2, ~21!

the first coefficient is

s05I p1 1
2 pk

2~ps,td!. ~22!

Analytical expressions fors1 ands2 are lengthy, and in prac
tice can be obtained numerically. Setting Eq.~20! equal to
zero and solving forD, the dipole moment~18! is evaluated
using

S~ps,t,ts!.S~ps,t,td!2s0D2 1
2 s1D22 1

6 s2D3 ~23!

and

Fp~ps,t8!•
]

]t8
p~ps,t8!G

t85ts

.s11Ds2 . ~24!

We have verified that this approach yields results that are
all practical purposes identical to those derived using E
~17! and ~18!.

The calculations can be simplified even further by n
glecting terms of order 1/c2 and higher in the saddle momen
tum. In this approximation

ps52
a1~ t,t8!

t2t8
ê1

1

c Fa1
2~ t,t8!

~ t2t8!2
2

a2~ t,t8!

2~ t2t8!
G k̂, ~25!

where

an~ t,t8!5E
t8

t

dt9An~ t9!. ~26!

This means thatp(ps,td) and S(ps,t,td), respectively, will
be correct to order 1/c and 1/c2. Using Eq.~25!, Eq. ~19!
reduces to
06341
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t

dt9@A~vt9!2A~vtd!#50, ~27!

thereby givingtd in the dipole approximation. The coeffi
cientss1 ands2, to order 1/c2, are then found to be

s15
pk

2~ps,td!

t2td
, ~28!

s25E2~vtd!F11
1

c
pk~ps,td!G1

3s1

t2td
. ~29!

Note that all of the nondipole corrections to the expans
coefficientssi are of order 1/c2. Hence, consistent with the
action being correct to order 1/c2, we set

s150, s25E2~vtd!. ~30!

The resulting dipole moment can be expressed as@21,30#

d~ t !.22Im(
td

arec* ~ t,td!apr~ t,td!aion~ t,td!, ~31!

with the ionization, propagation, and recombination amp
tudes, respectively, given by

aion~ t,td!5
~8I p!

5/4

8~2s0s2!1/2
expF2

1

3 S 8s0
3

s2
D 1/2G , ~32!

apr~ t,td!5C~ t2ts! exp@2 iS~ps,t,td!#, ~33!

arec* ~ t,td!5drec* @p~ps,t !#. ~34!

We have evaluated the accuracy of the formula~31! by cal-
culating uê•a(V)u2 and comparing with the results obtaine
using exact numerical complex saddle timests in Eq. ~18!,
for the laser parameters and ions considered in Sec. III.
approximation given by Eq.~31! works extremely well: the
spectra cannot be distinguished on the scales used in
diagrams.

The expression ofd(t) given by Walseret al. @21# is ob-
tained by ignoring the nondipole corrections in the preex
nential factor in the ionization amplitude~32! and the recom-
bination amplitude ~34! @31#. These additional
approximations have no significant effect on the emiss
spectra for photons polarized along the laser polarization
rection. Setting 1/c50 in all three amplitudes in Eq.~31!
leads to the formula obtained by Ivanov, Brabec, and Burn
@30# in the dipole approximation.

C. Classical electron trajectories

A simple physical interpretation can be given to the
quirement that the detachment timetd satisfy Eq.~19!, as
will now be discussed. We start with the classical analog
the Hamiltonian operator in Eq.~3!,
1-4
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H5
1

2
@p1A~vt !#21

1

c
~ k̂•r !@p1A~vt !#•E~vt !,

~35!

obtained by replacing the operator2 i“ with the classical
canonical momentump. The corresponding classical equ
tions of motion are solved readily: If, at timet0, the electron
is located at the origin and has velocityv0, at time t1 its
position and velocity are, respectively,

r ~ t1!5E
t0

t1
dt9v~ t9! ~36!

and

v~ t1!5ve~ t1!ê1vk~ t1!k̂, ~37!

with

ve~ t1!5 ê•v01@A~vt1!2A~vt0!#1
1

c
E~vt1!E

t0

t1
dt9vk~ t9!

~38!

and

vk~ t1!5 k̂•v01
1

2c
@ve~ t0!1A~vt1!2A~vt0!#22

1

2c
ve

2~ t0!.

~39!

The corresponding acceleration isv̇(t1)5 v̇e(t1) ê1 v̇k(t1) k̂,
with

v̇e~ t1!52E~vt1!1
1

c
Ė~vt1!k̂•r ~ t1!2

1

c
Ȧ~vt1!vk~ t1!

~40!

and

v̇k~ t1!5
1

c
Ȧ~vt1!@ve~ t0!1A~vt1!2A~vt0!#. ~41!

