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Transfer of orbital angular momentum to an optically trapped low-index particle
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We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle.
The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis
due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model
is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular
momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle
rotation rates is observed.
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I. INTRODUCTION

The linear momentum of light can be utilized to manip
late and trap microscopic objects. This is the result of
refraction and reflection of light at a dielectric interfa
which leads to changes in photon momentum and thus
force being exerted on the trapped particle. In 1986 Ash
and co-workers demonstrated that a single tightly focu
optical beam could attract a high-index particle to the brig
est part of the light beam due to the optical gradient fo
and trap the particle in three dimensions@1#. This powerful
noninvasive technique is known as optical tweezers. Opt
tweezers have found significant application in biology a
chemistry. Several geometries using these optical forces h
been proposed and implemented including optical levitat
@2# and interferometric tweezers@3,4#.

Low-index particles in optical tweezers have receiv
relatively little attention. In contrast to high-index particle
they are repelled from light regions thus requiring mo
elaborate light beams for their confinement. Optical vor
beams such as Laguerre-Gaussian~LG! light beams have
been used to trap low-index particles in three dimensi
@5,6#. Simultaneous tweezing of low- and high-index pa
ticles in the axial direction has been demonstrated in suc
system@7#. In recent work standard interferometric tweeze
@4# were used to experimentally demonstrate tweezing
low-index particles obviating the need for optical vort
beams. In that work it was indicated that tweezing occur
when the particle diameter was larger than the fringe spa
of the interference pattern.

From a physical standpoint, optical tweezers have
tracted significant interest from researchers studying the
gular momentum of light. It is well known that light has sp
angular momentum of magnitude\ per photon due to its
polarization state and orbital angular momentum ofl\ per
photon due to an azimuthal phase term of the form exp(ilf)
in the mode description@8#. Here, l is the number of 2p
cycles of optical phase upon going around the mode circ
ference. Orbital angular momentum~OAM! of light beams is
a consequence of the azimuthal phase variation of cer
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light modes. Such modes have a term of the form exp(ilf)
and a concomitant orbital angular momentum in the direct
of beam propagation@8#. These beams have a phase sing
larity along the beam axis and possess helical wave fro
Indeed, we note that any light beam with helical wave fro
will have orbital angular momentum. The angular mome
tum of light can be calculated byj 5e0@r3^E3B&#, where j
denotes the angular momentum density,r is a radius vector,
andE andB are the electric and magnetic fields of the lig
field, respectively. This expression includes both contrib
tions from the spin and orbital angular momentum of ligh

Optical tweezers offer an excellent mechanism by wh
to study the angular momentum of light in detail and
manifestation in different experimental situations. Rec
studies have included the transfer of spin and orbital ang
momentum to trapped particles in optical tweezers@9,10#. In
the case of orbital angular momentum this has been achie
due to both the scattering of light and absorption of the lig
@9,11–14#. All experiments to date studying angular mome
tum in optical tweezers have been for high-index partic
attracted to regions of high light intensity or metallic pa
ticles. The motion of high-index particles in such expe
ments may be impeded by any azimuthal intensity variati
in the light beams@12#. This is an obstacle, in the way o
probing local variations in angular momentum density. Su
density variations are predicted for more elaborate li
fields @12,15# and can give deeper insight into both spin a
orbital angular momentum.

In this paper, we demonstrate transfer of orbital angu
momentum to a low-index particle. The low-index particle
trapped between adjacent bright rings of a high-order Be
light beam@16# and has a larger diameter than the ring sp
ing of the Bessel beam. We observe azimuthal motion~rota-
tion! of these particles around the Bessel beam propaga
axis due to the orbital angular momentum of the light bea
The mechanism of transfer of OAM is scattering. In contr
to previous studies of transfer of orbital angular momentu
the trapped particle is localized primarily in the dark regio
of the beam thus minimizing any heating or perturbative
fects due to the light. Importantly, low-index particles cou
offer a mechanism for advanced studies of light beams p
sessing orbital angular momentum, notably local angu
momentum variations in multiringed beams. Additionally, w
©2002 The American Physical Society02-1
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FIG. 1. Relevant geometrical parameters f
our general ray tracing model for a spherical pa
ticle under the influence of a light beam prop
gating along thez direction.
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observe rotation simultaneously of high- and low-index p
ticles in our system.

