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Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

Herschel Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 30 January 2002; published 13 December 2002!

The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is
investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving
expectation value of an observable operator. A relationship is shown to exist between the system dynamics and
the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of
system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution
of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs
because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking
advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The
consequences of this inherent robustness are discussed in the light of recent experiments and numerical
simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future
success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field
fluctuations.
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I. INTRODUCTION

Over the past decade, a variety of optimal control cal
lations have been performed for the purposes of explo
the manipulation of quantum phenomena@1,2#. Recently, a
number of successful closed-loop optimal control expe
ments@3–14# have also been carried out where the optim
fields were directly identified in the laboratory using suitab
learning control techniques@15–17#. Seeking optimality is
natural, as achieving the best possible quantum system
formance is always desirable. Of special interest is the c
tribution of dynamical coherences, as manifested through
manipulation of constructive and destructive quantum w
interferences. There is only an incomplete understandin
the role of such interferences, especially in the most inter
ing cases involving strong field control@4,7,14#, where quan-
tum systems exhibit highly nonlinear field effects. An ea
point of speculation was that even modest field noise wo
effectively kill the successful achievement of quantum co
trol in the strong-field regime, where the quantum syst
would act to amplify the field noise. The intriguing rece
experiments operating in this regime give very encourag
evidence that this speculation was incorrect. However,
detailed mechanism for the surprising degree of robustn
has remained unclear, especially with successful opti
control being observed in diverse systems@3–14#, suggesting
that this behavior may be generic.

Several theoretical and experimental studies provide
relevant background for the analysis in this paper. An o
mally designed field for the dissociation of hydrogen fluori
showed excellent robustness to field fluctuations@18#, and
learning control simulations indicate that closed-loop exp
ments should naturally gravitate towards control fields t
produce robustness with respect to the presence of field
tuations@19,20#. Simulations suggest that explicitly seekin
robustness@19# as an additional control criteria can furth
enhance this stable behavior, and in favorable cases,
with little deterioration in the quality of the attained obje
tive. Most significant are the recent laboratory demons
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tions of highly nonlinear intense-field-controlled dissociati
and rearrangement of molecules@4,7,14#, as well as the ma-
nipulation of high harmonic generation@5#. Lurking behind
all of these observations is the unknown degree of ‘‘quant
character’’ retained in the control process, especially in
presence of field fluctuations. In some special instances,
fluctuations may be helpful@21#, but the general expectatio
is that field noise will be deleterious at least to some exte
The presence of field noise may also influence the rate
convergence or other algorithmic aspects of the labora
learning control process@17,20#.

This paper will explore the relationship between~a! the
nature of coherent quantum dynamics,~b! the influence of
field fluctuations,~c! the degree of robustness, and~d! the
attainment of optimality. It will be shown that the bilinea
dependence of quantum expectation values upon the ev
tion operator and its adjoint has a special serendipitous
in relating all of these points. Detailed simulations of t
phenomena involved are difficult to perform, especially f
the most interesting complex chemical/physical syste
However, under certain simple assumptions and dynam
considerations, it will be shown that a clear physical pictu
emerges. The physical picture and its consequences are
sistent with current observations and should ultimately aid
providing mechanistic insights into the control of quantu
phenomena. Under the most severe degrees of control
fluctuations, the quality of the achieved objective shou
eventually diminish significantly. However, before that o
curs, it will be argued that even the loss of multiple pathw
interferences may still lead to successful quantum con
processes.

Section II will present an analysis of system behav
when seeking quantum optimal control in the presence
field fluctuations. Section III contains an illustration of th
concepts involved. Section IV will discuss the consequen
of this behavior for control. Some brief concluding remar
will be given in Sec. V, regarding future studies to ampli
on the findings of this paper.
©2002 The American Physical Society05-1
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II. OPTIMALLY CONTROLLED QUANTUM DYNAMIC
BEHAVIOR

Consider a quantum system with the HamiltonianH0
5H02m«(t), whereH0 is the field-free Hamiltonian,m is
the electric dipole moment, and«(t) is the control field. The
analysis below also encompasses more general circ
stances than just electric dipole interactions, with the o
criteria being the existence of a term in the Hamiltonian p
mitting significant coupling with the control field; for ou
purposes here, the Hamiltonian above provides a conven
picture to explore the behavior of a quantum system un
control. No assumption needs to be made about comp
controllability @22# of the quantum system, as it is only su
ficient that the target goal be acceptably achieved by so
suitable control field. The system initially is described by t
density matrixr~0!, corresponding to a pure or mixed sta
and the dynamics is given by

i\
]r

]t
5@H,r#. ~1!