The first two terms on the right-hand side of Eq.~40! can be
recognized as the acceleration imparted by the electric-fi
component of the laser, corrected to first order in 1/c for its
spatial inhomogeneity in the propagation direction. The th
term and the right-hand side of Eq.~41! describe the accel
eration due to the Lorentz force, also to first order in 1/c. A
wave packet formed by a linear superposition of nondip
Volkov waves, Eq.~A4!, which at timet0 is localized at the
origin and has velocityv0 , follows the classical trajectory
~36! @22#.

Consider now an electron that is detached from the cor
time t0 with zero initial velocity in the polarization direction
In the recollision model, the electron follows a classical t
jectory unperturbed by the atomic potential. A trajectory
turning to the core leads to photon emission via recomb
tion, with the energy of the emitted photon being the sum
the ionization potential and the kinetic energy of the elect
at the time of recombination. Working within the dipole a
proximation, Lewenstein and co-workers@10# have shown
06341
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that there is a one-to-one correspondence between the
sical trajectories of the recollision model and the sad
times obtained from Eq.~27!. Such a correspondence als
exists in our nondipole approach. In particular, it is straig
forward to show that a necessary and sufficient condition
the electron to return to the origin at timet is thatt0 is any of
the saddle timestd defined by Eq. ~19! and that v0

5pk(ps,td) k̂, wherepk(ps,td) is defined by Eq.~21!. In the
classical model,pk(ps,td) is thus the velocity in the pulse
propagation direction that the electron must have at the t
of detachment,td , in order to return to the nucleus at th
time of recombination,t. This initial velocity compensates
exactly the displacement imparted by the magnetic-fi
component of the pulse on the free electron in the field@21#.

How upk(ps,td)u varies witht2td is shown in Fig. 1, for
a stationary field of 800 nm wavelength and 1
31017 W cm22 intensity. Results are given for trajectorie
starting at equally spaced values oftd . Few or no trajectories
come back to the origin in certain time intervals, hence
gaps in the data. Also given in Fig. 1, for each trajectory,
the strength of the electric field at the time of detachme
uE(td)u, the maximum speed the electron reaches betweetd
andt, vmax, and its speed at the time of recombination,v(t).
As will be seen below, all of these quantities are relevant
understanding the features of the nondipole spectra.

At this stage, we recall that the maximum kinetic ener
of a returning electron in the dipole approximation
3.17Up , whereUp is the ponderomotive energy. This max
mum fixes the position of the cutoff frequency in the spe
trum of emitted photons when nondipole effects are
glected @8–10#. The corresponding maximum velocity i
indicated by the dashed vertical line in Fig. 1. Another w
known fact is that several trajectories return with the sa

FIG. 1. Shown, for trajectories that return to the core, are~i! the
electron’s speed perpendicular to the laser polarization direc
when it is detached,upk(ps,td)u; ~ii ! the electron’s speed when
returns to the core,v(t); ~iii ! its maximum speed between detac
ment and recombination,vmax; and ~iv! the strength of the electric
field at the time of detachment,uE(td)u. These quantities are plotte
as functions of the duration of the trajectory,t2td , for a stationary
field of 800 nm wavelength and intensity 1.831017 W cm22.
1-5
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FIG. 2. The magnitude
squared of the Fourier transform
of the dipole acceleration~in a.u.!
as a function of the photon energ
~in units of \v), for a Ne61 ion
interacting with a stationary lase
field of wavelength 800 nm. Spec
tra for the emission of photons po
larized along the laser polarizatio
direction obtained in the dipole
approximation (De) and in the
nondipole nonrelativistic approxi-
mation (NDe) are shown, as well
as the nondipole nonrelativistic
spectra for photon emission pola
ized along the laser propagatio
direction (NDk).
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kinetic energy during each half cycle, namely, a short traj
tory ~that lies to the left of the dashed line! and one or sev-
eral long trajectories~that lie to the right of the dashed line!.
The long trajectories with return times of more than o
period can give rise to intermediate plateaus and, thro
interference, to oscillations in the dipole spectrum.

We see in Fig. 1 that the behavior of the four plott
quantities is very different depending on whether the traj
tory is long or short. In particular, for the short trajectorie
the velocity upk(ps,td)u and the magnitude of the electr
field at the detachment time decrease rapidly with decrea
t2td . In addition, the electron attains its maximum veloc
when it returns to the core. In contrast, for the long trajec
ries,upk(ps,td)u, uE(vtd)u, and the maximum velocity of the
electron remain nearly constant close to their maximum
lowed values. Note, in particular, that for the field conside
in the figure,upk(ps,td)u, is about 3 a.u. for these trajecto
ries.

