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Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations
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The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is
investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving
expectation value of an observable operator. A relationship is shown to exist between the system dynamics and
the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of
system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution
of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs
because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking
advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The
consequences of this inherent robustness are discussed in the light of recent experiments and numerical
simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future
success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field

fluctuations.
DOI: 10.1103/PhysRevA.66.063405 PACS nuntber32.80.Qk, 03.65-w
[. INTRODUCTION tions of highly nonlinear intense-field-controlled dissociation

and rearrangement of moleculek7,14, as well as the ma-
Over the past decade, a variety of optimal control calcuhipulation of high harmonic generatidh]. Lurking behind
lations have been performed for the purposes of exploringll of these observations is the unknown degree of “quantum
the manipulation of quantum phenomefia2]. Recently, a character” retained in the control process, especially in the
number of successful closed-loop optimal control experipresence of field fluctuations. In some special instances, field
ments[3—14] have also been carried out where the optimalfluctuations may be helpfiyR1], but the general expectation
fields were directly identified in the laboratory using suitableis that field noise will be deleterious at least to some extent.
learning control techniquekl5—-17. Seeking optimality is The presence of field noise may also influence the rate of
natural, as achieving the best possible quantum system perenvergence or other algorithmic aspects of the laboratory
formance is always desirable. Of special interest is the conlearning control proceds 7,20.
tribution of dynamical coherences, as manifested through the This paper will explore the relationship betweén the
manipulation of constructive and destructive quantum wavéature of coherent quantum dynamicb) the influence of
interferences. There is only an incomplete understanding dfeld fluctuations,(c) the degree of robustness, afdj the
the role of such interferences, especially in the most interesittainment of optimality. It will be shown that the bilinear
ing cases involving strong field contrial, 7,14, where quan-  gependence of quantum expectation values upon the evolu-
tum systems exhibit highly nonlinear field effects. An earlyjon operator and its adjoint has a special serendipitous role
point of speculation was that even modest field noise woulg, rejating all of these points. Detailed simulations of the
effec;tlvely kil the guccessful achievement of quantum connenomena involved are difficult to perform, especially for
f/:/?)lu:g g::? tf)trgnmgp;lfilf(;l(ihf%ilg?g,nv(\)/igireTw: |ﬂ'tjri;nJ|l:1rg rseycsetﬁt he most interesting complex chemical/physical systems.
experiments operating in this regimé give very encouragin Howgver, gnder_ ce_rtam simple assumptions and_ dyn_amlcal
onsiderations, it will be shown that a clear physical picture

evidence that this speculation was incorrect. However, th The ohvsical pict dit
detailed mechanism for the surprising degree of robustnesy€r9es. 1he physical piciure and Its consequences are con-

has remained unclear, especially with successful optimasf'Stem with current observations and should ultimately aid in

control being observed in diverse systeigs 14}, suggesting providing mechanistic insights into the control of quantum
that this behavior may be generic. phenomena. Under the most severe degree; of'control field
Several theoretical and experimental studies provide thuctuations, the quality of the achieved objective should
relevant background for the analysis in this paper. An opti_eventually diminish significantly. However, before that oc-
mally designed field for the dissociation of hydrogen fluoridecurs, it will be argued that even the loss of multiple pathway
showed excellent robustness to field fluctuatiph8], and interferences may still lead to successful quantum control
learning control simulations indicate that closed-loop experifrocesses.
ments should naturally gravitate towards control fields that Section Il will present an analysis of system behavior
produce robustness with respect to the presence of field fluevhen seeking quantum optimal control in the presence of
tuations[19,20. Simulations suggest that explicitly seeking field fluctuations. Section Ill contains an illustration of the
robustnes$19] as an additional control criteria can further concepts involved. Section IV will discuss the consequences
enhance this stable behavior, and in favorable cases, evef this behavior for control. Some brief concluding remarks
with little deterioration in the quality of the attained objec- will be given in Sec. V, regarding future studies to amplify
tive. Most significant are the recent laboratory demonstraen the findings of this paper.
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II. OPTIMALLY CONTROLLED QUANTUM DYNAMIC magnitude ofe,(t) and the degree of nonlinearity of the
BEHAVIOR control process with respect to the field. Small amplitude
field fluctuations may have a considerable impact in some
cases. On the other hand, experience with optimal control
calculations[18-20 and experiment§3—14] shows that
rﬁhere is significant robustness even to the presence of rather
arge amplitude field fluctuationgl8—2Q (e.g., ~25% in
'some simulations Field fluctuations may occur due to a

