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Green functions for generalized point interactions in one dimension: A scattering approach

Alexandre G. M. Schmidt,* Bin Kang Cheng, and M. G. E. da Luz†
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Recently, general point interactions in one dimension has been used to model a large number of different
phenomena in quantum mechanics. Such potentials, however, require some sort of regularization to lead to
meaningful results. The usual ways to do so rely on technicalities that may hide important physical aspects of
the problem. In this work we present a method to calculate the exact Green functions for general point
interactions in one dimension. Our approach differs from previous ones because it is based only on physical
quantities, namely, the scattering coefficientsR andT to constructG. Renormalization or particular mathemati-
cal prescriptions are not invoked. The simple formulation of the method makes it easy to extend to more
general contexts, such as for lattices ofN general point interactions, on a line, on a half-line, under periodic
boundary conditions, and confined in a box.

DOI: 10.1103/PhysRevA.66.062712 PACS number~s!: 03.65.Nk, 03.65.Ge, 03.65.Db
n
th
he

a

ctl
n

o
rte

la
io
th
e
co
ca

f

-
r-
e
er

e

.

ter-

.

ne-
so
ily

re
th-

te

ed
ch-
m,
el-
ring

f

atial
t-
rse
e
ses,
or

for
to
ctly
ed

ex-
t of

at
if-
I. INTRODUCTION

Point interactions in one or more dimensions have bee
great interest in quantum physics and one can regard
relevance as being threefold. First, to model different p
nomena such as energy-band structure in ordered lattices@1#,
emergence of quantum chaos@2#, Aharonov-Bohm effect in
spin-1/2 particles @3,4#, duality between fermionic and
bosonic systems@5#, etc. Second, to allow exact closed an
lytical solutions in quantum mechanics@6#, which are usually
rare but quite useful. For instance, one of the few exa
solved many-body quantum problems is one-dimensio
~1D! identical particles interacting by pairwised-function
potentials@7#. More recently, progress in extending such s
lutions to general point interactions has also been repo
@8,9#.

The third relevance of such potentials is to provide re
tive simple situations where development of regularizat
procedures are in order. This is important not only due
applications mentioned above, but also because such t
niques may be extended to more complex and general
texts @10#, e.g., anyons statistics, vortices and topologi
structures in scattering, quantum field theory, etc.

We can state the nonrelativistic quantum problem o
point interaction as the following. Consider ad-dimensional
Hamiltonian, written formally asH(r )5H0(r )1J(r ;r0).
H052¹ r

21V(r ) is a well-defined self-adjoint ‘‘unper
turbed’’ Hamiltonian andJ represents a general point inte
action potential located atr0. One may have interest in th
wave function, the Green function, or its Fouri
transform, the propagator, which satisfyH(r )c(r )5Ec(r ),
@E2H(r f)#G(r f ,r i ;E)5d(r f2r i), and K(r f ,r i ;t)
5(2p i )21*dE exp(2iEt)G(r f ,r i ;E), respectively. The
whole issue is to ask ifH is a self-adjoint operator, and th
above equations lead to physical meaningfulc, G, andK, for
instance, the quantum state has a unique time evolution
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If the point interaction is the usual delta function,gd(r
2r0), the answer is negative ford equal to 2 and 3. In one
dimension, this is also the case for more singular point in
actions such as delta-prime function,gd8(x2x0). Different
approaches are then used to regularizeH. Methods such as
formal self-adjoint extensions~see, for instance, Refs
@4,6,11#!, series expansion@12#, and renormalization@13#
have been used in two or more dimensions. For the o
dimensional case the situation is far more rich. This is
because in one dimension there is a four-parameter fam
solution @6,14# for the problem~the following section!, so
different types of discontinuities for point interactions a
possible. In studying such a family solution, functional me
ods @15#, the nonrelativistic limit of Dirac’s equation@16#,
and self-adjoint extension@17# have been used to calcula
Green functions and propagators.