In the present analysis, the system evolution occurs fre
any uncontrolled environmental interactions~e.g., colli-
sions!. The formal solution to this equation isr(t)
5U(t,0)r(0)U†(t,0), where the time evolution operato
U(t,0) satisfiesi\(]/]t)U5HU, U(0,0)51. Quantum con-
trol is usually specified by prescribing an objective opera
O ~taken as time-independent here!, whose expectation valu

^O~T!&5tr@r~0!U†~T,0!OU~T,0!# ~2!

at the target timeT is the subject for controlled manipulation
The target time may be either a fixed point orT→`. Com-
monly, O is a projection operator into some desired sta
although other choices can arise. Regardless of the partic
physical objective, it is always natural to pose the goal
one of achieving the best~i.e., the optimal! result for
^O(T)&. This perspective is fundamental to quantum optim
control theory@23#, whether carried out as a design proce
on the computer@1,2# or executed through closed-loop lear
ing techniques directly in the laboratory@3–17,19,20#. Here
optimization may refer to maximization, minimization, o
some other specified criteria, which is simply summarized

Opt
«~ t !

^O~T!&, ~3!

where the field is treated as a control function for variat
until the optimal objective criteria is met, as best as possi
This process is understood to produce at least one opt
field «opt(t). Any single laboratory experiment would ope
ate with an electric field«(t)5«opt(t)1d«(t), whered«(t)
is a random disturbance around the nominal optimal fi
«opt(t); in practice, an ensemble of experiments would
performed, collectively associated with the statistics of
ensemble of noise trajectories$d«(t)%. Ideally, the experi-
ments would be performed such thatd«(t) satisfiesid«i
!i«opti under some suitable normi•i, in order to reduce the
influence ofd«(t) on the control objectivêO(T)&. The sig-
nificance of the field fluctuations can depend on the ove
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magnitude of«opt(t) and the degree of nonlinearity of th
control process with respect to the field. Small amplitu
field fluctuations may have a considerable impact in so
cases. On the other hand, experience with optimal con
calculations @18–20# and experiments@3–14# shows that
there is significant robustness even to the presence of ra
large amplitude field fluctuations@18–20# ~e.g., ;25% in
some simulations!. Field fluctuations may occur due to
variety of factors, and in the present work, we will simp
assume thatd«(t) is a random variable characterized by
distribution functionP„d«(t)…, such that

E D@d«~ t !#P„d«~ t !…51. ~4!

This functional integral is over all possible realizations of t
field noise trajectories.

In order to explore the influence of the field fluctuatio
$d«(t)% upon the behavior of the target objective in Eqs.~2!
and~3!, Fig. 1 depicts the mapping in Eq.~2! from the initial
density operatorr~0! to the final objective operator expecta
tion value^O(T)&. The initial density operatorr~0! is trans-
formed to the final objective operator^O(T)& through the
simultaneous action ofU(T,0) andU†(T,0). Either path in
the figure may be thought of as an evolution through a
quence of statesu, i&, i 51,2,...,n. These states will be iden
tified in Sec. III as those associated with high quantum e
lution phase sensitivity to control field fluctuations; the sta
will generally not be the traditional intermediate states as
ciated with the various terms of a perturbation expansion
U. The circles along each path in Fig. 1 denote intermed
‘‘stopping-off’’ points, labeled by these states, along the w
to the objective; the meaning of this picture will becom
clear upon the consideration of the influence of field no
$d«(t)%. We may rigorously decomposeU„T(0)… in accord
with Fig. 1, as follows:

U~T,0!5 X

, i8 ,i 51,...,n

U~T,tn!u,n8&^,n8uU~ tn ,tn21!u,n218 &

3^,n218 u¯u,28&^,28uU~ t2 ,t1!u,18&^,18uU~ t1,0!. ~5!