Consider a quantum system with the Hamiltonibly
=Hq—pe(t), whereH, is the field-free Hamiltoniany is
the electric dipole moment, art) is the control field. The
analysis below also encompasses more general circu
stances than just electric dipole interactions, with the onl

criteria being the existence of a term in the Hamiltonian per->>". v of fact din th i K il simol
mitting significant coupling with the control field; for our variety of factors, and in the present work, we will Simply

purposes here, the Hamiltonian above provides a conveniegﬁsqme.thaﬁs(t). s a random variable characterized by a
picture to explore the behavior of a quantum system unde istribution functionP(Se(t)), such that

control. No assumption needs to be made about complete

controllability [22] of the quantum system, as it is only suf- f D[ 8e(t)]P(8e(t))=1. (4)
ficient that the target goal be acceptably achieved by some

suitable control field. The system initially is described by the

density matrixp(0), corresponding to a pure or mixed state, This functional integral is over all possible realizations of the

and the dynamics is given by field noise trajectories.
In order to explore the influence of the field fluctuations

{ée(t)} upon the behavior of the target objective in E@.
and(3), Fig. 1 depicts the mapping in E(R) from the initial
density operatop(0) to the final objective operator expecta-
In the present analysis, the system evolution occurs free afon value(O(T)). The initial density operatgs(0) is trans-
any uncontrolled environmental interactiois.g., colli-  formed to the final objective operat¢O(T)) through the
siong. The formal solution to this equation i®(t)  simultaneous action dfi(T,0) andU'(T,0). Either path in
=U(t,0)p(0)U'(t,0), where the time evolution operator the figure may be thought of as an evolution through a se-
U(t,0) satisfies# (d/at)U=HU, U(0,0)=1. Quantum con- quence of statel;), i=1,2,...n. These states will be iden-
trol is usually specified by prescribing an objective operatotified in Sec. Ill as those associated with high quantum evo-
O (taken as time-independent hegrehose expectation value lution phase sensitivity to control field fluctuations; the states
" will generally not be the traditional intermediate states asso-
(O(M)=tlp(0)U(T,000U(T,0)] 2 ciated with the various terms of a perturbation expansion for
U. The circles along each path in Fig. 1 denote intermediate

at the target timéd is the subject for controlled manipulation. “stopping-off” points. labeled by these states. alond the wa
The target time may be either a fixed pointToro. Com- pping-oft p .' ' J by € states, along way
to the objective; the meaning of this picture will become