From the mathematical point of view, all the mention
procedures are quite ingenious. However, they rely on te
nicalities which may hide important aspects of the proble
making it hard to understand the physical meaning of r
evant quantities, such as potential strengths and scatte
amplitudes. In fact, in some cases the regularization oH
leads to a renormalization of some parameters related toJ,
which then become dependent on the energy and the sp
position @17#. So, one may find it difficult to interpret sca
tering by point interactions in terms of the so-called inve
scattering problem@18#. Furthermore, some of the abov
methods are cumbersome to apply to more general ca
e.g., for many point interactions of different types, or f
certainV’s.

Hence, it would be desirable to have simpler treatment
the regularization of single point interactions, as well as
calculate quantum objects, such as Green functions, dire
from concrete physical quantities, instead of renormaliz
‘‘bare’’ parameters~difficult to identify in a real system!.
Moreover, the method should be simple enough to be
tended to more general situations. Actually, such a poin
view has already been used to discussd interactions in two
dimensions@19#. In the present work we show how to do th
for N general point interactions in one dimension under d
ferent boundary conditions.
©2002 The American Physical Society12-1
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Our paper is organized as follows. In Sec. II we show h
to characterize any general point interaction through its s
tering amplitudes. Then, with the help of some results kno
in the literature we are able to readily write down the ex
Green function for the problem. In Sec. III, from a multipl
scattering approach, we extend the calculations and ob
the exactG for an array ofN general point interactions unde
different conditions, namely, on a line, on a half-line, co
fined in a box ~with different boundary conditions at th
walls!, and finally for periodic boundary conditions. Possib
physical applications for all these systems are briefly d
cussed. Finally, in Sec. IV we draw our final remarks a
conclusion.

II. THE SCATTERING AMPLITUDES
CHARACTERIZATION OF A GENERAL POINT
INTERACTION AND THE GREEN FUNCTION

It is a well-known fact that solving the one-dimension
Schrödinger equation for ad potential located at the origin
d(x), is equivalent to the boundary conditions@c8(x)
[dc/dx#

S c~01!

c8~01!
D 5vS a b

c dD S c~02!

c8~02!
D , ~1!

where the parameter values area5d5v51, b50, andc
5g, with g the potential’s strength. This boundary conditio
can be obtained from the Schro¨dinger equation by imposing
that the wave function is continuous atx50. However, the
same does not apply if the potential in question isd prime,
d8(x): the boundary condition satisfied byc(x) cannot be
determined from the Schro¨dinger equation. The only condi
tion knowna priori is the onec8(x) fulfills, namely,c8(x)
is continuous atx50. For this very reason self-adjoint ex
tension is invoked@6,20#. So, one can solve an equivale
problem to the Schro¨dinger equation with thed8 potential
imposing Eq.~1! with c50, a5d5v51, andb5g.

The above two examples do not represent all poss
one-dimensional point interactions. In fact, through the s
adjoint extension technique it is shown that the most gen
case is the one in which

uvu51 and ad2bc51, with a,b,c,d all real. ~2!

An important aspect of this prescription is that it does n
allow a concrete realization for generalized point inter
tions. In other words, it does not lead to a unique funct
depending on (a,b,c,d,v) which reproduces the whol
boundary conditions given in Eqs.~1! and~2!. So, we cannot
write a Hamiltonian H5H01J(x), since one does no
know a single form for the potentialJ(x) ~actually, a differ-
ent procedure is to represent a generalized point interac
by making compositions of tripled functions and then taking
certain limits@21#, which, however, also cannot be put in th
form of usual potential!.

An alternative way to characterize the boundary con
tions ~1! is through the scattering amplitudes. Let a plan
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wave function, of wave numberk and incident either from
the left (1) or right (2), be written as

c (6)~x!5
1

A2p
3H exp@6 ikx#1R(6)exp@7 ikx#, x"0

T(6)exp@6 ikx#, x:0.
~3!

c satisfies2d2c(x)/dx25k2c(x) for xÞ0. Now, if we
choose for the scattering amplitudes (u (1)5ad2bc and
u (2)51)

R(6)5
c6 ik~d2a!1bk2

2c1 ik~d1a!1bk2
,

T(6)5
2ikv61u (6)

2c1 ik~d1a!1bk2
, ~4!