The symbolX denotes a summation or integration over t
intermediate-state indices, as appropriate. The number o
termediate stepsn along the path and the sequence of int
mediate timest1 ,t2 ,...,tn is, in principle, arbitrary, and fur-
ther discussion on this point is given in Sec. IV C. O
physical grounds, it is suggestive to think in terms of a
quence of evolving events under the influence of the elec
field «(t), 0<t<T, broken into subintervals$«0(t),0<t
<t1%, $«1(t),t1<t<t2%,...,$«n(t),tn<t<T%, such that the
full field is a continuous concatenation of the individu
pieces«(t)5@«0(t),«1(t),...,«n(t)# taken in sequence. Eac
segment of the field carries on a relay process from
intermediate state to another over an associated time inte

An expression forU†(T,0) analogous toU(T,0) in Eq.
~5! may be written, and their combination utilized to repr
sent the structure in Fig. 1:
5-2
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X

, i ,i 51,...,n
X

, i8 ,i 51,...,n

^O~T!&5←r~0!uU†~ t1,0!u,1&^,1uU†~ t2 ,t1!u,2&^,2u•••••u,n21&^,n21uU†~ tn ,tn21!u,n&

3^,nuU†~T,tn!uOuU~T,tn!u,n8&^,n8uU~ tn ,tn21!u,n218 &^,n218 u••••••••••u,28&

3^,28uU~ t2 ,t1!u,18&^,18uU~ t1,0!u→. ~6!

Here, the arrows at the beginning and end of the expression imply that these operators are linked together, such
sequence of matrix elements in Eq.~6! forms a closed loop corresponding to the structure in Fig. 1. Using the definitio
Hermitian conjugation along with the modulus and phase decomposition,

^,q8uU~ tq ,tq21!u,q218 &5u^,q8uU~ tq ,tq21!u,q218 &uexp@ if~,q8 ,,q218 !#, ~7!

permits rewriting Eq.~6! in the following fashion:

^O~T!&5 X

, i ,i 51,...,n

X

, i8 ,i 51,...,n

^,18uU~ t1,0!ur~0!uU†~ t1,0!u,1& z^,2uU~ t2 ,t1!u,1& zz^,28uU~ t2 ,t1!u,18& zexp$ i @f~,28 ,,18!

]

2f~,2 ,,1!] % z^,nuU~ tn ,tn21!u,n21& zz^,n8uU~ tn ,tn21!u,n218 & zexp$ i @f~,n8 ,,n218 !2f~,n ,,n21!#%

3^,nuU†~T,tn!u0uU~T,tn!u,n8&, ~8!

FIG. 1. ~Color! A schema depicting the transformation from the initial density operatorr~0! to the final expectation valuêO(T)& through
a series of dynamical statesu, i& and u, i8&, i 51,...,n acting as stopping-off points on the excursion. The nature of these states, thei
numbern, and their location along the excursion are dictated by the ensemble of noise trajectories$d«(t)% associated with the control field
Each stopping-off point acts to break the coherence in the evolutionr(0)→^O(T)&. The bilinear nature of̂O(T)& in terms ofU andU† is
the origin of the inherent robustness in the evolution, expressed as a set of intermediate coherent steps towards the target^O(T)&, rather than
a total loss of control due to field noise.

FIG. 2. ~Color! The structure arising along the pathr(0)→^O(T)&$d«% due to seeking optimal quantum system performance in
presence of control field noise. In spite of noise being present, the optimization process seeks to retain a maximum degree of contr
manipulation of constructive/destructive interferences. The result is a reduction of the structure in Fig. 1 down to a sequence of ste
here and is explicitly expressed in Eq.~15!. Within each step~e.g., ,1→,2), full quantum evolutionary coherence is retained while t
process is broken in going from one step to the next~e.g.,,1→,2 and then,2→,3). The interference retained within a step is depicted
the complex interleaving paths.
063405-3
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HERSCHEL RABITZ PHYSICAL REVIEW A66, 063405 ~2002!
An arbitrary term in Eq.~8!,

Sq,q215 z^,quU~ tq ,tq21!u,q21& zz^,q8uU~ tq ,tq21!u,q218 & z

3exp$ i @f~,q8 ,,q218 !2f~,q ,,q21!#%, ~9!

is a functional of the electric field«q21(t), tq21<t<tq . In
Eq. ~8!, it is understood that each phasef(,p ,,p21), p
52,...,n will generally be a distinct functional of the electr
field «p21(t).

