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Green functions for generalized point interactions in one dimension: A scattering approach
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Recently, general point interactions in one dimension has been used to model a large number of different
phenomena in quantum mechanics. Such potentials, however, require some sort of regularization to lead to
meaningful results. The usual ways to do so rely on technicalities that may hide important physical aspects of
the problem. In this work we present a method to calculate the exact Green functions for general point
interactions in one dimension. Our approach differs from previous ones because it is based only on physical
quantities, namely, the scattering coefficieRtand T to constructG. Renormalization or particular mathemati-
cal prescriptions are not invoked. The simple formulation of the method makes it easy to extend to more
general contexts, such as for latticeshofieneral point interactions, on a line, on a half-line, under periodic
boundary conditions, and confined in a box.
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[. INTRODUCTION If the point interaction is the usual delta functiopd(r
—rg), the answer is negative fat equal to 2 and 3. In one
Point interactions in one or more dimensions have been afimension, this is also the case for more singular point inter-
great interest in quantum physics and one can regard the#ictions such as delta-prime functiopd’ (x—Xx,). Different
relevance as being threefold. First, to model different pheapproaches are then used to regulatizeMethods such as
nomena such as energy-band structure in ordered lafiges formal self-adjoint extensiondsee, for instance, Refs.
emergence of quantum chaf®, Aharonov-Bohm effect in [4,6,11), series expansiof12], and renormalizatiorf13]
spin-1/2 particles[3,4], duality between fermionic and have been used in two or more dimensions. For the one-
bosonic systemEgs], etc. Second, to allow exact closed ana-dimensional case the situation is far more rich. This is so
lytical solutions in quantum mechanifg], which are usually ~because in one dimension there is a four-parameter family
rare but quite useful. For instance, one of the few exactlysolution[6,14] for the problem(the following section, so
solved many-body quantum problems is one—dimensionaqj'ﬁer_e”t types of_ dlscontlnume_s for point interactions are
(1D) identical particles interacting by pairwis&function possible. In studying such a family solution, functional meth-

potentials[7]. More recently, progress in extending such 50-0d3[15|]f' tg? _n(l'..)nretlatlv_lstlc7llr;r]1|t ofbDlrac’s egutatlohIlG]i t
lutions to general point interactions has also been reporte na seft-agjoint ex ensiofil7] have been used to calculate
(8.9] reen functions and propagators.

The third relevance of such potentials is to provide rela- From the mathematical point of view, all the mentioned

i imple situai h devel t of \arizati rocedures are quite ingenious. However, they rely on tech-
Ivé simple situations where development of regulanzalion,;.ities which may hide important aspects of the problem,

proc_edu'res are in. order. This is important not only due th'?naking it hard to understand the physical meaning of rel-
applications mentioned above, but also because such techyant quantities, such as potential strengths and scattering
niques may be extended to more complex and general coympiitudes. In fact, in some cases the regularizatioof
texts [10], e.g., anyons statistics, vortices and topologicaligads to a renormalization of some parameters relatég, to
structures in scattering, quantum field theory, etc. which then become dependent on the energy and the spatial
We can state the nonrelativistic quantum problem of ayosition[17]. So, one may find it difficult to interpret scat-
point interaction as the following. Considerdedimensional  tering by point interactions in terms of the so-called inverse
Hamiltonian, written formally asH(r)=Ho(r)+Z=(r;ro).  scattering problen{18]. Furthermore, some of the above
Ho=—V{+V(r) is a well-defined self-adjoint “unper- methods are cumbersome to apply to more general cases,
turbed” Hamiltonian andg represents a general point inter- e.g., for many point interactions of different types, or for
action potential located at. One may have interest in the certainV's.
wave function, the Green function, or its Fourier Hence, it would be desirable to have simpler treatment for
transform, the propagator, which satisf(r) #(r)=E(r),  the regularization of single point interactions, as well as to
[E—H(r¢)1G(r¢,ri;E)=0(r¢—ry), and  K(r¢,rist)  calculate quantum objects, such as Green functions, directly
=(2mi) " YfdE exp—iEt)G(r¢,r;;E), respectively. The from concrete physical quantities, instead of renormalized
whole issue is to ask ifl is a self-adjoint operator, and the “bare” parameters(difficult to identify in a real system
above equations lead to physical meaningfulG, andK, for ~ Moreover, the method should be simple enough to be ex-
instance, the quantum state has a unique time evolution. tended to more general situations. Actually, such a point of
view has already been used to discdsmteractions in two
dimensiong19]. In the present work we show how to do that
*Electronic address: schmidt@fisica.ufpr.br for N general point interactions in one dimension under dif-
TElectronic address: luz@fisica.ufpr.br ferent boundary conditions.
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Our paper is organized as follows. In Sec. Il we show howwave function, of wave numbek and incident either from
to characterize any general point interaction through its scathe left (+) or right (—), be written as
tering amplitudes. Then, with the help of some results known