Development and results of a numerical model are a
presented. The model first verifies how tweezing can occu
a high-order Bessel beam and indeed confirms previous
perimental studies of low-index particles in interferomet
patterns@4#. Furthermore, the model allows us to calcula
azimuthal forces on trapped spheres, and thus it shows
angular momentum can be transferred by scattering to
particle. In turn this permits quantitative comparisons b
tween theory and experiment for rotation rates for mic
spheres set into motion by OAM.

II. THEORY

The forces exerted on a trapped particle can be mod
based on a geometrical optics approach, which has g
very reliable results when compared with experiments~see,
for example,@17–22#!. Here, we use that approximation
analyze the angular momentum transfer by scattering fro
high-order Bessel light beam to a trapped low-index part
that we will model with a hollow sphere. This is done b
taking into consideration the azimuthal component of
linear momentum density of such a beam. We consider tra
parent media where absorption is neglected.

The ray-optics approach is valid if the particle diame
greatly exceeds the wavelength of light and the focal size
the beam. This is a reasonable assumption for our exp
mental parameters.

Within the geometrical optics approximation and follow
ing the same approach used by Gussgard and co-wor
@19#, the total forceF acting on a transparent spherical pa
ticle due to an incident light beam can be expressed as

F5
nm

c E
S1

I ~r !dA cosa i H ûi2Rûr2T2(
k51

N

Rk21ûtkJ ,

~1!

wherec/nm is the light velocity in the medium surroundin
the particle,S1 is the part of the sphere’s surface which
being illuminated by the incident field,ûi and ûr are unit
vectors in the direction of the incident and reflected ra
respectively,ûtk corresponds to the ray transmitted after t
kth internal reflection, andN→` is the total number of in-
ternal reflections of the incident rays inside the sphere.R and
T are the reflection and transmission coefficients deri
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from the Fresnel equations which, in accordance w
Roosen@17#, were taken as the averages over the two tra
verse directions of polarization relative to the plane of in
dence for each illuminated element of the sphere.I (r ) is the
intensity distribution of the incident field, in our case a hig
order Bessel beam propagating along thez direction andr
5(r,w,z).

To evaluate expression~1! requires knowledge of the di
rections of all the reflected and transmitted rays, given
direction of the incident vector. We have developed a gen
ray tracing model, which allows us to perform this task
means of vectorial calculations for the case of a spher
particle @23#.

A general outline of our model is described next. Consid
a spherical particle of radiusR0 located at the pointC of a
coordinate systemS referred to the light beam, whose origi
corresponds to the center of symmetry of the transverse
tensity distribution of the beam. A second reference frameS8
is located at the center of the sphere, which is not fixed,
is moving along with the particle. Letr0 be the distance
between thez andz8 axes,r the distance between thez axis
and the incidence pointP, and z0 the distance between
reference planez50 and the center of the sphere. From F
1 it can be seen that

r5@r0
21R0

2sin2u12r0R0sinu cosf#1/2, ~2!

z5z01R0cosu, ~3!

whereu andf are the polar and azimuthal angles in theS8
coordinate system, respectively.

The unit outward normal to the sphere at the pointP is
given by

n̂05 x̂8cosf sinu1 ŷ8sinf sinu1 ẑ8cosu, ~4!

with x̂8, ŷ8, and ẑ8 being the unit vectors along thex8, y8,
andz8 directions in theS8 frame.

Whether the unit vector in the direction of the incident r
at pointP is denoted byûi , the incidence angle can be ca
culated by means of

cosa i52~ ûi•n̂0!. ~5!