monly, O is a projection operator into some desired state, lear upon the consideration of the influence of field noise
although other choices can arise. Regardless of the particulfrg i pW . v d 4(T(0)) i d
physical objective, it is always natural to pose the goal a .8( ).}' € may ngor.ousy ecomposé(T(0)) in accor
one of achieving the besti.e., the optimal result for with Fig. 1, as follows:
(O(T)). This perspective is fundamental to quantum optimal
control theory[23], whether carried out as a design processy (T o) = j: U(T,t) [ €20CE Uty D ]€0 1)
on the computel1,2] or executed through closed-loop learn-
ing techniques directly in the laboratof$—17,19,20. Here
optimization may refer to maximization, minimization, or X | €505 U (Lo, t) [€5)(€5]U(t1,0).  (5)
some other specified criteria, which is simply summarized as
3) The symbol}: denotes a summation or integration over the
intermediate-state indices, as appropriate. The number of in-
termediate steps along the path and the sequence of inter-
where the field is treated as a control function for variationmediate timeg;,t,,... t, is, in principle, arbitrary, and fur-
until the optimal objective criteria is met, as best as possiblether discussion on this point is given in Sec. IVC. On
This process is understood to produce at least one optim@hysical grounds, it is suggestive to think in terms of a se-
field eop(t). Any single laboratory experiment would oper- quence of evolving events under the influence of the electric
ate with an electric field (t) = eqp(t) + de(t), wherede(t) field e(t), O<t<T, broken into subintervaldey(t),0<t
is a random disturbance around the nominal optimal field<t,}, {e,(t),t;<t<t,},... {en(t),t,<t<T}, such that the
gopt); In practice, an ensemble of experiments would befull field is a continuous concatenation of the individual
performed, collectively associated with the statistics of thepiecese(t) =[g(t),e(t),...,e,(t)] taken in sequence. Each
ensemble of noise trajectori¢se(t)}. Ideally, the experi- segment of the field carries on a relay process from one
ments would be performed such thét(t) satisfies|de||  intermediate state to another over an associated time interval.
<||eopdl under some suitable norjp|, in order to reduce the An expression forlU™(T,0) analogous tdJ(T,0) in Eq.
influence ofde(t) on the control objectivéO(T)). The sig-  (5) may be written, and their combination utilized to repre-
nificance of the field fluctuations can depend on the overalsent the structure in Fig. 1:

J
ih(y—’t)=[H,p]. (1)

€ i=1,.n

Opt(O(T)),
e(t)
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p(0)

W O)-... D

u'(T,0)

FIG. 1. (Color A schema depicting the transformation from the initial density opegafrto the final expectation valug@(T)) through
a series of dynamical statéé;) and|¢), i=1,...n acting as stopping-off points on the excursion. The nature of these states, their total
numbern, and their location along the excursion are dictated by the ensemble of noise trajelcie(ig$ associated with the control field.
Each stopping-off point acts to break the coherence in the evolp(io)i—(O(T)). The bilinear nature ofO(T)) in terms ofU andU" is
the origin of the inherent robustness in the evolution, expressed as a set of intermediate coherent steps toward$é®{@ Yargather than
a total loss of control due to field noise.

(O(T))=—p(0)|UT(t1,0)[€1)(€1|UT(ty,t)[€2) (€] - - - [€n-1){(€n-1UT(ts tho 1) €0)
Gii=lon o121 p
><<€n| UT(T-tn)|O| U(T-tn)|€r,1><€r/1| U(tn vtn—1)|€r,1—l><€r,1—l| """"" |€é
X(€oU(ta,t)[€1)(€1]U(t1,0)]—. (6)

Here, the arrows at the beginning and end of the expression imply that these operators are linked together, such that the
sequence of matrix elements in H) forms a closed loop corresponding to the structure in Fig. 1. Using the definition of
Hermitian conjugation along with the modulus and phase decomposition,

(€lU(tq.tq-1)|€g-1)=[(€4|U(tq tq-1)[€q-p)exdid(€q.€q-1)], ()

permits rewriting Eq(6) in the following fashion:

Om- I F (U0 Ol KU il e, 0

€i Ji=1..n gi, Ji=1,..n

- ¢(€Zv€1)]}|<€n|u(tn 1tn—1)|€n—1>”<€r,1|u(tn atn—1)|€rlw—1>|exp{i[¢(€r,1 v€r,1—1)_ ¢(€n ven—l)]}
X (€| UT(T,t)[0JU(T,t)|€}), (8)