we find that Eq.~3! satisfies the boundary conditions~1!.
Furthermore, by imposing@18#

uRu21uT(6)u251, R(1)* T(1)1T(2)* R(2)50,

Rk
(6)* 5R2k

(6) , Tk
(6)* 5T2k

(7) , ~5!

the parameters must necessarily obey Eq.~2!. The conditions
in Eq. ~5! assure important properties, e.g., probability co
servation and the existence of the scattering inverse prob
~see Ref.@18# for a detailed discussion!. Furthermore, if one
also requires time-reverse invariance, which is translated
the relationT(1)5T(2) ~which we are not imposing in this
work!, then one should choosev561.

From all these results we see that there is a comp
equivalence in defining the most general point interact
through Eqs.~1! and ~2! or by specifying its scattering am
plitudes~4! and~5!. We also observe that eventually we ma
have bounded states for a given point interaction poten
depending on its parameters. In such a case the quan
amplitudesR andT have poles at the upper half of the com
plex planek, corresponding to the eigenvalues. The eige
functions can then be obtained from an appropriate exten
of the scattering states to thosek values@22#.

The exact Green function for arbitrary potentials of co
pact support have been obtained in Ref.@23#, with an exten-
sion for more general potentials presented in Ref.@24#. For
the derivations in Ref.@23#, it is necessary that theR andT
satisfy certain conditions, which indeed are those Eq.~5!.
Thus, based on Ref.@23# we can calculate the Green functio
for general point interactions by using the reflection a
transmission coefficients, which for their very constructi
carry information on boundary conditions and are relev
quantities with a clear physical interpretation~being the mea-
sured quantities in real situations@25#!.

So, from Ref.@23# we can readily write down the exac
Green function as the following. By definingG12 for xf
.0.xi , G21 for xi.0.xf , G11 for xf ,xi.0, andG22

for xf , xi,0, we have
2-2
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GREEN FUNCTIONS FOR GENERALIZED POINT . . . PHYSICAL REVIEW A 66, 062712 ~2002!
G675
1

2ik
T(6)exp@ ikuxf2xi u#,

G665
1

2ik
$exp@ ikuxf2xi u#1R(6)exp@ ik~ uxf u1uxi u!#%.

~6!

The Green functions ford(x) and d8(x) were calculated,
respectively, in Ref.@26# and @12,16,17#. As we show in
Appendix A, theG’s in Eq. ~6! reduce to those cases if w
assume for the parameters the appropriate values as p
ously discussed.

III. ARBITRARY NUMBER OF POTENTIALS AND
DIFFERENT BOUNDARY CONDITIONS

The advantage of the present method is that it can
easily used to calculate the exact Green function for arbitr
~finite! number of different point interactions, both on th
infinite line or for periodic boundary conditions. Also, w
can obtain theG’s for restricted systems such asN potentials
on a half-line or confined inside an infinite box, with diffe
ent boundary conditions at the border walls.

There are many reasons to study such problems. Fo
stance, forN disordered general point interactions on a li
one may have interest in the propagation of wave pac
through the lattice in order to analyze the influence of m
singular potentials in the usual scale theory of localizat
@27#. For periodic boundary conditions, we recall recent e
periments using a waveguide filled with localized scatter
in a circular setup@28#. The dynamics of the microwaves
analogous to our 1D quantum system. They measure
transmission amplitudes along the waveguide and obs
the Hofstadter butterfly@29#, which has a fractal structure~a
Cantor set!. Similar systems are used to study the quant
dynamics of eigenvalues on changing of some external
rameter@30#. Also, periodic boundary conditions were us
@5# to study duality properties of point interactions in sy
tems of bosons and fermions.

A. Green function for arbitrary number of point interactions
on the line

ConsiderN point interaction potentials, each charact
ized by its locationyn ~with yn21,yn) and the set of param
eters $an ,bn ,cn ,dn ,vn%. The quantum coefficients ar
Rn

(6)(yn) and Tn
(6)(yn). For a potential located atyn , it is

easy to see thatRn
(6)(yn)5Rn

(6)exp(62ikyn) and Tn
(6)(yn)

5Tn
(6) , whereRn

(6) andTn
(6) are given by Eq.~4!. In other

words, the reflection coefficients change by a phase fa
while transmission coefficients remain the same.