In the laboratory, the left-hand side of Eq.~8! would be
observed~evaluated! through signal averaging over an e
semble of electric fields centered around the current nom
value«(t), with each field realization in the ensemble ha
ing a particular noise trajectoryd«(t). In the search for the
final optimal field «opt(t), a sequence of learning contro
experiments@15–17,19,20# would be carried out with signa
averaging over an ensemble of fields during each cycle of
learning process. Thus, at the end of this laboratory learn
control exercise, the final result is an ensemble averag
Eq. ~8! over the probability distribution function in Eq.~4!,

^0~T!&$d«%[E D@d«~ t !#P„d«~ t !…^O~T!&. ~10!

The terms in Eq.~8! correspond to the field intervals«(t)
5@«0(t),«1(t),...,«n(t)#, and we will make the assumptio
that the field fluctuations from one interval to the next a
statistically independent of each other, such that

P„d«~ t !…5 )
q50

n

Pq„d«q~ t !…. ~11!

This factorized form is equivalent to the noise fluctuatio
having a memory shorter than the time intervalstq2tq21 for
each of the physical evolution steps~i.e., the windows of
time between stopping-off points!. The presence of corre
lated noise over extended time periods would change
assumption, and a careful analysis of laser pulse noise
be needed to assess whether a significant modification o
assumption in Eq.~11! is necessary for a more elabora
analysis. Proceeding with the present assumption, combi
Eqs. ~8!, ~10!, and ~11! shows that each of the terms is
separate average over an ensemble of noise trajectorie
typical term in Eq.~9! becomes an average:

^Sq,q21&$d«q21%5E D@d«q21~ t !#Pq21„d«q21~ t !…

3Sq,q21„@d«q21~ t !#…, ~12!

where the explicit functional dependence ofSq,q21 in the
integrand upon the field fluctuations is indicated
@d«q21(t)#. We will make the reasonable assumption th
the most sensitive functional dependence on the field fl
tuations in Eq.~9! arises from the phase factors, rather th
the moduli. To start the averaging process, consider first
term involvingr~0! rewritten in the following form:
06340
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S15 z^,18uU~ t1,0!ur~0!uU†~ t1,0!u,1& z

3exp$ i @f~,18!2f~,1!#%. ~13!

The particular phase structure in Eq.~13! may be argued to
exist in the physically relevant extreme cases ofr~0! being
either a pure stateuc~0!&^c~0!u or an incoherent mixed stat
( j u j &r j j (0)^ j u, wherer j j (0) is the initial population in the
j th state. The phase difference in Eq.~13! can be a sensitive
function of (,182,1) when there are significant field fluctua
tions, and it is expected under these conditions that the
gion ,18.,1 will be most important. Expanding the,18 de-
pendence of the phase factor about,1 and keeping only the
lowest-order term produces the phase factorf(,18)2f(,1)
.f8(,1)(,182,1), where the prime on the phase denot
differentiation. Over a moderate interval for variation
@d«0(t)#, we may consider the differential probabilit
relation as uniform in the phase derivativ
D@d«0(t)#P0„d«0(t)…'(1/2p)df8(,1). Thus, combining
all of these statements and taking the modulus in Eq.~13! as
slowly varying with respect to field fluctuations leads to t
result

^S1&$d«0%.z^,1uU~ t1,0!ur~0!uU†~ t1,0!u,1& zd~,182,1!,
~14!

where d~•! is a Dirac delta function. The same argumen
may be applied sequentially to all of the terms in Eq.~8!,
with each of them producing a new Dirac delta functi
amongst the quantum numbers. When considering the
neric term in Eq.~9!, the relation,q218 5,q21 will have al-
ready been established from the ensemble average ove
previous term. The overall ensemble averaging process
yield a sequence of delta functions,Pq51

n d(,q82,q). Thus,
we may express the average in Eq.~10! over Eq. ~8! as
having the following final form, assuming that the quantu
indices,q , q51,...,n take a sufficiently dense set of value
to be integrated over,

^O~T!&$d«%. X

, i ,i 51,...,n

z^,1uU~ t1,0!ur~0!uU†~ t1,0!u,1& z

3 z^,1U~ t1 ,t2!u,2& z2••• z^,n21uU~ tn21 ,tn!