FIG. 2. (Colon The structure arising along the papif0)—(O(T))s.; due to seeking optimal quantum system performance in the
presence of control field noise. In spite of noise being present, the optimization process seeks to retain a maximum degree of control through
manipulation of constructive/destructive interferences. The result is a reduction of the structure in Fig. 1 down to a sequence of steps shown
here and is explicitly expressed in E@.5). Within each stege.g.,{;—{5), full quantum evolutionary coherence is retained while the
process is broken in going from one step to the fexg.,€,— ¢, and then(,— €3). The interference retained within a step is depicted by
the complex interleaving paths.
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An arbitrary term in Eq(8), S1=€1|U(t1,0p(0)|UT(t1,0)]€1)]
Saa-1=(€alU(tq.tq- ) €q- DK€ U(tg tq- )] €5-1)] Xexpi[¢(€1) — (€11} (13)
xexpli[p(€g,tq-1)—d(€q,€q-1)]}, (9)  The particular phase structure in E43) may be argued to

exist in the physically relevant extreme casesp@) being
is a functional of the electric field, 4(t), t,_1<t<t,. In  €ither a pure stat@(0))X(¥(0)| or an incoherent mixed state
Eq. (8), it is understood that each phagd¢,,¢, 1), p  2jli)pjj(0)(il, wherep;;(0) is the initial population in the
=2,...n will generally be a distinct functional of the electric jth state. The phase difference in Efj3) can be a sensitive
field &, 4(t). function of (€;—¢1) when there are significant field fluctua-

In the laboratory, the left-hand side of E@) would be  tions, and it is expected under these conditions that the re-

observed(evaluated through signal averaging over an en- gion €;=¢, will be most important. Expanding th&; de-
semble of electric fields centered around the current nominglendence of the phase factor abéytand keeping only the
value e(t), with each field realization in the ensemble hav-lowest-order term produces the phase faet¢f ;) — (€ 1)
ing a particular noise trajector§s(t). In the search for the =¢’(¢,)(¢;—¢,), where the prime on the phase denotes
final optimal field eop(t), a sequence of learning control differentiation. Over a moderate interval for variation of
experiment$15-17,19,20would be carried out with signal [ se,(t)], we may consider the differential probability
averaging over an ensemble of fields during each cycle of thgelation as uniform in the phase derivative,
learning process. Thus, at the end of this laboratory learnin@[ e, (t) |P(Seo(t))~(1/2m)dp’ (€,). Thus, combining
control exercise, the final result is an ensemble average @fi| of these statements and taking the modulus in(E8). as

Eq. (8) over the probability distribution function in E§4),  slowly varying with respect to field fluctuations leads to the
result
(0T )0 = f DLoe(D]P(Ge(XOM). (A0 (s)) , \=[(£4]U(t1,0)]p(0)|UT(t,, 0 €)|8(€1—€1),
(14

The terms in Eq(8) correspond to the field intervaks(t) . . )
=[eo(t),e4(1),....£,(t)], and we will make the assumption where &(-) is a Dirac delta function. The same arguments

that the field fluctuations from one interval to the next areMay be applied sequentially to all of the terms in &§),
statistically independent of each other, such that with each of them producing a new Dirac Qelta_\ function
amongst the quantum numbers. When considering the ge-

n neric term in Eq.(9), the relation{ _, =€, will have al-
Pse(t)=[1 P(8eq(1). (11)  ready been established from the ensemble average over the
q=0 previous term. The overall ensemble averaging process will
yield a sequence of delta functiorﬂgzlé(eé—«?q). Thus,
This factorized form is equivalent to the noise fluctuationswe may express the average in H40) over Eg.(8) as
having a memory shorter than the time intervgls t,_, for ~ having the following final form, assuming that the quantum
each of the physical evolution stegise., the windows of indices€, q=1,...n take a sufficiently dense set of values
time between stopping-off pointsThe presence of corre- to be integrated over,
lated noise over extended time periods would change this
assumption, and a careful analysis of laser pulse noise will (O(T))s.= i [(€1]U(t1,0)[p(0)|UT(t1,0)|€ )]

be needed to assess whether a significant modification of the G Li=1,..n

assumption in Eq(11) is necessary for a more elaborate 2

analysis. Proceeding with the present assumption, combining XUt ) [€5)] - (€n-a|U(tn-1,tn)
Egs. (8), (10), and (11 shows that each of the terms is a X UT(T t)|OU(T 1) €,).  (15)
separate average over an ensemble of noise trajectories. A

typical term in Eq.(9) becomes an average: The structure of the expression in Ef5) is shown in Fig. 2.