in the literature we are able to readily write down the exact 1 exf] +ikx]+R®exd Fikx], x=0
Green function for the problem. In Sec. lIl, from a multiple- §(*)(x)= — X (+) . .
scattering approach, we extend the calculations and obtain J2m T exd £ikx], x20.
the exaciG for an array ofN general point interactions under )

different conditions, namely, on a line, on a half-line, con- o )
fined in a box(with different boundary conditions at the ¥ satisfies —d?y(x)/dx*=k?y(x) for x+#0. Now, if we
walls), and finally for periodic boundary conditions. Possible Choose for the scattering amplitudes‘(’=ad—bc and
physical applications for all these systems are briefly disf ) =1)

cussed. Finally, in Sec. IV we draw our final remarks and

conclusion. c*ik(d—a)+bk?

R(*) = ,
—c+ik(d+a)+bk?

Il. THE SCATTERING AMPLITUDES
CHARACTERIZATION OF A GENERAL POINT Dk 1)
INTERACTION AND THE GREEN FUNCTION T = @ , @)
—c+ik(d+a)+bk?

It is a well-known fact that solving the one-dimensional
Schralinger equation for & potential located at the origin,
8(x), is equivalent to the boundary conditiofg)’(x)

—dyldx]
w(0)
(w'<0>)' @

we find that Eq.(3) satisfies the boundary conditiori§).
Furthermore, by imposinfl8]

IR|2+|TH)|2=1, RE*TH4LTEIxRE)=,

lp(o*))_ (a b
(0% “lc d

REF*=RE),  T*=TE), (5)

where the parameter values aaeed=w=1, b=0, andc

= v, with y the potential’s strength. This boundary condition
can be obtained from the Schilinger equation by imposing
that the wave function is continuousat 0. However, the
same does not apply if the potential in questiordiprime,

&' (X): the boundary condition satisfied hy(x) cannot be
determined from the Schdinger equation. The only condi-
tion knowna priori is the oney’ (x) fulfills, namely, ¢’ (x)

is continuous ak=0. For this very reason self-adjoint ex-
tension is invoked6,20]. So, one can solve an equivalent

problem to the Schaiinger equation with the" potential  jiv,qes(4) and(5). We also observe that eventually we may
imposing Eq.(1) with c=0, a=d=w=1, andb=. _have bounded states for a given point interaction potential

The above two examples do not represent all possiblgenenging on its parameters. In such a case the quantum
ong—_dlmen5|onal point interactions. In fact, through the self- mplitudesk and T have poles at the upper half of the com-
adjom_t extensmn tech_nlque it is shown that the most genergl;q, planek, corresponding to the eigenvalues. The eigen-
case is the one in which functions can then be obtained from an appropriate extension

of the scattering states to thokevalues[22].
lo[=1 and ad—bc=1, witha,b,c,d allreal. (2) The exact Green function for arbitrary potentials of com-
pact support have been obtained in R&B|, with an exten-

An important aspect of this prescription is that it does notsion for more general potentials presented in R24]. For
allow a concrete realization for generalized point interacthe derivations in Ref[23], it is necessary that the and T
tions. In other words, it does not lead to a unique functionsatisfy certain conditions, which indeed are those &).
depending on g,b,c,d,w) which reproduces the whole Thus, based on Ref23] we can calculate the Green function
boundary conditions given in Egl) and(2). So, we cannot for general point interactions by using the reflection and
write @ HamiltonianH=H,+ E(x), since one does not transmission coefficients, which for their very construction
know a single form for the potentia (x) (actually, a differ-  carry information on boundary conditions and are relevant
ent procedure is to represent a generalized point interactioquantities with a clear physical interpretati@eing the mea-
by making compositions of triplé functions and then taking sured quantities in real situatiofi25]).
certain limits[21], which, however, also cannot be put inthe  So, from Ref.[23] we can readily write down the exact
form of usual potential Green function as the following. By defininG, _ for x;