3u,n& z2^,nuU†~T,tn!uOuU~T,tn!u,n&. ~15!

The structure of the expression in Eq.~15! is shown in Fig. 2.
By comparison with Fig. 1, it is evident that the process
seeking optimally controlled system performance in the pr
ence of field noise has broken the evolutionr(0)
→^O(T)&$d«% into a sequence of steps. Coherence is fu
maintained within each step~e.g., z^,1uU(t1 ,t2)u,2& z2), but
is broken in going from one step to the next. The followin
sections will consider the structure of Eq.~15! and its physi-
cal implications for quantum control.

III. AN ILLUSTRATION

The control of any particular quantum system will ha
its own special nuances, but a very common circumstanc
5-4
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OPTIMAL CONTROL OF QUANTUM SYSTEMS: . . . PHYSICAL REVIEW A 66, 063405 ~2002!
for the control field«(t) over the domain 0<t<T to have at
least three windows 0→t1 , t1→t2 , and t2→T, where the
field is very intense during the intermediate timet1<t<t2 .
Additional windows of high intensity may also occur, an
the analysis below may be readily extended to such a ge
alization. For the purposes of illustration, it will be assum
that the windowt1<t<t2 is sufficiently short, such that th
dynamics may be taken as sudden during this interval. F
thermore, it is reasonable to take the field fluctuationsd«(t)
as especially intense during this window, since a correla
will likely exist between the local-field amplitude and i
fluctuation magnitude. The influence of field fluctuations
the evolving dynamics is sensitive to the magnitude of
fluctuations id«(t)i , and accordingly, the illustration wil
consider the fluctuations as significant only during the int
mediate windowt1<t<t2 . The system starts out in a pur
stater(0)5u i &^ i u, with the objectiveO5u f &^ f u being a pro-
jection operator.

The observable expectation value at the target time
comes

O~T!5^ f uU~T,0!u i &^ i uU†~T,0!u f & ~16!

with U(T,0)5U(T,t2)U(t2 ,t1)U(t1,0). The time evolution
operatorU(T,0) is broken into three steps in keeping wi
the nature of the control field described above. In additi
due to the sudden dynamics over the periodt1<t<t2 , with
the HamiltonianH5H02m«(t), it follows that

U~ t2 ,t1!5exp@2 im~«̄1d«̄!/\#, ~17!

where«̄5* t1

t2«(t)dt andd«̄5* t1

t2d«(t)dt. As d«(t) is a ran-

dom variable, we may similarly treatd«̄ as a new random
variable for statistical averaging. Combining these sta
ments, the expression in Eqs.~6! and ~10! becomes

^0~T!&$d«̄%5 (
,1,18

(
,2,28

^ f uU~T,t2!u,2&^,28uU
†~T,t2!u f &

3^,1uU~ t1,0!u i &^ i uU†~ t1,0!u,18&

3E d@d«̄#P~d«̄ !^,2uU~ t2 ,t1!u,1&

3^,18uU
†~ t2 ,t1u,28&, ~18!

Here, for convenience, the intermediate states$u,&% are taken
as discrete. The averaging operation over the mean-field
plitude fluctuationsd«̄ is based on Eq.~7!, which reduces to

^,2uU~ t2 ,t1!u,1&5 z^,2uU~ t2 ,t1!u,1& zexp@ if~,2 ,,1!#.
~19!