By comparison with Fig. 1, it is evident that the process of

seeking optimally controlled system performance in the pres-

<quqfl>{58q-1}:J’ D[ Jeq-1(1)Pg-1(8eq-1(1)) ence of field noise has broken the evolutign0)
—(O(T)){ss) Into a sequence of steps. Coherence is fully

X Sq,q-1([8eq-1(D)]), (120 maintained within each ste@.g., [(€1|U(ty,15)|€,)[%), but

is broken in going from one step to the next. The following

where the explicit functional dependence &f,-; in the  sections will consider the structure of H45) and its physi-
integrand upon the field fluctuations is indicated bycal implications for quantum control.

[Seq-1(t)]. We will make the reasonable assumption that
the most sensitive functional dependence on the field fluc-
tuations in Eq.(9) arises from the phase factors, rather than
the moduli. To start the averaging process, consider first the The control of any particular quantum system will have

term involving p(0) rewritten in the following form: its own special nuances, but a very common circumstance is

IIl. AN ILLUSTRATION
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for the control fields (t) over the domain &t<T to have at wl€y=N|€). (20
least three windows ©-t;, t;—t,, andt,—T, where the
field is very intense during the intermediate timest<t,. For now, it will be assumed that the spectrdiny} is non-

Additional windows of high intensity may also occur, and degenerate; the relaxation of this assumption will be permit-

the analysis below may be readily extended to such a genefed later. Thus, Eq(19) reduces to

alization. For the purposes of illustration, it will be assumed

that the windowt;<t=<t, is sufficiently short, such that the (€2|U(ta,t)[€1)= 8¢ ¢, XA —iN (e+ S8)/1], (21)

dynamics may be taken as sudden during this interval. Fur-

thermore, it is reasonable to take the field fluctuationgt)  and the integral over the field fluctuations in E48) be-

as especially intense during this window, since a correlatioggmes

will likely exist between the local-field amplitude and its

fluctuation magnitude. The influence of field fluctuations on

the evolving dynamics is sensitive to the magnitude of the . _ —

fluctuations| de(t)|, and accordingly, the illustration will f d[éap[ﬁa&l@&i’(éexq (e, Mi)(SJrﬁa/h]

consider the fluctuations as significant only during the inter-

mediate windowt;<t=<t,. The system starts out in a pure

statep(0)=|i)(i|, with the objectiveO=|f){f| being a pro- _ _ _ _

jection operator. In the evaluation of the integral, the field fluctuations are
The observable expectation value at the target time belaken as sufficiently large, to satisfy the criterja,,

comes —)\€1| | 8e]|>m for any €,# €], where| de] refers to the

O(T)=(f|U(T,0)|i}(i|UT(T,0)|f) (16)  norm of 5 over the domain of variation allowed B[ d¢].
Utilizing Egs. (21) and(22) in Eqg. (18) finally produces

with U(T,0)=U(T,t,)U(t,,t;)U(t;,0). The time evolution

operatorU(T,0) is broken into three steps in keeping with

the nature of the control field described above. In addition, (0(T)>{5g}w2 [(FIU(T,t)[€)?)(€|U(t1,0)]i)[% (23

due to the sudden dynamics over the petipgt=<t,, with ¢

the HamiltonianH=Hy— ue(t), it follows that

~80,0,00,0,0¢,¢!- (22)

o This result is a special case of Ed@.5) under the specified
U(ty,ty) =exd —iu(e+ de)lh], (A7 dynamical conditions.
It is evident from Eq.(23) that the field fluctuations over
wheree = f:is(t)dt and oe = f:i&“(t)dt- As S¢(t) isaran-  the short period of intense sudden dynamics result in a small

dom variable, we may similarly treafe as a new random Stopping-off windowt,<t=<t,, and a loss of coherent link-
variable for statistical averaging. Combining these state@de across that window. This total loss of coherent linkage