III. RESULTS AND DISCUSSION

A. Nondipole effects in photon emission

Dipole and nondipole nonrelativistic spectra are compa
in Figs. 2 and 3 for photon emission by multiply charg
ions driven by a stationary 800-nm laser field. The modu
squared of the Fourier transform of the dipole acceleratio
plotted against the effective harmonic order,V/v. The Fou-
rier transform of the dipole acceleration is defined as

a~V!5
1

~2p!1/2ET

T12p/v

dt exp~2 iVt !d̈~ t !, ~42!

where T is chosen large enough so as to include the lo
trajectories that contribute to the dipole moment. We use
notationae(V)5 ê•a(V) andak(V)5 k̂•a(V) for the com-
ponents of the acceleration.

The gradual breakdown of the dipole approximation w
increasing intensity is illustrated in Fig. 2 for emission by
Ne61 ion (I p5207.3 eV). Going from 0.5 to 4
31017 W cm22, the influence of the magnetic-field comp
06341
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nent first manifests itself as a reduction in photon emiss
polarized alongê as compared to the dipole approximatio
then to a ‘‘bending over’’ of the plateaus, and finally to
marked suppression of emission at both ends of the spec
and the disappearance of the intermediate cutoffs wh
separate the plateaus in the dipole approximation. A sm
shift in the position of the cutoffs is also noticeable.

Nondipole spectra for emission polarized parallel to t
direction of propagation of the incident field are also sho
in Fig. 2. Emission of photons polarized in this direction
forbidden in the dipole approximation. Compared to em
sion polarized alongê, emission polarized along the propa

FIG. 3. The magnitude squared of the Fourier transform of
dipole acceleration~in a.u.! as a function of the harmonic orde
~upper plots!. Results for the ions Li21 and Be31 in the dipole
approximation~gray curves! and in the nondipole nonrelativistic
approximation~black curves! are shown. The ions are irradiated b
a stationary field of peak intensity 1.831017 W cm22 and wave-
length 800 nm. In the lower plots the ionization rate defined by
~43!, w(t,td), is given for electron trajectories that return to th
core, as a function of the harmonic order of the photon emitted
recombination. The dipole and nondipole values ofw(t,td) are in-
dicated by crosses and circles, respectively.
1-6



im
o
l-
el
o

s
o

er

se
t
o
f

o-
-
b

th

n
n
th
i

ar
h

a

pl
n

m

to
el

b

d

io
t o
h

e of
he
c-

nat-

ost

ear

c-
ed,

the
at

ar-

cts
on-
tly

th

e
on

-
tes
e

ole
m-

by

on-
an

cts
or-
, as

ns
b-

t a
tic
ic
ng
on-
in-
tic
i-
to
la-
in

NONDIPOLE EFFECTS IN PHOTON EMISSION BY . . . PHYSICAL REVIEW A66, 063411 ~2002!
gation direction is weaker, but the spectra are otherwise s
lar in most respects. The dip visible in the low-energy part
Figs. 2~a! and 2~b! also occurs when ions are driven by u
trashort pulses, and can be attributed to accidental canc
tions between different terms contributing to the dipole m
ment @22#.

In Fig. 2~a!, we observe thatuae(V)u2 is reduced by more
than one order of magnitude compared to the prediction
the dipole approximation at the relatively weak intensity
531016 W cm22. This reduction contrasts with the small
decrease found for a Li21 ion irradiated by a two-cycle
800-nm pulse of 931016 W cm22 peak intensity@22,27#,
and the even smaller nondipole effects found for a He1 ion
irradiated by a 5-fs 800-nm pulse of 531016 W cm22 peak
intensity@21#. As will be seen later, the duration of the pul
influences to some degree the overall effect of the magne
field component on photon emission. However, the origin
the difference between the results of Fig. 2 and the results
He1 and Li21 can be attributed to the larger ionization p
tential of Ne61. That I p plays an important role is demon
strated in the upper part of Fig. 3, where photon emission
Li21 (I p5122.5 eV) and Be31 (I p5217.7 eV) are com-
pared for the same incident field@32#. Although the intensity
is the same for both ions, the relative difference between
dipole and nondipole spectra is much less for Li21.

The strong dependence onI p , and in fact all the major
differences between the dipole and nondipole spectra, ca
readily understood within the framework of the recollisio
model. Only two key quantities need to be considered:
effective detachment rate when the electron is born and
kinetic energy when it returns to the core. In the lower p
of Fig. 3 we show, for each trajectory of Fig. 1, the detac
ment rate at timetd of an electron with velocityv'

[pk(ps,td) transverse to the electric field@33#,

w~ t,td!5
4

p

~2I p!3

uE~vtd!u2
expF2

2

3

~2I p1v'
2 !3/2

uE~vtd!u
G , ~43!

as a function of the harmonic order of the photon emitted
recombination,@ I p1v2(t)/2#/v. We indicate the nondipole
values ofw(t,td) by circles and the dipole values~obtained
by settingv'50) by crosses. The rate~43! varies with the
field in the same way as the square of the ionization am
tude ~32!, aion

2 (t,td), and has the same exponential depe
dence onI p . Since the propagation and recombination a
plitudes vary far less in magnitude thanaion(t,td) from
trajectory to trajectory, the importance of the contribution
the spectrum of the different trajectories can be effectiv
gauged by the corresponding values ofw(t,td). As has been
shown for He1 interacting with a short laser pulse@34#,
much insight about the photon emission spectrum can
gained from this type of plot.