To calculate the reflected ray at the point of incidenceûr ,
we note that its component perpendicular ton̂0 coincides
2-2
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with the corresponding component ofûi , while its compo-
nent alongn̂0 has the same magnitude but opposite sens
that of ûi . Hence by using Eq.~5!, we have

ûr5ûi12n̂0cosa i . ~6!

After some vectorial calculations and applying some g
metrical considerations, we found for the transmitted ray i
the sphere

ût5
nm

ns
F ûi1S cosa i2

ns

nm
cosa tD n̂0G , ~7!

where a t is the transmission angle andns and nm are the
refractive indices of the sphere and the medium, respectiv
such thatns,nm.

On the other hand, for the rays transmitted out of
particle, we obtain, in general,

ût15
ns

nm
F ût2S cosa t2

nm

ns
cosa i D n̂1G ,

~8!

ûtk5
ns

nm
F ûr k212S cosa t2

nm

ns
cosa i D n̂kG ,

where the internally reflected rays are given by

ûr 15ût22n̂1cosa t ,
~9!

ûrk5ûrk2122n̂kcosa t ,

with k a positive integer such thatk.1 andn̂k the unit nor-
mal to the sphere at the point where thekth reflection and
refraction take place, given by

n̂15
2nm

ns
cosa tûi1S 2nm

ns
cosa tcosa i2cos 2a tD n̂0 ,

n̂252cosa tût2~4 cos2a t21!n̂1 , ~10!

n̂k52 cosa tûrk222~4 cos2a t21!n̂k21 ,

with k.2 for this last case.
By means of the recurrence relations~7!–~10!, the direc-

tion of all the reflected and transmitted rays can be calcula
in the last factor of Eq.~1!. Please observe that we hav
imposed no condition overûi .

We applied this model to each of the components of
vector that defines an incident ray for a high-order Bes
beam. In this instance the incident light vector may be
tained directly from the gradient of the phase of the beam

1

k
“C~r,w,z!5

l

kr
ŵ1~cosg!ẑ, ~11!

whereC(r,w,z)5 lw1(k cosg)z is the spatial phase of th
beam,l its azimuthal order,k the wave number,g the cone
angle of the Bessel beam@24#, andŵ, ẑ, are the unit vectors
06340
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in the azimuthal and axial directions, respectively. T
propagation invariance of Bessel beams means, we hav
radial component of the incident rays. As a consequen
Bessel beams only give two-dimensional traps and we t
concentrate only on transverse forces.

Inasmuch as the integration limits are different for t
contributions to the optical force due to the azimuthal a
the longitudinal components of the incident vector, it is ne
essary to treat them separately. Then, the total optical fo
can be written as the sum of both contributions, this is,Ft
5F(w)1F(z).

First, for the azimuthal incident rays, the unit vector c
be expressed in the reference frame of the sphere as~see Fig.
1! ŵ52 x̂8sin(Dw)1ŷ8cos(Dw), where Dw5arccos@(r0
1R0cosf sinu)/r#, so we can write

ŵ52FR0sinf sinu

r G x̂81Fr01R0cosf sinu

r G ŷ8. ~12!

Thus, by substituting Eqs.~12! and ~4! in Eq. ~5!, we
found for the incidence angle associated to an azimutha
cident ray

cosa i 52~ŵ•n̂0!52
r0sinf sinu

r
. ~13!

The integration limits in Eq.~1! for this case arep/2<u
<p and p<f<2p, which corresponds to the illuminate
area of the sphere by the azimuthal rays.

The explicit expression for the reflected raysûr is deter-
mined by substituting Eqs.~4!, ~12!, and ~13! in Eq. ~6!,
while the transmitted vectorsûtk are calculated numerically
with the aid of the recurrence relations~7!–~10!. Hence, the
x8 andy8 components of the transverse optical force due
the contribution of the azimuthal incident raysF(w) are fi-
nally obtained

Fx8
(w)

5
lR0

2nm

kc E
p/2

p E
p

2p I l~r !r0sinf sin2u

r2

3H sinuS T
R0

r
sinf22R

r0sinf sinu cosf

r D
1T2(

k51

N

Rk21~ ûtk!x8
(w)J dfdu, ~14!