mentsl the expression in Eqﬁ) and (10) becomes would be- I’elaxed. under the Cor_WditionS. that e|tﬁ|é§” is
reduced in magnitude, or the dipole eigenvalue difference
OMsm= 2 2 (FU(T ) [€)(€5UT(T 1)) INe, =] is sufficiently small for some;# €7, such that
BURP |)\€1—)\€i|||5§[|27r. In the limit that the latter quantity be-
X (€4|U(t1,0)|i)ilUT(t,,0)| ¢! comes very smalle.g., some of the eigenvalues are small or
(GU OV (0] 6) degenerate, offd¢]| is smal), the full coherence linkage
across the window, <t<t, should be resurrected. Note that
XJ d[ 8e]P(5e)( 5| U(tz,t1)[€1) if the entire domain &t<T corresponds to a very intense
ultrashort sudden control interval with sufficiently intense
X(€1]UT(ty,t]€), (18 field fluctuations(and a nondegenerate spectr{im}), then

the ensemble-averaged dynamics reduces to the form
Here, for convenience, the intermediate stdt€g are taken
as discrete. The averaging operation over the mean-field am- o o
plitude fluctuationsse is based on Eq(7), which reduces to <O(T)>{5?}—>; [KELEOZ[CELHI% (24)

(€o|U(to,t )€ 1) =(€]U(ts,t)] € ) exdid(£2,€4)]. corresponding to a statistical outcome and an effective loss
19 of control. When operating with intense fields, these results
suggest the existence of a tradeoff. Dynamical control with
The analysis in Eqs(8)—(14) is most reliable when the intense fields has certain attractive featueg., the lifting
modulus is slowly varying ovefée}, while the phase has of constraining resonant conditionsbut significant field
the dominant variation. This behavior can be examined irfluctuations can have a deleterious effect on the control pro-
detail for the model in this illustration. The intermediate cess. Generally, a soft graduated influence of field noise is
states{|()} are assumed to be complete but otherwise arbiexpected, with the conditions leading to Ed5) occurring,
trary. However, given the structure of H4.7), it is natural to  at most, at a limited number of points or windows during the
consider{|()} as eigenstates of the dipole operator controlled evolution. Furthermore, the example in this sec-
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tion shows how a partial flow of coherence can pass througki7)] which have significant sensitivity to field noise. Some
the stopping-off points, depending the detailddef, u, (t),  optimal control field design calculationgl8] were also
and| se|. shown to have unusual levels of robustness to noise, which
may indicate that the associated optimally controlled dynam-
ics was broken into modular units according to EDp).
V. DISCUSSION The stable structure of Eq15) suggests that reasonable

This section will address a set of interrelated topics tolevels of field noise, even at high field intensities, may not
explain the physical consequences of the result in(Eg),  esult in a catastrophic loss of control. The well-defined
and connect it to the behavior found in recent laboratorynodular path between the initial state and the objective in

experiments and computer simulations on optimally con-Ed- (15 is expected to inherently produce a more robust
trolled quantum systems. control process at the expense of some measured loss of

fidelity from drawing onC/D interferences. Perhaps the best

N _ ) evidence for this behavior is the success of the recent high-

A. Exploiting constructive and destructive quantum wave field quantum control experiments involving molecular dis-
interferences sociation and rearrangemej,7,14, as well as selective

A basic premise underlying the manipulation of quantumPigh harmonic generatiofb]. Early speculation suggested

systems is that the best control results will be achieved in thi1at selective quantum control in this regime would be of
circumstances permitting the maximum use of constructivé©0r quality due to the quantum system effectively acting as

and destructive@/D) interferences to discriminate amongst an ampliﬁe_r of even modest field noisg resulting from the
the desired and undesired product chanfigtd. The pres- highly nonlinear dependence upon the field. However, oper-

S 3 () v i o syt kel S TG apmalconrl, e pernera inge nd
advantage ofC/D interferences. The ideal limit is the cir- erwise.