Now, we can obtain the exactGjm(xf ,xi ;k) for ym,xi
,ym11 and yj,xf,yj 11, ~for arbitrarym and j ) by using
the multiple-scattering approach introduced in Refs.@23,24#.
We only discuss the case ofxi,xf , see Fig. 1. The idea is
simple, G is given by (2ik)21(SPWSPexp@iSSP(xf ,xi ;k)#.
The sum is performed over all possible scattering paths~sp!
joining the end points, withSSP and WSP their actions and
amplitudes~or weights!. For each scattering path,S is calcu-
06271
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lated from the free propagations between the potentials.W is
the product of the quantum coefficients~up to the phase fac
tors! gained each time the particle is scattered off by a po
interaction. When the particle hits the potentialn, it can be
reflected~getting an amplitude factorRn) or transmitted~get-
ting an amplitude factorTn) from the positionyn . Once
scattered the particle can go either to the left, along the p
P2n21, or to the right, along the pathP2n ~see Fig. 1!. To
calculate the Green function we have to classify and sum
all the scattering trajectories, which always can be done
closed form as shown in Refs.@23,24#. Following such ref-
erences, we find

Gjm
N ~xf ,xi ;k!5S 1

2ik DTj ,m11
(1) exp~2 ik~yj2ym11!#

D line

3~exp@2 ikxi #1Rm,1
(2)exp@ ikxi #

3exp@22ikym# !~exp@ ikxf #1RN, j 11
(1)

3exp@2 ikxf #exp@2ikyj 11# !, ~7!

where

D line5$12Rm,1
(2)Rj ,m11

(1) exp@2ik~ym112ym!#%

3$12RN, j 11
(1) Rj ,m11

(2) exp@2ik~yj 112yj !#%

2Rm,1
(2)RN, j 11

(1) Tj ,m11
(1) Tj ,m11

(2)

3exp@22ik~yj2ym111ym2yj 11!#. ~8!

The factorsRn,l andTn,l are derived in Appendix B.

B. Green function for arbitrary number of point interactions
on the half-line

Recently, an interesting effect, which is related to the
called atomic mirrors, has been proposed@31#. The idea is to
place a wave packet initially with a zero mean moment
near a given barrier potential, e.g., an infinite hard wall o
d potential. The wave packet spreads out and due to en
quantum fluctuations its mean momentum value increa
This behavior is associated with an effective ‘‘quantum
pulsive force,’’ which in principle, can be measured usi
ultracold atoms. The problem is to reach the necessary
treme conditions in the laboratory. Thus, it would be help
to enhance the phenomenon, which eventually can be d
by considering more singular potentials. This motivates us
look at the problem of general point interactions near by
infinite hard wall, i.e.,N point interactions on the half-line.

FIG. 1. N arbitrary point interactions on the line and located
the arbitrary positionsy’s.
2-3
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The exact Green function for this case is easily obtain
from our previous results. Actually, by settingy150 in our
general expression~7! and takingR1

(2) to be21 or 11, we
have, respectively, Dirichlet or Neumann boundary con
tions atx50. We observe that it is simple to consider th
the first point interaction is eithergd(x) or gd8(x), where
the limit g→` is taken, i.e., the point interaction becom
an infinite hard wall with different reflection properties. Ju
as a simple example, consider the situation in Fig. 2~a!, an
infinite hard wall plus a general point interaction atx5y.
Denoting G22 for xi ,xf,y and G12 for xi,y,xf , we
have after straightforward simplifications~here,s51 for Di-
richlet ands521 for Neumann boundary conditions!

G12~xf ,xi ;k!5
1

2ik

T(1)

~11sR(1)exp@2iky# !

3$exp@ ik~xf2xi !#2s exp@ ik~xf1xi !#%

3exp@ iky#,

G22~xf ,xi ;k!5
1

2ik

1

~11sR(1)exp@2iky# !