In the dipole approximation,w(t,td) is largest for the long
trajectories, as electrons having short trajectories are
tached at lower electric fields.~See Fig. 1.! Therefore, short
trajectories tend to contribute less to the photon emiss
spectrum. However, when the magnetic-field componen
the laser field is taken into account, the opposite is true. T
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is due to the fact thatpk(ps,td) is larger for the long trajec-
tories than for the short ones. The exponential dependenc
aion(t,td) on the initial transverse velocity means that t
ionization amplitude tends to be smaller for the long traje
tories than for the short ones, and the latter end up domi
ing the spectrum over much of its range@20#. The secondary
plateaus, which arise from the longest trajectories, alm
completely vanish~although they still visibly contribute to
the beryllium nondipole spectrum belowV/v52500). The
oscillations evident in the dipole spectrum largely disapp
because at most frequencies only one set of trajectories~the
short ones! significantly contribute to emission. The spe
trum bends over as ionization is exponentially suppress
due to the relatively small value ofuE(td)u for the short tra-
jectories that give rise to the lower harmonics, and to
large initial transverse velocity for the short trajectories th
produce the high harmonics. Finally, the reduction in h
monic emission is proportionally larger for Be31 than for
Li21 because the ionization amplitude varies faster withv'

2

when I p is larger.
We now evaluate the importance of the relativistic effe

neglected in our approach by comparing, in Fig. 4, our n
dipole nonrelativistic results with relativistic results recen
obtained by Milosˇević, Hu, and Becker@20,24#. The case of
a Ne61 ion interacting with a stationary field of waveleng
1054 nm and intensities 0.731017 and 1.431017 W cm22 is
considered. Milosˇević’s, Hu, and Becker’s calculations ar
also done within the SFA but are based on the Klein-Gord
equation rather than on the Schro¨dinger equation. The rela
tivistic results shown in the figure are the emission ra
presented in Fig. 2 of Ref.@20#, rescaled so as to facilitat
comparison@35#.

The large differences between the dipole and nondip
results indicate a strong influence of the magnetic-field co
ponent of the laser field for these parameters. As in Figs. 2~d!
and 2~e!, the nondipole spectrum is completely dominated
the short trajectories at 1.431017 W cm22. At this intensity,
the maximum velocity of the electron,vmax, is at most 42%
of the speed of light~i.e., vmax

2 /c250.18) for any returning
trajectory. The good agreement between our nondipole n
relativistic spectra and the relativistic spectra, aside from
arbitrary overall factor, suggests that the relativistic effe
that are not taken into account in our model are not imp
tant. The difference is largest for the highest harmonics
could be expected, sincevmax

2 /c2 grows linearly with the en-
ergy of the photon emitted at recombination for electro
following short trajectories. Compared to the spectra o
tained in the dipole approximation, the cutoffs occur a
slightly higher photon energy in the nondipole nonrelativis
calculation. The origin of this effect is the additional kinet
energy the returning electron acquires due to its drift alo
the pulse propagation direction. However, the nondipole n
relativistic calculation neglects other effects, such as the
crease in the inertial mass, which contribute to the kine
energy to order 1/c2. In the relativistic results, these add
tional effects lead to a small displacement of the cutoffs
lower energies. We have verified that the classical calcu
tions within the recollision model yield the same shifts as
1-7
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CHIRILĂ et al. PHYSICAL REVIEW A 66, 063411 ~2002!
FIG. 4. The magnitude
squared of the Fourier transform
of the dipole acceleration~in a.u.!
as a function of the photon energ
~in units of \v). Spectra for a
Ne61 ion obtained in the dipole
and nondipole nonrelativistic ap
proximations are shown for the
emission of photons polarized
along the laser polarization direc
tion. The ion is irradiated by a sta
tionary laser field of peak intensi
ties 0.7 and 1.431017 W cm22, as
indicated, and wavelength 105
nm. The nondipole results ar
compared with the relativistic re
sults ~R! of Milošević, Hu, and
Becker@20#.
h

a
ib
de
th

m
ou

t

is
ee
ia

se
r

ls
a

ar
th
m
u

i
r-
or
on

not
pec-
le.
on-
g-
ar-
ary
rn of
cle
f an
here

the

ons
our nondipole nonrelativistic spectra and as in Milosˇević,
Hu, and Becker spectra when the dynamics of the detac
electron is described, respectively, by the Hamiltonian~35!
and by the relativistic Lorentz equation. Finally, we note th
vmax

2 /c2 is less than 0.18 for the short trajectories respons
for the generation of photons below the harmonic or
30 000 at 800 nm wavelength, and is less than 0.10 for
short trajectories responsible for the strongest photon e
sion in Figs. 2 and 3. The relativistic effects neglected in
approach are therefore not expected to be significant at
intensities considered.