The analysis in Eqs.~8!–~14! is most reliable when the
modulus is slowly varying over$d«̄%, while the phase has
the dominant variation. This behavior can be examined
detail for the model in this illustration. The intermedia
states$u,&% are assumed to be complete but otherwise a
trary. However, given the structure of Eq.~17!, it is natural to
consider$u,&% as eigenstates of the dipole operator
06340
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For now, it will be assumed that the spectrum$l,% is non-
degenerate; the relaxation of this assumption will be perm
ted later. Thus, Eq.~19! reduces to

^,2uU~ t2 ,t1!u,1&5d,1,1
exp@2 il,1

~ «̄1d«̄!/\#, ~21!

and the integral over the field fluctuations in Eq.~18! be-
comes

E d@d«̄#P@d«̄#d,1,2
d,

i8,
28
exp@2 i ~l,1

2l,
18
!~ «̄1d«̄!/\#

'd,1,2
d,

18,
28
d,1,

18
. ~22!

In the evaluation of the integral, the field fluctuations a
taken as sufficiently large, to satisfy the criteriaul,1

2l,
18
u id«̄i@p for any ,1Þ,18 , where id«̄i refers to the

norm ofd«̄ over the domain of variation allowed byP@d«̄#.
Utilizing Eqs. ~21! and ~22! in Eq. ~18! finally produces

^0~T!&$d«̄%'(
,

z^ f uU~T,t2!u,& z2u^,uU~ t1,0!u i & z2. ~23!

This result is a special case of Eq.~15! under the specified
dynamical conditions.

It is evident from Eq.~23! that the field fluctuations ove
the short period of intense sudden dynamics result in a sm
stopping-off window,t1<t<t2 , and a loss of coherent link
age across that window. This total loss of coherent linka
would be relaxed under the conditions that eitherid«̄i is
reduced in magnitude, or the dipole eigenvalue differen
ul,1

2l,
18
u is sufficiently small for some,1Þ,18 , such that

ul,1
2l,

18
uid«̄iup. In the limit that the latter quantity be

comes very small~e.g., some of the eigenvalues are small
degenerate, orid«̄i is small!, the full coherence linkage
across the windowt1<t<t2 should be resurrected. Note th
if the entire domain 0<t<T corresponds to a very intens
ultrashort sudden control interval with sufficiently inten
field fluctuations~and a nondegenerate spectrum$l,%), then
the ensemble-averaged dynamics reduces to the form

^O~T!&$d«̄%→(
,

z^ f u,&u2u^,u i & z2, ~24!

corresponding to a statistical outcome and an effective
of control. When operating with intense fields, these res
suggest the existence of a tradeoff. Dynamical control w
intense fields has certain attractive features~e.g., the lifting
of constraining resonant conditions!, but significant field
fluctuations can have a deleterious effect on the control p
cess. Generally, a soft graduated influence of field nois
expected, with the conditions leading to Eq.~15! occurring,
at most, at a limited number of points or windows during t
controlled evolution. Furthermore, the example in this s
5-5
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tion shows how a partial flow of coherence can pass thro
the stopping-off points, depending the details ofH0 , m, «(t),
and id«i .

IV. DISCUSSION

This section will address a set of interrelated topics
explain the physical consequences of the result in Eq.~15!,
and connect it to the behavior found in recent laborat
experiments and computer simulations on optimally c
trolled quantum systems.

A. Exploiting constructive and destructive quantum wave
interferences

A basic premise underlying the manipulation of quantu
systems is that the best control results will be achieved in
circumstances permitting the maximum use of construc
and destructive (C/D) interferences to discriminate among
the desired and undesired product channels@24#. The pres-
ence of noised«(t) should diminish the ability to take ful
advantage ofC/D interferences. The ideal limit is the cir
cumstance ofP„d«(t)…→d@d«(t)#, which corresponds to no
field noise, withd@•# being a Dirac delta function. In this
limit, the result found in Eq.~15! will reduce to that of a
single term ~i.e., there will be no intermediate stop-o
points!, corresponding to the original expression

^O~T!&5tr@r~0!U†~T,0!OU~T,0!# ~25!

without further reduction. The formulation in Eq.~15!
strictly applies to the case of there at least being a sin
intermediate stop-off point,n>1, on the pathr(0)⇒^O&. In
the laboratory, there will always be a finite amount of fie
noise, thereby likely corresponding to the presence of on
more intermediate stopping-off points on the control pa
way in Fig. 2 and Eq.~15!. Each of these points break th
C/D interference process into subpieces, likely resulting
less than full control. Furthermore, the influence of field flu
tuation may lead to a gradual diminution ofC/D effects, as
indicated in sec. III.