Fy8
(w)

52
lR0

2nm

kc E
p/2

p E
p

2p I l~r !r0sinf sin2u

r2

3H TS r01R0sinu cosf

r D12R
r0sin2u sin2f

r

2T2(
k51

N

Rk21~ ûtk!y8
(w)J dfdu, ~15!

whereI l(r ) is the intensity distribution of anl th order Bessel
light beam. In our experiment, we use an axicon genera
2-3
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Bessel beam that has an intensity variation that can be
proximated using the method of stationary phase applie
the Fresnel integral@25#.

On the other hand, for the contribution of the axial rays
the transverse forceF(z), the incident vector should be take
as ûi5 ẑ, and the incidence angle reduces top2u. The re-
gion of the particle that is illuminated by the axial rays is t
lower hemisphere, hence, the integration limits arep/2<u
<p and 0<f<2p. And following a procedure completel
analogous to the former case, we obtain for thex8 compo-
nent of the transverse optical force owing to the contribut
of the axial incident rays

Fx8
(z)

5
R0

2nmcosg

2c E
p/2

p E
0

2p

I l~r !H 22R cosu cosf

1T2(
k51

N

Rk21~ ûtk!x8
(z)J sin 2udfdu. ~16!

F(z) have no component alongy8 because of the symme
try in the hemispheres defined by 0,f<p and p,f
<2p. Note that the Fresnel coefficientsR andT, as well as
the vectorsûtk , are not the same in Eq.~16!, as in Eqs.~14!
and ~15!, since they depend on the incidence angle@23#.

Inasmuch as the total force acts on the center of mas
the sphere, we can summarize the above results by wr
the net optical force in the transverse plane asFt5Frr̂

1Fwŵ, whereFr[Fx8
(w)

1Fx8
(z) and Fw[Fy8

(z) , since thex8
andy8 axes coincide with the radial and azimuthal directio
of the S frame, respectively.

Finally, we want to stress that the model presented her
completely general and, provided an appropriate choice
the incidence vector and the initial intensity distribution,
can be simplified to more standard models in the literat
@17,19#, and to include others as particular cases@22#. In that
sense, by establishing a comparison for previously stud
situations, we found that by settingN520, our results con-
verge to those obtained withN→`.

Figures 2 and 3 show, respectively, the radial and a
muthal components of the total force as a function of
distance from the center of the particle to the beam axisr0 ,
for a 5 mm diameter hollow sphere immerse in water (nw
51.333,ns51.0). The beam parameters arel0
51.064mm, l 52, andg56° ~which gives a peak radiu
for the inner bright ring of 3.5mm, similar to our experi-
mental values!, a total power ofP5600 mW and a maxi-
mum propagation distance of 1 mm. These plots were
tained for the z plane where the intensity has its maximu
at zpeak5(A2u l u11/2)zmax @25#, wherezmax is the maximum
propagating distance of a zeroth-order Bessel beam@24#. The
intensity profile is also shown for comparison~gray curves!.

According to the sign conventions we have adop
throughout this analysis, positive values of the radial qua
ties should be interpreted as being directed outwards f
the center of the beam. Thus, for the radial component of
force, the stable equilibrium positions in Fig. 2 correspond
the points whereFr(r0)50 and the slope of the curve i
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negative, since for any displacement in a determined dir
tion, there is a restoring force in the opposite direction th
confines the particle in such points. As can be seen from F
2 those equilibrium positions are located close to the d
zones of the beam, though the model predicts that they
slightly shifted outwards from the beam center.

This shifting of the equilibrium positions might be inter
preted as a result of the imbalance between the intensit
consecutive bright rings, which pushes the hollow particle
the regions where the intensity is lower. In fact, we fou
that this behavior critically depends on the relative size
the particle with respect to the beam dimensions. The lar

FIG. 2. The radial component of the total transverse force
erted by a Bessel light beam on a 5mm diameter hollow sphere
immersed in water, as a function of its distance from beam cen
~black curve! and beam intensity profile for comparison~gray
curve!.