cumstance oP (5z(t))— &[ 5z(t) ], which corresponds to no One limiting class of “control” experiments will be those
field noise, withd[ -] being a Dirac delta function. In this carried out without any benefit of optimal field training to
limit, the result found in Eq(15) will reduce to that of 8 meet the objectives. An example along these lines is high-
single term (i.e., there will be no intermediate stop-off field multiphoton ionization of atoms and molecules using

points, corresponding to the original expression bandwidth limited pulse$26]. The expectation is that this
T circumstance will utilize little, if any, beneficial/D inter-
(O(T)=tr[p(0)U(T,000U(T,0)] (25 ferences, but perhaps exhibit a maximal degree of robustness

. _ . for the ionization signal that is generated. This regime should
without further reduction. The formulation in Ed15  correspond to utilizing a maximum number of intermediate
strictly applies to the case of there at least being a singlgtop-off points in Eq.(15), producing a ladder of stepwise
intermediate stop-off poinh=1, on the pattp(0)=(O). In  transitions to the ionization continuum. This behavior ap-
the laboratory, there will always be a finite amount of field pears to be operative in nonoptimal multiphoton ionization
noise, thereby likely corresponding to the presence of one di26].
more intermediate stopping-off points on the control path-
way in Fig. 2 and Eq(15). Each of these points break the C. The stationary stopping-off points on the way
C/D interference process into subpieces, likely resulting in to optimal control
less than full control. Furthermore, the influence of field fluc-

. T Consider now the number of stepson the way to the
tuation may lead to a gradual diminution 6D effects, as n y

target in Eq.(15), as well as their location in time and quan-

indicated in sec. IIl. tum number spacét,,f,}. Based on the phase averaging
arguments leading to E@15), coupled with the attainment
B. Seeking optimality and achieving robustness of optimality drawing on the highest possible degre€ob

interference manipulation, we may identify the sequence of
X ) ; oints{ty,{4} as locations where there lisgh quantum evo-
exploit closed-loop learning algorithn{d5-17,19,2Q the IFthion éﬁasg}sensitivity to field quctuati?r?s.?n order to opti-
realization of optimal control in the laboratory is now a dem- .1y achieve the control objective with good robustness, the
onstrated _capab|I|t{/3>—14]..The search for optlmal_lty in this quantum evolution phase sensitivity is diminished at
process will attempt to drive up the degree@fD interfer- {tq.€q}, by cancellation of the pairs of phases at the analo-
ence manipulation, while assuring that the control results argoys points along the evolution &f(T,0) andU(T,0), as

as robust as possible to field noise. Although some serendipindicated in Figs. 1 and 2 and E€). In turn, the evolution
tous circumstances may permit good degrees of robustnegger the intervalé ,_,— €, between two such stopping-off
simultaneously with extensive exploitation 67D interfer-  points corresponds to a domain of lesser sensitivity to field
ences for high product yield21], the general expectation is noise, and hence, an inherent degree of robustness, thereby
that these two goals will be competitive with each other. Thepermitting some exploitation o€/D interference through
overall structure in Eq(15) and Fig. 2 arises due to en- |(€,|U(tq,tq—1)[€4-1)[* on the way towards the desired ob-
semble averaging over a finite level of field noise. Thusjective. Increasing noise levels should lead to more such in-
seeking optimal performance leads to noise-induced stop-otermediate phase sensitive poifits, €}, with the limit ul-
points on that patip(0)=(O(T))s,; to assure a degree of timately reducing the dynamics to a sequence of incoherently
robustness by eliminating those quantum phdsefs, Eq.  coupled stepsge.g., in the case of dipole coupling, each step

With the ability to reliably shape control pulsg25] and
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in this limit would correspond to a particular matrix element=1,2,.... By virtue of the optimality and robustness of the

Mq,q-1)- Such a chain of simple steps is still quantum me-dynamics undes q,(t), this ensemble of evolution operators

chanical, as governed by the system selection rules. is expected to be reasonably stable with respect to noise,
The physical nature of the intermediate statég), q except at the set of stopping-off points over the interval 0