3$exp@ ikuxf2xi u#2sR(1)exp@2iky#

3exp@2 ikuxf2xi u#2s exp@ ik~xf1xi !#

1R(1)exp@2iky#exp@2 ik~xf1xi !#%.

~9!

C. Green function for arbitrary number of point interactions
inside an infinite well

A system so simple as a short-range potential placed
side a 1D infinite well can sometimes present unusual
namics@32#. In fact, it has been shown that such a syst
can exhibit chaoticlike behavior. Another interesting pro
erty, which can be studied in 2D boxes@33# as well in sys-
tems of the present type, is the revival time. Initially, a wa
packet is placed in one side of the box. Then it evolv
spreading over the whole configuration space it is allowed
fulfill. After a certain time~the revival time! all the ‘‘pieces’’
of the wave packet return to the initial situation, reconstru
ing the original state. Such applications may lead one to
to calculate the Green function for an arbitrary number
point interactions inside an infinite well.

FIG. 2. A general point interaction aty ~a! on the half-line and
~b! within an infinite well. In both cases we may have Dirichlet
Neumann boundary conditions at the walls.
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As before, the exactG for this case can be obtained from
Eq. ~7!. For that, we just sety150, yN5L and then choose
for R1

(2) andRN
(1) the values21 or 11. This will lead to all

the four possible combinations of Dirichlet and Neuma
boundary conditions for the walls atx50 andx5L.

As an example, consider the potential in Fig. 2~b!, a
single point interaction atx5y inside an infinite well of
lengthL. We restrict the discussion toG22 for xi ,xf,y and
G12 for xi,y,xf . After lengthy but simple manipulations
we find the Green functions~again,s51 ands521 lead to
Dirichlet and Neumann boundary conditions at the cor
sponding walls!

G22~xf ,xi ;k!5
1

2ik

$11sLR(2)exp@2ik~L2y!#%

D

3H exp@ ikuxf2xi u#2s0S R(1)exp@2iky#

2
sLT(1)T(2)exp@2ikL#

11sLR(2)exp@2ik~L2y!#
D

3exp@2 ikuxf2xi u#2s0exp@ ik~xf1xi !#

1S R(1)exp@2iky#

2
sLT(1)T(2)exp@2ikL#

11sLR(2)exp@2ik~L2y!#
D

3exp@2 ik~xf1xi !#J ,

G12~xf ,xi ;k!5
1

2ik

T(1)

D
$~exp@2 ikxi #2s0exp@ ikxi # !

3~exp@ ikxf #2sLexp@2ikL#

3exp@2 ikxf # !%, ~10!

with

D5~11s0R(1)exp@2iky# !$11sLR(2)exp@2ik~L2y!#%

2s0sLT(1)T(2)exp@2ikL#. ~11!

The poles ofG give the system eigenvalues. In our cas
they come fromD50.

D. Green function for periodic boundary conditions

Here we consider periodic boundary conditions for t
wave function, or c(2L/2)5c(L/2) and c8(2L/2)
5c8(L/2). So, the Green function satisfies exactly the
same relations in bothxi andxf . For simplicity, let us start
with one point potential atx50, see Fig. 3~a!. We need to
consider all the scattering paths starting fromxi and arriving
at xf . We can think of the points2L/2 and L/2 as being
connected, so we have trajectories on a circle. The paths
2-4
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then given by arbitrary number of rounds clockwise a
counterclockwise on the circle. Each time the particle h
the point interaction atx50, it is either reflected from or
transmitted through the potential~with the amplitude corre-
sponding to that trajectory getting the factorR or T, respec-
tively!. The paths are continuous and no extra factor to c
structWSP is gained when the particle crosses from2L/2 to
L/2 or L/2 to 2L/2. By classifying and summing up all th
scattering paths, we finally obtain the exact Green funct
as

FIG. 3. Periodic boundary conditions, i.e., the pointx52L/2 is
equivalent to the pointx5L/2. ~a! A single general point interaction
at x50. ~b! N general point interactions located at arbitrary po
tions y’s.
ee
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y
e

.e
u
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G~xf ,xi ;k!5
1

2ik

1

Dcircle
$$T(1)1~R(1)R(2)2T(1)T(2)!