An alternative way to characterize the boundary condi->0>x;, G_, for x;>0>x;, G, ;. for X;,%x;>0, andG__
tions (1) is through the scattering amplitudes. Let a plane-for x;, x;<<0, we have

the parameters must necessarily obey Ey.The conditions
in Eq. (5) assure important properties, e.g., probability con-
servation and the existence of the scattering inverse problem
(see Ref[18] for a detailed discussignFurthermore, if one
also requires time-reverse invariance, which is translated into
the relationT(")=T(=) (which we are not imposing in this
work), then one should choose= *1.

From all these results we see that there is a complete
equivalence in defining the most general point interaction
through Eqgs(1) and(2) or by specifying its scattering am-
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1
G¢:=WT(:)exr[ik|xf—xi|], PP Pt | Pom Pomat [Pome2 Bt By By [Pie Ponca|Pon
1 : Y
Grtzm{equk|xf_xi|]+R(’)exli'k(|xf|+|Xi|)]}- , .
(6) N Ym X Ymu Yi X Y IN
The Green functions foB(x) and &' (x) were calculated, FIG. 1. N arbitrary point interactions on the line and located at

respectively, in Ref[26] and [12,16,17. As we show in the arbitrary positiong’s.

Appendix A, theG’s in Eqg. (6) reduce to those cases if we

assume for the parameters the appropriate values as prel@ted from the free propagations between the potentiilis.
ously discussed. the product of the quantum coefficierftg to the phase fac-

tors) gained each time the patrticle is scattered off by a point
interaction. When the particle hits the potentilit can be
reflected(getting an amplitude factdr,) or transmittedget-
ting an amplitude factoiT,) from the positiony,,. Once

The advantage of the present method is that it can becattered the particle can go either to the left, along the path
easily used to calculate the exact Green function for arbitrary?,,_1, or to the right, along the patR,, (see Fig. 1 To
(finite) number of different point interactions, both on the calculate the Green function we have to classify and sum up
infinite line or for periodic boundary conditions. Also, we all the scattering trajectories, which always can be done in a
can obtain the&’s for restricted systems such Bgpotentials  closed form as shown in Reff23,24. Following such ref-
on a half-line or confined inside an infinite box, with differ- erences, we find
ent boundary conditions at the border walls.

There are many reasons to study such problems. For in-
stance, forN disordered general point interactions on a line
one may have interest in the propagation of wave packets ) B ]
through the lattice in order to analyze the influence of more x(exp[—|kxi]+R§n’l)ex;:{|kxi]
singular potentials in the usual scale theory of localization . . 4
[27]. For periodic boundary conditions, we recall recent ex- Xexp[—2|kym])(exp[|kxf]+RMM
perim_ents using a waveguide filleq with Iocali_zed scatterers X exd —ikx;lexd 2iky; . 1]), (7)
in a circular setug28]. The dynamics of the microwaves is
analogous to our 1D quantum system. They measure thghere
transmission amplitudes along the waveguide and observe

Ill. ARBITRARY NUMBER OF POTENTIALS AND
DIFFERENT BOUNDARY CONDITIONS

Gln(X¢ Xi 1K) = - )TER+1qu_ik(yj_ym+1)]
Jm ’ ’

ﬂ DIine

the Hofstadter butterflj29], which has a fractal structure Djine={1— Rgn_,:l? RJ(,erL 1exXd 2iK (Yms1—Ym) 1}
Cantor set Similar systems are used to study the quantum . - _
dynamics of eigenvalues on changing of some external pa- x{1-R{). R sexd 2ik(yj - y)) 1}

rameter[30]. Also, periodic boundary conditions were used

) . L . . —_ROEIR(H) (+) (=)
[5] to study duality properties of point interactions in sys- R RN+ 1 Tfme 1 Tjmea

tems of bosons and fermions. X ex — 2iK(Y;~ Yme1+Ym—Yi=1)]. ®)
A. Green function for arbitrary number of point interactions The factorsR, | and T, are derived in Appendix B.
on the line
ConsiderN point interaction potentials, each character- B. Green function for arbitrary number of point interactions
ized by its locatiory,, (with y,,_;<y,) and the set of param- on the half-line