B. Seeking optimality and achieving robustness

With the ability to reliably shape control pulses@25# and
exploit closed-loop learning algorithms@15–17,19,20#, the
realization of optimal control in the laboratory is now a de
onstrated capability@3–14#. The search for optimality in this
process will attempt to drive up the degree ofC/D interfer-
ence manipulation, while assuring that the control results
as robust as possible to field noise. Although some seren
tous circumstances may permit good degrees of robust
simultaneously with extensive exploitation ofC/D interfer-
ences for high product yields@21#, the general expectation i
that these two goals will be competitive with each other. T
overall structure in Eq.~15! and Fig. 2 arises due to en
semble averaging over a finite level of field noise. Th
seeking optimal performance leads to noise-induced stop
points on that pathr(0)⇒^O(T)&$d«% to assure a degree o
robustness by eliminating those quantum phases@c.f., Eq.
06340
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~7!# which have significant sensitivity to field noise. Som
optimal control field design calculations@18# were also
shown to have unusual levels of robustness to noise, wh
may indicate that the associated optimally controlled dyna
ics was broken into modular units according to Eq.~15!.

The stable structure of Eq.~15! suggests that reasonab
levels of field noise, even at high field intensities, may n
result in a catastrophic loss of control. The well-defin
modular path between the initial state and the objective
Eq. ~15! is expected to inherently produce a more rob
control process at the expense of some measured los
fidelity from drawing onC/D interferences. Perhaps the be
evidence for this behavior is the success of the recent h
field quantum control experiments involving molecular d
sociation and rearrangement@4,7,14#, as well as selective
high harmonic generation@5#. Early speculation suggeste
that selective quantum control in this regime would be
poor quality due to the quantum system effectively acting
an amplifier of even modest field noise resulting from t
highly nonlinear dependence upon the field. However, op
ating under optimal control, the experimental findings a
the stable structure in Eq.~15! and Fig. 2 demonstrate oth
erwise.

One limiting class of ‘‘control’’ experiments will be thos
carried out without any benefit of optimal field training
meet the objectives. An example along these lines is hi
field multiphoton ionization of atoms and molecules usi
bandwidth limited pulses@26#. The expectation is that this
circumstance will utilize little, if any, beneficialC/D inter-
ferences, but perhaps exhibit a maximal degree of robust
for the ionization signal that is generated. This regime sho
correspond to utilizing a maximum number of intermedia
stop-off points in Eq.~15!, producing a ladder of stepwis
transitions to the ionization continuum. This behavior a
pears to be operative in nonoptimal multiphoton ionizati
@26#.

C. The stationary stopping-off points on the way
to optimal control

Consider now the number of stepsn on the way to the
target in Eq.~15!, as well as their location in time and quan
tum number space$tq ,,q%. Based on the phase averagin
arguments leading to Eq.~15!, coupled with the attainmen
of optimality drawing on the highest possible degree ofC/D
interference manipulation, we may identify the sequence
points$tq ,,q% as locations where there ishigh quantum evo-
lution phase sensitivity to field fluctuations. In order to op
mally achieve the control objective with good robustness,
quantum evolution phase sensitivity is diminished
$tq ,,q%, by cancellation of the pairs of phases at the ana
gous points along the evolution ofU(T,0) andU†(T,0), as
indicated in Figs. 1 and 2 and Eq.~9!. In turn, the evolution
over the interval,q21→,q between two such stopping-of
points corresponds to a domain of lesser sensitivity to fi
noise, and hence, an inherent degree of robustness, the
permitting some exploitation ofC/D interference through
z^,quU(tq ,tq21)u,q21& z2 on the way towards the desired ob
jective. Increasing noise levels should lead to more such
termediate phase sensitive points$tq ,,q%, with the limit ul-
timately reducing the dynamics to a sequence of incohere
coupled steps~e.g., in the case of dipole coupling, each st
5-6
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in this limit would correspond to a particular matrix eleme
mq,q21). Such a chain of simple steps is still quantum m
chanical, as governed by the system selection rules.