3exp@ ikL#%exp@ ik~xf2xi !#

1~12T(1)exp@ ikL# !exp$ ik@L2~xf2xi !#%

1R(1)exp$ ik@L2~xf1xi !#%

1R(2)exp$ ik@L1~xf1xi !#%%, ~12!

with

Dcircle5~12T(1)exp@ ikL# !~12T(2)exp@ ikL# !

2R(1)R(2)exp@2ikL#. ~13!

The zeros ofDcircle are the energy eigenvalues.
The same reasoning to construct the scattering paths

be used for the more general case shown in Fig. 3~b!. The
final result is

-

G~xf ,xi ;k!5
1

Dpbc
$$Tj ,1

(1)exp@2 ik~yj2y1!#1TN, j 11
(2) K j ,1exp@2 ik~yN2yj 11!#exp@ ikL#%exp@ ik~xf2xi !#

1$RN, j 11
(2) Tj ,1

(1)exp@ ik~L22yN2yj1y1!#1Rj ,1
(2)TN, j 11

(2) exp@2 ik~2yj1yN2yj 11!#%exp@ ikL#

3exp@ ik~xf1xi !#1$Rj ,1
(1)TN, j 11

(2) exp@ ik~L12y12yN1yj 11!#1RN, j 11
(1) Tj ,1

(1)exp@ ik~2yj 112yj1y1!#%

3exp@2 ik~xf1xi !#1$TN, j 11
(2) exp@2 ik~yN2yj 11!#1Tj ,1

(1)KN, j 11exp@2 ik~yj2y1!#exp@ ikL#%exp@ ikL#

3exp@2 ik~xf2xi !#%, ~14!
ffi-
nti-
heir

as
ion.
rip-
lear
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rip-

nc-
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-
re-

we
ses.
where Kb,a5Rb,a
(1)Rb,a

(2)exp@2ik(ya2yb)#2Tb,a
(1)Tb,a

(2)exp
@22ik(yb2ya)# and

Dpbc5211Rj ,1
(1)RN, j 11

(2) exp@2ik~L2yN1yj !#

1Rj ,1
(2)RN, j 11

(1) exp@2ik~yj 112yj !#2~Tj ,1
(2)TN, j 11

(2)

1Tj ,1
(1)TN, j 11

(1) !exp@2 ik~yN2yj 111yj2y1!#

2K j ,1KN, j 11exp@2ikL#. ~15!

For some of the above quantities see Appendix B.

IV. REMARKS AND CONCLUSION

Here we have presented a way to calculate the Gr
functions for generalized point interactions in one dime
sion. Our approach uses a totally different approach t
most theoretical treatments. The method is based mostl
physical grounds. First, we show that one can define a g
eral point interaction through its scattering properties, i
the reflection and transmission amplitudes. Then, we disc
n
-
n

on
n-
.,
ss

how to construct the exact Green function from such coe
cients. It helps to keep track of the relevant physical qua
ties what may not happen in some other methods due to t
subtle renormalization procedures.

We do not invoke any kind of regularization, such
renormalization, series expansion, or self-adjoint extens
The advantage in not using specific mathematical presc
tions is that, in general, such techniques may not have a c
physical meaning~differently from some other contexts
where there are solid principles as a guide for regularizat
such as in the case of the Mandelstam-Leibbrandt presc
tion for the light-cone gauge in field theory! or are not
unique. In fact, one can find in the literature the Green fu
tion for a same general point interaction based on calc
tions from either a singled8 potential@17# or a combination
of d and d8 potentials@34#. This apparent contradictory re
sult is just due to the fact that the authors use different p
scriptions to regularize their Hamiltonians.

The second advantage of this simpler method is that
can easily extend our calculations to more general ca
2-5
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Indeed, we have derived the Green functions forN general-
ized point interactions for several situations;~i! on a line,~ii !
restricted to the half-line, and~iii ! within in an infinite box.
For the later two cases we can impose different bound
conditions at the border walls. Also,~iv! we have obtainedG
for periodic boundary conditions~the circlelike case!. As far
as we know, explicit expressions forG for all these systems
were not known in the literature and our aim was to ful
this gap.