eters {a,,b,,Cy,dy,@p}. The quantum coefficients are  Recently, an interesting effect, which is related to the so-
Ry(yn) and T{™)(y,). For a potential located at,, itis  called atomic mirrors, has been propo$ati]. The idea is to
easy to see thaR{"(y,)=R{“exp(2iky,) and T{")(y,)  place a wave packet initially with a zero mean momentum
=T§f), WhereRﬁf) andTﬁf) are given by Eq(4). In other  near a given barrier potential, e.g., an infinite hard wall or a
words, the reflection coefficients change by a phase facto$ potential. The wave packet spreads out and due to energy
while transmission coefficients remain the same. guantum fluctuations its mean momentum value increases.
Now, we can obtain the exa@jy,(X;,X;;K) for y,<x; This behavior is associated with an effective “quantum re-
<Ym+1 andy;<x{<y;,, (for arbitrarymandj) by using  pulsive force,” which in principle, can be measured using
the multiple-scattering approach introduced in RE28,24.  ultracold atoms. The problem is to reach the necessary ex-
We only discuss the case gf<x;, see Fig. 1. The idea is treme conditions in the laboratory. Thus, it would be helpful
simple, G is given by (2k) 1= gpWsexdiSse(Xs ,X; ;K) . to enhance the phenomenon, which eventually can be done
The sum is performed over all possible scattering p&ps by considering more singular potentials. This motivates us to
joining the end points, witt8sp and Wgp their actions and  look at the problem of general point interactions near by an
amplitudes(or weightg. For each scattering patB,is calcu- infinite hard wall, i.e.N point interactions on the half-line.
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(a) (b) As before, the exadb for this case can be obtained from
Eq. (7). For that, we just sef;=0, yy=L and then choose
for R{™) andR{") the values—1 or +1. This will lead to all
© - the four possible combinations of Dirichlet and Neumann
boundary conditions for the walls a&=0 andx=L.
As an example, consider the potential in Figh)2 a
0 y L single point interaction ak=y inside an infinite well of
lengthL. We restrict the discussion t8_ _ for x; ,x;<y and
FIG. 2. A general point interaction &t(a) on the half-line and G, _ for x;<y<x; . After lengthy but simple manipulations,
(b) within an infinite well. In both cases we may have Dirichlet or \ye find the Green functiong@gain,s=1 ands=—1 lead to
Neumann boundary conditions at the walls. Dirichlet and Neumann boundary conditions at the corre-

_ . . . ~ sponding wally
The exact Green function for this case is easily obtained

from our previous results. Actually, by settipg=0 in our 1 {1+s ROexd 2ik(L—y)]}

0 y

general expressiofY) and takingR{ ) to be —1 or +1, we G- (%K) = 5 D
have, respectively, Dirichlet or Neumann boundary condi-
tions atx=0. We observe that it is simple to consider that . +) :
the first point interaction is eitheys(x) or ys'(x), where x| exelik|x;—xi|]—so| R™exp 2iky]
the limit y—oo is taken, i.e., the point interaction becomes
an infinite hard wall with different reflection properties. Just s THTO ex 2ikL]
as a simple example, consider the situation in Fig),2an - O ;
infinite hard wall plus a general point interactionaty. 1+s R exd 2ik(L—y)]
Denoting G__ for x;,x¢<y and G, _ for x;<y<x;, we X exd —ik|x¢—Xi| 1= soex ik (X + ;) ]
have after straightforward simplificatiolisere,s=1 for Di-
richlet ands=—1 for Neumann boundary conditions
+| RMexd 2iky]
1 T
Gy (X¢,X;K) =57
=Xk = 55 (1+sRMexd 2iky]) s T T ex 2ikL] )
X {exgik(x;—x;)]—sexgik(x;+x)]} 1+s R )exg 2ik(L—y)]
Xexdiky],
Hiky] xexr[—ik(forxi)]},
G__( k) ! ! (+)
—_(X¢ X K)= 5 - 1 T
U 21k (14 sRMexy 2iky]) G (¢, 3K) = 5= 5 {(exe —ikx;] — soexifikx])
x{exlik|x;—x;|]—sRPexd 2ik
fexliklx; =] L2iky] X (exikx;]— s exq 2ikL]
Xexd —ik|x;—xX;|]—sexd ik(X;+ X;
Id: | f ||] Id: ( f |)] XeXF[—ika])}, (10)
+RMexd 2ikylexd —ik(x;+x)]}.
with