To conclude this section, we briefly discuss photon em
sion by ions driven by ultrashort pulses. Spectra for thr
and four-cycle pulses are shown in the top and middle d
grams of Fig. 5. The field is described by Eqs.~1! and ~2!
with

f ~h!5sin2S h

2nD , ~44!

wheren denotes the number of optical cycles of the pul
The pulse is assumed to extend over all space. The co
sponding Fourier transform of the dipole acceleration is

a~V!5
1

~2p!1/2E0

2pn/v

dt exp~2 iVt !d̈~ t !. ~45!

The integral extends over the entire duration of the pu
instead of just one optical cycle as in the case of a station
field. Results for a stationary field of the same intensity
shown in the bottom diagram. The plateau structure of
spectra for few-cycle pulses largely originates from the te
poral variation of the intensity rather than from the contrib
tion of very long trajectories@34#. ~For every half-cycle dur-
ing an ultrashort pulse, the trajectories are detached w
different probabilities and return with different kinetic ene
gies.! Overall, the magnetic-field component of an ultrash
pulse affects photon emission in a similar way as for stati
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ary fields. However, for short pulses, photon emission is
as strongly suppressed at the low-energy end of the s
trum, and plateau structures with oscillations are still visib
This indicates that more than one electron trajectory is c
tributing to the emission of a particular harmonic in the lar
est part of the spectrum. Consider, for example, the low h
monics. As noted above, these are weak in the station
case because they can be produced only through the retu
an electron detached in a weak electric field. For few-cy
pulses, they can also be produced through the return o
electron detached near the end of the pulse, at a time w

FIG. 5. The magnitude squared of the Fourier transform of
dipole acceleration~in a.u.! as a function of the photon energy~in
units of \v!. Spectra for a Be31 ion obtained in the dipole and
nondipole approximations are shown for the emission of phot
polarized along the laser polarization direction (De, NDe) for a
three cycle pulse (n53), a four cycle pulse (n54), and a station-
ary field. The peak intensity is 3.631017 W cm22 and l
5800 nm.
1-8
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NONDIPOLE EFFECTS IN PHOTON EMISSION BY . . . PHYSICAL REVIEW A66, 063411 ~2002!
the electric field is strong but the intensity envelope of
pulse falls off rapidly. Since the falloff prevents it from a
taining a high velocity, the electron can only contribute lo
energy photons and is not deflected as much by
magnetic-field component of the pulse.

B. Selective compensation of the magnetic drift
using a second laser pulse

At intensities where the dipole approximation is valid, t
contribution of each electron trajectory to photon emiss
depends primarily on the electric-field strength at the time
ionization. At higher intensities, the contribution of a partic
lar trajectory can be drastically reduced by the drift induc
by the magnetic component of the field. As noted above
return to the nucleus the electron must be emitted wit
nonzero velocity transverse to the electric field, and the pr
ability for this is exponentially small in the tunneling regim
At the intensities considered here, the Lorentz force ac
on the electron has a magnitude comparable to that exe
by the electric-field component of a relatively weak las
field. This suggests that the magnetic drift can be comp
sated, at least for certain trajectories, by irradiating the
with a second, weak laser field, polarized along the propa
tion direction of the intense one. In this section, we show
an example that a selective compensation of the magn
drift through this mechanism is indeed possible.

We consider the case of a Ne61 ion irradiated by a com-
bination of two ultrashort pulses, both with the same car
wavelength~800 nm!. The first pulse, with vector potentia
A, propagates in the directionk̂ and has the polarization
vector ê. The second pulse has the vector potentialAw and
the polarization vectorêw , with êw[ k̂. We assume that the
second pulse is weak enough to be treated in the dipole
proximation. Therefore, the Schro¨dinger equation governing
the motion of the electron in the nondipole nonrelativis
approach reads

i
]

]t
C~r ,t !5S 1

2
@2 i“1A~vt !1Aw~vt !#21

1

c
~ k̂•r !