FIG. 3. The azimuthal component of the total transverse fo
exerted on a 5mm diameter hollow sphere by a second-ord
Bessel beam~black curve! and beam intensity profile for compari
son ~gray curve!.
2-4
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the particle is, the more the equilibrium positions are shif
radially outwards, until a critical value for which the sphe
can be trapped in the central minimum of the beam, bu
cannot be stably trapped in any of the outer dark rings. T
is in accordance with our experimental observations d
cussed later. For instance, with the same beam paramete
mentioned above, we found the critical value for the ma
mum diameter of the particle to be 6mm, that is, a particle
whose diameter is equal or larger than that value can only
held in the central minimum of the beam. In contrast, fo
5.75mm diameter sphere, which can be trapped in any of
dark rings, we found that its equilibrium positions around t
first and second dark rings are shifted about 16.6% and 7.
respectively, in relation with the corresponding minima
the intensity distribution. A 2mm diameter sphere suffers
displacement of its equilibrium positions in the first and se
ond dark rings of only 0.5% and 0.2%, respectively. The f
that the shifting in the equilibrium positions is lower for th
second ring than for the first one can be understood by no
that the difference in intensity between consecutive rings
creases for regions further away from the beam center.

However, for smaller particles the geometrical optics a
proximation is no longer valid. Furthermore, it is importa
to mention that although in our experiments the hollo
spheres have a finite shell width, we approximated this s
ation by considering the shell width negligible.

On the other hand, Fig. 3 shows that the azimuthal co
ponent of the force as a function ofr0 , is always positive
independent of the particle’s radius, for hollow spheres. T
result demonstrates that orbital angular momentum can
deed be transferred by scattering@12,14#. This fact is also
valid for solid spheres trapped in the bright rings of t
Bessel beam, as has been already demonstrated exper
tally @12#.

Combining the former results, the total transverse force
depicted in Fig. 4 for a 5mm diameter hollow particle by
means of a vector diagram and some contour curves of
beam profile. For comparison, the intensity of the cor
sponding beam is shown in Fig. 4~b!. In the vector diagram,
it can be appreciated that for the particle and beam par
eters we have chosen, the equilibrium position close to
first dark ring is very weak in comparison with the centr
minimum of the beam, but again, this situation depends
the relative size between the particle and the transverse

FIG. 4. In ~a! we see a vector diagram showing the total tran
verse forces and contour curves. In~b! we see the correspondin
Bessel beam profile.
06340
d

it
is
-
we
-

e

e
e
%,
f

-
t

g
e-

-

-

-

is
n-

en-

is

he
-

-
e

l
n
di-

mensions of the beam. The smaller the ratio between
particle’s radius and the radius of the first bright ring of t
beam, the more stable the equilibrium positions around
dark rings become. In addition, it can be seen in Figs. 2
3 that the magnitude of the azimuthal component of the fo
is several times smaller than that of the radial one, but thi
enough to produce a vortex like distribution of the to
force.

Finally, now we have determined the forces acting on
sphere due to the light beam, we can calculate the resu
torques along the propagating direction. The radial com
nent of the net transverse force generates no torques on
particle with respect to the beam axis. Therefore, the s
torque on the particle is generated by the azimuthal com
nent of the force, which is due to the orbital angular mome
tum of the beam. It can be expressed astb5r0Fw(r0), when
the particle is located at a distancer0 from the beam axis.

However, the particle suffers also a drag torque due to
motion within the surrounding medium. Then, it reaches
constant angular velocity when both torques are balanc
The drag torque for a spherical particle can be estimated
means of the Stokes drag astd526phr0

2R0vp , with vp

the angular velocity of the particle andh the viscosity of the
surrounding medium, in this caseh51.031023 N s m22 for
water at 20 °C. Hence, we can calculate the expected va
for vp at the equilibrium positions, where the sphere orb
around the center of the beam with constant angular velo
this is

vp5
Fw~r0!