A way to construct generalized point interactions has b
recently proposed in a series of papers@5,21#. The idea is to
consider different usuald functions, all separated by a dis
tancey0, with appropriate values for their strengths. In t
limit y0→0, one obtains the desired potential. Although t
exact limit cannot be taken in practice, if we can appro
mate eachd by some short-range potential and then havey0
finite but small, we may in principle obtain a physical rea
ization of a general point interaction. This open a great p
sibility of experiments in order to test fundamental and
teresting phenomena in quantum mechanics as applica
for the systems discussed in this work. In particular, of gr
interest would be the calculation of the time evoluti
of wave packets,

C~xf ,t !5 i /~2p!**dxidEexp~2 iEt !G~xf ,xi ;E!C~xf ,0!,

or of the density of states,r(E)52(1/p)I*dxG(x,x;E).
Due to the form of our Green function, the integration w
respect to the position can be solved analytical forr. ForC,
it can also be done for simple initial wave packets such
Gaussians. The integral on the energy, on its turn, can
easily carried out using numerical methods such as the
Fourier transform.

Regarding extensions of the present results we comm
the following. In Ref.@35#, both the local description of poin
interaction~which we used in this work! and a global one
based on the U~2! group ~which contains the former! were
discussed. In this U~2! context, one can also obtain the r
flection and transmission coefficients. So, our results
valid in the global description of point interactions. We em
phasize that the key point to obtain all the Green functio
calculated here is to know theR and T coefficients of the
potentials. In fact, our results apply for every on
dimensionalV(x) that satisfies the assumptions given
Refs. @23,24#. Thus, a ‘‘mixing’’ 1D lattice including both
general point interactions and usual potentials~which decay
at least exponentially! can be calculated from our method.

As a final remark we mention that it would be interesti
to extend the present approach to higher dimensions.
recent work@36#, it has been discussed how to calculate
wave function and also the Green function for bound
walls of arbitrary shapes and with very general bound
conditions. The method is based on the calculation ofT
matrix, which plays a role similar to 1D quantum amplitude
By taking appropriate limits, we could construct pointlik
interactions in two and three dimensions for which the Gre
function is already regularized. Such work is in progress a
will be reported in the due course.
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APPENDIX A: SPECIAL CASES

In order to exemplify our general result for a single ge
eralized point interaction on the line, Eq.~6!, we show how
to obtain from it the well-known Green functions ford @26#
andd8 @12,16,17# potentials.

The d potential is a particular case of Eq.~1!, wherea
5d5v51,b50,c5g. Substituting these parameters in
Eqs.~4! and ~6!, one obtains

G675
exp@ ikuxf2xi u#

2ik2g
,

G665
1

2ik Fexp@ ikuxf2xi u#

1S g

2ik2g Dexp@ ik~ uxf u1uxi u!#G . ~A1!

Now, recalling the meaning of the subscripts forG ~see Sec.
II ! in the above equation, it is not difficult to realize that w
can write Eq.~A1! as the following single formula:

G5
1

2ik Fexp@ ikuxf2xi u#1S g

2ik2g Dexp@ ik~ uxf u1uxi u!#G ,
~A2!

which agrees with Eq.~17! of Ref. @26# if we identify in the
coefficients which multiply the exponentials,g↔2Z and
2ik↔ ik ~this last relation is due to the fact that in Ref.@26#
the author usesm51 instead ofm51/2 as in our case!.

The d8 potential is defined bya5d5v51,b5g,c50,
so one gets the Green functions

G675
exp@ ikuxf2xi u#

~2i 1gk!k
,

G665
1

2ik Fexp@ ikuxf2xi u#

1S gk

2i 1gkDexp@ ik~ uxf u1uxi u!#G . ~A3!

Again, it is easy to show that the above expressions can
summarized as@sign(•) is the signal function#

G5
1

2ik Fexp@ ikuxf2xi u#

1S gk

2i 1gkD sign~xf !sign~xi !exp@ ik~ uxf u1uxi u!#G .
~A4!