3@2 i“1A~vt !#•E~vt !1V~r ! DC~r ,t !,

~46!

with E(vt)52(d/dt)A(vt). Within the SFA, the dipole
moment of the ion can be still be expressed as in Eqs.~14!
and ~18!, with the saddle momentum and the saddle tim
determined by Eqs.~15! and ~17!; however, we now have

p~p,t !5p1A~vt !1Aw~vt !1
1

c Fp•A~vt !1
1

2
A2~vt !G k̂.

~47!

We assume that the two pulses have the same enve
with the second pulse delayed by a timetw with respect to
the first one. We take, specifically,
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A~vt !5
E
v

sin2S vt

2nD sin~vt !ê ~48!

and

Aw~vt !5
Ew

v
sin2S vt2d

2n D sin~vt2d!k̂, ~49!

whered5vtw andn is the number of optical cycles encom
passed by each pulse. In the classical model, an elec
detached at a timetd must have an initial velocity

v'52
1

t2td
H E

td

t

dt9@Aw~vt9!2Aw~vtd!#

1
1

2cEtd

t

dt9@A~vt9!2A~vtd!#
2J k̂ ~50!

to return at the nucleus at timet. The electric-field amplitude
of the second pulse,Ew , and the time delaytw are chosen so
that v''0 for a particular group of trajectories.

The left panel in Fig. 6 shows the magnitude squared
the Fourier transform of the dipole acceleration of Ne61 as a
function of the photon energy for a two-cycle Ti:sapph
pulse withE53.2 a.u. acting alone (Ew50). In order to il-
lustrate more clearly the differences between the dipole
nondipole results, the fast oscillations in the spectra h
been averaged by convoluting with a Gaussian window fu
tion. Let us first consider the trajectory of an electron ‘‘bor
at time td5116 a.u. during the laser pulse. If the Loren
force was negligible, the electron would return to the nucle
at timet'190 a.u., where it could recombine with the em
sion of a photon of energy 7500v. However, the Lorentz
force is not negligible: in order to return the electron mu
have an initial velocity of about 2 a.u. opposite to the dire
tion of propagation of the pulse. Correspondingly,uae(V)u2

is much reduced, compared to its value in the dipole appro
mation.

If, in addition, the ion is irradiated by a second two-cyc
pulse, of field strengthEw50.37 a.u., and delayed bytw
562 a.u. with respect to the first pulse, the electron retu
to the core if detached with zero velocity at timetd5116 a.u.
In the center panel in Fig. 6 we see that the magnitude of
nondipole spectrum is now comparable to the spectrum
tained in the dipole approximation in the region of th
7500th harmonic. The small difference is due to the fact t
the magnetic drift is compensated only for some of the t
jectories that contribute to emission in this part of the sp
trum, namely, those withtd'116 a.u.

Photon emission in the region of the cutoff of the seco
plateau can be enhanced in a similar manner, by choosing
delay and the strength of the second pulse to betw5280
a.u. andE50.32 a.u., respectively. The resulting spectrum
shown in the right panel of Fig. 6.

C. Single attosecond pulse generation

Finally, we investigate how the magnetic-field compone
of the laser pulse influences photon emission in the ti
1-9
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FIG. 6. The magnitude squared of the Fourier transform of the dipole acceleration, in a.u., of Ne61 as a function of the photon energ
~in units of \v). The laser-pulse duration is two cycles, with peak intensity 3.631017 W cm22 and wavelength 800 nm. Dipole (De) and
nondipole (NDe) spectra are shown. In plots~b! and ~c!, the nondipole results are for the case in which the ion interacts with a sec
weaker laser pulse polarized along the propagation direction of the intense pulse~see text!. In plot ~b!, the time delay (tw562 a.u.) and
intensity (I w54.831015 W cm22) of the second pulse were chosen such that photon emission in the neighborhood of the 7500th h
is enhanced, while in plot~c!, tw5280 a.u. andI w53.631015 W cm22, leading to the enhancement of emission around the 30 00
harmonic.
d
ow

6
e

(

re
to
cur
de-
ired
rly
ing

ted

nt,
fig-
t all
ole
ant
and
domain. To this end, we calculate the frequency-resolved
pole acceleration for emission in a narrow frequency wind
centered aboutV, defined by@36#

ae~ t,V!5
1

~2p!1/2
eiVtE

0

`

dV8ei (V82V)t

3F~V82V!ê•a~V8!, ~51!

where F(V82V) is a Gaussian window centered atV8
5V. The square modulus ofae(t,V) is shown in Fig. 7, for
Ne61 interacting with a four-cycle pulse of 3.
31017 W cm22 peak intensity at 800 nm wavelength. W
concentrate on the emission of 3.9-keV photonsV
52500v).
06341
i- The results calculated in the dipole approximation a
shown in Fig. 7~a!. Each spike in this diagram corresponds
a burst of emission of 3.9-keV photons. The spikes oc
precisely at the instants where, in the recollision model,
tached electrons return to the nucleus with the speed requ
for emission at this energy. Seven bursts are particula
strong and have approximately the same intensity, show
that in the dipole approximation the emission is domina
by seven groups of trajectories.