=1,2,...n is dictated by the optimal control process seeking=t<T. In the local neighborhood of the stopping-off points,

the best system performance. Thus, these states are the bagh sensitivity to field noise will occur for each operator

that is consistent with the physical objectives and the attaint;(t). However, the expectation valy®©(T)); determined

able dynamics, so as to produce optimal performance by befitom a particular fields;(t) should have diminished noise

eliminating the field fluctuation-driven quantum evolution sensitivity, and the ensemble average in Bdy) should ex-

phase sensitivity. These intermediate states might be menhibit good robustness to field noise.

bers of the eigenstates &f, or superpositions of them to

form virtual states. The guidance is strictly driven by seeking V. CONCLUSION

optimality. Only the existence of the states is necessary to _ ] )

provide a basis to explain the robustness with respect to field This paper presented a general analysis of optimal quan-

noise. tum system control, with the aim of investigating the overall
Finally, to aid in understanding the meaning of the inter-impact of field noise on the control process. It was argued

mediate steps, it is useful to consider the special case dfat a relationship exists betweés) the nature of quantum

p(0)=1i)(i| and O=|f)(f| corresponding to control of dynamics being bilinear inJ and UT, (b) the presence of

population transfer fofi)—|f). In this case, Eq(15) simply field fluctuations(c) the attainment of optimality, and) the
reduces to robustness of the control process. Although noise is expected

to generally have a deleterious effect on achieving control,

n+i especially in the nonperturbative regime, the analysis

Z H [C€;|Uct; t_D]€- ), (26)  showed that good control selectivity may still remain, with

fd=ten i=1 the power of optimality fighting to achieve the best results

with [€o)=]i}; tys1=T, |€n:1)=|f). Thus, the final prob- p_ossible. To push this analysis further, it would be very de-
ability of occupying the statéf) is the product of the indi- §|rable to carefu!ly assess the nature o_f shapgq laser-pulse

vidual probabilities for making intermediate transitions. De-fi€ld noise, and ideally, vary the noise in specific ways to

spite some loss o€/D manipulation in Eq(26), the final observ_e its impact on the optimal C_ontrol process. Further-

population yield could still approach unity if each step along™MOre. it would also be valuable to introduce explicit tech-

the way fromi—f is highly efficient. This prospect points niques to |<_jent|fy the actual q“a”t!m? .pathways linking the

out that caution may be called for with regard to physicallyinitial @nd final state$27]. In some limiting casege.g., Eq.

interpreting successful quantum control experiments in term&8; it may be possible to construct the observed control
of their fully drawing onC/D interferences. event from a sequence of observations in separate subcontrol

In considering Eq(26), as well as the more general result XPerments. o _
in Eq. (15), no further specification of the intermediate times ' € inherent degree of robustness evident in the optimal
is necessary. Although the discussion here implies that thefgPntrol of quantum systems is very encouraging for future
would likely be a correlation between these times and th@pphcatlons. In most of these applications, the physical focus
associated intermediate stopping-off points, an expressioff " (O(T)), and often, even a modest degree of stable

analogous to Eq5) may also be derived involving integra- co_ntrql would be quite acgeptab_le. A notable exception may
tion over the intermediate times. arise in quantum information scieng28], where one focus

isonU(t), t=0 acting as a functional quantum “machine”
(e.g., a quantum compujerin this case, the presence of
dynamical quantum phases sensitive to field noise may be
After attaining the optimal control field,,(t), its appli-  troublesome. But again, seeking optimal performance should
cation to the system under ideal noise-free conditions wouldilso provide the best operational framework.
produce the time evolution described by the operator
Uopt,0). In practice, each particular control fiekj(t)
=gop(t) + dgi(t) from a laboratory ensemble would have
noise fluctuations around the optimal field, and would have Support from the U.S. Department of Defense and the

D. Evolution in the presence of field fluctuations
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