9

D=(1+soRMexd 2iky]){1+s R exd 2ik(L—y)]}
C. Green function for arbitrary number of point interactions ()7(=) .
inside an infinite well —Sps . T" /T ’exd 2ikL]. (11

~ A system so simple as a short-range potential placed in- The poles ofG give the system eigenvalues. In our case,
side a 1D infinite well can sometimes present unusual dythey come fromD =0.

namics[32]. In fact, it has been shown that such a system
can exhibit chaoticlike behavior. Another interesting prop-
erty, which can be studied in 2D boxg33] as well in sys-
tems of the present type, is the revival time. Initially, a wave Here we consider periodic boundary conditions for the
packet is placed in one side of the box. Then it evolveswave function, or (—L/2)=y(L/2) and ¢'(—L/2)
spreading over the whole configuration space it is allowed to= ' (L/2). So, the Green function satisfies exactly these
fulfill. After a certain time(the revival time all the “pieces”  same relations in botk; andx;. For simplicity, let us start

of the wave packet return to the initial situation, reconstruct-with one point potential ak=0, see Fig. 8&). We need to

ing the original state. Such applications may lead one to tryonsider all the scattering paths starting frepand arriving

to calculate the Green function for an arbitrary number ofat x;. We can think of the points-L/2 andL/2 as being
point interactions inside an infinite well. connected, so we have trajectories on a circle. The paths are

D. Green function for periodic boundary conditions
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? ® 1 1
G(x¢,Xi k)= 2K —{{T(+)+(R(+)R(—)_T(+)T(_))

Dcircle
x exdikL]exd ik(x;—x;)]
+(1—T(+)exp[ikL])eXp[ik[|—_(Xf_xi)]}
+RMexplik[L— (X +x) 1}
+ROVexplik[ L+ (x¢+x) ]}, (12

%1% Poct| By Paima| Tajez P | P

L N L 4
L2 Xi 0 Xf L2 -L2 X ¥ Yi X Y YN LR

FIG. 3. Periodic boundary conditions, i.e., the poist —L/2 is
equivalent to the point=L/2. (a) A single general point interaction
atx=0. (b) N general point interactions located at arbitrary posi-

tionsy’s. )
Y with

then given by arbitrary number of rounds clockwise and

counterclockwise on the circle. Each time the particle hits Deiree= (1— THexikL])(1— T )exdikL])

the point interaction ak=0, it is either reflected from or

transmitted through the potentiékith the amplitude corre- —ROIROexd 2ikL]. (13
sponding to that trajectory getting the fac®ror T, respec-

tively). The paths are continuous and no extra factor to con-

structWgp is gained when the particle crosses freni/2 to  The zeros oD e are the energy eigenvalues.

L/2 orL/2 to —L/2. By classifying and summing up all the ~ The same reasoning to construct the scattering paths can
scattering paths, we finally obtain the exact Green functiorbe used for the more general case shown in Fip).3he

as final result is

1 _ ) _ _ _
Gx1 i 1k) = 5 —{Tj exrl —ik(y; —yn) T+ T 1K) sexil —ik(y— ;) Jexdl kLT exilik(x =)
pbc
H{R( )T expik(L—2yn—yj+y) 1+ RIDT( ) sexd —ik(2y;+yn—yj+ 1) TexdikL]
xexgik(xi+x) ] +H{RUDTG ), jexdik(L+ 2y, —yn+yj )1+ RG ) T exdik(2y 11—y +ya) 1}
xexp —ik(xg+x) ] +H{TG ) 1exd —ik(yn—yj+ )1+ TEPKy jraexd —ik(y;—ya) JexdikL T exd ikL]

xXexp —ik(xt—xi) 1}, (14)
|
where Kpa=RSIRS Jexd2ik(ya—y) - Th2 T, Jexp  how to construct the exact Green function from such coeffi-
[—2ik(yp—Ya)] and cients. It helps to keep track of the relevant physical quanti-
e _ ties what may not happen in some other methods due to their
Dppe= — 1+ REPR( ), jexp 2ik(L—yn+y))] subtle renormalization procedures.

We do not invoke any kind of regularization, such as

(-)p(+) i oy )= (TO)T)
TR RN+ 18XA 21K (Y1 =Y 1= (Th T renormalization, series expansion, or self-adjoint extension.