However, the magnetic drift, when taken into accou
changes this picture dramatically. The central part of the
ure, where the nondipole results are plotted, shows tha
but one of the seven returns that contribute most in the dip
approximation are severely suppressed. The only signific
emission event occurs towards the end of the pulse
rmonic of
s
a

FIG. 7. The magnitude squared of the frequency-resolved dipole acceleration for photon emission centered about the 2500th ha
the driving field by a single Ne61 ion interacting with a four-cycle Ti:sapphire pulse of 3.631017 W cm22 peak intensity. Shown are result
obtained in the dipole approximation~a! and in the nondipole nonrelativistic approximation~b!,~c!. Plot ~c! shows the enhancement by
second laser pulse of photon emission at 3.4 laser periods. The peak intensity of the second pulse,I w , is 2.231014 W cm22 and the delay
tw is 30.8 a.u.
1-10
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NONDIPOLE EFFECTS IN PHOTON EMISSION BY . . . PHYSICAL REVIEW A66, 063411 ~2002!
dominates the spectrum. The corresponding trajectory is
flected less than the others, owing to the decrease in
strength of the magnetic-field during the trailing edge of
pulse. The width of the spike indicates that the duration
the burst is about 20 as.~It is worth noting that the intensity
of this emission depends crucially on how the envelope
the pulse decreases at the end of the pulse: the slowe
decrease, e.g., the longer the pulse, and the weaker the e
sion.! The other trajectories make a smaller contributio
their main effect is to induce, by interference, the oscillatio
in the nondipole spectrum which are visible in the low
curve of Fig. 8.

In Fig. 7~c!, we presentuae(t,V)u2 calculated for a super
position of the same intense pulse with another Ti-sapp
pulse, as discussed in Sec. III B. The electric-field amplitu
of the second pulse,Ew , and the delay between the tw
pulses,tw , are chosen so as to compensate the magnetic
for the trajectory giving rise to the strongest burst of em
sion in Fig. 7~b!. As seen from the diagram, when the ma
netic drift is compensated, emission is as strong as in
dipole approximation. The other trajectories are further s
pressed by the second pulse, with the consequence th
single attosecond pulse of x-ray photons is emitted. T
same conclusions can be drawn from the corresponding s
trum, shown in Fig. 8. In fact, one sees from the spectr
that with the second pulse, emission is much more inte
and occurs as a single burst~note the absence of oscilla
tions!, not only for V52500v but also in a large range o
frequencies around this value.

IV. CONCLUSIONS

In this paper we have given a detailed account of
approach introduced in Refs.@21,22# for describing photon

FIG. 8. The magnitude squared of the Fourier transform of
dipole acceleration of a single Ne61 ion interacting with a four-
cycle Ti:sapphire pulse of 3.631017 W cm22 peak intensity. Shown
are results obtained in the nondipole nonrelativistic approximat
with the upper curve illustrating the enhancement of photon em
sion aroundV/v52500 when the ion interacts with a secon
weaker laser pulse having the same peak intensity and delay
Fig. 7. The high-energy part of the spectrum is not shown.
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emission by ions interacting with laser fields~stationary or
pulsed! whose peak intensities are sufficiently high so th
the dipole approximation is no longer applicable. This a
proach can be viewed as a nondipole generalization of
SFA theory of Lewenstein and co-workers@1,10#. It applies
to the dynamical regime that lies between the usual non
ativistic dipole regime and the fully relativistic regime. U
ing the nondipole nonrelativistic Volkov wave functions~A4!
and within the SFA, we have shown that the time-depend
dipole moment of the ion in the laser field,d(t), can be
reduced to the simple form given by Eq.~18!. Then through
a series of approximations, none of which compromise
accuracy of the calculations in any significant way, we
cover the expression for the dipole moment derived
Walseret al. @21#, wherebyd(t) is obtained as a sum ove
amplitudes arising from particular electron trajectories.