6phr0R0
. ~17!

SinceFw(r0) is proportional to the incident power of th
beam via theI (r )dA factor in Eq. ~1!, Eq. ~17! implies a
linear behavior of the angular velocity as a function of t
incident power. Such behavior has been seen in recent w
where a linear relationship between rotation rate and incid
power was observed experimentally for rotation of 3mm
solid spheres@12#. We show in Fig. 5 the results of ou
model compared with the experimental data for solid sphe
and find very good agreement. To the best of our knowled
this constitutes the first quantitative measurements betw
theory and experiment for orbital angular momentum tra
fer to trapped particles. In the following section, we demo
strate the rotation of hollow spheres due to OAM and co
pare the results with our model.

III. EXPERIMENT

We used an optical tweezers system similar to the
described previously@12,26#. We expand a linearly polarized
Gaussian output beam of a cw Nd:YVO4 laser ~1.5W at
1.064mm) to illuminate a computer-generated hologra
This blazed phase hologram diffracted about 80% of the
cident light into a first-order beam with helical wave front
giving a close approximation to a Laguerre-Gaussian be
with azimuthal mode indexl52 in the far field. This beam
illuminated an axicon having an opening angle of one

-

2-5
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gree, thus generating an approximation to a higher-or
Bessel beam@16#. A telescope~31/20! was used to reduce
the radius of the first~inner! ring of the Bessel beam. Thi
also resulted in a reduced propagation distance of the Be
beam and increased its intensity. For a beam of azimu
mode indexl 52 the inner ring of the imaged Bessel bea
had a peak radius of about 2.9mm and propagated fo
'1 mm. This beam was directed downwards onto
sample mounted on an translation stage. A microscope
jective~360! and charge-coupled device camera were pla
below the sample for observation of the particles.

The propagation distance of our higher-order Bessel be
is fairly short and the peak intensity of the beam varies alo
this propagation distance. Therefore, the vertical position
of the sample cell along the propagation direction is imp
tant. The sample is positioned in the plane with the high
peak intensity in the inner ring. Experimentally, this w
achieved by placing the sample stage in thez position where
the transverse trapping of the hollow spheres was strong
The maximum laser power in the sample plane was ab
600 mW. As all the rings of a Bessel beam contain a sim
amount of its total power this corresponds to'15 mW in
each of the 40 rings of our experimental Bessel beam.

The alignment of the whole optical system was critical,
even slight astigmatism can lead to a loss of the symmetr
beam profile and a breakup of the central vortex of the be
The quality of the Bessel beam is very important beca
any intensity variation around the central ring hinders
continuous rotation of trapped particles@12#. Low-index
~hollow! microspheres~Duke Scientific USA! with diameters
from 2 mm to 20 mm were dispersed in water with a minu
amount of detergent added to aid mobility. The hollo
spheres had a shell thickness of'5% to 10% of their total
diameter.

IV. RESULTS

The downwards direction of the beam directed the holl
spheres by scattering to the bottom of the sample slide