The physical nature of the intermediate statesu,q&, q
51,2,...,n is dictated by the optimal control process seek
the best system performance. Thus, these states are th
that is consistent with the physical objectives and the att
able dynamics, so as to produce optimal performance by
eliminating the field fluctuation-driven quantum evolutio
phase sensitivity. These intermediate states might be m
bers of the eigenstates ofH0 or superpositions of them to
form virtual states. The guidance is strictly driven by seek
optimality. Only the existence of the states is necessar
provide a basis to explain the robustness with respect to
noise.

Finally, to aid in understanding the meaning of the int
mediate steps, it is useful to consider the special cas
r(0)5u i &^ i u and O5u f &^ f u corresponding to control o
population transfer foru i &→u f &. In this case, Eq.~15! simply
reduces to

(
, j , j 51,...,n

)
j 51

n11

z^, j uU~ t j ,t j 21!u, j 21& z2, ~26!

with u,0&[u i &; tn11[T, u,n11&[u f &. Thus, the final prob-
ability of occupying the stateuf& is the product of the indi-
vidual probabilities for making intermediate transitions. D
spite some loss ofC/D manipulation in Eq.~26!, the final
population yield could still approach unity if each step alo
the way fromi→ f is highly efficient. This prospect point
out that caution may be called for with regard to physica
interpreting successful quantum control experiments in te
of their fully drawing onC/D interferences.

In considering Eq.~26!, as well as the more general resu
in Eq. ~15!, no further specification of the intermediate tim
is necessary. Although the discussion here implies that th
would likely be a correlation between these times and
associated intermediate stopping-off points, an expres
analogous to Eq.~15! may also be derived involving integra
tion over the intermediate times.

D. Evolution in the presence of field fluctuations

After attaining the optimal control field«opt(t), its appli-
cation to the system under ideal noise-free conditions wo
produce the time evolution described by the opera
Uopt(t,0). In practice, each particular control field« i(t)
5«opt(t)1d« i(t) from a laboratory ensemble would hav
noise fluctuations around the optimal field, and would ha
its own associated unitary evolution operatorUi(t), i
P
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51,2,... . By virtue of the optimality and robustness of t
dynamics under«opt(t), this ensemble of evolution operato
is expected to be reasonably stable with respect to no
except at the set of stopping-off points over the interva
<t<T. In the local neighborhood of the stopping-off point
high sensitivity to field noise will occur for each operat
Ui(t). However, the expectation value^O(T)& i determined
from a particular field« i(t) should have diminished nois
sensitivity, and the ensemble average in Eq.~15! should ex-
hibit good robustness to field noise.

V. CONCLUSION

This paper presented a general analysis of optimal qu
tum system control, with the aim of investigating the over
impact of field noise on the control process. It was argu
that a relationship exists between~a! the nature of quantum
dynamics being bilinear inU and U†, ~b! the presence of
field fluctuations,~c! the attainment of optimality, and~d! the
robustness of the control process. Although noise is expe
to generally have a deleterious effect on achieving cont
especially in the nonperturbative regime, the analy
showed that good control selectivity may still remain, wi
the power of optimality fighting to achieve the best resu
possible. To push this analysis further, it would be very d
sirable to carefully assess the nature of shaped laser-p
field noise, and ideally, vary the noise in specific ways
observe its impact on the optimal control process. Furth
more, it would also be valuable to introduce explicit tec
niques to identify the actual quantum pathways linking t
initial and final states@27#. In some limiting cases@e.g., Eq.
~26!#, it may be possible to construct the observed con
event from a sequence of observations in separate subco
experiments.

The inherent degree of robustness evident in the opti
control of quantum systems is very encouraging for futu
applications. In most of these applications, the physical fo
is on ^O(T)&, and often, even a modest degree of sta
control would be quite acceptable. A notable exception m
arise in quantum information science@28#, where one focus
is on U(t), t>0 acting as a functional quantum ‘‘machine
~e.g., a quantum computer!. In this case, the presence o
dynamical quantum phases sensitive to field noise may
troublesome. But again, seeking optimal performance sho
also provide the best operational framework.
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