The trajectories satisfy two simple classical criteria. Fir
if the electron is detached at some earlier timetd , its dis-
placement along the polarization direction must be zero
time t. Second, at timetd its velocity along the laser-puls
propagation direction,v' , must be equal and opposite to th
average velocity that the free electron acquires in the pro
gation direction due to the Lorentz force between the timetd
andt. These are, of course, nothing more than the conditi
that must be imposed if a classical electron detached at
td is to return to the core at timet. One recognizes immedi
ately the language of the recollision model, modified so as
account for the magnetic-field induced drift of the detach
electron. As in the intensity regime where the dipole appro
mation is applicable, it follows that the main features of ph
ton emission spectra can be understood from two key qu
tities, namely, the tunnel ionization rate when the electron
detached and the kinetic energy of the electron when it
turns to the core. In contrast to the dipole approximation,
tunnel ionization rates now depend strongly onv' , and in
particular on its magnitude relative toI p and the magnitude
of the electric field at the time of detachment. The over
effect of the dependence onv' results, at sufficiently high
intensities, is a strong suppression of photon emission. O
trajectories witht2td and uv'u small contribute meaning
fully to the emission spectrum. As was emphasized rece
in Ref. @5#, it is remarkable that multiphoton processes
atoms interacting with intense laser fields, processes
would at first sight appear to be exceedingly complex, can
fact be largely understood in terms of classical trajectories
electrons that are detached and then subsequently retu
their parent ion. These processes, in addition, provide a
cinating example of a system whose dynamics lies at
interface between quantum and classical mechanics.

Typically, a number of electron trajectories contribute in
comparable way to photon emission in some frequency
terval or to ATI spectra in some energy range. We have d
cussed a scheme whereby a second laser pulse can be u
control an individual electron trajectory. By the appropria
choice of the laser parameters, the effect of the drift indu
by the magnetic-field component of the pulse can be co
pensated for a selected trajectory, and enhanced for oth
leading to the emission of a single attosecond pulse of h
frequency photons. The scheme has similarities to the p
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posal by Corkum, Burnett, and Ivanov for producing an is
lated attosecond pulse, in which single returning trajecto
are selected by a temporal variation of the ellipticity of t
incident field@37#.

Many of the issues regarding the consequences of
breakdown of the dipole approximation discussed here ap
equally well to strong-field recollision processes leading
single and multiple ionization. For instance, the reduc
recollision probability in the nondipole nonrelativistic re
gime means, as has recently been observed experimenta
nonsequential multiple ionization@38#, that these processe
are strongly suppressed at very high intensity. This co
well impose a practical barrier to the experimental study
strong-field recollision processes at intensities where rela
istic effects become important. The selective compensa
of the effect of the magnetic drift by a second laser pulse
discussed above, may offer a way to alleviate this difficu
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APPENDIX: NONDIPOLE NONRELATIVISTIC VOLKOV
WAVE FUNCTION

The required nondipole nonrelativistic Volkov Green
function can be expressed as

GV
(1)~r ,t;r 8,t8!52 iu~ t2t8!E dpCp

L~r ,t !@Cp
L~r 8,t8!#* ,

~A1!
.

N
er

r-
C.
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where the functionCp
L(r ,t) is a solution of the time-

dependent Schro¨dinger equation~TDSE! ~4! with V(r )50.
Calling Cp(r ,t) the solution of the TDSE~3! with V(r )
50, introducing the wave functionCp8(r ,t) as

Cp~r ,t !5expS i

c F2 i“•A~vt !1
1

2
A2~vt !G~ k̂•r ! DCp8~r ,t !,

~A2!

and recalling that“•A(vt) commutes withk̂•r , it is seen
that

i
]

]t
Cp8~r ,t !5

1

2 S 2 i“1A~vt !1
1

c F2 i“•A~vt !

1
1

2
A2~vt !G k̂D 2

Cp8~r ,t !. ~A3!

The Hamiltonian operator in Eq.~A3! commutes with the
momentum operator, so that the TDSE is easily solv
Transforming back to the length gauge, the nondipole Volk
wave function reads

Cp
L~r ,t !5

1

~2p!3/2
expS i p~p,t !•r2

i

2E
t

dt9@p~p,t9!#2D ,

~A4!

where p(p,t) is defined in Eq.~8!. The nondipole Volkov
wave function~A4! is also readily obtained by expanding th
relativistic Volkov wave function in powers of 1/c and ne-
glecting terms of orders 1/c2 and higher. It reduces to th
familiar nonrelativistic, dipole Volkov wave function whe
1/c→0.
k

.
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Milošević ~private communication!#. In order to compare them
with the values ofuae(V)u2 we have obtained, the rates hav
been multiplied byV and an arbitrary numerical factor.~The
same factor is used for both intensities.!

@36# K.J. Schafer and K.C. Kulander, Phys. Rev. Lett.78, 638
~1997!.

@37# P.B. Corkum, N.H. Burnett, and M.Y. Ivanov, Opt. Lett.19,
1870 ~1994!.

@38# M. Dammasch, M. Do¨rr, U. Eichmann, E. Lenz, and W. Sand
ner, Phys. Rev. A64, 061402~R! ~2001!.
1-13