+TJ(,+1)T(nfj)+1)eXF{—ik(yN—yJ'+1+ yi—y1)] The a_ldvanta_ge in not using specific mathematical prescrip-
_ tions is that, in general, such techniques may not have a clear
—Kj 1Kn,j+ 18X 2iKL]. (15  physical meaning(differently from some other contexts,

where there are solid principles as a guide for regularization,
such as in the case of the Mandelstam-Leibbrandt prescrip-
tion for the light-cone gauge in field thegrpr are not

IV. REMARKS AND CONCLUSION unique. In fact, one can find in the literature the Green func-

Here we have presented a way to calculate the Greefion for a same general point interaction based on calcula-
functions for generalized point interactions in one dimen-tions from either a singlé’ potential[17] or a combination
sion. Our approach uses a totally different approach tha@f 6 and &' potentials[34]. This apparent contradictory re-
most theoretical treatments. The method is based mostly osult is just due to the fact that the authors use different pre-
physical grounds. First, we show that one can define a gerscriptions to regularize their Hamiltonians.
eral point interaction through its scattering properties, i.e., The second advantage of this simpler method is that we
the reflection and transmission amplitudes. Then, we discussan easily extend our calculations to more general cases.

For some of the above quantities see Appendix B.
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Indeed, we have derived the Green functionsNogeneral- ACKNOWLEDGMENT

ized point interactions for several situatiofig;on a line,(ii)

restricted to the half-line, andii) within in an infinite box. forAf\i.r%r,:/éiill sund c':/lrt'G'E'dL' gratefully acknowledge CNPg
For the later two cases we can impose different boundary pport.
conditions at the border walls. Als@y) we have obtaine¢

for periodic boundary conditionghe circlelike casge As far APPENDIX A: SPECIAL CASES

as we know, explicit expressions f@r for all these systems In order to exemplify our general result for a single gen-
were not known in the literature and our aim was to fulfill gralized point interaction on the line, E@), we show how

this gap. _ o _ to obtain from it the well-known Green functions fér{26]
Away to construct generalized point interactions has beeRpg 57 [12,16,17 potentials.

recently proposed in a series of papgs®1]. The idea is to The & potential is a particular case of E¢L), wherea
consider different usuad functions, all separated by a dis- —d=w=1b=0c=7. Substituting these parameters into
tanceyq, with appropriate values for their strengths. In the Egs.(4) and (6), one obtains

limit yo— 0, one obtains the desired potential. Although the

exact limit cannot be taken in practice, if we can approxi- exdik|xi—x;|]

mate eachs by some short-range potential and then hgye G.s :T—V’

finite but small, we may in principle obtain a physical real-

ization of a general point interaction. This open a great pos- 1

sibility of experiments in order to test fundamental and in- Gii:ﬂ exdik|x;—x;|]

teresting phenomena in quantum mechanics as applications

for the systems discussed in this work. In particular, of great % _

interest would be the calculation of the time evolution +(2ik_7>exlilk(|xf|+|xi|)] : (A1)

of wave packets,
Now, recalling the meaning of the subscripts @1see Sec.

—i : i . II) in the above equation, it is not difficult to realize that we
WO O =1/(2m) [ fdxdEexp(—IEOG(x; X 1E) W (x1.0), can write Eq.(A1) as the following single formula:

or of the density of stateq(E)=— (1/7)J3[dxG(x,X;E). _ ; .y Y : A
Due to the form of our Green function, the integration with 2ikc| XKD =il 1+| Z= y explik(|x¢+[xiD]],
respect to the position can be solved analyticalpfoFor ¥, (A2)

it can also be done for simple initial wave packets such as . , . : T
Gaussians. The integral on the energy, on its turn, can b&hich agrees with Eq17) of Ref.[26] if we identify in the

easily carried out using numerical methods such as the fa§Pefficients which multiply the exponentialy;——Z and