Equation~A4! agrees with Eq.~12! of Grosche in Ref.@16# if
we identify g↔2b, 2 ik↔A2E ~because in such refer
2-6
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ence a Wick rotation is used! andG↔2G ~due to an oppo-
site sign used in the definition of the Green function!.

APPENDIX B: RECURRENCE FORMULAS

Here we show how to obtain some coefficients used in
exact expressions for the Green functions by means of re
rence formulas. The idea is to face a series ofn2 l 11 po-
tentials located atyl ,yl 11 , . . . ,yn21 ,yn as a single block
and then to associate with it the amplitudesRn,l andTn,l ~for
a detailed discussion, see Ref.@23#!.

Assume first a potential composed by two point inter
tions, placed atyl and yl 11, and let xi ,xf,yl,yl 11. By
using the same approach developed throughout this pa
we obain for the Green function

G225exp@ ikuxf2xi u#1Rl
(1)exp@2 ik~xf1xi22yl !#

1
Rl 11

(1) Tl
(1)Tl

(2)exp@2 ik~xf1xi22yl !#

12Rl
(2)Rl 11

(1) exp@2ik~yl 112yl !#
. ~B1!

We define a reflection coefficient for this block~made by two
potentials! as

Rl 11,l
(1) 5Rl

(1)1
Rl 11

(1) Tl
(1)Tl

(2)exp@2ik~yl 112yl !#

12Rl
(2)Rl 11

(1) exp@2ik~yl 112yl !#
.

~B2!

In analogy, we can defineRl 11,l
(2) for this same block by cal-

culatingG for xi ,xf.yl 11.yl .
Now, considerxi,yl,yl 11,xf , we have

G125
Tl

(1)Tl 11
(1) exp@ ik~yl 112yl !#

12Rl
(2)Rl 11

(1) exp@2ik~yl 112yl !#

3exp$ ik@xf2xi2~yl 112yl !#%, ~B3!

thus, we can again define

Tl 11,l
(1) 5

Tl
(1)Tl 11

(1) exp@ ik~yl 112yl !#

12Rl
(2)Rl 11

(1) exp@2ik~yl 112yl !#
. ~B4!
. A

,
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Similarly, we deriveTl 11,l
(2) by calculatingG for xi.yl 11

.yl.xf .
In order to get recurrence formulas, consider a third p

tential located atyl 12 ~recall that our two point interaction
block has its end points atyl and yl 11). Let xi ,xf,yl
,yl 11,yl 12 and considerRl 11,1 andTl 11,l of the two po-
tentials block as obtained before. By a direct inspection
Eq. ~B2!, we can readily infer the reflection coefficientRl 12,l

(1)

~for the new block formed by the three potentials! as

Rl 12,l
(1) 5Rl 11,l

(1) 1
Tl 11,l

(1) Tl 11,l
(2) Rl 12

(1) exp@2ik~yl 122yl 11!#

12Rl 11,l
(2) Rl 12

(1) exp@2ik~yl 122yl 11!#
;

~B5!

the generalization is then straightforward,

Rn,l
(1)5Rn21,l

(1) 1
Tn21,l

(1) Tn21,l
(2) Rn

(1)exp@2ik~yn2yn21!#

12Rn21,l
(2) Rn

(1)exp@2ik~yn2yn21!#
.

~B6!

For the reflection coefficientRn21,l
(2) one finds

Rn,l
(2)5Rn

(2)1
Tn

(1)Tn
(2)Rn21,l

(2) exp@2ik~yn2yn21!#

12Rn21,l
(2) Rn

(1)exp@2ik~yn2yn21!#
.

~B7!

Transmission coefficients can be written in terms of rec
rence relations as well. The final results are

Tn,l
(1)5

Tn21,l
(1) Tn

(1)exp@ ik~yn2yn21!#

12Rn21,l
(2) Rn

(1)exp@2ik~yn2yn21!#
~B8!

and

Tn,l
(2)5

Tn21,l
(2) Tn

(2)exp@ ik~yn2yn21!#

12Rn21,l
(2) Rn

(1)exp@2ik~yn2yn21!#
. ~B9!
nd
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