FIG. 5. Rotation rates for 3mm high-index silica sphere in a
Bessel beam~from Ref.@12#!. The fit to the data~solid line! is from
our model and shows good agreement. We stress that this fit is
no free parameters.
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expected, we were readily able to tweeze the hollow sphe
in the central minimum of the Bessel light beam. Furth
more, we were able to tweeze hollow spheres in regi
away from the center of the beam. Specifically, we trapp
the spheres in two dimensions in the dark regions betw
adjacent rings of the Bessel light beam~Fig. 6! as predicted
by our model, thus creating two dimensional circularly sy
metric arrays of hollow spheres. This behavior is consist
with earlier observations of tweezing hollow spheres in
dark regions of an interferometric pattern between t
Gaussian light beams@4#. The equilibrium positions were
noted for spheres to be radially displaced in accordance w
our model though direct comparison was difficult due to t
accuracy of our measurements and the finite shell width
the spheres. In addition, we have observed the simultane
transfer of orbital angular momentum to both high- and lo
index particles. In Fig. 7, we can see a single high-ind
particle trapped in the bright inner ring rotating due to sc
tering and simultaneously, we can see a low-index part
trapped and rotating between the bright rings. The first fra
shows the Bessel beam and where the hollow and s
sphere are trapped. Hollow spheres that were tweezed
tween the first and second bright ring of the Bessel lig
beam were observed consistently to rotate around the b
propagation axis~Figs. 6 and 7!. The direction of rotation
was consistent with the measured helicity of the Bes
beam. The sense of rotation of the particles was rever
when the helicity of the Bessel beam was reversed usin
Dove prism. The rotation of the particles is due to the heli
phase fronts of the high-order Bessel beam and shows tr
fer of orbital angular momentum to low-index particles. T
behavior is also in accordance with the notion of the holl
sphere interacting with the extrinsic orbital angular mome
tum of the beam@14#. We also found that the uniformity o
the Bessel beam was not as critical as when dealing w
high-index particles@12#. High-index particles are attracte

ith

FIG. 6. Tweezing and rotation of three low-index spheres in
high-order Bessel beam.

FIG. 7. Tweezing and rotation around the beam axis of bot
high- and low-index particle simultaneously in a high-order Bes
light beam. The figure in the top left shows the Bessel beam and
large hollow sphere and solid~high index! particle. The top row
@frames~a!# show rotation of the solid sphere~about 2.5mm diam-
eter! and the bottom row@frames~b!# rotation of a hollow sphere.
The time scales for rotation of each particle are indicated.
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to the regions of high light intensity and their rotation
significantly influenced by azimuthal intensity variation
Such hot spots of intensity can impede the azimuthal mo
of the particle causing it to be locally tweezed at some po
on the beam circumference. For low-index particles howe
the case is different as they are localized to the dark reg
between the rings of the Bessel beam. Intensity variation
this instance can cause a small radial motion that accom
nies the azimuthal rotation of the particles. In all instanc
however, we found that beam imperfections~azimuthal in-
tensity variations up to 20%! did not impede the rotation o
low-index particles. This is in contrast to high-index pa
ticles. We measured the particle rotation rate as a functio
power and found a linear response~Fig. 8!. In this instance,
we used a telescope (1/163) to obtain a beam where th
peak radius of the inner ring was 3.5mm. The radius of the
first dark ring was'6 mm. The graph represents data f
several sizes of sphere from 5 –6mm in diameter. A range
was taken to include any errors due to finite shell width. T
fit shows good agreement between experiment and the
This confirms the linear relationship between the power
the rotation rates implied in Eq.~17!.

V. CONCLUSIONS

We have demonstrated the transfer of orbital angular m
mentum to a low-index particle trapped in optical tweeze
The particle is constrained to the dark regions between a
cent bright rings of a high-order Bessel beam. Additiona
we have observed both high- and low-index particles rota
due to OAM in our system. Particle rotation rates are c
sistent with a computer model developed based on the s
tering as the dominant mechanism for transfer of OAM. A
though our model was only applied to the case of high-or
Bessel beams, it is more general and can be applied to
kind of beam. Our quantitative comparison between the
and experiment shows very good agreement for rota
tt.
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rates. Low-index spheres may offer an exciting avenue fo
detailed study of local angular momentum variations in m
tiringed light beams such as high radial index LG beams
Bessel beams. These particles respond to the orbital ang
momentum of the light but are relatively insensitive to a
muthal variations in intensity.
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FIG. 8. Rotation rates as a function of the total incident pow
The radius of the first bright ring was about 3.5mm and the radius
of the first dark ring was about 6 microns, respectively, for the
data. The linear graph shows that the angular momentum of e
photon must be proportional tol\. The data are fitted to our mode
~taking the ideal hollow sphere size as 5.5mm) with no free pa-
rameters. The good agreement shows the validity of our mode
does Fig. 5.
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