Fourier transform. 2ik«ik (this last relation is due to the fact that in REZ6]
Regarding extensions of the present results we commerif€ author usem=1 instead ofm=1/2 as in our cage

the following. In Ref[35], both the local description of point ~ T1he &' potential is defined bp=d=w=1b=1v,c=0,

interaction (which we used in this wopkand a global one SO one gets the Green functions

based on the (2) group (which contains the formemwere

discussed. In this (2) context, one can also obtain the re- G+—=M
flection and transmission coefficients. So, our results are T (Qitykk
valid in the global description of point interactions. We em-

phasize that the key point to obtain all the Green functions G :i exelik|x;—x|]
calculated here is to know thR and T coefficients of the == 2ik oA

potentials. In fact, our results apply for every one-

dimensional V(x) that satisfies the assumptions given in +( Y

Refs.[23,24). Thus, a “mixing” 1D lattice including both 2i+ yk

general point interactions and usual potentiaiich decay S )

at least exponentiallycan be calculated from our method. Again, it is easy to show that the above expressions can be
As a final remark we mention that it would be interesting SUmmarized afsign(-) is the signal functioh

to extend the present approach to higher dimensions. In a

exd ik(|x¢+[x]|. (A3)

recent work{36], it has been discussed how to calculate the G— i exik|x;—x;|]

wave function and also the Green function for boundary 2ik

walls of arbitrary shapes and with very general boundary K

conditions. The method is based on the calculation df a +(7_ sign(x¢) sign(x; ) exp ik (|x¢| + |x]|-
matrix, which plays a role similar to 1D quantum amplitudes. 2i+ vk

By taking appropriate limits, we could construct pointlike (A4)
interactions in two and three dimensions for which the Green

function is already regularized. Such work is in progress andequation(A4) agrees with Eq(12) of Grosche in Refl16] if
will be reported in the due course. we identify y— — B, —ik— J—E (because in such refer-
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ence a Wick rotation is use¢@ndG«— — G (due to an oppo- Similarly, we denveTI+l| by calculatingG for x>y,

site sign used in the definition of the Green funcfion >Y> X
In order to get recurrence formulas, consider a third po-
APPENDIX B: RECURRENCE FORMULAS tential located ay, ., (recall that our two point interactions

block has its end points &, and y,.1). Let Xx;,x;<y,
<y,+1<y|+2 and consideR,;;; and T4, of the two po-
fentials block as obtained before. By a direct inspection of
Eg. (B2), we can readily infer the reflection coefﬁuelhtzI

(for the new block formed by the three potentjads

Here we show how to obtain some coefficients used in the
exact expressions for the Green functions by means of recu
rence formulas. The idea is to face a seriesiofl +1 po-
tentials located ay,,y, 1, ---.¥Yn-1,Yn @S a single block
and then to associate with it the amplitudgs, andT,, (for
a detailed discussion, see REZ3]).

Assume first a potential composed by two point interac- ) _ o+ T T R Sexd 2iK (y 4 o~ y|+1)]
tions, placed aty, andy,,, and letx;  x;<y,<V,41. By N R|+1| fi)zeXF[ZIk(sz vl
using the same approach developed throughout this paper, (B5)
we obain for the Green function

G,,=exr[ik|xf—xi|]+R,(+)exr[—ik(xf+xi—2y|)] the generalization is then straightforward,

REOTOTOexd —ik(x;+x,—2 (+) (+) ik(y,—
+11] (_)| = i _( £+ Xi y.)]. (B1) R, 4 17 T, T R exd 2ik (yn—yn - 1)].
1-Ri R iexd 2ik(y 11—y ] ' To1-R(C >1|R<+)exp[2|k(yn Y11 .
We define a reflection coefficient for this blogkade by two
potentialg as For the reflection coefficierr! 1) one finds
RITOTexd 2ik(yi41-y1)]
R =R+ - . : TITORC), exg 2ik
1=ROR{ exd2ik(yr 1 =y1)] R —R( ) 1 Ty A0 1)]
(BZ) l_Rnfl,IRn exn:Z'k(Yn_ynfl)] (B7)
In analogy, we can defing{,), for this same block by cal-
culating G for x; ,.X;>y| 1>y Transmission coefficients can be written in terms of recur-
Now, considen;<y,<y;1<X;, we have rence relations as well. The final results are
TOTHexdik(yie—y)] ,
G+,: (-) -:+) . - (+) T$1+)1IT(+)exq:|k(yn_yn l)]
1-R{R(Hexd 2ik(y .1~ y)] T4 = o (B8)
. ’ 1- Rn 1IR eXF[2|k(yn Yn- 1)]
X explik[ X —Xxi— (Y141~ YD1}, (B3)
thus, we can again define and
T(+) _ TOTHexdik(yi1—y1)] . ey T T exd ik (Yn—Yn-1)] .
+1)= - . . 1= - . .
1-RORexd 2ik(y1 -] " 1RO R exd 2ik(yn Yo 1)]
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